第四章馈线自动化.pptx

合集下载

馈线自动化培训

馈线自动化培训

域英文名 key_id device mode_device
yx_yc_mode
yx_value yc_id yc_value
域中文名 描述
ID号
keyid号、唯一标示
动作设备 即跳闸开关
方式设备 即跳闸开关设定的方式设备,可以是开关、保护、测点遥 信
遥 信 遥 测 1表示对方式设备的遥信进行判断,2表示对方式设备的遥
PPT文档演模板
馈线自动化培训
2.2 母线故障
功能测试接线图:
PPT文档演模板
馈线自动化培训
2.2 母线故障
故障处理: • 断路器S1跳闸,开关A1有故障电流,可判
定A1~A2之间区域发生故障,即母线I故障 ,断开开关A1、A2隔离故障区域,合上A9 或者A6恢复故障下游供电,合上S1恢复上 游供电。
PPT文档演模板
馈线自动化培训
2.1 断路器出口故障
功能测试接线图:
PPT文档演模板
馈线自动化培训
2.1 断路器出口故障
故障处理:
• 断路器S1跳闸,可判定S1~A1之间区域发生 故障,即,出口断路器S1故障,断开A1完 成故障区域隔离,合上A9或者A6恢复故障 下游供电。
• 关于下游恢复路径,是根据其剩余容量的 大小,优先选择剩余容量大的恢复路径。 如果恢复路径开关挂有检修牌拒动时,则 不会将其列在恢复路径中。
有“在线”、“仿真”、“离线”三种选择。 有“交互方式”、“自动方式”两种选择。
da_status fault_step acc_time graph_name
DA状态 启动步骤 故障发生时间 图形名
PPT文档演模板
馈线自动化培训
3.3 相关数据库表说明

【优】馈线自动化介绍PPT资料

【优】馈线自动化介绍PPT资料

双电源联络电X延压-时时限式故障隔离过程
可方便地与配电终端设备连接,向自动化升级,实现四遥。
XL计时
馈线自动化设备组合示意
3、内置隔离断口,操作可靠性高。
开关内置三相保护及测量CT,变比按600/1或600/5 配置,测量CT精度为 0.
集 东芝30多年真空设备的实践结晶,以许继多年电力系统制造体系为基础,采用先进制造设备,全面先进的检测手段,完善的质量管
双电源联络电压-时限式故障隔离过程
FCB
PVS1
A
B
RTU
PVS2 RTU
PVS3
C
D
RTU
PVS4
PVS5
E
F
RTU
RTU
XL计时
8. FCB再次保护跳闸,线路失电后各开关自动断开; 9. RTU2因Y-延时中断电自动设置正方向闭锁,RTU3因残压加
于S侧自动设置反方向闭锁。(LOCK状态即使在RTU的失电 时也能被记忆)
FCB
PVS1
PVS2
A
B
RTU
RTU
Y延时
X延时 因闭锁不关合
PVS3
C
D
RTU
PVS4
PVS5
E
F
RTU
RTU
XL计时
12. PVS1关合后,B区恢复正常供电; 13. RTU2开始X-延时,RTU2因已记忆闭锁
不关合开关;
双电源联络电压-时限式故障隔离过程
FCB
PVS1
PVS2
PVS3
PVS4
假变设电分 站段FC开B经关A过延5时S延为时7s,第联一络次开重关合延,B时A 区为恢45复s,供站电内,重合闸时C间为5s。

馈线自动化学习.pptx

馈线自动化学习.pptx

代表分段器合闸状态 代表分段器断开状态
22
第23页/共70页
a
B
b
A
C
c
(2)
aBb
A
C
c
(3)
23
第24页/共70页
五、重合器与重合器配合实现故障区段隔离 六、重合器与电压—时间型分段器配合的整定方法
原则:重合器与电压—时间型分段器配合方式的整定的关键条件是不能在 同一时刻有两台以上的分段开关同时合闸,只有这样才能判断出故障区域, 避免对故障的误判。
作用:各个FTU分别采集相应柱上开关的运行情况,如负荷、 电压、功率和开关当前的位置、贮能完成情况等,并将上述 信息由通信网络发给配电网的控制中心;接收配电网自动控 制中心的命令进行相应的倒闸操作;故障时记录下故障前和 故障时的重要信息,如最大故障电流和故障前的负荷电流、 最大故障功率等,并将上述信息发送给控制中心,经计算机 系统分析后确定故障区段和最佳供电恢复方案,最终以遥控 方式隔离故障区段、恢复健全区段供电。
27
第28页/共70页
同理,对于子网络S2、 F、 E有Xa(F)=7s;对于子网络S3 、 M 、H 有 Xa(M)=7s.
第三步:某台分段器的X时限等于该开关的绝对合闸延时时间减去作为其父节点的 分段器的绝对合闸延时时间,于是有: X(B)= Xa(B)-0=7s, X(c)= Xa(c)- Xa(B) =14-7=7s, X(D)= Xa(D)- Xa(c)= 21-14=7s, X(G)= Xa(G)- Xa(c)= 28-14=14s,
代表分段器合闸状态 代表分段器断开状态
19
第20页/共70页
aBb
A
C
c
(2)
aBb

