回流焊接温度曲线

合集下载

回流焊温度曲线测试操作指示

回流焊温度曲线测试操作指示

1.0目的用于指导回流焊温度曲线测试操作指示。

2.0适用范围:适用于苏州福莱盈电子有限公司3.0职责:无4.0作业内容4.1设定温度参数制程界限:4.1.1工程师根据锡膏型号、特殊元件规格、特殊测量位置、FPC制程以及客户的要求制定一个合理的温度曲线测试范围,包括:升温区、浸泡(保温)区、回流区、冷却区的具体参数及定义图一: KOKI S3X48-M500锡膏的参考回流曲线4.1.2预热区:通常是指由室温升温至150度左右的区域。

在此温区,升温速率不宜过快,一般不超过3度/秒。

以防止元器件应升温过快而造成基板变形或元件微裂等现象。

4.1.3浸泡(保温)区:通常是指由110度~190度左右的区域。

在此温区,助焊剂进一步挥发并帮助基板清楚氧化物,基板及元器件均达热平衡,为高温回流做准备。

此区一般持续时间问60~120秒。

4.1.4回流区:通常是指超过217度以上温度区域。

在此温区,焊膏很快熔化,迅速浸润焊接面,并与基板PAD形成新的合金焊接层,达到元件与PAD之间的良好焊接。

此区持续时间一般设定为:45~90秒。

最高温度一般不超过250度(除有特定要求外)。

4.1.5冷却区:该区为焊点迅速降温,将焊料凝固,使焊料晶格细化,提高焊接强度。

本区降温速率一般设置为-3~-1度/秒左右。

4.2测温板的制作4.2.1采用与生产料号一致的样品板作为测温板,制作测温板时,原则上应保留必要的具有代表性的测温元器件,以保证测试测量温度与实际生产温度保持一致。

4.2.2测温板与生产料号在无法保持一致情况下,经工程师验证认可,可使用与之同类型的测温板进行测量。

4.2.3测温点应该选择最具有代表性的区域及元件,比如最大及最小吸热量的元件,零件选取优先级(如Socket->Motor->大型BGA ->小型BGA->QFP或SOP->标准Chip)除此之外,还应选择介于两者之间的一个测温区。

如图:4.2.4一般测温点在每板上不得少于3个,有BGA或大型IC至少选取4个,基于特殊代表型元件为首选原则选取元件。

回流焊接温度曲线

回流焊接温度曲线

回流焊接温度曲线作温度曲线(profiling)是确定在回流整个周期内印刷电路板(PCB)装配必须经受的时刻/温度关系的过程。

它决定于锡膏的特性,如合金、锡球尺寸、金属含量和锡膏的化学成分。

装配的量、表面几何形状的复杂性和基板导热性、以及炉给出足够热能的能力,所有都阻碍发热器的设定和炉传送带的速度。

炉的热传播效率,和操作员的经验一起,也阻碍反复试验所得到的温度曲线。

锡膏制造商提供差不多的时刻/温度关系资料。

它应用于特定的配方,通常可在产品的数据表中找到。

但是,元件和材料将决定装配所能忍受的最高温度。

涉及的第一个温度是完全液化温度(full liquidus temperature)或最低回流温度(T1)。

这是一个理想的温度水平,在这点,熔化的焊锡可流过将要熔湿来形成焊接点的金属表面。

它决定于锡膏内特定的合金成分,但也可能受锡球尺寸和其它配方因素的阻碍,可能在数据表中指出一个范围。

对Sn63/Pb37,该范围平均为200 ~ 225°C。

对特定锡膏给定的最小值成为每个连接点必须获得焊接的最低温度。

那个温度通常比焊锡的熔点高出大约15 ~ 20°C。

(只要达到焊锡熔点是一个常见的错误假设。

)回流规格的第二个元素是最脆弱元件(MVC, most vulnerable component)的温度(T2)。

正如其名所示,MVC确实是装配上最低温度“痛苦”忍耐度的元件。

从这点看,应该建立一个低过5°C的“缓冲器”,让其变成MVC。

它可能是连接器、双排包装(DIP, dual in-line package)的开关、发光二极管(LED, light emitting diode)、或甚至是基板材料或锡膏。

