湖南大学材料科学基础-复习题纲

合集下载

《材料科学基础》复习提纲

《材料科学基础》复习提纲

《材料科学基础》复习提纲一、(共20分)名词解释(每个名词2分)简单正交点阵、晶向族、无限固溶体、配位数、交滑移、大角度晶界、上坡(顺)扩散、形核功、回复、滑移系底心正交点阵、晶面族、有限固溶体、致密度、攀移、小角度晶界、下坡(逆)扩散、形核率、再结晶、孪生二、(共30分)简要回答下列问题1、计算面心立方晶体的八面体间隙尺寸。

2、简述固溶体与中间相的区别。

3、已知两个不平行的晶面(h1k1l1)和(h2k2l2),求出其所属的晶带轴。

4、计算面心立方晶体{111}晶面的面密度。

5、简述刃型位错线方向、柏氏矢量方向、位错运动方向及晶体运动方向之间的关系。

6、简述刃型位错攀移的实质。

7、简述在外力的作用下,螺型位错的可能运动方式。

8、当碳原子和铁原子在相同温度的 -Fe中进行扩散时,为何碳原子的扩散系数大于铁原子的扩散系数?9、简述单组元晶体材料凝固的一般过程。

10、如图,已知A、B、C三组元固态完全不互溶,成分为80%A、10%B、10%C的O 合金在冷却过程中将进行二相共晶反应和三相共晶反应,在二元共晶反应开始时,该合金液相成分(a点)为60%A、20%B、20%C,而三元共晶反应开始时的液相成分(E点)为50% A、10%B、40%C,写出图中I和P合金的室温平衡组织。

1、计算体心立方晶体的八面体间隙尺寸。

2、简述决定组元形成固溶体与中间相的因素。

3、已知二晶向[u1v1w1]和[u2v2 w2],求出由此二晶向所决定的晶面指数。

·4、计算体心立方晶体{110}晶面的面密度。

5、简述螺型位错线方向、柏氏矢量方向、位错运动方向及晶体运动方向之间的关系。

6、简述刃型位错滑移的实质。

7、简述在外力的作用下,刃型位错的可能运动方式。

8、当碳原子和铁原子在相同温度的a-Fe 中进行扩散时,为何碳原子的扩散系数大于铁原子的扩散系数?9、简述纯金属凝固的基本条件。

10、如图,已知A、B、C三组元固态完全不互溶,成分为80%A、10%B、10%C的O合金在冷却过程中将进行二相共晶反应和三相共晶反应,在二元共晶反应开始时,该合金液相成分(a点)为60%A、20%B、20%C,而三元共晶反应开始时的液相成分(E点)为%、(A+B)%和(A+B+C)%的相对量。

材料科学基础复习大纲

材料科学基础复习大纲

材料科学基础复习大纲第二章晶体结构2.1 结晶学基础1、概念:晶体晶胞晶胞参数七大晶系晶面指数晶面族晶向指数晶向族2、晶面指数和晶向指数的计算2.2 结合力与结合能按照结合力性质不同分为物理键和化学键化学键包括离子键共价键金属键物理键包括范德华键氢键晶体中离子键共价键比例估算(公式2.16)离子晶体晶格能2.3 堆积(记忆常识)1、最紧密堆积原理及其使用范围:原理略适用范围:典型的离子晶体和金属晶体原因:该原理是建立在质点在电子云分布呈球形对称以及无方向性的基础上的2、两种最紧密堆积方式:面心立方最紧密堆积ABCABC 密排六方最紧密堆积ABABAB系统中:每个球周围有6个八面体空隙 8个四面体空隙N个等径球体做最紧密堆积时系统有2N个四面体空隙N个八面体空隙八面体空隙体积大于四面体空隙3、空间利用率:晶胞中原子体积与晶胞体积的比值(要学会计算)两种最紧密堆积方式的空间利用率为74.05﹪(等径球堆积时)4、影响晶体结构的因素内因:质点相对大小(决定性因素)配位数(概念及计算)极化(概念,极化对晶体结构产生的影响)外因(了解):同质多晶类质多晶同质多晶转变2.4 单质晶体结构(了解)2.5 无机化合物结构(重点每年必考)分析结构从以下几个方面入手:晶胞分子数,何种离子做何种堆积,何种离子添隙,添隙百分比,正负离子配位数,正负离子电价是否饱和,配位多面体,添隙半径的计算(刚好相切时),隙结构与性质的关系。

