常用放射性核素数据表

合集下载

铀矿勘查和辐射防护常用单位及换算关系

铀矿勘查和辐射防护常用单位及换算关系

铀矿勘查和辐射防护常用单位及换算关系一、基本物理单位1、电流强度:是指单位时间内通过导线某一截面的电荷量。

国际单位:安培(A)、毫安培(mA)微安培(卩A)、皮安培(PA)1A=1OOOmA=10^ A=1012PA2、电量单位:若导线中载有1安培的稳恒电流,则在1秒内通过导线横截面积的电量为1库仑。

库仑不是国际标准单位,而是国际标准导出单位。

1库仑相当于6.24146 X 10 18个电子所带的电荷总量(e=1.6021892X 1019库仑,e指元电荷)。

单位:库伦(C)、纳库伦(nC)、皮安培•秒(PA - S)1C=1A- S1C=1 • 109(nC)=1 • 1012(PA- S)二、放射性测量单位1、放射性物质的含量单位岩石、矿物或其他固体物质中的放射性物质含量,用每克物质中含有多少克放射性物质的百分数或百万分数表示,如% (10-2)、ppm (10-6)、ppb (10-9),也称"质量分数”。

铀品位:%。

平米铀量:kg/m2铀、钍含量:10-6镭含量:10-12钾含量:%水中铀:Bq/L土壤氡:Bq/L大气氡:Bq/m3辐射环境评价时也可用比活度或活度浓度来表示放射性物质的含量:单位为:Bq/g、Bq/kg3 3或Bq/cm、Bq/m、Bq/L。

2、放射性强度:又称放射性活度,指处于某一特定能态的放射性核在单位时间内的衰变数,记作A, A=dN/dt,表示放射性核的放射性强度。

根据指数衰变规律可得放射性活度等于衰变常数乘以衰变以后剩余原子核核的数目,即A=dN/dt=入N。

放射性强度亦遵从指数衰变规律。

放射性强度的国际单位制(SI)单位是贝可勒尔(Bq),采用每秒钟内的核衰变数,1 Bq=1次衰变/秒=1^1常用单位:居里(Ci)、毫居里(mCi)、微居里(卩Ci)、皮居里(pCi)101Ci=3.7 X 10 Bq=37GBq1mCi=3.7 X 107Bq=37MBq41 卩Ci=3.7 X 10 Bq=37KBq1Bq=2.703 X 10-11Ci-8=2.703 X 10 mCi-5 —=2.703 X 10 卩Ci=27.03 pCi比活度:对于固体放射源或者放射性物质,其单位质量的活度称为比活度,单位为Bq/g或Bq/kg ;比活度=活度/含量。

