放射性井间同位素测井
同位素示踪注水剖面测井

二、示踪测井基本原理及相关概念
4)重复误差:相同条件下,用相同的设备、相同的工程操作人员、相同的环境下 两次测量值的差异大小。 重复性是测量精度的在线检查,是评估测量不确定性的最好的方法。 测井中,常记录重复测量段以验证仪器响应的正确性。即,曲线异常需要重复。 现场重复误差计算方法如下:
N2 N1 δ 100% N2 式中: δ——曲线重复误差; N1 ——第一条曲线平均值; N2 ——第二条曲线平均值;
H2------------注入剖面测井自然伽马曲线上相对应标志层界面深度,m;
五、测井资料解释流程
(2)利用磁定位测井曲线校正深度
磁定位测井曲线表示出套管接箍深度。有些注水井,油管管柱喇叭口
位于注水井段顶部或中部,都可以测出一段套管接箍显示的磁定位曲线。 这样,当注水井段自然伽马基线发生异常不易进行深度校正时,可以用套
球座
图1-2b 偏心分注两级三段结构示意图
二、示踪测井基本原理及相关概念
1、测井原理
注水开发的油田需要测定注水井中各小层吸水量,掌握各小层的吸水能力, 制定合理的分层配注方案,以防止单层突进或舌进等情况的出现。用放射性同 位素载体法可以在注水井中测定吸水剖面。 选用半衰期短的同位素I131或Ba131作为示踪剂,用粒径大于50μm的骨质活
管接箍曲线进行深度校正。
放射性同位素测井的应用2

放射性同位素测井的应用(2) 放射性同位素测井的应用(2)载体用量与衰变期、放射性强度的关系我们知道,由于每口井的油层厚度和吸水能力不同,使用放射性同位素的强度和用量也不尽相同。
一般的放射性强度由式(1)确定: (1)其中:I-----某井使用的放射性强度,Bq;K----吸水厚度为1m时,所用的放射性强度,Bq/m,由统计分析确定K值选用1.5×105Bq/m;H----油层射开厚度,m(当H<30m时,用射开厚度代替吸水厚度;当h>30m 时,用射开厚度的70%代替吸水厚度);A----各种沾污耗掉的放射性强度,目前选用30×105Bq(大庆地区经验值)。
同时,载体用量按式(2)可确定:(2)其中:I-----某井使用的放射性强度,Bq;I总----使用当天源罐内同位素的强度,Bq;V----载体用量,ml。
假如,一罐1000ml的同位素微球,比重1.03~1.06g/㎝3,半衰期11.7天,刚出厂的强度是100mCi。
若出厂当天使用强度为0.1mCi,即3.7MBq[2],则按照式(2)可求出所需体积为1ml;若出厂后5天使用,则由同位素衰变公式知罐内放射性强度衰减为74.38mCi,同样要求使用强度为0.1mCi时,所需体积为1.34ml。
依此类推,可得出表1。
可以看出,所需同位素强度相同,随着衰变期增长,载体用量呈指数增长[3](3)现场应用效果分析升58-38井,注入压力11MPa,日注水30m3/d 。
2011年,八大队先后分别采用300~600μm与100~300μm粒径的同位素载体对升58-38井进行注入剖面测井实验,解释成果对比图如下。
由图1看出,大粒径(300~600μm)同位素载体测井的解释成果图中,伽玛曲线干扰较大,毛刺较多,分层吸水情况不理想,并且沾污在一级配水器处不是很明显,随着深度的增加,沾污现象也愈加明显,在最后一级配水器处达到最大。
第七章 自然伽马测井

(7-6)
其中: Io 、 I--- 分别为未经吸收物质和经过吸收物 质L时伽马射线强度; μ---物质的吸收系数,μ=τ+Σ+η。 此外,还可以用质量吸收系数反映伽马射线通过物 质时的强度减弱程度。 (7-7)
m
三、伽马射线的探测
1、 放电计数管 如图7-3所示,它利用放射性辐射使气体电离的特 性来探测伽马射线。此计数管的计数效率低。 2、闪烁计数管
图7-8
自然伽马曲线
三、自然伽马测井曲线的特点及影响因素
自然伽马测井仪探测的伽马光子主要是
