汽车悬挂系统的基本原理和构成
汽车悬挂系统的工作原理

汽车悬挂系统的工作原理汽车悬挂系统是指汽车底盘的一个重要部分,它起到支撑车身、减震、保持车辆稳定的作用。
悬挂系统的工作原理是通过悬挂装置将车身与车轮连接起来,并通过减震器等装置来降低车身的振动和抖动,保持车辆的稳定性和乘坐舒适性。
悬挂系统由悬挂弹簧、减震器、悬挂支架等组成。
其中,悬挂弹簧是悬挂系统的核心部件之一。
它的主要作用是承受车身和行驶过程中的冲击力,使车身能够保持相对稳定的高度和姿态。
悬挂弹簧一般采用钢制,具有一定的弹性,能够在车身受到冲击时起到缓冲作用,避免车身产生过大的振动。
减震器是悬挂系统中的另一个重要组成部分,它的作用是减轻车身在行驶过程中的震动和抖动。
减震器一般由活塞、缸筒和阻尼液组成。
当车轮受到冲击力时,减震器内的阻尼液会通过活塞的运动产生阻尼力,将车身的振动和抖动减小到最低程度。
减震器的阻尼力大小可以通过调节阻尼器的硬度来实现。
悬挂支架是悬挂系统的另一个重要组成部分,它起到连接悬挂弹簧和车轮的作用。
悬挂支架一般由金属材料制成,具有一定的强度和刚度,能够承受车身和行驶过程中的各种力,保持车身的稳定性。
悬挂支架的设计和制造需要考虑车身的重量、重心位置以及行驶过程中的各种力的作用,以确保车身的稳定性和乘坐舒适性。
除了上述主要组成部分外,悬挂系统还包括其他一些辅助性的装置,例如悬挂控制系统、悬挂几何结构等。
悬挂控制系统可以根据行驶状态和路面情况调节悬挂系统的工作参数,以提供更好的悬挂性能和乘坐舒适性。
悬挂几何结构包括车轮的安装位置、车身的悬挂点、悬挂弹簧的布置等,它们的合理设计可以使汽车在行驶过程中更加稳定和安全。
汽车悬挂系统是保证车身稳定性和乘坐舒适性的重要装置。
它通过悬挂弹簧、减震器、悬挂支架等组件的协同作用,减小车身的振动和抖动,保持车辆的稳定性。
悬挂系统的工作原理是通过弹簧的弹性和减震器的阻尼力来实现的。
合理的悬挂几何结构和悬挂控制系统的运用可以进一步提高悬挂系统的性能。
对于驾驶员和乘客来说,一个良好的悬挂系统可以带来更舒适的乘坐体验,同时也能提高驾驶的安全性和稳定性。
汽车悬挂系统原理

汽车悬挂系统原理汽车悬挂系统是车辆中至关重要的组成部分,它的主要功能是减震和支撑车身,确保乘车过程中的舒适和稳定性。
本文将详细介绍汽车悬挂系统的原理及其工作原理。
一、悬挂系统概述悬挂系统是指汽车底盘中支撑车身的部分,它主要由弹簧、减震器、悬挂臂和杆件等组成。
其基本原理是利用弹性构件(如弹簧等)来缓冲路面的颠簸和减少车身的摇晃,同时对车身进行稳定的支撑。
二、弹簧的工作原理弹簧是悬挂系统中的重要组成部分,其主要作用是通过储存和释放弹性能量来增加车身的稳定性。
当车辆行驶过不平坦的路面时,弹簧会受到外力的压缩或拉伸,从而通过弹性回复作用减少车身的颠簸。
一种常见的弹簧类型是螺旋弹簧,它由钢丝制成,并呈螺旋状。
当车辆通过凹凸不平的路面时,弹簧会受到车轮的垂直作用力,从而发生压缩或伸展。
弹簧根据车辆的重量和行驶路况而设计,以提供适当的弹性回复。
三、减震器的工作原理减震器是汽车悬挂系统中的另一个重要组成部分,其主要作用是通过减少车身的振动和摇晃,提供平稳的行驶感受。
减震器通过产生阻尼力来控制弹簧的剧烈回弹,并将动能转化为热能散发。
一种常见的减震器类型是液压减震器,它由一个密封的管道内部充满了液体。
当车辆通过不平的路面时,减震器的活塞会受到上下振动的力量,从而通过液体阻力来减少车身的震动。
减震器通过控制车轮和车身的相对运动来提供平稳的行驶感。
四、悬挂臂和杆件的作用悬挂臂和杆件是汽车悬挂系统中的关键组成部分,它们连接车轮和车身,并起到支撑和定位的作用。
悬挂臂和杆件根据车辆的不同类型和悬挂系统的设计而有所不同。
悬挂臂通常由铁制或铝制材料制成,其主要作用是承受车轮的上下运动,并支撑车身。
杆件(如稳定杆)通过连接悬挂臂和车身的方式来增加车辆的稳定性,并减少侧倾。
五、悬挂系统的优化设计随着汽车技术的进步,悬挂系统的设计得到了不断改进和优化。
一些现代汽车采用了气压悬挂系统或电子悬挂系统,以提供更高级的悬挂控制和舒适性。
气压悬挂系统通过可调节的气压来改变弹簧的刚度,以适应不同的路况和驾驶需求。
汽车悬挂系统的工作原理