1、NaCl型:4个NaCl分子 Cl离子做面心立方密堆积,Na离子填充八面体空隙,填充率100﹪,正负离子配位数均为6,电价饱和。

【NaCl6】或【ClNa6】八面体结构与性能:此结构在三维方向上键力均匀,因此无明显解理,破碎后呈颗粒状,粒为多面体形状。

离子键结合,因此有较高的熔点和硬度2、立方ZnS结构:4个ZnS分子S离子做面心立方密堆积,Zn离子填充四面体空隙填充率50﹪,离子配位数均为4,电价饱和,【ZnS4】四面体会画投影图(图2.26)注意:一定要画虚线,一定要标高,一定要有图例(白球黑球代表什么离子)3、萤石(CaF2)结构:(唯一正离子做堆积的结构)4个CaF2分子 Ca离子做面心立方密堆积,F离子填充四面体空隙,填充率100﹪。

材料科学基础期末复习题库

材料科学基础期末复习题库

材料科学基础期末复习题库一、选择题1. 材料科学中的“四要素”是指:A. 原子、分子、晶体、非晶体B. 材料、结构、性能、加工C. 原子、分子、电子、晶格D. 晶体、非晶体、合金、化合物2. 下列哪项不是材料的力学性能?A. 硬度B. 韧性C. 导电性D. 弹性3. 材料的微观结构对其宏观性能的影响主要体现在:A. 颜色B. 形状C. 强度D. 重量4. 材料科学中,晶格常数是指:A. 晶体中原子间的距离B. 晶体中原子的排列方式C. 晶体中原子的数目D. 晶体的尺寸5. 合金的强化机制主要包括:A. 固溶强化、沉淀强化、形变强化B. 热处理强化、冷加工强化、形变强化C. 固溶强化、冷加工强化、热处理强化D. 形变强化、热处理强化、沉淀强化二、填空题6. 材料科学中的“三相”是指______、______和______。

7. 材料的______是指材料在受到外力作用时,不发生永久变形的能力。

8. 材料的______是指材料在受到外力作用时,能够吸收能量而不发生断裂的能力。

9. 材料的______是指材料在受到外力作用时,发生永久变形的能力。

10. 材料的______是指材料在受到外力作用时,发生断裂的能力。

三、简答题11. 简述材料的微观结构与宏观性能之间的关系。

12. 阐述材料的热处理过程及其对材料性能的影响。

13. 描述合金的基本特性及其在材料科学中的应用。

四、论述题14. 论述材料的疲劳破坏机理及其预防措施。

15. 论述材料的腐蚀机理及其防护方法。

五、计算题16. 假设有一合金,其成分为铁(Fe)和碳(C),已知Fe的密度为7.87 g/cm³,C的密度为2.26 g/cm³,Fe和C的质量比为9:1。

计算该合金的密度。

六、案例分析题17. 某工厂生产高强度钢,需要通过热处理来提高其性能。

请分析热处理过程中可能涉及的步骤,并讨论如何通过控制这些步骤来优化材料的性能。

七、实验题18. 设计一个实验方案,以测定某种材料的弹性模量。

08——11年4年湖南大学材料科学基础真题汇总

08——11年4年湖南大学材料科学基础真题汇总

2008年材料科学基础真题(1)名词解释(每题5分,共40分)1.空间点阵:组成晶体的粒子(原子、离子或分子)在三维空间中形成有规律的某种对称排列,如果我们用点来代表组成晶体的粒子,这些点的空间排列就称为空间点阵。

