实验二编码器和译码器的应用

合集下载

实验报告组合逻辑电(3篇)

实验报告组合逻辑电(3篇)

第1篇一、实验目的1. 理解组合逻辑电路的基本概念和组成原理;2. 掌握组合逻辑电路的设计方法;3. 学会使用逻辑门电路实现组合逻辑电路;4. 培养动手能力和分析问题、解决问题的能力。

二、实验原理组合逻辑电路是一种在任意时刻,其输出仅与该时刻的输入有关的逻辑电路。

其基本组成单元是逻辑门,包括与门、或门、非门、异或门等。

通过这些逻辑门可以实现各种组合逻辑功能。

三、实验器材1. 74LS00芯片(四路2输入与非门);2. 74LS20芯片(四路2输入或门);3. 74LS86芯片(四路2输入异或门);4. 74LS32芯片(四路2输入或非门);5. 逻辑电平转换器;6. 电源;7. 连接线;8. 实验板。

四、实验步骤1. 设计组合逻辑电路根据实验要求,设计一个组合逻辑电路,例如:设计一个3位奇偶校验电路。

2. 画出逻辑电路图根据设计要求,画出组合逻辑电路的逻辑图,并标注各个逻辑门的输入输出端口。

3. 搭建实验电路根据逻辑电路图,搭建实验电路。

将各个逻辑门按照电路图连接,并确保连接正确。

4. 测试电路功能使用逻辑电平转换器产生不同的输入信号,观察输出信号是否符合预期。

五、实验数据及分析1. 设计的3位奇偶校验电路逻辑图如下:```+--------+ +--------+ +--------+| | | | | || A1 |---| A2 |---| A3 || | | | | |+--------+ +--------+ +--------+| | || | || | |+-------+-------+||v+--------+| || F || |+--------+```2. 实验电路搭建及测试根据逻辑电路图,搭建实验电路,并使用逻辑电平转换器产生不同的输入信号(A1、A2、A3),观察输出信号F是否符合预期。

(1)当A1=0,A2=0,A3=0时,F=0,符合预期;(2)当A1=0,A2=0,A3=1时,F=1,符合预期;(3)当A1=0,A2=1,A3=0时,F=1,符合预期;(4)当A1=0,A2=1,A3=1时,F=0,符合预期;(5)当A1=1,A2=0,A3=0时,F=1,符合预期;(6)当A1=1,A2=0,A3=1时,F=0,符合预期;(7)当A1=1,A2=1,A3=0时,F=0,符合预期;(8)当A1=1,A2=1,A3=1时,F=1,符合预期。

数字电子技术实验报告2

数字电子技术实验报告2

实验成绩实验日期指导教师批阅日期实验名称编码译码与显示1、实验目的掌握编码器、译码器与显示器的工作原理、测试方法以及应用。

2、实验原理编码器、译码器是数字系统中常用的逻辑部件,而且是一种组合逻辑电路。

1.编码器把状态或指令等转换为与其对应的二进制代码叫编码,例如可以用四位二进制所组成的编码表示十进制数0~9,把十进制数的0编成二进制数码0000,把十进制数的5编成二进制数码0101等。

完成编码工作的电路.通称为编码器。

2.译码器译码是编码的逆过程。

译码器的作用是将输入代码的原意“翻译”出来。

译码器的种类较多,如:最小项译码器(3线/8线、4线/16线译码器等)b、七段字形译码器等。

七段字形译码器,其作用是将输入的四位BCD码D、C、B、A翻译成与其对应的七段字形输出信号,用于显示字形。

常用的七段字形译码器有TTL的:T338(OC输出),74LS48、74LS248(内部带有上拉电阻)CMOS的:CD4511、MC14543、MC14547等。

3.显示器(1)发光二极管(LED)。

把电能转换成可见光(光能)的一种特殊半导体器件,其构造与普通PN 结二极管相同。

(2)LED显示器。

用LED构成数字显示器件时,需将若干个LED按照数字显示的要求集成- -个图案,就构成LED显示器(俗称“数码管”)。

3、实验步骤(1)按图连线,按表顺序给8线/3线优先编码器CD4532的信号输入端送入相应电平,将结果填入表中,与CD4532的功能表相对照,检查是否符合优先顺序以及编码结果是否正确。