8放射免疫技术

8放射免疫技术

放射免疫技术(一)单项选择题(A型题)1、放射免疫分析的创建者和创建时间A.Cooms于1941年创建B.Berson和Y allow于1959年创建C.Nakene和Pierce于1966年陈创D.Miles和Hales于1968年创建建E.Emgrall和Perlmann于1971年创建2、放射性核素的选择原则不包括A.高比活度B.适宜半衰期C.对抗原戒抗体活性没有影响D.容易标记E.标记物易于保存3、最理想且临床最常用的放射性核素为A.125I B.51Cr C.60CoD.3H E.131I4、释放β射线的核素为A.125I B.51Cr C.60CoD.3H E.131I5、3H标记放射免疫技术比125I标记放射免疫技术优越的是A.标记方法简便B.放射性测量量方法简便,效率高C.易获得高比放射性标记物D.标记物保存期较长E.放射性废戏物处理较易6、下列关于抗体质量指标K值的描述,正确是的A.抗体K值越小,放射免疫分析的灵敏度.精确度和准确度越佳B.抗体K值越大,放射免疫分析的灵敏度.精确度越佳,量准确度越差C.抗体K值越大,放射免疫分析的准确度越佳,但灵敏和精确度越差D.K值达到106~109mol/L,才适用于放射免疫技术E.放射性标记物.待测抗原和标准品对同一抗体应具有完全相同的K值,否则测定结果将失真7、直接标记地制备放射性标记结合物时,常用的氧化剂为A.氯胺T B.乳过氧化物酶C.N-溴代琥珀酰亚胺D.H2O2E.SHPP8、关于直接法制备放射性标记结合物,下列说不正确的是B.能标记所有蛋白质或多肽A.通过小分子载体使125I与蛋白结合C.125I标记对蛋白质的活性无影响D.常用的氧化剂是氯胺TE.125I标记物的比放射性较低9、有关放射性标记物的放射化学纯度的描述,正确的是A.是指结合于抗原上的放射强度占总放射强度的百分率B.是指单位质量标记物的放射强度C.是指标记抗原结合于抗体的放射强度占总放射强度的百分率D.放射化学纯度测定方法是加10倍量抗体和标记抗原反应,测算出B/(B+F)的百色率E.标记后放射性标记物的分离纯化程度不影响其放射化学纯度10、有关放射免疫分析原理的描述,正确是A.Ag和Ag*与相应Ab的结合能力不相同B.Ag*为限量,待测Ag竞争性抑制Ag*与Ab的结合C.Ag*Ab复事物量与待测Ag量成正比D.反应平衡时,游离放射性强度(F)与待测Ag量成正比E.标记抗体为过量11、表示抗体的特异性指标是A.免疫活性B.亲和常数(常用K值来表示)C.效价D.交叉反应率E.比放射性12、反映抗体与相应抗在结合的能力的指标是A.免疫活性B.亲和常数(常用K值来表示)C.效价D.交叉反应率E.比放射性13、反映标记抗原结合于抗体的放射强度占总放射强度的百争率的指标是A.放射化学纯度B.免疫活性C.比放射性D.交叉反应率E.亲和常数14、表示单位质量标记物的放射强度的指标是A.放射化学纯度B.免疫活性C.比放射性D.交叉反应率E.亲和常数15、融事了特异性和非特异性B/F分离技术特点的方法是A.活性炭吸附法B.双抗体法C.因相分离法D.PR试剂法E.化学沉淀法16、关于放射免疫分析中分离方法的选择要求,下列描述错误的是A.分离应彻底、迅速B.操作应简便,重复性好C.分离过程应不影响免疫复合物的形D.分离产果应受反应介质影响成E.试剂来源容易,价格低廉17、在放射免疫分析中,制作标准曲线形状不受放射性标记物的衰变影响的反应的参数是A.B/F B.B/T C.F/BD.B/Bo E.B18、为使放射免疫分析的标准曲线直线化,实验数据进行转化应采用的方法是A.