2.中间相:金属与金属,或金属与非金属(氮、碳、氢、硅)之间形成的化合物总称为金属间化合物。

由于金属间化合物在相图中处于相图的中间位置,故也称为中间相。

3.全位错:柏氏矢量等于点阵矢量的位错称为全位错。

4.共格界面:所谓共格晶界,是指界面上的原子同时位于两相晶格的结点上,即两相的晶格是彼此衔接的界面上的原子为两者共有。

5.滑移临界分切应力:滑移系开动所需的最小分切应力;它是一个定值,与材料本身性质有关,与外力取向无关。

6.包晶转变:成分为H点的δ固相,与它周围成分为B点的液相L,在一定的温度时,δ固相与L液相相互作用转变成成分是J点的另一新相γ固溶体,这一转变叫包晶转变或包晶反应。

即HJB---包晶转变线,LB+δH→γJ7.再结晶:塑性变形金属后续加热过程通过形核与长大无畸变等轴晶逐渐取代变形晶粒的过程。

8.上坡扩散:在化学位差为驱动力的条件下,原子由低浓度位置向高浓度位置进行的扩散。

(2)简答题(每题8分,共56分)1.采用四轴坐标系标定六方晶体的晶向指数时,应该有什么样的约束条件?为什么?2.写出FCC、BCC、HCP晶体的密排面、密排面间距、密排方向、密排方向最小原子间距。

3.指出图1中各相图的错误,并加以解释。

4.什么是柯肯达尔效应?请用扩散理论加以解释。

若Cu-Al组成的互扩散偶发生扩散时,界面标志物会向哪个方向移动。

答:柯肯达尔效应:在置换式固溶体的扩散过程中,放置在原始界面上的标志物朝着低熔点元素的方向移动,移动速率与时间成抛物线关系。

柯肯达尔效应否定了置换式固溶体中扩散的换位机制,而证实了空位机制;系统中不同组元具有不同的分扩散系数;相对而言,低熔点组元扩散快,高熔点组元扩散慢,这种不等量的原子交换造成了柯肯达尔效应。

材料科学基础复习提纲

材料科学基础复习提纲

材料科学基础复习提纲复习资料(修订版)修正部分错别字,增删部分重点内容(红字标出)材料科学基础Ⅰ(贵清部分)第⼀章晶体学基础1.1晶⾯指数、晶向指数(不包含四指数问题)的标定及晶⾯间距、晶向长度的计算(公式P40~P41)1.2晶体结构和空间点阵的区别?答:晶体结构是晶体中各原⼦的分布,种类丰富多样,⽽空间点阵是原⼦分布规律的代表点,由这些抽象出来的阵点构成,只有14种结构。

1.3 晶胞选择的条件?答:晶胞的选择要尽量满⾜以下三个条件:1)能反映点阵的周期性;2)能反映点阵的对称性;3)晶胞的体积最⼩。

1.4结构胞和原胞的联系和区别?答:结构胞和原胞必须都能反映点阵的周期性,结构胞是在保证对称性的前提下选取体积尽量⼩的晶胞;原胞是保证晶胞体积最⼩,⽽不⼀定反映对称性。

1.5 周期的概念?答:⽆论从哪个⽅向看去,总是相隔⼀定的距离就出现相同的原⼦或者原⼦集团,这个距离就是周期。

1.6 常见晶体结构中的重要间隙?答:FCC晶体中⼋⾯体间隙4个,四⾯体间隙8个;BCC晶体中⼋⾯体间隙6个,四⾯体间隙12个;HCP晶体中⼋⾯体间隙6个,四⾯体间隙12个。

1.7 常见晶体结构的堆垛⽅式?答:BCC和HCP晶体的堆垛⽅式是ABABAB……;FCC晶体的堆垛⽅式是ABCABC……。

1.8 晶带⽅程的表达式?答:hu+kv+lw=0。

第⼆章固体材料的结构2.1 什么是合⾦、组元、合⾦相、组织以及组元、合⾦相、组织之间的关系?答:合⾦:由⾦属和其他⼀种或⼏种元素通过化学键合⽽形成的材料;组元:组成合⾦的每种元素称为组元;合⾦相:具有相同的成分、结构和性能的部分称为合⾦相或简称相;组织:在⼀定外界条件下,⼀定成分的合⾦可以由若⼲不同的相组成,这些相的总体便称为组织。