注意:输入由逻辑开关给定。

输出连接逻辑电平指示。

(2)根据CD4532和CD4511的管脚图和功能表,自行设计连线,将编码器CD4532的输出端接到译码器CD4511的数据输入端,将CD4511的输出接七段显示数码管。

检查编码器与数字显示是否一致,若不一致,分析原因,检查故障并排除之,将结果填表。

(3)将十进制计数器/脉冲分配器CD4017接成八进制,用单次脉冲或1Hz脉冲信号检查CD4017的逻辑功能是否正常。

编码器、显示译码器和数码管

编码器、显示译码器和数码管

实验三:编码器、显示译码器和数码管班级:姓名:学号:实验日期:一、实验目的:(1)了解编码器,译码器及七段数码管的工作原理。

(2)掌握编码器,七段显示译码器及数码管的使用及测试方法。

(3)学会使用编码器74LS148及七段显示译码器74LS47、数码管组成编码—译码显示系统。

二、实验设备与器件(1)集成芯片74LS148、74LS04、74LS47、共阳极数码管(2)数字万用表(3)数电实验箱三、预习要求(1)查阅资料,了解关于编码器,显示译码器及数码管的介绍(2)了解74LS148,74LS47功能及使用方法(3)掌握编码—译码显示系统的组成原理。

四、预习思考题1、什么是优先编码器?它与普通编码器有什么区别?允许同时在几个输入端有输入信号,编码器按输入信号排定的优先顺序,只对同时输入的几个信号中优先权最高的一个进行编码。

1,输入信号不同:普通的一次只能输入一个信号,但是优先编码器可同时输入多个;2、输入信号优先级不同:在普通编码器中,任何时刻只允许输入一个编码信号,优先编码器在设计时已经将各输入信号的优先顺序排好,当几个信号同时输入时,优先权最高的信号优先编码。

3、处理能力不同:优先编码器相比普通编码器电路有更强的处理能力,因为其能处理所有的输入组合情况。

2、显示译码器74LS47输出的有效驱动电平为高电平还是低电平?输出的是低电平有效;3、显示译码器74LS47能译码显示9以后的数字吗?为什么?9以后的数字无法显示,因为9以后的无法有意义的编译;4、如何测试一个数码管的好坏?一、PFC(功率因数)的高低但是不一定PFC高就是好,还要整体的斜波小,纹波小,干扰低(因为有些厂家故意把PFC做的很高但是忽略了电磁兼容这一部分)。

二、转换效率转换效率的高低,偏差值的大小和稳定,打个比方:AC170-250V这个工作电压区间,我可以尝试从170V-250V去调试,由低到高的不断变化电压,可以在功率计上看到“转换效率,PFC”的波动是否大,来证明其稳定性。