馈线自动化技术方案ppt课件.pptx

馈线自动化技术方案ppt课件.pptx

(6)故障区后 端恢复供电
14350ss
a
b
c
d
CB1 FB1 FB2 FB3 LS
FB4
FB5 CB2
3.3电压电流型
特点分析
– 负荷开关模式可以加快非故障区域供电,变电站需具备2次重合闸; – 断路器模式变电站只需具备1次重合闸;主干线安装的分段断路器需
与变电站保护配合,要求变电站过流速断时间至少在0.3S以上; – 无需主站和通信可实现故障的就地迅速隔离。
(4)FB2开关关
a
b
c
d
合至故障点
CB1 FB1 FB2 FB3 LS
(5)FB2跳闸,
a
b
cFB2 FB3 LS
FB4 FB5 CB2 FB4 FB5 CB2
(6)故障区后 端恢复供电
14350ss
a
b
c
d
CB1 FB1 FB2 FB3 LS
FB4
FB5 CB2
3.3电压电流型
电压电流型开关合闸后 进行Y时间检测,若无 故障电流则闭锁分闸
FS2合闸后Y时间内检测 到故障电流,在失压后 分闸并闭锁,FS2检测 到残压反向来电闭锁
(1)正常工作
a
b
c
d
CB1
FS1 FS2
FS3
LS FS5 FS6 FS7 CB2
(2)CB1保护 跳闸
a
b
c
d
CB1 FS1 FS2
FS3 LS FS5 FS6 FS7 CB2
(5)再次跳闸
a
b
c
d
CB1 FS1 FS2 FS3 LS
FS4
(6)第二次重合, 513ssa 1735ss b

第4章 馈电线自动化

第4章  馈电线自动化
功能:永久故障时,分合预定次数后闭锁在分闸状,隔离故障区段;若未完成预定分 合次数,故障已被其他设备切除,则保持在合闸状(经一段延时后恢复到预定状态, 为下次故障作准备)。 为下次故障作准备) 要求:一般不能开断短路故障电流。 关键部件:故障检测继电器(FDR: Fault Detecting Relay)。 根据判断故障方式的不同分类 电压 时间型 过流脉冲记数型 根据判断故障方式的不同分类:电压-时间型,过流脉冲记数型。
(1)定义、功能与分类 1)定义与功能:重合器是一种自身具有控制与保护功能的断路器。 2)分类:重合器可按下述方式分类: ①按装置中断路器部分的灭弧、绝缘介质分:可分为少油式, GIS,SF6等; ②按 控相 (即可以自动跳闸、重合的组别 ②按可控相别 自 合的 )分:可分为单相式 为单相式 与三相式; ③按控制方式分 可分为液压控制式 电子控制式(含智能式)。 ③按控制方式分:可分为液压控制式、电子控制式
图4.3 重合器与熔断器的 特性配合图
②瞬时闭锁附件。 ③负荷转移与线路分段附件。负荷转移分段附件 (LS) 的功能可用 图4.4 4 4来说明。
图4.4 LS附件的功能
4.2.3 分段器(Sectionalizer)
(1)定义、功能及分类 定义:分段器全称为自动线路分段器。与电源侧前级开关配合,失压或无电流 时自动分闸的开关设备。可以理解为带有自动保护功能的负荷开关。 分类:可按动作相数分为单相式、三相式;按控制方式分为液压式、电子式。
图4.9 开环网或拉手式网的故障隔离及恢复供电过程
(3) 重合器与分段器组成的故障定位隔离与自 动恢复供电系统的特点 1) 重合器与电流型分段器配合方式是配网自 动化早期采用的方式,简单易行、投 资少。 2) 重合器与电压型分段器配合时,对于永久 重合器与电压型分段器配合时 对于永久 性故障,重合器固定为两次跳合闸,可靠 性比与电流型分段配合时高,但故障最终 隔离时间很长 尤其串联级数较多时 末 隔离时间很长,尤其串联级数较多时,末 级开关完成合闸时间将会长达几十秒,影 响供电连续性。