半对数法B.双对数法C.二元三次方程D.联结法E.log-logit方式进行数据转化法19、在放射免疫分析中,使标准曲线呈正比例双曲线,横坐标是测定物标准品浓度,纵坐标是A.B/F B.B/T C.F/BD.B/Bo E.B20、免疫放射分析方法创建者为A.Cooms于1941年创建B.Berson和Y allow于1959年创建D.Miles和Hales于1968年创建C.Nakene和Pierce于1966年陈创建E.Emgrall和Perlmann于1971年创建21、与放射免疫分析相比,免疫放射分析最显著特点是A.使用单克隆抗体B.采用固相分离法C.反应属于非竞争性结合D.可以测定大分子和小分子抗原E.灵敏度较高22、关于免疫放射分析的描述,正确的是A.反应体系中,相对于抗原,标记抗体是过量的B.单位与抗体双位点IRMA均采用固相抗体作分离C.抗原与抗体的结合属于竞争性结合D.反应平衡时,游离标记物量与待测抗原量成正比E.反应平衡时,待测抗原量与结合的*Ag-Ab成反比23、为提高放射免疫分析的检测灵敏度,方法学设计时应注意避免A.制备高比放射性的标记物B.增加抗体的用量C.选用顺序饱和法实验流程D.筛选高亲和力的抗要E.选用特异性B/F分离方法24、与RIA比较,IRMA最突出的特点是A.IRMA的反应速度更慢B.非竞争结合,使IRMA灵敏度更高C.抗体用量较少,但对K值要求更高D.反应参数与待测抗原含量成反比E.单位点IRMA采用固相抗体分离法25、放射性活度是指A.单位时间内的核衰变数,即每秒衰变次数,用贝可勒尔(Becquerel,Bq)表示B.单位质量样品中所含放射性活度,以Bp/g或mmol表示C.单位体积溶液中所含所放射性活度,以Bq/ml表示D.结合于抗原上的放射强度占部放射强度的百分率;即碘化蛋白质的放射强度占总放射强度的百分率E.单位质量标记物放射强度,单位为Bq/ug26、体外放射分析技术的检测对象为机体中的A.痕量元素B.放射性核素C.微量生物活性物质D.无机元素E.酶27、与放射免疫分析法比较,免疫放射分析法的特点是A.反应模式为竞争抑制B.特异性较低C.分析误差大D.反应速度快E.标记简单28、与体外化学发光分析法比较,放射免疫分析法所不具备的是A.灵敏性高B.特异性强C.自动化分析D.重复性好E.试剂用量小29、除碘原子外,用于放射免疫分析法的放射性核素还有A.18F.3HB.3H.14CC.14C.99mTcD.99mTc.13NE.13N.18F30、免疫放射分析法与放射免疫分析法的主要区别在于A.标记核素不同B.标记抗体不同C.单抗用量少D.分离法不同E.定量抗体31、如果用125I标记抗原,进行放射性测量的是A.α射线B.β+射线C.β-射线D.γ射线E.X射线32、用于防护125I所使用的材料是A.铅B.铝C.塑料D.石蜡E.有机玻璃.33、放射免疫分析的创建者和创建时间( )A.Cooms于1941年创建B.Berson和Yallow于1959年创建C.Nakene和Pierce于1966年创建D.Miles和Hales于1968年创建E.Emgrall和Perlmann于1971年创建34、放射免疫分析的必备条件( )A.符合一定质量要求的放射性核素标记的抗原B.高纯度的标准品和高质量的特异性抗体C.合适的标记抗原抗体复合物与游离标记抗原分离技术D.