MVC是随应用不同而不同,可能要求元件工程人员在研究中的关心。

在建立回流周期峰值温度范围后,也要决定贯穿装配的最大同意温度变化率(T2-T1)。

是否能够保持在范围内,取决于诸如表面几何形状的量与复杂性、装配基板的化学成分、和炉的热传导效率等因素。

SMT回流焊PCB温度曲线讲解

SMT回流焊PCB温度曲线讲解

区间
区间温度设定
区间末实际板温
预热 210℃(410°F)
140℃(284°F)
活性 177℃(350°F)
150℃(302°F)
回流 250℃(482℃)
210℃(482°F)
怎样设定锡膏回流温度曲线
图形曲线的形状必须和所希望的相比较,如果形状不协调, 则同下面的图形进行比较。选择与实际图形形状最相协调的曲 线。
得益于升温-到-回流的回流温度曲线
无光泽、颗粒状焊点 一个相对普遍的回流焊缺陷是无光泽、颗粒 状焊点。这个缺陷可能只是美观上的,但也 可能是不牢固焊点的征兆。在RTS曲线内改正 这个缺陷,应该将回流前两个区的温度减少 5° C;峰值温度提高5° C。如果这样还不行, 那么,应继续这样调节温度直到达到希望的 结果。这些调节将延长锡膏活性剂寿命,减 少锡膏的氧化暴露,改善熔湿能力。
得益于升温-到-回流的回流温度曲线
整个温度曲线应该从45℃到峰值温度215(± 5)℃持续3.5~4分钟。冷却速率应控制在每秒 4℃。一般,较快的冷却速率可得到较细的颗 粒结构和较高强度与较亮的焊接点。可是,超 过每秒4° C会造成温度冲击。
得益于升温-到-回流的回流温度曲线
升温-到-回流
RTS温度曲线可用于任何化学成分或合金,为水溶锡膏和难 于焊接的合金与零件所首选。 RTS温度曲线比RSS有几个优 点。RTS一般得到更光亮的焊点,可焊性问题很少,因为在 RTS温度曲线下回流的锡膏在预热阶段保持住其助焊剂载体。 这也将更好地提高湿润性,因此,RTS应该用于难于湿润的 合金和零件。
怎样设定锡膏回流温度曲线
活性区,有时叫做干燥或浸湿区,这个
区一般占加热通道的33~50%,有两个 功用,第一是,将PCB在相当稳定的温 度下感温,允许不同质量的元件在温度 上同质,减少它们的相当温差。第二个 功能是,允许助焊剂活性化,挥发性的 物质从锡膏中挥发。一般普遍的活性温 度范围是120~150℃。