关系:合⾦相由组元构成,⽽组织⼜由合⾦相组成,单⼀元素即可以称之为组元⼜可以称之为相⼜也可以称之为组织。

2.2 固溶体和化合物的区别?答:固溶体的溶质和溶剂占据⼀个共同的布拉菲点阵,且此点阵类型和溶剂的点阵类型相同,固溶体有⼀定的成分范围,组元含量在⼀定范围内可以变化⽽点阵类型不变,由于成分可变,固溶体不能⽤⼀个化学式表达;化合物是由两种或多种组元按⼀定⽐例构成⼀个新的点阵,它既不是溶剂的点阵也不是溶质的点阵,化合物通常可以⽤⼀个化学式表达,⾦属与⾦属形成的化合物往往有⼀定的成分范围,但⽐固溶体范围⼩得多。

材料科学基础复习共108页

材料科学基础复习共108页

[u v w] 晶带轴 (h k l) 晶带面
晶带
线性与平面原子密度
线原子密度:在特定的晶向上,线矢量通过原子中心,2 个原子中心间的线段长度为l,此线段中包含的原子部分 的尺寸为c, c / l为线原子密度(LD)。
面原子密度:在特定的晶面上,晶面通过原子中心,由几 个原子中心构成的平面的面积Ap,此平面中包含的原子 部分的面积Ac, Ac / Ap为面原子密度(PD)。
晶体结构 = 空间点阵 + 基元 刚球模型
体心立方
面心立方
密排六方
堆垛因子(致密度) 堆垛因子(致密度) 堆垛因子(致密度)
0.68
0.74
0.74
配位数:8
配位数:12
配位数:12
三种典型金属结构的晶体学特点
结构特征
晶体结构类型 面心立方(A1) 体心立方(A2) 密排六方(A3)
点阵常数
a
原子半径R
元素,经熔炼、烧结或其它方法组合而成并具有金属特性的物质。
组元(Component):组成合金最基本的独立的物质,通常组元
就是组成合金的元素,也可以是稳定的化合物。组元间由于物理的 或化学的相互作用,可形成各种相。
相(Phase):是合金中具有同一聚集状态、相同晶体结构、成分
和性能均一,并以界面(相界)相互分开的组成部分。
中间相(金属间化合物)
两组元A和B组成合金时,除了可形成固溶体之外,如果溶质含量超 过其溶解度时,便可能形成新相,其成分处于A在B中、和B在A中的 最大溶解度之间,故称为中间相。
中间相可以是化合物,也可以是以化合物为基的固溶体(第二类固 溶体或二次固溶体)。它的晶体结构不同于其任一组元,结合键中通 常是金属键和其它典型键(如离子键、共价键和分子键)相混合。因 此中间相具有一定的金属特性,又称为金属间化合物。

03——07年5年湖南大学材料科学基础真题汇总

03——07年5年湖南大学材料科学基础真题汇总

03——07年5年湖南⼤学材料科学基础真题汇总页眉内容2004年材料科学基础真题⼀、名词解释 1.电⼦化合物:由第⼀族或过渡族元素与第⼆⾄第四元素构成的化合物,它们不遵守化合价规律,但满⾜⼀定的电⼦浓度,虽然电⼦化合物可⽤化学式表⽰,但实际成分可在⼀定的范围变动,可溶解⼀定量的固溶体。