馈线自动化介绍

馈线自动化介绍
2013-7-26
4.重合器与重合器配合实现故障区段隔离
发生过流或低电压时重合器动作。 出线重合器:一快二慢,失压3S后分断;中间重合器:二
慢,失压10S后关闭重合功能,并改为一次分闸后闭锁;联络 重合器:一慢,两侧失压后15S合闸。 2013-7-26
5. 基于重合器的馈线自动化系统不足

联络开关
联络开关
a
A 15s B 7s
b
d D E
e F (e)
a
A
b B C
c D
d E
e F (i)
联络开关
联络开关
A重合器:一慢一快,第一次重合=15S,第二次重合=5S; 2013-7-26 B、C、D分段器:X=7S,Y=5S;E分段器:X=45S,Y=5S
各开关动作时序图
A重合器:
第一次重合 =15S,第二 次重合=5S B、C、D 分段器: X=7S, Y=5S E分段器: X=45S, Y=5S

2013-7-26
一种典型的配变测控终端单元组成
2013-7-26
6. 两种馈线自动化系统的比较

基于重合器、FTU的馈线自动化系统国外大量使用。 两种馈线自动化系统的比较 基于重合器开关设备配 基于FTU和通信网络的馈线自 合的馈线自动化系统 动化系统 1)故障时隔离故障区域,正常 时监控配网运行,可优化运行 1)结构简单。 方式,实现安全经济运行。 2)建设费用低。 2)适应灵活的运行方式。 3)不需建通信网络。 3)恢复健全区域供电时,可采 4)无电源提取问题。 取安全和最佳措施。 4)可与MIS、GIS等联网,实 现全局信息化。 2013-7-26
故障功率方向 a Q1 过流 b Q2 过流 c

配电网自动化技术第4章配电网馈线监控终端.pptx

配电网自动化技术第4章配电网馈线监控终端.pptx
• 一般两台馈线终端单元用级连的方法相连,两台 馈线终端单元一主一从,只有主馈线终端单元直 接和主站系统通信,从馈线终端单元通过主馈线 终端单元间接和主站系统通信。
2.环网柜的馈线终端单元
• 环网柜馈线终端单元安装在环网柜内。环网柜一 般都为2路进线,多路出线,因此环网柜馈线终端 单元至少需要监控四条线路,要求馈线终端单元 有很大的数据容量。
一段时间采样一次(定时采样)输入信号的
即时幅度,并把它存放在保持电路里面供A/
D转换使用。经过采样以后的信号称为离散时
间信号xs(t),可表示为
xs (t) x(nTs )(n 1, 2,3 )
(4-2)
对于50Hz的正弦交流电流、电压来说, 理论上只要每个周波采样两点就可以表示其
波形的特点了。但为了保证计算准确度,需 要有更高的采样频率。一般取每个周波12点、 16点、20点或24点的采样频率。如果为了分 析谐波,例如考虑到16次谐波,则需要采用 每个周波32点的采样速率,即采样频率为 1600Hz。
4.2 馈线监控终端数据采集原理
一、概述
总线
TV

低通滤波 采样保持 多


TA
变 换 器 电压形成回路
… … …
低通滤波
采样保持
转 换 A/D 开 关
CPU 存储器
1. 模拟信号首先被转换成与馈线终端单元的CPU相匹配的电 平信号;把来自电压互感器和电流互感器的交流电波形的 幅值降低,以达到电平配合的目的。
• (5)转换时间。指模数转换器完成一次将模拟量 转换为数字量的过程所需要的时间。
三、交流采样算法
1. 概述
• (1)算法的基本概念 • 连续型的电压、电流等模拟信号经过离散采样和