回流焊工艺参数

回流焊工艺参数

回流焊工艺参数回流焊是一种常见的电子组装工艺,用于在电路板上连接和固定电子元件。

良好的焊接质量直接关系到电子产品的性能和可靠性。

以下是回流焊工艺的一些关键参数,对于正确进行回流焊操作具有重要意义。

1. 温度曲线:回流焊的第一个关键参数是温度曲线。

温度曲线描述了在整个焊接过程中的温度变化情况。

它一般包含预热、焊接和冷却阶段。

这些阶段的温度和时间的设定需要根据焊接材料和元件的要求进行合理的选择。

预热阶段通常在低温下,以避免热冲击和元件损坏。

焊接阶段则需要足够高的温度以实现焊点的熔化和连接。

冷却阶段则需要适当的时间进行冷却,以防止焊接点过早冷却造成的应力和变形。

2. 焊接时间:焊接时间是影响焊接质量的另一个关键因素。

焊接时间需要根据元件的尺寸和焊点的要求进行合理的设定。

时间过长可能导致过度加热和熔化,而时间过短则可能无法实现良好的焊点连接。

合理的焊接时间可以使焊点达到最佳的熔化和湿润状态,从而确保焊点牢固可靠。

3. 焊接温度:焊接温度直接决定了焊料的熔点和熔化状态。

选择合适的焊接温度对于保证焊接质量至关重要。

温度过高会造成焊料的过度熔化和氧化,从而降低焊接质量。

温度过低则可能导致焊点的不良连接或不完全熔化。

在选择焊接温度时应考虑焊料的特性以及元件的最高耐热温度。

4. 焊接压力:焊接压力是指在焊接过程中施加在元件和电路板上的力度。

适当的焊接压力可以使焊料充分湿润焊点,形成均匀的连接。

过大的压力可能导致损坏元件或电路板,而过小的压力则可能导致接触不良和焊点质量下降。

在设定焊接压力时,需要考虑元件的尺寸、焊点的要求以及焊接设备的能力。

5. 焊接气氛:焊接气氛指的是焊接过程中焊接区域的环境气氛。

焊接气氛的选择对于保证焊接质量和防止氧化非常重要。

常见的焊接气氛有空气、氮气和惰性气体等。

空气中的氧气可能会导致焊点的氧化,影响焊接质量。

氮气和惰性气体则可以有效地防止氧化并提供良好的焊接环境。

选择适当的焊接气氛可以根据具体的焊接要求进行决定。

回流焊接工艺的经典PCB温度曲线

回流焊接工艺的经典PCB温度曲线

回流焊接工艺的经典PCB温度曲线对于回流焊接工艺,温度曲线是非常重要的参考指标。

下面是一篇关于经典PCB温度曲线的介绍。

回流焊接是一种常用的电子组装工艺,能够快速、可靠地连接电子元器件与印刷电路板(Printed Circuit Board,PCB)。

随着电子设备的不断进一步迷你化和复杂化,回流焊接工艺的应用越来越广泛。

经典的PCB温度曲线通常可以分为四个主要阶段:预热、热插入、呼吸和冷却。

1. 预热阶段:在预热阶段,PCB和电子元器件被暴露在逐渐升高的温度下。

这个阶段的目标是将PCB和元器件逐渐加热至焊接温度,同时还可以除去潮湿度以减少热应力。

2. 热插入阶段:一旦预热阶段完成,进入热插入阶段。

此时焊接温度达到预定的最高值,以确保焊接剂充分熔化并完成焊接。

在这个阶段,PCB会保持在高温下一段时间,以确保焊点能够完全形成。

3. 呼吸阶段:在热插入阶段的末端,PCB进入呼吸阶段。

这个阶段是温度逐渐下降的过程,焊点开始冷却。

在此期间,焊点形成并固化。

4. 冷却阶段:最后,PCB进入冷却阶段。

整个PCB和焊点以及电子元器件逐渐恢复到室温。

此时,焊点已经形成,焊接过程完毕。

以上四个阶段构成了经典的PCB温度曲线。

在焊接过程中,控制好温度的升降速度和保持时间非常重要,以确保焊接质量和减少热应力。

通过合理设计温度曲线,可以确保焊接剂充分熔化和流动,同时避免元器件的过度加热或熔化。

此外,还需要注意选择适合的焊接剂和适当的温度曲线,以满足特定的焊接要求和电子元器件的特性。

总之,经典的PCB温度曲线是回流焊接工艺中的重要参考指标,用于控制焊接温度和时间,确保焊接质量和避免热应力。

合理设计和实施温度曲线可以提高焊接质量和可靠性,同时保护电子元器件。