2.成分过冷:固溶体合⾦凝固时,由于液相中溶质的分布发⽣变化,合⾦熔点也发⽣变化,即使实际温度分布不变,固液界⾯前沿的过冷度也会发⽣变化。

所以固溶体合⾦的过冷度时由变化着的合⾦的熔点与实际温度分布两个⽅⾯的因素共同决定的。

这种因液相成分变化⽽形成的过冷称为成分过冷。

3.莱⽒体:⾼碳的铁基合⾦在凝固过程中发⽣共晶转变所形成的奥⽒体和碳化物(或渗碳体)所组成的共晶体。

莱⽒体是液态铁碳合⾦发⽣共晶转变形成的奥⽒体和渗碳体所组成的共晶体,其含碳量为ωc=4.3%。

当温度⾼于727℃时,莱⽒体由奥⽒体和渗碳体组成,⽤符号Ld表⽰。

在低于727℃时,莱⽒体是由珠光体和渗碳体组成,⽤符号Ld’表⽰,称为变态莱⽒体。

因莱⽒体的基体是硬⽽脆的渗碳体,所以硬度⾼,塑性很差。

4.吕德斯带:指退⽕的低碳钢薄板在冲压加⼯时,由于局部的突然屈服产⽣不均匀变形,⽽在钢板表⾯产⽣条带状皱褶的⼀种现象。

在拉伸时,试样表⾯出现的与拉伸轴呈40°⾓的粗糙不平的皱纹称为吕德斯带。

5.本质晶粒度:表⽰钢在⼀定条件下奥⽒体晶粒长⼤的倾向性。

6.弥散强化:第⼆相微细颗粒通过粉末冶⾦法加⼊⽽起到强化作⽤。

7.多边形化:经过冷塑性形变的⾦属或者合⾦在回复时形成⼩⾓度亚晶界和较完整的亚晶粒的过程。

8.共格晶⾯:所谓共格晶界,是指界⾯上的原⼦同时位于两相晶格的结点上,即两相的晶格是彼此衔接的界⾯上的原⼦为两者共有。

⼆、简答题1.简述纯⾦属枝晶的形成条件和长⼤过程。

2.何谓⼀次⼆次三次渗碳体?显微镜下它们的形态有何特点。

3.什么叫择优取向?什么叫形变枝构?它们有什么实际意义?4.何谓全位错?单位位错?不全位错?并指出典型⾦属晶体中单位位错的柏⽒⽮量。

湖南大学材料科学基础-复习题纲

湖南大学材料科学基础-复习题纲

第一部分材料的原子结构1、原子结构与原子的电子结构;原子结构、原子排列对材料性能的影响。

主量子数n:决定原子中电子能量以及与核的平均距离。

角动量量子数l: 给出电子在同一个量子壳层内所处的能级,与电子运动的角动量有关。

磁量子数m:给出每个轨道角动量量子数的能级数或轨道数。

自旋角动量量子数s:反映电子不同的自旋方向。

相对原子质量:相对原子质量是以一个碳-12原子质量的1/12作为标准,任何一种原子的平均原子质量跟一个碳-12原子质量的1/12的比值,称为该原子的相对原子质量。

原子价:也称化合价。

它表明形成化合物时一个原子能和其他原子相结合的数目。

电负性:用来表示两个不同原子形成化学键时吸引电子能力的相对强弱,是元素的原子在分子中吸引共用电子的能力。

能量最低原理:电子的排布总是尽可能使体系的能量最低。

也就是说电子先占据能量最低的壳层。

泡利不相容原理:在一个原子总不可能有运动状态完全相同的两个电子,即不能有上述四个量子数都相同的两个电子。

(主量子数为n的壳层,最多容纳2n2个电子)洪德定则:在同一个亚层各个能级中,电子的排布尽可能占不同的能级,而且自旋方向相同。

原子结构:原子由质子和中子组成的原子核以及核外的电子所构成。

原子核内的中子电中性,质子带有正电荷。

原子排列对材料性能影响:固体材料根据原子的排列可分为两大类:晶体与非晶体。

(有无固定的熔点和体积突变)晶体:内部原子按某种特定的方式在三维空间呈周期性重复排列的固体。

非晶体:指组成物质的分子(或原子、离子)不呈空间有规则周期性排列的固体。

(过冷液体)各向异性:晶体的各向异性即沿晶格的不同方向,原子排列的周期性和疏密程度不尽相同,由此导致晶体在不同方向的物理化学特性也不同,这就是晶体的各向异性。

2、材料中的结合键的类型、本质,各结合键对材料性能的影响,键-能曲线及其应用。

一次键:离子键:离子键指正、负离子间通过静电作用形成的化学键。

(无方向性和饱和性)共价键:由两个或多个电负性相差不大的原子间通过共用电子对而形成的化学键。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第一部分材料的原子结构与键合1、原子结构与原子的电子结构;原子结构、原子排列对材料性能的影响。