编码器与译码器的结构与功能分析

编码器与译码器的结构与功能分析

编码器与译码器的结构与功能分析编码器与译码器是数字电子领域中两个重要的电路器件。

编码器用于将不同类型的输入信号转换为特定的输出编码形式,而译码器则将编码后的信号转换回原始信号。

本文将分析编码器与译码器的结构和功能,并探讨它们在现代电子技术中的应用。

一、编码器的结构与功能编码器通常有多种不同的输入,但只有一种输出。

其主要功能是将输入信号转换为特定的编码形式,以方便传输、存储或处理。

编码器可根据输入信号的类型和数量的不同而各异。

以下是几种常见的编码器类型及其结构和功能:1. 优先级编码器:优先级编码器是一种将多个输入信号转换为二进制编码的器件。

它包括输入端口、编码器电路和输出端口。

优先级编码器的输出是一个二进制编码,它表示最高优先级的输入信号。

2. 行程编码器:行程编码器常用于检测和测量旋转或线性运动的位置。

它能够将物理位置转换为二进制编码形式,并输出到接口电路进行进一步处理。

3. 绝对值编码器:绝对值编码器将旋转或线性位置转换为唯一的二进制编码序列。

每个位置都对应一个特定的编码,不会受到电源中断等干扰的影响。

旋转编码器用于检测旋转运动,如手柄、旋钮等。

它通过旋转产生的脉冲数来确定方向和速度,并将其转换为二进制编码输出。

5. 模数转换器:模数转换器是一种将模拟信号转换为数字信号的编码器。

它常用于数据采集、音频处理和传感器信号数字化等领域。

二、译码器的结构与功能译码器是编码器的逆过程,用于将编码信号恢复为原始信号。

它的结构和功能与编码器正好相反。

以下是几种常见的译码器类型及其结构和功能:1. 优先级译码器:优先级译码器能够将编码信号转换为对应的优先级输入信号。

它包括译码器电路和输出端口。

2. 行程译码器:行程译码器常用于将二进制编码转换为对应的位置信息。

它通过解码从编码器中获取的编码信号来确定物理位置。

3. 绝对值译码器:绝对值译码器将二进制编码转换为对应的旋转或线性位置信息。

它能够恢复旋转编码器或模数转换器编码后的数据。

编码器、译码器的功能测试及应用

编码器、译码器的功能测试及应用

学生实验报告学院:课程名称:数字电路实验与设计专业班级:姓名:学号:学生实验报告(一)学生姓名学号同组人: 实验项目编码器、译码器的功能测试及应用■必修□选修□演示性实验■验证性实验□操作性实验□综合性实验实验地点W105 实验仪器台号指导教师实验日期及节次一、实验综述1. 实验目的:(1)了解编码器、译码器和数码管的管脚排列和管脚功能。

(2)掌握编码器、译码器和数码管的性能和使用方法。

2. 实验所用仪器及元器件:(1)示波器、信号源、万用表、数字实验箱和电脑。

(2)集成电路TTL74LS147、TTL74LS148、TTL74LS47、TTL74LS04、电阻和电位器等。

3. 实验原理:(1) 10- 4线优先编码器74HC14774HC147外引线排列如图1所示,逻辑符号如图2所示。

图1 74HC147外引脚排列图图2 74HC147逻辑符号如图74HC147有9路输入信号,4位BCD码输出,因输出端带圈,所以输入输出均为低电平有效。

他将0—9十个十进制数编成4位BCD码,可把输入端的9路输入信号和隐含的不变信号按优先级进行编码,且优先级别高的排斥级别低的。

当输入端都无效时,隐含着对0路信号进行编码(输出采用反码输出)。

74HC147的功能见表1。

表1 10- 4线优先编码器74HC147输入输出I2I3I4I5I6I7I8I9I3Y2Y1Y0Y1H H H H H H H H H H H H H××××××××L L H H L×××××××L H L H H H××××××L H H H L L L×××××L H H H H L L H××××L H H H H H L H L×××L H H H H H H L H H××L H H H H H H H H L L×L H H H H H H H H H L HL H H H H H H H H H H H L (2) 8-3线优先编码器74LS14874LS148是8-3线优先编码器逻辑符号如图3,外引线排列如图4所示。

器件译码器编码器及数码管显示实验报告

器件译码器编码器及数码管显示实验报告

ck a b g f 译码器编码器及数码管显示实验一、实验目的(1)掌握组合逻辑电路的分析测试、设计方法和步骤;(2)掌握编码器、译码器等常用中规模集成电路的性能及使用方法; (3)掌握数码显示、译码器的应用。

二、实验仪器与元器件 (1)HBE 硬件基础电路实验箱; (2)元器件:74LS138、74LS148。

三、实验概述(1)编码编码是指赋予选定的一系列二进制代码以固定的含义。

74LS148(8-3编码器)为8-3线优先编码器,8个输入端为D 0-D 7,8种状态,与之对应的输出为A 0、A 1、A 2,共三位二进制数。

(2)译码译码是编码的逆过程,即将某二进制翻译成电路的某种状态。

在数字电路中译码器是一种应用广泛的多输入、多输出的组合逻辑电路。

它是把给定的代码进行“翻译”,变成相应的状态,使输出通道中相应的一路有信号输出。

通常译码器可分为通用译码器和显示译码器两大类。

前者又分为变量译码器和代码变换译码器。

(3)数码显示译码器LED 数码管是目前最常用的数字显示器,下图为共阴管和共阳管的电路及两种不同出现形式的引出脚功能图。

共阴数码管连接电路 共阳数码管连接电路a b e d c h cka b g f a b e d c hckck共阴极符号及引脚功能 共阳极符号及引脚功能四、实验内容1.测试变量译码器的逻辑功能(1)根据74LS138的逻辑,写出各输出端的逻辑表达式,列出真值表,根据真值表对逻辑电路进行测试,验证其功能。