《配电网馈线自动化》PPT课件

《配电网馈线自动化》PPT课件
对运维数据进行深入分析,发现潜在 问题,提出优化建议,提升系统性能 和运维效率。
配电网馈线自动化的故障处理
故障检测与定位
故障隔离与非故障区域恢复供电
利用馈线自动化系统的遥测、遥信等功能, 实时监测配电网运行状态,及时发现并定位 故障点。
通过遥控功能,对故障区域进行隔离,并自 动恢复非故障区域的供电,缩小停电范围, 提高供电可靠性。
3
基于人工智能的供电恢复技术 利用机器学习、深度学习等算法对历史供电恢复 数据进行训练,实现供电恢复的智能决策。
通信技术
有线通信技术 利用光纤、电缆等有线传输媒介实现配电网馈线自动化系 统的通信需求,具有传输速度快、稳定性好的特点。
无线通信技术 利用无线传输媒介如微波、无线电等实现配电网馈线自动 化系统的通信需求,具有灵活性强、成本低廉的优势。
域的远程隔离。
基于智能开关的隔离技术
03
利用智能开关设备对故障电流进行快速切断,实现故障区域的
自动隔离。
供电恢复技术
1 2
基于优化算法的供电恢复技术 利用优化算法对配电网进行重构,寻找最优的供 电恢复方案。
基于多代理系统的供电恢复技术 利用多代理系统对配电网进行分布式控制和管理, 实现供电恢复的快速响应和协同优化。
故障信息记录与分析
故障处理评估与反馈
记录故障发生时间、地点、类型等信息,并 对故障原因进行深入分析,提出改进措施, 防止类似故障再次发生。
对故障处理过程进行全面评估,总结经验教 训,优化故障处理流程和方法,提高故障处 理效率和质量。
05 配电网馈线自动化的应用 与效益
配电网馈线自动化的应用场景
城市配电网
行波定位技术
基于人工智能的定位技术
利用机器学习、深度学习等算法对历 史故障数据进行训练,实现故障的智 能定位。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
5
分类:
按绝缘介质和灭弧介质分类
油 真空 SF6
重合器
按控制装置分类
液压控制 分立元件控制电路
电子控制 集成电路控制电路 微处理器控制电路
电子液压混合控制
按相数分类
单相 三相
柱上
按安装方式分类 地面
地下
6
2、分段器:是一种提高配电网自动化程度 和可靠性的一种设备,它必须和电源侧前 级主保护开关相配合,在失压或无电流的 情况下自动分闸。
25
整定步骤: ◆分段器的整定:
▲分段器的Y时限一般统一选为5s。 ▲分段器X时限的整定:
第一步:确定分段器合闸时间间隔,并从联 络开关出将配电网分割成如干以电源开关为根 的树状配电子网络。
第二步:在各配电自网络中,以电源节点合 闸为时间起点,分别对各个分段器标注其绝对 合闸延时时间,并注意不能在任何时刻有一台 以上的分段开关同时合闸。
f
A
B
C
D
E
F
5s
7s
7s
联络开关
(9)
19
2、重合器与过流脉冲计数器型分段器配合 例1:重合器与过流脉冲计数器型分段器配合隔
离永久性故障区域
20
aBb
A
Cc
(2)
aBb
A
C
c
(3)
21
aBb
A
c
C
(4)
a
B
b
A
Cc
(5)
返回
22
例2:重合器与过流脉冲计数器型分段器配 合处理暂时性故障区域
a
配电自动化系统
1
第四章 馈线自动化
基于重合器的馈线自动化 基于FTU的馈线自动化系统 配电网简化模型 配电网络重构 配电网故障判断与隔离 馈线自动化的电源问题 馈线自动化的若干技术问题
2
§4.1 基于重合器的馈线自动化
一、馈线自动化的概念:就是指配电线路 的自动化,是配电网自动化的重要内容 之一。
功能:在电路发生永久性故障时,分段器在 预定次数的分合操作后闭锁于分闸状态, 从而达到隔离故障线路区段的目的。若分 段器未完成预定次数的分合操作,故障就 被其他设备切除了,则其保持在合闸状态, 并经一定时间后恢复到预先的整定状态。
7
分类:根据判断故障方式的不同可分为电 压—时间型分段器和过流脉冲计数型分 段器两类。
a
b
c
d
e
f
A
B
C
D
E
F
15s
7s (4)
联络开关
a
b
c
d
e
A
B
C
D
E
15s
7s
7s
联络开关
(5)
f F
返回
17
a
b
c
dபைடு நூலகம்
e
f
A
B
C
D
E
F
5s