以仪器为球心、半径为 30~45厘米范围内岩
石放射出的伽马光子,此范围为自然伽马测
井的探测范围。
1、自然伽马测井曲线的特点(理论)
自然伽马测井 的理论曲线如图 7-9所示,从图中 不难看出曲线具 有下列特点:
其中:GR----目的层测井值;
GRcl----纯地层的测井值;
GRsh-----泥岩层测井值,API单位。
GCUR----希尔奇指数,与地层年代有关。
第三系地层,取3.7;老地层取2。
例:自然伽马测井曲线上的读数为:
纯砂岩=15API;泥岩=90API;目的层=40API。
地层为第三系碎屑岩。求地层泥质含量。
图7-14
利用自然伽马曲线作地层对比的实例
35-5 35-1
5559-5581
S1k1
5564-5585
S1k1
图7-14
利用自然伽马曲线作地层对比的实例
第三节
自然伽马能谱测井
自然伽马测井只能反映地层中所有放射 性核素的总效应,而不能区分地层中所含放 射性核素的种类及含量。自然伽马能谱测井 即可完成这一任务。
10 放射性同位素测井

Jν 1 Jν 2
实例1 右图中的A、B两地层
窜通,为堵窜将B层射开注入
活化水泥,而后测得放射性 同位素测井曲线Jν 2和参考曲
线Jν1比较看出,AB段曲线明
显升高,证明水泥已挤入该 窜槽井段。
3、放射性同位素测井检查封堵效果
实例2 A、B、C、D四个地层同时射开
后,油水同出,将煤油和水泥混合配成
放射性同位素测井 Radioactive isotope log
放射性同位素测井
1、方法原理
放射性同位素测井是利用放射性同位素做为示踪剂,向井内注入
被放射性同位素活化的溶液或固体悬浮物质的溶液,并将其压入管外
通道、或进入地层或滤积在射孔孔道附近的地层表面上,通过测量注 入示踪剂前后同一井段的伽马射线强度来研究和观察油井技术状况和 采油注水动态的测井方法,从而解决与示踪过程有关的各种问题。 所以这种测井方法又被称为放射性示踪测井,其测量系统与自然
资料解释
放射性同位素测井
2、放射性同位素测井找窜槽位置
左图是上述井段放射性同位 素测井和参考曲线图。比较这两
条曲线可见,注入了活化液的B层,曲线异常幅度明显增大,被封 隔器封隔的A层处,虽未注人活化
液却也有明显增大的曲线异常,
说明B层和A层之间的井段有窜槽 ;C层处,两条曲线基本重合,放
射性强度没有变化,说明B、C层
The end
伽马测井相同。放射性同位素测井的效果,在很大程度上决定于放射
性示踪剂选择得是否合适。选用哪种同位素,要根据施工目的而定。
放射性同位素测井
2、放射性同位素测井找窜槽位置
油井投入生产后,由于固井质量差或固井 后由于射孔及其它工程施工,使水泥环破裂, 造成层间串通,即形成窜槽,这对采油和注水
自然伽马测井和放射性同位素测井性质和方法

0第4.七06章.202自0 然伽马测井和放射性同位素测井
13
第一节 伽马测井的核物理基础
•二、伽马射线和物质的作用形式
–2.康普顿效应
• 伽马射线与物质作用发生康普顿效应引起伽马射线强 度减弱,其减弱程度用康普顿系数Σ表示。
e
NAZb
A
• σe——每个电子的康普顿散射截面,当伽马光子的能
量在0.25~2.5MeV的范围内时,它可看成是常数;
0第4.七06章.202自0 然伽马测井和放射性同位素测井
9
第一节 伽马测井的核物理基础
•一、原子核的衰变及其放射性
–5.放射性射线
• α射线:是氦原子核2He4流,带有两个单位正电荷, 容易引起物质的电离或激发,极易被吸收,电离能力 强,在物质中穿透距离很小,在井中探测不到。
• β射线:高速运动的电子流,在物质中穿透距离较短。 • γ射线:频率很高的电磁波或光子流,不带电,能量
0第4.七06章.202自0 然伽马测井和放射性同位素测井
4
第一节 伽马测井的核物理基础
•一、原子核的衰变及其放射性
– 1、原子的结构