决定材料性能的最根本的因素是组成材料的各元素的原子结构,原子间的相互作用、相互结合,原子或分子在空间的排列分布和运动规律,以及原子集合体的形貌特征等。

原子结构:原子由质子和中子组成的原子核以及核外的电子所构成。

原子核内的中子呈电中性,质子带有正电荷。

原子中一个电子的空间位置和能量可用四个量子数来确定:主量子数n:决定原子中电子能量以及与核的平均距离。

角动量量子数l: 给出电子在同一个量子壳层内所处的能级,与电子运动的角动量有关。

磁量子数m:给出每个轨道角动量量子数的能级数或轨道数。

自旋角动量量子数s:反映电子不同的自旋方向。

核外电子的排布规律遵循以下三个原则:能量最低原理:电子的排布总是尽可能使体系的能量最低。

也就是说电子先占据能量最低的壳层。

泡利不相容原理:在一个原子总不可能有运动状态完全相同的两个电子,即不能有上述四个量子数都相同的两个电子。

(主量子数为n的壳层,最多容纳2n2个电子)洪德定则:在同一个亚层各个能级中,电子的排布尽可能占不同的能级,而且自旋方向相同。

相对原子质量:相对原子质量是以一个碳-12原子质量的1/12作为标准,任何一种原子的平均原子质量跟一个碳-12原子质量的1/12的比值,称为该原子的相对原子质量。

原子价:也称化合价。

它表明形成化合物时一个原子能和其他原子相结合的数目。

电负性(EN):用来表示两个不同原子形成化学键时吸引电子能力的相对强弱,是元素的原子在分子中吸引共用电子的能力。

原子排列对材料性能影响:固体材料根据原子的排列可分为两大类:晶体与非晶体。

(有无固定的熔点和体积突变)晶体:原子按一定方式在三维空间内呈周期性地规则重复排列,有固定熔点、各向异性。

非晶体:指组成物质的分子(或原子、离子)不呈空间有规则周期性排列的固体,无固定的熔点,各向同性。

(过冷液体)各向异性:晶体的各向异性即沿晶格的不同方向,原子排列的周期性和疏密程度不尽相同,由此导致晶体在不同方向的物理化学特性也不同,这就是晶体的各向异性。

2、材料中的结合键的类型、本质,各结合键对材料性能的影响(上交P4),键-能曲线及其应用(工设P29)。

一次键的三个主要类型是:离子键:离子键指正、负离子间通过静电作用形成的化学键。

其基本特点是以离子而不是以原子为结合单元,无方向性和饱和性;离子晶体中正负离子静电引力较强,结合牢固,因此,其熔点和硬度均较高,离子晶体中很难产生自由运动的电子,因此,是良好的电绝缘体,但当处于高温熔融状态时,则呈现离子导电性。

共价键:由两个或多个电负性相差不大的原子间通过共用电子对而形成的化学键。

有方向性和饱和性;共价键的结合极为牢固,故共价晶体具有结构稳定、熔点高、质硬脆等特点,由于束缚在相邻原子间的“共用电子对”不能自由运动,共价结合形成的材料一般是绝缘体,其导电能力较差。