放射性测量仪器E.以上均是35、放射性核素的选择原则不包括( )A.高比活度B.容易标记C.适宜半衰期D.标记物易于保存E.对抗原或抗体活性没有影响36、表示单位质量标记物的放射强度的指标是( )A.放射化学纯度B.免疫活性C.比放射性D.交叉反应率E.亲和常数37、下列有关放射免疫分析的叙述中,错误的是( )A.以放射性核素作为标记物B.是一种定量检测技术C.主要用于检测抗原D.最后形成的免疫复合物中的放射性强度与标本中的待测抗原量呈正比E.定量分析时需同时作标准管38、下列有关放射免疫分析的叙述中,错误( )A.以放射性核素作为标记物B.是一种定量检测技术C.主要用于检测抗原D.最后形成的免疫复合物中的放射性强度与标本中的待测抗原量呈正比E.定量分析时需同时作标准管39、关于RIA原理,下述哪种说法正确( )A.Ag增多时,B/F值增大B.Ag增多时,B/(B+F)值减小C.Ag增多时,B增多D.Ag增多时,B+F减小E.Ag增多时,F减小40、放射免疫分析常用的分离法是( )A.活性炭吸附B.抗原抗体沉淀C.树脂交换,色层分析D.凝胶滤过法E.活性炭吸附及抗原抗体沉淀41、直接标记地制备放射性标记结合物时,常用的氧化剂为( )A.氯胺TB.乳过氧化物酶C.N-溴代琥珀酰亚胺D.H OE.SHPP42、在RIA检测中,结合率用B/B+F表示,其意义是( )A.结合态的标记抗原与总的标记抗原之比B.结合态的标记抗原与游离的标记抗原之比C.总标记抗原与抗原抗体复合物之比D.结合态的抗原与总的抗体之比E.结合态的抗原与总的抗原之比43、为避免放射免疫分析所使用的计数器受到外来放射性物质的污染而影响所分析的结果,所以每日应执行下列哪项工作( )A.检测计数器的背景值B.检测器的保养擦拭C.校正计数器计数效率D.对计数器执行擦拭实验E.对作业环境进行辐射侦测44、在RIA这一反应系统中,参与反应的有标记抗原,已知抗体和待测抗原,对这三种成分的要求是( )A.只需固定标记抗原量B.待测抗原的量要先标定C.标记抗原和已知抗体的量都是固定的D.只需固定已知抗体的量E.标记抗原.已知抗体.待测抗原的量均需固定45、分离结合态与游离态放射性标记抗原不完全时会增加( )A.特异性结合量B.非特异性结合量C.敏感度D.精确度E.反应速率46、在用RIA检测某种激素在血清中的浓度时,其抗原抗体复合物中的放射性强度越大,表明( )A.该激素在血清中的浓度越高B.该激素在血清中的浓度越低C.游离的标记激素的浓度越高D.对这种激素的特异性抗体浓度越高E.以上均不对47、在放射免疫测定中,已知抗体和同位素标记抗原的量一定,如果未标记的待测抗原量增多,则出现下列哪种现象( )A.标记的游离抗原增加,标记的免疫复合物减少,未标记的免疫复合物增加B.标记的游离抗原增加,标记的免疫复合物减少,未标记的免疫复合物减少C.标记的游离抗原增加,标记的免疫复合物增加,未标记的免疫复合物增加D.标记的游离抗原减少,标记的免疫复合物增加,未标记的免疫复合物增加E.标记的游离抗原减少,标记的免疫复合物增加,未标记的免疫复合物减少48、有关放射性标记物的放射化学纯度的描述,正确的是( )A.是指结合于抗原上的放射强度占总放射强度的百分率B.是指单位质量标记物的放射强度C.是指标记抗原结合于抗体的放射强度占总放射强度的百分率D.放射化学纯度测定方法是加10倍量抗体和标记抗原反应,测算出B/(B+F)百分率E.标记后放射性标记物的分离纯化程度不影响其放射化学纯度49、在放射免疫分析中常用到RIA标准曲线,其作用是( )A.