在进行回流焊接工艺时,控制好温度曲线对于焊接质量至关重要。

下面将进一步探讨相关内容。

在经典的PCB温度曲线中,每个阶段的温度升降速度和保持时间都需要精确控制,以确保焊接剂充分熔化和流动,同时避免过度加热或熔化电子元器件。

回流焊温度曲线

回流焊温度曲线

回流焊温度曲线回流焊是电子制造业中常见的一种技术,它涉及将电子元器件焊接到电路板上。

这种焊接过程需要通过一定的温度控制保证焊点质量,而回流焊温度曲线则是这个过程中非常重要的一部分。

回流焊温度曲线通常是一个图形,它显示了整个焊接过程中焊接区域的温度变化情况。

这个图形通常包括四个主要的部分:预热区、焊接区、冷却区和可控的保温区。

每一个部分的温度变化都需要在整个焊接过程中进行精确控制。

预热区是焊接过程开始时的一段时间,在这个过程中,温度会缓慢升高,以保证焊接区域达到适当的温度,但又不至于造成过热或过早的蒸汽产生。

在预热区内,焊接区域的温度通常会升至150-200摄氏度左右。

焊接区是在预热区之后的一段时间里,温度会进一步升高,直至超过焊点和焊台的熔点。

在这一段时间内,焊料会融化并与将要焊接的元器件发生反应,从而实现焊接的目的。

在整个焊接区内,焊接区域的温度通常会保持在220-260摄氏度之间。

冷却区是焊接区之后的另一段时间,在这个过程中,被焊接的电路板会被迅速地冷却,以稳定焊点形态和组织。

在这一段时间内,焊接区域的温度通常会急剧下降,直至达到焊点和焊台的固化点为止。

最后是可控的保温区,这部分区域通常是为了保持焊点的最终组织状态和形态而设置的。

在这一部分的过程中,焊点和电路板的温度会保持在相对恒定的水平,以实现最终的化学和物理性质的稳定。

总的来说,回流焊温度曲线是一个非常重要的工具,它可以帮助工程师控制整个焊接过程的温度,从而实现良好的焊接效果。

对于电子制造业来说,这种技术是必不可少的,因为它可以确保产品的长期稳定性和可靠性。

回流焊温度曲线设定详解

回流焊温度曲线设定详解

回流焊温度曲线设定详解回流焊温度曲线是由回流焊炉的多个参数共同作用的结果,其中起决定性作用的两个参数是传送带速度和温区的温度设定。

传送带速度决定了印刷线路板暴露在每个温区的持续时间,增加持续时间可以使印刷线路板上元器件的温度更加接近该温区的设定温度。

每个温区所用的持续时间的总和又决定了整个回流过程的处理时间。

每个温区的温度设定影响印刷线路板通该温区时温度的高低。

印刷线路板在整个回流焊接过程中的升温速度则是传送带速和各温区的温度设定两个参数共同作用的结果。

因此只有合理的设定炉温参数才能得到理想的炉温曲线。

广晟德为大家分享以最为常用的 RSS曲线为例介绍一下炉温曲线的设定方法。

一、回流焊链速的设定:设定回流焊温度曲线时第一个要考虑参数是传输带的速度设定,该设定将决定印刷线路板通过加热通道所花的时间。

传送带速度的设定可以通过计算的方法获得。

这里要引入一个指标,负载因子。

负载因子:F=L/(L+s) L=基板的长,S=基板与基板间的间隔。

负载因子的大小决定了生产过程中炉内的印刷线路板对炉内温度的影响程度。

负载因子的数值越大炉内的温度越不稳定,一般取值在0.5~0.9 之间。

在权衡了效率和炉温的稳定程度后建议取值为 0.7-0.8。

在知道生产的板长和生产节拍后就可以计算出传送带的传送速度(最慢值)。

传送速度(最慢值)=印刷线路板长/0.8/生产节拍。

传送速度(最快值)由锡膏的特性决定,绝大多数锡膏要求从升温开始到炉内峰值温度的时间应不少于 180 秒。

这样就可以得出传送速度(最大值)=炉内加热区的长度/180S。

在得出两个极限速度后就可以根据实际生产产品的难易程度选取适当的传送速度一般可取中间值。

二、回流焊温区温度的设定:一个完整的 RSS 炉温曲线包括四个温区分别为:回流焊预热区:其目的是将印刷线路板的温度从室温提升到锡膏内助焊剂发挥作用所需的活性温度135℃,温区的加热速率应控制在每秒 1~3℃,温度升得太快会引起某些缺陷,如陶瓷电容的细微裂纹。