• 矿物、岩石、石油和地层水都是由分子组成的,分 子又是由原子组成的。原子的中心是原子核,离核 较远处核外电子按一定的轨道绕核运动。
0第4.七06章.202自0 然伽马测井和放射性同位素测井
• 放射性:不稳定的核素所具有的自发地改变自身结构, 衰变成其它核素并释放射线(α、β、γ) 的性质。
• 放射性同位素:具有放射性的同位素。
0第4.七06章.202自0 然伽马测井和放射性同位素测井
6
第一节 伽马测井的核物理基础
•一、原子核的衰变及其放射性
–3. 核衰变
同位素示踪测井的方法分析及影响因素探讨

同位素示踪测井的方法分析及影响因素探讨作者:刘丽娜来源:《中国化工贸易·下旬刊》2019年第07期摘要:在实际进行油田的生产开发过程中,在测试工作中应用同位素示踪测井的方法能够进一步提升测试工作效率以及测试的精确度,但是同位素示踪测井方法在实际的应用过程中也会受到很多因素的影响,从而使得其不能达到预期的测试精度目标,本文在针对同位素示踪测井法进行介绍的基础上对该技术在测井作业过程中的影响因素进行了探讨。
关键词:同位素示踪;测井方法;影响因素1 同位素示踪测井法1.1 同位素淋洗由于同位素自身具有较强的污染性,因此在实际的测试工艺中通常情况下都会选择拥有150d半衰期的133Sn作为工艺技术实施的母体,然后针对同位素进行淋洗的时候主要使用的是浓度为0.05mol/L的盐酸溶液,最终就能形成半衰期为90min的133mIn的子体。
这样才能实现对同位素污染的有效控制,这样才能充分保证整个测试作业的安全性。
1.2 测井解释将测井仪器下入到井下合理的测试深度的时候,为了进一步提升测试族作业的精度要严格的使用伽马曲线或者磁定位技术对测试位置的精度进行进一步校正。
在测试仪器下入过程中一旦到达射孔层位上部2m的时候,就可以向示踪器进行供电,这样示踪器就可以向外发射出同位素,伽马曲线也会第一时间出现测试过程中的第一个峰值,这个峰值也代表着释放出的同位素所抵达的第一个位置。
然后继续将测井仪器进行下放直到其达到第二个同位素的释放位置,在该位置上通过测试就能够得到伽马曲线的第二个峰值,这个峰值也代表着释放出的同位素所抵达的第二个位置。
在实际中对伽玛曲线进行测量的过程中必须要充分保证测量速度的均匀性。
而通常情况下但实际进行测井实践过程中,为了有效提升测量的精度都会采取三次测量。
在经过对每一个层面进行测量后就能够得出不同层面之间的流量,将各个层面的流量进行相加后,就能得出最终的总流量。
但是生产开采实践中并不是所有的射孔层位都能够出现流量。
放射性同位素示踪注水剖面测井工艺

第四章放射性同位素示踪注水剖面测井工艺第一节测井前的准备一、施工条件准备1、井场放射性同位素示踪注水剖面测井要求井场清洁、平整、无杂物堆放,能同时摆放××(或吊车)、仪器车和绞车三台车。
其中井架车(或吊车)要靠近井口,绞车摆放要××20m以上,以保证电缆能正常起下。
2、井架车在放射性同位素示踪注水剖面测井施工中,升降仪器串和井口防喷装置应使用井架××提升高度必须大于6m,悬重必须大于6m。
目前,各油田在施工中多使用5-8t吊车××车。
为了充分利用这台吊车,还可以将井口防喷装置如高压注脂泵、防喷管等安装在吊××。
3、井口为了保证测井资料准确可靠,要求注水井井口的各种压力表齐全、完好,注水量××4、井下注水管对于油井转注水井时间不久的井,在测井前必须进行洗井作业,清除油、套管××污,确保井内干净,无沾污。
二、测井施工设计和测井通知单1、测井通知单的基本内容测井通知单的内容不仅包括测井施工单位进行施工设计的依据,而且还是测井××的基础参数和信息。
它是由用户提出的,基本内容如下:(1)井下基础数据。
井下基础数据主要是井身结构方面的数据。
包括有套管规范××深度、固井质量、水泥返高、人工井底、砂面(或落物鱼顶位置)、油补距或套补距××(2)注水情况。