用来校正计数器(counter)B.用得到的计数率去推算试样中所含样品的浓度或含量C.做质控D.用来追踪试样的变化E.鉴定核素的放射化学纯度50、非竞争性结合分析法,常用放射性核素标记( )A.标准抗原B.检测抗原C.抗体D.沉淀剂E.待测样品51、放射免疫分析中,已知量的是( )A.未标记的抗原B.未标记的抗体C.标记抗原D.标记抗体E.放射性核素52、与放射免疫分析的灵敏度成正比的是( )A.标记抗原浓度B.未标记抗原浓度C.标记抗原的比放射性D.标记抗体的浓度E.放射性核素的半衰期53、免疫放射测定(IRMA)与RIA的区别中,哪项论述不正确( )A.RIA使用标记抗原,IRMA使用标记抗体B.RIA中抗体结合标记抗原的量与被测抗原浓度成反比关系,而IRMA中则相反C.RIA中需对标记抗原抗体复合物.游离标记抗原分别做放射强度测定,IRMA只测定上53.清液的放射强度D.RIA用于检测抗原,IRMA用于检测抗体E.IRMA为非竞争结合,RIA为竞争抑54、关于免疫放射分析的描述,正确的是( )A.反应体系中,相对于抗原,标记抗体是过量的B.单位与抗体双位点IRMA均采用固相抗体作分离C.抗原与抗体的结合属于竞争性结合D.反应平衡时,游离标记物量与待测抗原量成正比E.反应平衡时,待测抗原量与结合的*Ag-Ab成反比55、在放射免疫分析中,使标准曲线呈正比例双曲线,横坐标是测定物标准品浓度,纵坐标是( )A.B/FB.B/TC.F/BD.B/BoE.B56、与放射免疫分析相比,免疫放射分析最显著特点是( )A.使用单克隆抗体B.采用固相分离法C.反应属于非竞争性结合D.可以测定大分子和小分子抗原E.灵敏度较高57、免疫放射分析方法创建者为( )A.Cooms于1941年创建B.Berson和Yallow于1959年创建C.Nakene和Pierce于1966年创建D.Miles和Hales于1968年创建E.mgrall和Perlmann于1971年创建58、需经特殊处理才能适于放射分析检查用的标本是( )A.血清B.血浆C.骨髓液D.组织E.尿液59、放射免疫分析中所采用的标记抗原的放化纯度应大于A.75%B.80%C.85%D.90%E.95%60、对放射免疫分析药盒进行质量评价,要求批间CV值在哪个范围A.1%~5%B.5%~10%C.10%~15%D.15%~20%E.20%~25%61、对放射免疫分析药盒的质量控制中,要求非特异结合率小于A.1%B.3%C.1%~5%D.5%~10%E.10%~15%62、用碘原子标记多肽或蛋白,是因为这类分子上有A.赖氨酸B.酪氨酸C.色氨酸D.蛋氨酸E.亮氨酸63、为避免碘原子标记蛋白引起免疫活性改变,一般每个蛋白分子上连接的碘原子不超过A.2个B.3个C.4个D.5个E.6个64、放射免疫分析药盒购置后一般能用1~2个月,不能放置时间太长,是因为A.抗原变性B.抗体失活C.放化纯度降低D.细菌污染E.超过半衰期65、检测TSH灵敏度最低的方法是A.RIAB.IRMAC.ELISAD.化学发光E.时间分辨66、在检测TSH时,临床要求分析灵敏性达到A.1B.0.1C.0.01D.0.001E.0.000167、不常用放射免疫分析法测定的项目是A.激素B.抗核抗体C.药物D.微量蛋白质含量E.肿瘤标志物三、名词解释1、RIA:即放射免疫分析,是以放射性核素标记抗原和待测抗原竞争结合一定量的特异性竞争免疫这方法。