金属键:金属中的自由电子与金属正离子相互作用所构成的键合。

无饱和性和方向性,因而每个原子有可能与更多的原子相结合,并趋于形成低能量的密堆结构。

当金属受力变形而改变原子之间的相互位置时不至于破坏金属键,这就使金属具有良好的延展性,并且,由于自由电子的存在,金属一般都具有良好的导电和导热性能。

本质:电子从一个原子向另外一个原子的转移或电子在原子间共用。

二次键的主要类型是:范德瓦耳斯力:(又称分子间作用力)借助微弱的、瞬时的电偶极矩的感应作用,将原来具有稳定的原子结构的原子或分子结合为一体的键合。

无方向性和饱和性,包括静电力、诱导力和色散力。

氢键:由于氢原子核外仅有一个电子被其他原子所共有,结合的氢端就裸露出带正电荷的原子核,这样它将与邻近分子的负端相互吸引,即构成氢桥。

具有饱和性和方向性,键能介于化学键和范德瓦尔斯力之间。

键-能曲线:表示当作用于原子或离子上的力仅为原子的吸引力和排斥力是能量随位置的变化。

3、原子的堆垛和配位数的基本概念及对材料性能的影响(上交P38)。

4、显微组织基本概念和对材料性能的影响。

显微组织:要用金相显微镜或电子显微镜才能观察到的内部组织。

单相组织:晶粒尺寸:细化晶粒可以提高材料的强度改善材料的塑性和韧性。

晶粒形状:等轴晶趋于各向同性。

柱状晶趋于各向异性。

多相组织:力学性能取决于各组成相相对量,和各自性能。

如果弥散相硬度明显高于基体相,提高材料的强度,塑性韧性必将下降。

第二部分材料的晶态结构1、晶体与非晶体、晶体结构、空间点阵、晶格、晶胞、晶格常数、布拉菲点阵、晶面间距等基本概念(上交P19)。

晶体:原子按一定方式在三维空间内呈周期性地规则重复排列,有固定熔点、各向异性。

非晶体:指组成物质的分子(或原子、离子)不呈空间有规则周期性排列的固体,无固定的熔点,各向同性。

(过冷液体)晶体结构:晶体材料中原子按一定对称性周期性平移重复而形成的空间排列形式。

可分为7大晶系、14种平移点阵、32种点群、230种空间群。

空间点阵:指几何点在三维空间作周期性的规则排列所形成的三维阵列,是人为的对晶体结构的抽象。

晶格:为了表达空间点阵的几何规律,常人为地将阵点用一系列相互平行的直线连接起来形成空间格架,称之为晶格。

晶胞:构成晶格的最基本单元称为晶胞。

晶格常数:晶胞的棱边的长度(a b c),表征晶体结构的一个基本参数。

晶系:除考虑晶胞外形外即棱边长度之间的关系和轴间夹角情况对晶体进行分类(七大晶系:单斜晶系、三斜晶系、三角晶系、四方晶系、正交晶系、六角晶系、立方晶系)晶面间距:相邻两个平行晶面之间的距离。

晶面间距越大,则该晶面上的原子排列越密集,反之,越稀疏。

布拉菲点阵:布拉菲根据“每个阵点的周围环境相同”的要求,用数学方法证明晶体中的空间点阵只有14种,并称为布拉菲点阵。

晶系空间点阵棱边与角度的关系晶系空间点阵棱边与角度的关系三斜简单三斜a≠b≠c,α≠β≠γ≠90°六方简单六方a=b,α=β=90°,γ=120°单斜简单单斜a≠b≠c,α=β=90°≠γ四方简单四方a=b≠c,α=β=γ=90°底心单斜体心四方正交简单正交a≠b≠c,α=β=γ=90°菱方简单菱方a=b=c,α=β=γ≠90°底心正交立方简单立方a=b=c,α=β=γ=90°体心正交体心立方面心正交面心立方2、晶体晶向指数与晶面指数的标定方法。

晶向指数:[ ] < > 晶面指数:(){ }晶向族:晶体中因对称关系而等价的各族晶向可归并为一个晶向族。

晶面族:在晶体内凡晶面间距和镜面上原子的分布完全相同,只是空间位向不同的晶面可以归并为同一晶面族。

3、晶体结构及类型,常见晶体结构(bcc、fcc、hcp)及其几何特征、配位数、堆积因子(致密度)、间隙、密排面与密排方向(上交P36)。

晶体类型点阵常数原子半径晶胞内原子数配位数致密度四面体间隙八面体间隙密排面密排方向面心立方(fcc )体心立方(bcc)密排六方(hcp)配位数:在晶体结构中任一原子周围最邻近且等距离的原子数;致密度(堆积因子):晶体结构中原子体积占总体积的百分数,一个晶胞来说就是:晶胞中的原子体积与晶胞体积的比值。