由图2-6-3可知逻辑表达式:Y 0=ABC ,Y 1=ABC ,Y 2=ABC ,Y 3=ABC ,Y 4=ABC ,Y 5=ABC ,Y 6=ABC ,Y 7=ABC 。

真值表: A B C Y 0 Y 1 Y 2 Y 3 Y 4 Y 5 Y 6 Y 7 0 0 0 0 1 1 1 1 1 1 1 0 0 1 1 1 1 1 0 1 1 1 0 1 0 1 1 0 1 1 1 1 1 0 1 1 1 1 1 1 1 1 0 1 11111111a b gchdef a bgch def1 0 1 1 1 1 1 1 0 1 11 1 0 1 1 1 0 1 1 1 11 1 1 1 1 1 1 1 1 1 0分析:由于A、B、C之间是与、非的关系,对于不同的A、B、C的值,只会有一种情况是0。

译码器及其应用实验报告

译码器及其应用实验报告

一、实验目的1. 理解译码器的基本原理和功能。

2. 掌握中规模集成译码器(如74HC138)的逻辑功能和使用方法。

3. 熟悉译码器在数字系统中的应用,如地址译码、信号控制等。

4. 提高动手能力和实验操作技能。

二、实验器材1. 数字逻辑电路实验板2. 74HC138 3-8线译码器3. 数码管显示器4. 连接线5. 电源6. 计算器三、实验原理译码器是一种将输入的二进制代码转换成特定输出的逻辑电路。

它广泛应用于数字系统中,如地址译码、信号控制、编码器/译码器等。

本实验以74HC138 3-8线译码器为例,介绍译码器的基本原理和应用。

74HC138是一种常见的3-8线译码器,它具有3个地址输入端(A2、A1、A0)和8个输出端(Y0-Y7)。

当输入端A2、A1、A0的编码为000、001、010、011、100、101、110、111时,相应的输出端Y0-Y7输出低电平,其他输出端输出高电平。

四、实验内容1. 译码器功能测试(1)按照实验指导书连接电路,将74HC138的输入端A2、A1、A0连接到数字逻辑电路实验板的地址输入端。

(2)将译码器的输出端Y0-Y7连接到数码管显示器的输入端。

(3)根据74HC138的功能表,输入不同的地址码,观察数码管显示器的输出结果。

2. 地址译码电路设计(1)设计一个简单的地址译码电路,将输入端A0、A1、A2作为地址输入,输出端Y0-Y7作为片选信号。

(2)根据地址译码电路的设计,编写程序,实现数据的输入输出。

五、实验步骤1. 译码器功能测试(1)连接电路:将74HC138的输入端A2、A1、A0连接到数字逻辑电路实验板的地址输入端,将输出端Y0-Y7连接到数码管显示器的输入端。

(2)设置地址码:使用计算器设置地址码(A2、A1、A0),例如000、001、010、011、100、101、110、111。

(3)观察输出结果:观察数码管显示器的输出结果,确认是否与74HC138的功能表一致。

译码器应用设计实验报告

译码器应用设计实验报告

译码器应用设计实验报告引言译码器(Decoder)是数字电路中常用的逻辑电路之一,它实现了将输入数字码转换成输出端口的控制信号。

译码器被广泛应用于数字系统中,如计算机、通信、测控等领域。

通常情况下,译码器基于真值表或卡诺图设计,可以根据输入的不同编码方式,输出相应的解码结果。

本实验主要介绍译码器的应用设计。

通过实验,我们将学会如何使用译码器来实现数字系统的控制和数据处理任务。

本实验所涉及的译码器有BCD-7段译码器、数值译码器、时序译码器以及存储器译码器等。

实验器材1. 逻辑计算器2. 示波器3. 数字电路实验箱4. 5V直流电源5. 译码器(BCD-7段译码器、数值译码器、时序译码器和存储器译码器)6. LED数码管实验原理1. BCD-7段译码器BCD-7段译码器是将4位BCD码转换成7段数码管显示的译码器。