如何认知核辐射污染程度的公告数据

如何认知核辐射污染程度的公告数据

《生命与灾害》5LIFE &DISA STE R 探讨与分析常见核辐射污染类型的认知核辐射污染主要是由核放射性物质在大气和水体当中的扩散而形成的,而核放射性物质的危害主要是由泄漏的核放射性物质中的α射线、β射线、γ射线和中子射线等危害因子所构成。

1.α射线α射线是从天然放射性核元素放射出来的一种带正电荷的粒子流。

其电离能力强,射程短,穿透力弱,一张纸就能阻挡它通过。

因此,α粒子通常不会对人体造成外部照射伤害,但如果α粒子源进入到人体内,就会对人体内部器官造成损伤。

所以,对α粒子的防护,主要是应防止其进入到人体的内部,防护的方法是采取呼吸道防护和避免食入受其污染的食物和水。

2.β射线β射线是由不稳定的原子核发射出来的高速电子流,常说的β射线指带负电的电子。

β射线具有一定的电离能力,其对物体的穿透能力比α射线强得多,能穿透皮肤角质层而损伤人体组织,一般认为β射线是一种轻微的外照射危害因素,用几毫米的铝能完全屏蔽掉β射线。

β射线进入人体后的危害不如α粒子大,但仍是内照射防护应考虑的问题之一。

3.γ射线γ射线是由放射性原子核内发射出来的光子流,可以通过所产生的次级电子引起物质原子的电离或激发。

其电离能力弱,具有很强的贯穿能力,其对人体的伤害主要是通过体外照射而形成,对其防护的方法主要是避免与其接触,保持安全距离,或采取屏蔽防护等。

4.X 射线X 射线是高速电子打到固体上产生的一种光子流。

通常X 射线是由射线装置产生的,有些产生电子束的装置也产生一定的X 射线,其性质与γ射线基本相同,但贯穿能力不如γ射线。

5.中子中子主要由核反应产生,其质量略大于质子的质量。

中子像γ射线一样,是一种具有很高贯穿能力的射线,其产生的辐射危害有效性约是γ射线的2.5倍。

中子一般不构成体内危害,因为没有任何天然中子放射源存在,所以中子源进入人体的机会罕有。

以上通过对常见五类射线的成因、性质、伤害途径的简要介绍,我们可以通过相关公告的核辐射的种类来判断对人体的伤害途径,进而选择性地采取相应的防护措施。

天然辐射

天然辐射

天然辐射辐射无处不在,甚至连我们自己的身体都具有放射性。

其实我们每日都会接触到各种各样的辐射,特别是天然辐射。

在中国,平均每人每年吸收的天然本底辐射剂量大约为2毫希沃特。

在世界各地,每人吸收的天然本底辐射剂量一般都是由每年1毫希沃特到10毫希沃特不等。

地球在诞生时,便存在着天然放射性核素,如铀-235、铀-238、钍-232以及-237等。

它们因衰变而产生的子体核素亦属不稳定及具有放射性。

这些子体放射性核素会继续衰变,直至到达稳定状态。

它们在衰变期间会放出对人体有害的α粒子、β粒子或γ射线。

铀-235、铀-238、钍-232及-237的半衰期分别为7亿年、45亿年、140亿年及2.3百万年。

由於-237及其子体核素的半衰期远低於地球的年龄,它们现已不存在於地球上。

相反,铀-235、铀-238及钍-232衰变系列的放射性核素仍然存在於我们的生活环境中。

地壳土壤及建筑材料内,都含有这些天然的放射性核素,因此我们吸收到的天然辐射剂量与所在地区的土质成份有关,亦与我们居所的建筑物料有关。

一、天然辐射包括宇宙射线辐射和自然界中天然放射性核素发出的射线辐射。

(一)宇宙射线天然辐射来源是来自外太空的宇宙射线。

宇宙射线又分为初级宇宙射线和次级宇宙射线。

初级宇宙射线是从宇宙空间进入地球的高能粒子流,主要由质子、α粒子和电子构成。

初级宇宙射线与大气中的原子核(氮、氧等)相互碰撞而释放出次级质子、中子、介子、重子等形成次级宇宙射线。

由於大气层有阻挡宇宙射线的作用,离地面越高,宇宙射线的强度就越强。

宇宙射线的主要成份是高能量的质子,其次是氦原子核及少量原子序数3或以上的重粒子和离子。

宇宙射线进入地球大气层后,会与大气高层的氮、氧等原子核发生反应,产生氚、碳-14等放射性核素及中子、质子、电子、μ介子、π介子等次级粒子。

当中,碳-14经常被用来鉴定古物所属的年代。