包括投注时间、累积注水量、注水方式、注水压力(泵压、油××压)、日注水量,如果是分层注水,还应提供注水层、层段深度、配水嘴直径、分层××水量和实际注水量。
(3)射孔层位数据。
包括注水井段每个射孔层的完井解释序号、层位、深度、××度、有效厚度、渗透率等数据。
(4)注水管柱结构。
包括注水管柱下入日期、油管规范、封隔器和配水型号、××下入深度、撞击筒深度(或喇叭口深度),井下管柱结构示意图。
放射性同位素测井的应用

放射性同位素测井的应用放射性同位素测井的应用放射性同位素测井的应用【1】摘要:本文主要分析了放射性同位素测井的应用范围,除了在油藏动态检测中广泛应用外,其还向油田后期开发、剩余油研究、油藏数值模拟等研究方向发展。
对同位素示踪法用于吸水剖面测试问题进行分析,探讨其形成的原因以便提升技术质量。
关键词:放射性同位素;测井;注水1、放射性同位素测井应用随着该技术的不断成熟和推广应用,其已经成为我国水驱油田注水剖面测井的主要监测手段。
除了在油藏动态检测中广泛应用外,其还向油田后期开发、剩余油研究、油藏数值模拟等研究方向发展。
其应用有如下几个方面:1.1检查漏失、串槽井段,为封堵提供支持由于固井质量差或者固井后由于射孔及其他施工使得水泥环破坏,则可造成层间串通形成串槽,进而对采油或注水造成严重影响。
为了封堵管外的串槽和漏失点,应该先找到串槽井段,而放射性测井可以很好的提供这些信息。
对于油层找串通常注入活化油,对于水层找串则相应注入活化水。
通过测量注入前后伽马曲线并进行对比,若发生串槽,则除了注入层外,在曲线上必会有其它层段伽马曲线值相对于基线值显著增加,从而可以确定串槽井段,进而为封堵提供支持。
1.2检查封堵情况串槽、油井中部分层段出水、误射孔等井段需要二次注水泥封堵,封堵效果可以用放射性同位素测井检查。
先测一条伽马曲线作为基线参考,然后向封堵井段挤入加入放射性同位素的水泥,再次测量伽马曲线,通过比较两次测得的伽马曲线即可判断出封堵效果:若封堵层段因挤入活化水泥后曲线幅度明显变大则表明封堵良好,反之则说明封堵效果差。
1.3 检查酸化压裂效果在低孔低渗储层中,常需要采用一定的措施才能提高油田的采收率和产能,现今压裂酸化就是最常用的方法。
将放射性同位素加入压裂液中,将压裂液压入目的地层,测量压裂前后的两条伽马射线曲线,通过对比即可判断出压裂效果:若在压裂层段两条曲线具有明显的幅度差,则说明压裂效果明显,反之则说明压裂效果差,压裂液未被压进地层。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
ppt课件
8
ppt课件
9
施工流程图
ppt课件
10
ppt课件
11
ppt课件
12
井间自动监测施工流程平面示意图
监测 仪
计 量 房
监测 仪器
油井
油井
油井
油井 油井
油井 油井
注水井
油井
油井
投放同位素
注水井
监测 仪器
计 量 房
监测 仪
VCT-2000JC4仪器图
ppt课件
14
仪器按装东6-23-2475井组
2005年9月8日注入活度值300 mCi的160Tb之后 在周围对应的油井监测同位素示踪剂的产出情 况。其中孤东24-2474井在2005年9月19日见素, 时间为11天,推进速度18.18米/天,该井的示 踪剂产出曲线见下图.注水井孤东23-2475与生 产井孤东24-2474相距200m,示踪剂突破时间 为11天,峰值出现在第12天,示踪剂推进速度 达到了18.18m/d,对应的平均渗透率为6460md, 孔道半径13.24µm,因此存在一个高渗通道。
ppt课件
6
同位素示踪剂的类型、活度、投放方式
我们选择的几种示踪剂毒性小、污染少,注入活 度取决于甲方提供的地层参数、井距、日注水量和产 液量及注采特性和监测仪器的灵敏度。采用人工井口 投放方式是目前我们在实际工作中总结的减少污染的 最好的可行性方法。同位素注入活度的计算公式为:
A=S*H*Φ*SW*F*K
胜利测井公司 向您问好!