7s
7s
联络开关
(6)
a
b
c
d 45s e
f
A
B
C
D
E
F
5s
7s
7s
联络开关
(7)
18
a
b
c
d 45s e
f
A
B
C
D
E
F
5s
7s
7s
联络开关
(8)
a
b
c
d 45s e
26
第三步:某台分段器的X时限等于该开关的绝对合 闸延时时间减去作为其父节点的分段器的绝对合闸 延时时间。
例:图示配电网S1、S2、S3代表变电站出口断路 器,B、C、D、E、F、G、H、M代表分段开关, E和H为联络开关,实心符号代表开关处于合闸状 态,空心符号代表开关处于分闸状态。
a
b
c
d
e
f
作用是:当分段器关合后,如果在Y时限 内一直可检测到电压,则Y时间之后发生 失压分闸,分段器不闭锁,重新来电时会 合闸,如果在Y时间内检测不到电压,则 分电器将发生分闸闭锁,即断开后来电也 不再闭合。
9
过流脉冲计数型分段器:通常与前级的重 合器或断路器配合使用,在一段时间内, 记录前级开关设备开断故障电流动作次 数,在预定的记录次数后,在前级的重 合器或断路器将线路从电网中短时切除 的无电流间隙内,分段器分闸,达到隔 离故障区段的目的,若前级开关设备未 达到预定的动作次数,则分段器在一定 的复位时间后会清零并恢复到预选整定 的初始状态,为下一次故障做准备。
B
b
A
C
c
(1)
代表重合器合闸状态 代表重合器断开状态 代表分段器闭锁状态
代表分段器合闸状态 代表分段器断开状态
23
a
B
b
A
C
c
(2)
a
B
b
A
C
c
(3)
24
五、重合器与重合器配合实现故障区段隔离
六、重合器与电压—时间型分段器配合的整 定方法 原则:重合器与电压—时间型分段器配合 方式的整定的关键条件是不能在同一时刻 有两台以上的分段开关同时合闸,只有这 样才能判断出故障区域,避免对故障的误 判。
电压—时间型分段器:是凭借加压、失压 的时间长短来控制其动作的,失压后分 闸,加压后合闸或闭锁。
X时限:分段器电源侧加压开始,到该分 段器合闸的时延,也称为合闸时间。
8
Y时限:又称为故障检测时间,是指分段器 合闸后在未超过Y时限的时间内又失压, 则该分段器分闸并被闭锁在分闸状态,等 到下一次再得电时也不自动闭合。
三、配电自动化的开关设备 1、重合器:是一种自具控制及保护功能 的开关设备,它能按预定的开断和重合顺 序自动进行开断和重合操作,并在操作后 自动复位或者闭锁。
4
功能: 在线路正常运行时起到断路器的作
用。在线路故障时,如果重合器经历了 超过设定值的故障电流,则重合器跳闸, 并按预先整定的动作顺序做若干次合、 分闸的循环操作,若重合成功则自动终 止后续的动作,并经一段时间后恢复到 预先的整定状态,为下一次故障做好准 本。若重合失败则闭锁在分闸状态,只 有通过手动复位才能解除闭锁。
10
四、重合器与分段器配合实现故障区段隔离 1、重合器与电压—时间型分段器配合 例1:辐射状网故障区段隔离
11
12
13
14
例2:环状网开环运行时的故障区段隔离
a
bc
d
e
f
A
B
C
D
E
F
(1)
联络开关
15
a
b
c
d
e
f
A
B
C
D
E
F
(2)
联络开关
a
A
B
15s
b
c
C (3)
d
e
D
E
联络开关
f F
16
S1
B
C
D
E
F
S2
联络开关
g
h
m
返回
G
H
M
联络开关
S3
27
X时限整定: 第一步:确定分段器开关合闸时间间隔为
7s,并从联络开关处将配电网分割成三 个辐射状配电子网络: S1、 B、C、D、 E、G、H, S2、 F、 E和S3 、 M 、H 。 第二步:对于自网络S1、 B、C、D、E、 G、H, 其各台分段器的绝对合闸延时 时间分别为:Xa(B)=7s, Xa(c)=14s, Xa(D)=21s, Xa(G)=28s;
作用:在正常状态下,实时监视馈线分段 开关与联络开关的状态和亏线电流、电 压情况,实现线路开关的远方或就地合 闸与分闸操作;在故障时,获得故障记 录,并能自动判断和隔离馈线故障区段, 迅速恢复非故障区域供电。
3
二、基于重合器的馈线自动化:指利用配电 自动化开关设备的相互配合关系,不需要 建设通信通道,就能够达到隔离故障区域 和恢复健全区域供电功能的系统。
相关文档
最新文档