宇宙射线的强度随海拔高度的增加而增大。

因此,高原地区的人群受到的宇宙射线照射剂量比平原地区的人群高。

用放射性活度计测定 ~(153)Sm 中杂质 ~(156)Eu、~(155)Eu 的含量

用放射性活度计测定 ~(153)Sm 中杂质 ~(156)Eu、~(155)Eu 的含量

Eu 等效活度, 样品总的活度响应值 A t ,
Sm 活度
, 结合式 ( 3) 分别计算出 Eu 和 Eu 活度, 具体计算方法如下:
Κ 2t Κ 2t
e
- Κ 1t
- 2. 02×0. 8 867×A ′ 20 e
155 第 4 期 姜金岭: 用放射性活度计测定153 Sm 中杂质156 Eu、 Eu 的含量
153 153 156 155 Sm 测量条件下 Sm 、 Eu、 Eu 的活度或等效活度, 再经过高纯锗 Χ 谱仪严格标定, 即可
计算确定153 Sm 活度及其中微量156 Eu 和155 Eu 的含量。
收稿日期: 1996210223 修改稿收到日期: 1997203220
210
同 位 素 第 10 卷
第10卷 第4期
1997年 11 月
同 位 素
Jou rna l of Iso top es
. 10 N o. 4 Vol N ov. 1997
用放射性活度计测定153 Sm 中 155 杂质156 Eu、 Eu 的含量
姜金岭
( 中国药品生物制品检定所, 北京100050)
155 利用放射性活度计, 采用衰变吸收分离法分析153 Sm 中微量放射性杂质156 Eu、 Eu 的含量, 与多
测量时间为相对出厂时间, 分析结果列于表1。 表1结果表明, 两种方法的所有结果均在±7% 内 相符合。 表1中的相对值为相对于多道 Χ 谱仪法分析结果而言。
表1 活度计与 Χ 谱仪分析结果比较
活度计衰变吸收分离法 相对时间 h
156
Χ能谱法
155
Eu
Eu
156
Eu
155
Eu

第九章 同位素示踪技术.

第九章 同位素示踪技术.

第九章 同位素示踪技术在反刍动物营养研究中的应用第一节 同位素示踪技术的原理与方法简介同位素示踪是除能量平衡、物质平衡(C 、N )试验及相关的化学分析技术之外的另一类动物营养学的重要研究方法。

同位素示踪主要应用于营养物质动态代谢过程的观察,这方面的研究用常规技术无法实现。

诸如食糜流通量、营养物质吸收等方面的研究,常规研究手段也可以实现,但应用同位素示踪技术可以提高测定的准确性、减少对动物的外科手术处理、重复利用相同的动物或得到更多的信息。

另外,同位素研究还是矿物质代谢研究的重要手段。

虽然同位素示踪技术的应用受到对仪器设备条件要求较高的限制,但其独特的优越性已使其得到越来越广泛的应用。

一. 同位素示踪技术的原理同位素示踪技术在反刍动物营养研究中的用途广泛。

如营养物质的消化吸收、食糜的流通量测定、菌体蛋白合成、体组织的合成与分解、器官代谢、矿物质代谢乃至能量代谢和体成分估测等均可应用不同的同位素示踪技术实现。

这些同位素示踪技术均利用了同位素原子化学性质相同、物理性质不同的特点,通过示踪原子位置、数量的变化观察物质的代谢。

在方法原理上主要有以下三个方面。

这些原理的组合运用形成了各种技术方法。

⒈ 同位素稀释:如测定某种代谢物在代谢池中的总量,在无法测定代谢池总容量的情况下,向代谢池中注入一定数量的同位素标记代谢物,取得代表性样品后测定同位素富集度(比活度),可以计算出池中代谢物总量。

假设使用稳定性同位素标记的代谢物进行示踪。

注入代谢物的该同位素富集度(某同位素量/代谢物中该元素总量)为Ei ,代谢物注入量为I ;代谢池中代谢物中该同位素的富集度为Ec ,代谢物总量为M ;注入示踪物后代谢池的同位素富集度为Eci 。

其中Ei 、I 为已知量,Ec 、Eci 为可测量,求M 。

()()Eci Ei I Ec M /I M =⨯+⨯+ 则:()()M Ei Eci I /Eci Ec =-⨯-⎡⎤⎣⎦同时测定池中代谢物的浓度C,可以求出代谢池的容积V。

近距离放射治疗(新版)

近距离放射治疗(新版)