波峰焊与回流焊温度曲线

波峰焊与回流焊温度曲线

波峰焊温度曲线图简介
该波峰焊曲线仅为推荐值,客户端需根据实际生产情况做相应调整。

波峰焊推荐条件:
1:预热区PCB板底温度范围为﹕90-130℃
2:焊接时锡点温度范围为﹕235-260℃
3. CHIP与WAVE间温度不能低于180℃
4. PCB浸锡时间:2--5sec
5. PCB板底预热温度升温斜率≦5℃/S
6. PCB板在出炉口的温度控制在100度以下
回流焊温度曲线简介:
该回流焊曲线仅为推荐值,客户端需根据实际生产情况做相应调整。

回流焊推荐条件:
1.推荐的峰值温度是:245°C 。

在峰值温度低于245°C下,你可以通过调整
时间、升温温度斜率以及锡膏厚度等参数,以保证焊接质量。

注意:峰值温度不能高于265°
2.焊接次数不应超过2次
制作人:高广淼。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

回流焊接温度曲线作温度曲线(profiling)是确定在回流整个周期内印刷电路板(PCB)装配必须经受的时间/温度关系的过程。

它决定于锡膏的特性,如合金、锡球尺寸、金属含量和锡膏的化学成分。

装配的量、表面几何形状的复杂性和基板导热性、以及炉给出足够热能的能力,所有都影响发热器的设定和炉传送带的速度。

炉的热传播效率,和操作员的经验一起,也影响反复试验所得到的温度曲线。

锡膏制造商提供基本的时间/温度关系资料。

它应用于特定的配方,通常可在产品的数据表中找到。

可是,元件和材料将决定装配所能忍受的最高温度。

涉及的第一个温度是完全液化温度(full liquidus temperature)或最低回流温度(T1)。

这是一个理想的温度水平,在这点,熔化的焊锡可流过将要熔湿来形成焊接点的金属表面。

它决定于锡膏内特定的合金成分,但也可能受锡球尺寸和其它配方因素的影响,可能在数据表中指出一个范围。

对Sn63/Pb37,该范围平均为200 ~ 225°C。

对特定锡膏给定的最小值成为每个连接点必须获得焊接的最低温度。

这个温度通常比焊锡的熔点高出大约15 ~ 20°C。

(只要达到焊锡熔点是一个常见的错误假设。

)回流规格的第二个元素是最脆弱元件(MVC, most vulnerable component)的温度(T2)。

正如其名所示,MVC就是装配上最低温度“痛苦”忍耐度的元件。

从这点看,应该建立一个低过5°C的“缓冲器”,让其变成MVC。

它可能是连接器、双排包装(DIP, dual in-line package)的开关、发光二极管(LED, light emitting diode)、或甚至是基板材料或锡膏。