ppt课件
1
放射性同位素
井间监测技术
报告人:
ppt课件
2
目录
监测技术概述 硬件结构 井间示踪剂解释程序框图 应用实例 结束语
ppt课件
3
井间监测技术概述
➢ 50年代----中国:玉门油田用无机盐尝试井间化学
示踪技术
➢ 70年代----美国: W.E宾哈姆和M.阿俾扎德,提出用放射
ppt课件
18
ppt课件
19
井间监测应用实例
2、判断串层的实例
131I通 过指示
131I通 过指示
131I通 过指示
ppt课件
此图为孤岛 6-28井的累 计计数-时间 曲线图,此 次共监测10 口油井,注 入的同位素 为131I ,该 油井先后三 次见到131I 。 通过解释分 析,这是由 于串层引起 的,即注水 层42、44串 入43所致。
15
井间示踪剂解释程序框图
程序开始
读入注水井与生产井静态参数: 孔隙度、渗透率、厚度、井距、连通面积、含水饱和度
读入示踪剂数据:示踪剂重量、扩散常数
读入示踪剂产出曲线数据: 峰值个数、峰值时间、峰值活度、实测点数、拟合点数
读入生产数据:注水井日注水量、生产井日产水量
计算生产井示踪剂活度校正系数
计算无因次注入体积和伽玛函数 运用参数分离的非线性最小二乘优化方法计算线性参数和非线性参数
20
3、监测注水方向的实例 埕北11D-1、11D-3井组进行井间同位素示
踪剂试验,于2004年12月13日分别注入46Sc 600 mCi和192Ir 500mCi之后在周围对应的油井 11D-2、11D-4、11D-5、11D-6、11E-1、11E-3 监测同位素示踪剂的产出情况,其中11E-1 井 在2005年7月23日04时见素,时间为222天,推 进速度2.8米/天;11E-3 井在2005年7月13日03 时见素,时间为212天,推进速度1.54米/天; 11D-4 井在2005年8月7日7时见素,时间为237 天,推进速度1.27米/天;11D-2 井在2005年7月 30日08时见素,时间为229天,推进速度1.32米 /天;11D-5 井在2005年5月15日20时见素,时 间为153天,推进速度1.85米/天,示踪剂产出 曲线见下图。
计算高渗透层厚度和渗透率
输出计算结果
程序pp结t课束 件
16
井间监测应用实例
1、监测大孔道的实例
碘的
钪的
能特峰谱征曲线图特峰征
ppt课件
钪的 特征 峰
该图是孤岛25K514井的累计计 数曲线图,此次 监测投放的同位 素是131I、46Sc、 192Ir 。本次共监 测13口油井,监 测期间为26天, 投放同位素的第 二天便在该井见 到131I、46Sc通过 指示,其余井未 见。通过分析, 注水井和油井之
性井间示踪资料,解释油藏非均质性
➢ 80年代---- 加拿大: 埃索公司的K.N伍德和J.S唐等人,提
出用井间示踪技术,确定剩余油饱和度的理论和方法
➢ 90年代 ----中国:各大油田普遍推广化学示踪技术和同位
素示踪技术,进行井间监测
ppt课件
4
为了寻找更简单可靠的、可替代人工化验 的井间监测方法,胜利测井公司从94年开始, 进行放射性同位素井间自动监测方法的研究。 根据放射性同位素衰变后,其特征能谱各不相 同以及其水润湿性或者油润湿性的特性,利用 放射性同位素作为示踪剂,通过监测仪器自动 监测,减少了人为误差。它在油井正常生产的 情况下,在注水井注入示踪物质,然后在周围 井网进行动态的监测,通过对监测资料分析处 理,对这一井网进行综合评价,为油田的后期 开发提供了可靠的资料。
ppt课件
21
ppt课件
ppt课件
5
此技术可解决以下问题: 了解油水井的连通情况和注入水的分配情况; 判断注水的流动方向; 计算注入水在地层中的推进速度; 检验管外串槽情况; 判断是否存在大孔道及检验堵水效果; 判断油层的非均质性; 可以计算出生产井与注水井之间高渗透小层的有关地
层参数,包括小层厚度、渗透率及孔道半径;
式中:A----示踪剂活度(Bq)
S----井组波及面积(M2)
H----连通层平均厚度(M)
Φ---孔隙度(%)
SW---含水饱和度(%) F----国家允许排放量(Bq/ M3)
K----系数
ppt课件
7
硬件结构
井间同位素监测仪的硬件结构如下图所示,其中 探测器由晶体和光电倍增管组成,工作时固定 在原油输出管线上,接受由示踪剂发射出的伽玛 射线。测量到的伽玛射线在探测器中转换成电 脉冲后(电脉冲的幅度即代表了该伽玛射线的 能量),在监测仪中经过A/D转换后形成256道 脉冲幅度能级,再经过处理后由程序完成能谱 的测量与存储。该监测仪设计有与微机进行通 讯的接口,测量完成后,现场所存储的数据可 输出至微机进行后期处理分析。