间隙:八面体间隙:位于6个原子所组成的八面体中间的间隙。

四面体间隙:位于4个原子所组成的四面体中间的间隙。

密排面:原子密度最大的晶面。

密排方向:原子密度最大的晶向。

4、合金相结构,固溶体、中间相的基本概念和性能特点(上交P42)。

固溶体:以某一组元为溶剂,在其晶体点阵中溶入其他组元原子(溶质原子)所形成的均匀混合的固态溶体,它保持着溶剂的晶体结构类型。

中间相:如果组成合金相的异类原子有固定的比例,所形成的固向晶体结构与所有组元均不同,且这种相的成分多数处在相图的中间部位,故称它为中间相。

性能特点:(1.)固溶体可在一定成分范围内存在,性能随成分变化而连续变化。

(2.)中间相的晶体结构不同于此相中的任一组元,不同元素之间所形成的中间相往往在晶体结构、结合键等方面都不同。

中间相一般具有较高的熔点和硬度,可使合金的强度、硬度、耐磨性及耐热性提高。

5、离子晶体和共价晶体机构,离子晶体结构规则、典型的离子晶体结构。

离子晶体:由正负离子或正、负离子集团通过离子键按一定比例和方式堆砌起来形成的晶体。

共价晶体:由同种非金属元素的原子或者异种元素的原子以共价键形成的无限大分子。

离子半径:由原子核的中心到其最外层电子的平衡距离。

配位数:在离子晶体中,与某一考察离子邻接的异号离子的数目称为该考察离子的配位数。

离子的堆积:由于正离子半径一般较小,负离子半径较大,所以离子晶体通常看成是由负离子堆积成骨架,正离子则按其自身的大小,居留于相应的负离子空隙—负离子配位多面体中。

离子晶体结构规则:2.4.1——上交P57(1.)负离子配位多面体规则——鲍林第一规则在离子晶体中,正离子的周围形成一个负离子配位多面体,正负离子间的平衡距离取决于离子半径之和,而正离子的配位数则取决于正负离子的半径比。

(2.)电价规则——鲍林第二规则在一个稳定的离子晶体中,每个负离子的电价等于或接近等于与之邻接的各正离子静电键强度的总和。

(3.)负离子多面体共用顶点、棱与面的规则——鲍林第三规则在一配位结构中,共用棱特别是共用面的存在,会降低这个结构的稳定性。

(4.)不同种类正离子配位多面体间连接规则——鲍林第四规则在含有两种以上正离子的离子晶体中,一些电价较高,配位数较低的正离子配位多面体之间,有尽量互不结合的趋势。

(5.)节约规则——鲍林第五规则在同一晶体中,同种正离子与同种负离子的结合方式应最大限度地趋于一致。

典型的离子晶体结构:2.4.2——上交P596、高分子材料的组成和结构的基本特征,高分子材料结晶形态、高分子链在晶体中的构象、高分子材料晶态结构模型、液晶态的结构特征与分类。

组成:有机高分子化合物。

1.3——上交P8结构:包括高分子链结构和聚集态结构。

链结构又分近程结构和远程结构。

1.3——上交P8 高分子材料的结晶形态:2.6.1——上交P70单晶球晶树枝状晶串晶伸直键晶体高分子链的构象:由于单键内旋转导致了原子排布方式的不断变换,产生了分子在空间的不同形态。

晶态结构模型:2.6.2——上交P721、樱状微束模型2、折叠链模型3、伸直链模型4、串晶结构模型5、球晶结构模型6、Hosemann 模型液晶态的结构特征和分类:2.8.1——上交P77液晶:由固态向液态转化过程中存在的取向有序流体称为液晶。

按照液晶形成的方式和性能,可将液晶分为溶致型液晶和热致型液晶两大类溶致型液晶:由两种或两种以上组分形成的液晶,其中一种是水或其他极性溶剂,溶质在溶液中达到某一临界浓度以上时才呈现液晶态,且可以在一个浓度范围内存在。

相关文档
最新文档