MVC是随应用不同而不同,可能要求元件工程人员在研究中的帮助。

在建立回流周期峰值温度范围后,也要决定贯穿装配的最大允许温度变化率(T2-T1)。

是否能够保持在范围内,取决于诸如表面几何形状的量与复杂性、装配基板的化学成分、和炉的热传导效率等因素。

理想地,峰值温度尽可能靠近(但不低于)T1可望得到最小的温度变化率。

这帮助减少液态居留时间以及整个对高温漂移的暴露量。

传统地,作回流曲线就是使液态居留时间最小和把时间/温度范围与锡膏制造商所制订的相符合。

持续时间太长可造成连接处过多的金属间的增长,影响其长期可靠性以及破坏基板和元件。

就加热速率而言,多数实践者运行在每秒4°C或更低,测量如何20秒的时间间隔。

一个良好的做法是,保持相同或比加热更低的冷却速率来避免元件温度冲击。

图一是最熟悉的回流温度曲线。

最初的100°C是预热区,跟着是保温区(soak or preflow zone),在这里温度持续在150 ~ 170°C之间(对Sn63/Pb37)。

然后,装配被加热超过焊锡熔点,进入回流区,再到峰值温度,最后离开炉的加热部分。

一旦通过峰值温度,装配冷却下来。

温度热电偶的安装适当地将热电偶安装于装配上是关键的。

热电偶或者是用高温焊锡合金或者是用导电性胶来安装,提供定期检测板的温度曲线精度和可重复性的工具。

对很低数量的和高混合技术的板,也可使用非破坏性和可再使用的接触探头。

应该使用装配了元件的装配板来通过炉膛。

除非是回流光板(bare board),否则应该避免使用没有安装元件的板来作温度曲线。

热电偶应该安装在那些代表板上最热与最冷的连接点上(引脚到焊盘的连接点上)。

最热的元件通常是位于板角或板边附近的低质量的元件,如电阻。

最冷的点可能在板中心附近的高质量的元件,如QFP(quad flat pack)、PLCC(plastic leaded chip carrier)或BGA(ball grid array)。

其它的热电偶应该放在热敏感元件(即MVC)和其它高质量元件上,以保证其被足够地加热。

如果用前面已经焊接的装配板,则必须从那些热电偶将要安装的连接点上去掉焊锡。

因为板可能是用Sn63/Pb37焊接的,而现在将要用Sn10/Pb90,用后者来简单焊接热电偶将会产生一种“神秘”合金,或者一种不能维持测试板所要求的多个温度变化的合金。

在去掉老的焊锡后,用少量助焊剂,跟着用少量而足够的高温焊锡。

如果用导电性胶来安装热电偶,同样的步骤去掉下面的Sn63/Pb37(或其它合金)。

这是为了避免破坏热电偶的胶合附着,从而可能导致回流期间的托焊。

推荐使用K型、30 AWG 的热电偶线,最好预先焊接。

在安装之后,热电偶引线引到PCB装配的后面(相对行进方向)。

有人宁愿用一个接头接在热电偶引线的尾沿。

这样测量设备可很快连接和分开。

开普敦(Kapton)胶带(一种耐高温胶带)用来在适当位置固定热电偶的引线。

多数回流机器装备有机上作温度曲线的软件,允许热电偶引线插在炉子上,实时地从系统显示屏幕上跟踪。

有人宁愿使用数据记录设备,和测试装配板一起从炉中通过,以可编程的时间间隔从多个热电偶记录温度。

这些系统是作为“运行与读数(run-and-read)”或数据发送单元来使用的,允许实时地观察温度曲线。

对后者,系统必须不受射频干扰(RFI, radio frequency interference)、电磁干扰(EMI, electromagnetic interference)和串扰(crosstalk)的影响,因此当来自发射机的数据还没有来时,不会去“猜测”温度。

不管用哪一种数据记录器,定期的校准是必要的。

渐升式温度曲线(Ramp profile)保温区(soak zone)有热机械的(thermomechanical)重要性,它允许装配的较冷部分“赶上”较热部分,达到温度的平衡或在整个板上很低的温度差别。

在红外(IR, infrared)回流焊接开始使用以来,这个曲线是常用的。

在加热PCB装配中,SMT早期的红外与对流红外炉实际上缺乏热传导能力,特别是与今天的对流为主的(convection-dominant)炉相比较。

这样,锡膏制造商们配制它们的几乎松香温和活性(RMA, rosin mildly active)材料,来满足回流前居留时间的要求,尝试减少温度差别(图二)。

另一方面,以对流为主要热机制的对流为主的(convection-dominant)炉通常比其前期的炉具有高得多的热传导效率。

因此,除非装配的元件实在太多,需要保温来获得所希望的温度差别,否则回流前的保温区是多余的,甚至可能是是有害的,如果温度高于基板玻璃态转化温度(substrate glass-transition)Tg的时间过长。