8个BCD码,分别对应着数字0~9和字母A~F,输出接到控制7个LED数码管的段选端口和1个公共阴极的位选端口。

2. 数值译码器数值译码器是将4位二进制数转换成BCD码的译码器。

通过数值译码器,可以将数字的二进制编码转换成BCD编码,从而实现数字的BCD码显示。

译码器输出接LED数码管的输入端口。

时序译码器是根据不同状态的时序信号,将输入的二进制数码转换成对应的控制信号的译码器。

将时序信号和数码信号分别输入至译码器的两个输入端口,译码器将输出对应的动作信号。

常用于时序控制电路的设计中。

4. 存储器译码器存储器译码器是将存储芯片中的地址码转换成控制芯片的输入信号的译码器。

存储芯片中的地址码分别对应着芯片的不同存储单元,译码器将地址码转换成控制信号,使控制芯片可以正确访问存储芯片中的数据。

实验设计实验步骤:(1)将BCD码8个输入引脚分别接到译码器的8个输入端口上。

(4)将5V直流电源连接到译码器和LED数码管上。

实验结果:输入BCD码0000~1111时,LED数码管正确显示相应的数字0~9和字母A~F。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

实验二编码器和译码器的应用
一.实验目的:
1.学会正确使用中规模集成组合逻辑电路。

掌握编码器、译码器、BCD七段
译码器、数码显示器的工作原理和使用方法。

2.掌握译码器及其应用, 学会测试其逻辑功能。

二.实验仪器及器件:
1. TPE—D6Ⅲ型数字电路实验箱 1台
2.数字万用表 1块
3.器件:74LS20 二4输入与非门 1片
74LS04 六反相器 1片
74LS147 10线—4线优先编码器 1片
74LS138 3线—8线译码器 1片
74LS139 双2线—4线译码器 1片
74LS47 七段显示译码器 1片
三.实验预习:
1.复习编码器、译码器、BCD七段译码器、数码显示器的工作原理。

2.熟悉编码器74LS147及译码器74LS138、74LS139各引脚功能和使用方法,
列出74LS138、74LS139的真值表,画出所要求的具体实验线路图。

四.实验原理:
在数字系统中,常常需要将某一信息变换为特定的代码,有时又需要在一定的条件下将代码翻译出来作为控制信号,这分别由编码器和译码器来实现。

1.编码:用一定位数的二进制数来表示十进制数码、字母、符号等信息的过
程。

编码器:实现编码功能的电路。

编码器功能:从m个输入中选中一个,编成一组n位二进制代码并行输出。

编码器特点:(1)多输入、多输出组合逻辑电路。

(2)在任何时候m个输入中只有一个输入端有效(高电平或
低电平)对应有一组二进制代码输出。

编码器分类:二进制、二─十进制、优先编码器。

2.译码:是编码的反过程,是将给定的二进制代码翻译成编码时赋予的原意。

译码器:实现译码功能的电路。

译码器特点:(1)多输入、多输出组合逻辑电路。

(2)输入是以n位二进制代码形式出现,输出是与之对应的
电位信息。

译码器分类:通用译码器:二进制、二─十进制译码器。


示译码器:TTL共阴显示译码器(用高电平点
燃共阴显示器)、TTL共阳显示译码器(用低
电平点燃共阳显示器)、CMOS显示译码器。

译码器应用:用于代码的转换、终端的数字显示、数据分配、存贮器寻址
组合信号控制等。

3.数码显示器(简称数码管):用来显示数字、文字或符号的器件。

目前广泛使用的是七段数码显示器。

七段数码显示器由a~g等七段可发光的线段拼合而成,控制各段的亮或灭可以显示不同的字符或数字。

七段数码显示器有发光二极管(LED)数码管和液晶显示器(LCD)两种。

LED数码管分为共阴管和共阳管,目前使用最广泛。

五.实验内容:
1.用8421BCD编码器(74LS147)和七段译码器(74LS47)及LED共阳数码
管组成一个1位十进制0~9数码显示电路:
按下图1.4.1接线,K
1~K
9
逐个输入信号,观察数码管数字的变化,并
了解K
9~K
1
的优先权级别高低的顺序。

图1.4.1
2.(1)测试3线—8线译码器74LS138的逻辑功能(列出真值表验证之)。

(2)用74LS138和74LS20构成全加器,画出接线图,并在图中标明芯片引脚号,列出真值表,接线并验证真值表。

3.将双2线—4线译码器74LS139扩展为3线—8线译码器,画出接线图,
列出真值表,接线并验证真值表。

六.实验报告:
1.对各项实验列真值表,画接线图和标出集成块引脚号。

1.分析实验中出现的问题。

总结译码器的使用体会。

相关文档
最新文档