与现代近距离放疗密切相关的巴黎系 统
点幅射源的剂量计算

放射源的剂量分布与其几何形状密切相关。但任何 形状均可视为点的集合,因此放射源的剂量计算实 际上是以点源为基础的。对于点状源,其在各个方 向上的辐射强度是均匀的,在空间某一点上的照射 量率与其到幅射源的距离平方成反比。
其计算公式为Xr = Г ·A r2 式中Г 为放射源的照射率常数,r为某一点距源的 距离,A为该源的放射性活度。
近距离放射治疗的历史

20世纪70年代以后,“镭”已为更新的人工合成放射性同位 素60Co(钴)、137Cs取代。 1987年荷兰核通公司推出换代产品,Microselectron HDR (MsH)后装机,装有高活度(10Ci)微型(ф 0.5-1.1mm)192Ir (铱)放射源,更适合纤细体腔的治疗。设备简单,有安全 连锁系统的计算机控制,按个体化程序及剂量分布计算优化
空间的不同平面(如XY、YZ、XZ平面)中放射源
的位置。
治疗计划执行及优化处理



将设置好的剂量参考点及参考剂量输入计算 机,进行剂量计算。 优化处理是指通过计算机进行复杂的数学运 算,将距源相同或不同距离的参考点达到相 同的剂量,这需放射源在各贮留点,停留不 同的时间来完成。 优化处理完成后,可从菜单中的剂量分布项 中找出不同平面的剂量分布图,如剂量分布 欠满意,可进行调整,如增减某贮留点的贮 留时间或重新优化,直到满意为止。
氡 Radon 钴 Cobalt 铯 Cesium 金 Gold 铱Iridium 碘Iodine 钯Palladium 铯 cesium 镱Ytterbium
0.83
0.83 1.25 0. 662 0. 416 0.397 0.028 0.020 0.030 0.093

《建筑材料放射性核素限量》

《建筑材料放射性核素限量》

《建筑材料放射性核素限量》中国建材网发布时间:2006-1-4 点击数:899前言本标准中第3章为强制性条款,其余为推荐性条款。

本标准自生效之日起,同时废除 GB6566-2000《建筑材料放射卫生防护标准》、GB 6763-2000《建筑材料产品及建材用工业废渣放射性物质控制要求》和建材行业标准JC 518-1993(96)《天然石材产品放射防护分类控制标准》。

本标准与GB 6566-2000,GB 6763-2000和JC 518-1993(96)相比主要变化如下:{TodayHot}——将建筑材料分为建筑物主体工程用建筑主体材料和建筑物饰面用装修材料。

规定了建筑主体材料中天然放射性核素比活度的限量,不再进行分类管理;明确了装修材料进行分类管理的要求;——放射性核素检测方法不再引用GB/T 11713-1989 和GB/T 11743-1989标准;——删去了建材用工业废渣限量要求方面的具体内容:——删去了采用γ辐射剂量率检测进行判定的方法和石材矿床勘查中放射性水平预评价准则;自2002年1月1日起,生产企业生产的产品应执行该国家标准,过渡期6个月;自2002年7月1日起,市场上停止销售不符合该国家标准的产品。

{HotTag}本标准由中国建筑材料工业协会提出。

本标准起草单位:中国建筑材料科学研究院、卫生部工业卫生实验所、中国建材工业地质勘查中心、中国地质大学(北京)。

本标准参加起草单位:中国石材工业协会、福建玄武石材有限公司、山东荣成中磊石材有限公司、国家建材放射性监督检测中心。

本标准主要起草人:马振珠、王南萍、杨钦元、任天山、王玉和。

本标准所代替标准的历次版本发布情况为:——GB 6566-1986、GB 6566-2000;——GB 6763-1986、GB 6763-2000;1 范围本标准规定了建筑材料中天然放射性核素镭-226、钍-232和钾-40放射性比活度的限量和试验方法。

本标准适用于建造各类建筑物所使用的无机非金属类建筑材料,包括掺工业废渣的建筑材料。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档