在大多数应用中,渐升式温度曲线(ramp profile)是非常好的(图三)。

尽管有人认为锡膏助焊剂配方要求回流前保温(preflow soak),事实上,这只是为了能够接纳那些老的、现在几乎绝种的、对流/IR炉技术。

一项最近的有关锡膏配方的调查显示,大多数RMA、免洗和水溶性材料都将在渐升式温度曲线上达到规定要求1。

事实上,许多有机酸(OA, organic acid)水溶性配方地使用的保温时间也要尽可能小—由于有大量的异丙醇含量作为溶剂,它们容易很快挥发。

在使用渐升式温度曲线(ramp profile)之前,应该咨询锡膏制造商,以确保兼容性。

虽然一些非常量大或复杂的PCB装配还将要求回流前的保温,但大多数装配(即,那些主要在线的)将受益于渐升式温度曲线(ramp profile)。

事实上,后者应该是如何锡膏评估程序中的部分,不管是免洗,还是水溶性。

氮气环境一个焊接的现有问题是有关在回流焊接炉中使用氮气环境的好处。

这不是一个新问题—至少一半十年前安装的回流炉被指定要有氮气容器。

而且,最近与制造商的交谈也显示还有同样的比例存在,尽管使用氮气的关键理由可能现在还未被证实。

首先,重要的是理解使回流环境惰性化是怎样影响焊接过程的。

焊接中助焊剂的目的是从要焊接的表面,即元件引脚和PCB 焊盘,去掉氧化物。

当然,热是氧化的催化剂。

因为,根据定义,热是不可能从基本的温度回流焊接过程中去掉的,那么氧—氧化的另一元素—通过惰性的氮气的取代而减少。

除了大大地减少,如果没有消除,可焊接表面的进一步氧化,这个工艺也改善熔锡的表面张力。

在八十年代中期,免洗焊锡膏成为可行的替代品。

理想的配方是外观可接受的(光亮的、稀薄的和无粘性的)、腐蚀与电迁移良性的、和足够薄以致于不影响ICT(in-circuit test)针床的测试探针。

残留很低的锡膏助焊剂(固体含量大约为2.1 ~ 2.8%)满足前两个标准,但通常影响ICT。

只有固体含量低于2.0%的超低残留材料才可看作与测试探针兼容。

可是,低残留的好处伴随着低侵蚀性助焊剂处理的成本代价,需要它所能得到的全部帮助,包括回流期间防止进一步氧化的形成。

这个要用氮气加入到回流过程来完成。

如果使用超低残留焊锡膏,那么需要氮气环境。

可是,近年来,也可买到超低残留的焊锡膏,在室内环境(非氮气)也表现得非常的好。

原来的有机可焊性保护层(OSP, organic solderability preservative)在热环境中有效地消失,对双面装配,要求氮气回流环境来维持第二面的可焊性。

现在的OSP也会在有助焊剂和热的时候消失,但第二面的保护剂保持完整,直到印有锡膏,因此回流时不要求惰性气体环境。

氮气回流焊接的最古老动机就是前面所提到的改善表面张力的优点,通过减少缺陷而改善焊接合格率即是归功于它。

其它的好处包括:较少的锡球形成、更好的熔湿、和更少的开路与锡桥。

早期的SMT手册提倡密间距的连接使用氮气,这是基于科学试验得出的结论。

可是,这测试是实验室的试验,即,“烧杯试验”与实际生产的关系,没有把使用氮气的成本计算在内。

应该记住,在过去十五年,炉的制造商已经花了许多钱在开发(R&D)之中,来完善不漏气的气体容器。

虽然当使用诸如对流为主的(convection-dominant)这类紊流空气时,不容易将气体消耗减到最小,但是有些制造商使用高炉内气体流动和低氮气总消耗,已经达到非常低的氧气水平。

这样做,他们已经大大地减低了使用氮气的成本。

随着连接的密度增加,过程窗口变小。

在这个交接口,在有CSP(chip scale package)和倒装芯片(flip chip)的应用中使用氮气是很好的保证。

双面回流焊接人们早就认识到的SMT的一个优点是,元件可以贴装在基板的两面。

可是,问题马上出现了:怎样将前面回流焊接的元件保持在反过来的一面上完好无损,如果第二面也要回流焊接?人们已经采取了无数的方法来解决这个困难:一个方法是有胶将元件粘在板上,这个方法只用于波峰焊接无源元件(passive component)、小型引脚的晶体管(SOT)和小型引脚集成电路(SOIC)。

相关文档
最新文档