汽车悬挂系统的工作原理汽车悬挂系统是车辆中非常重要的一个组成部分,它直接影响着车辆的行驶舒适性和稳定性。
在这篇文章中,我将详细介绍汽车悬挂系统的工作原理。
悬挂系统主要包括悬挂系统的结构和主要组成部分、工作原理以及常见的悬挂系统类型和调节方式。
一、悬挂系统的结构和主要组成部分车辆的悬挂系统是由悬挂弹簧、减震器、悬挂支架等组成。
悬挂弹簧一般有钢板弹簧、螺旋弹簧和气囊弹簧等多种类型。
减震器是悬挂系统的重要组成部分,它通过控制车身在行驶过程中的弹性变形来提高乘坐舒适性和稳定性。
悬挂支架用于连接车身和悬挂系统的其他部件,起到支撑和固定的作用。
二、悬挂系统的工作原理悬挂系统的工作原理是通过悬挂弹簧和减震器的协同作用来实现的。
当汽车经过颠簸的道路或在转弯、加速、减速等行驶过程中,车身会受到外部力的作用,这些力会使车身产生上下和前后的振动。
悬挂弹簧通过吸收和缓冲这些振动力量,使车身保持相对平稳。
减震器则通过控制悬挂弹簧的弹性变形,减少车身在行驶中的晃动,提高车辆的稳定性和乘坐舒适性。
三、常见的悬挂系统类型和调节方式1. 独立悬挂系统:独立悬挂系统是目前大多数汽车采用的悬挂系统类型。
它可以根据车身的运动状态分别调节每个车轮的悬挂,使车身保持水平状态。
这种悬挂系统具有良好的悬挂性能和稳定性。
2. 集束悬挂系统:集束悬挂系统将多个车轮的悬挂部件连接在一起,共同调节车身的悬挂状态。
这种悬挂系统适用于越野车等特殊用途车辆,能够提供更高的悬挂行程和通过性能。
3. 气动悬挂系统:气动悬挂系统利用气囊弹簧来提供悬挂弹性,通过控制气囊内气压的变化来调节车身的悬挂高度。
这种悬挂系统具有很好的可调节性和适应性,能够根据不同的道路和行驶状态进行调节,提高行驶的舒适性和稳定性。
总结:汽车悬挂系统通过悬挂弹簧和减震器的协同作用来实现对车身振动的控制,以提高行驶的舒适性和稳定性。
不同类型的悬挂系统可以根据车辆的用途和需求进行选择和调节,以获得最佳的行驶性能。
悬架系统结构原理

悬架系统结构原理悬架系统是指汽车底盘上的一组部件,用于支撑和连接车身与车轮之间的部分。
它的主要功能是减震和支撑车身,提供乘坐舒适性和操控稳定性。
悬架系统结构的原理是通过减震器、弹簧、悬挂臂等部件的协同作用,来实现对车轮的支撑和减震。
悬架系统的结构主要由以下几个部分组成:减震器、弹簧、悬挂臂、悬挂架和悬挂连接件等。
减震器是悬架系统的核心部件之一,它通过消化车轮运动产生的冲击力和振动,使车身得到稳定支撑。
减震器一般由外筒、活塞、活塞杆和工作介质等组成,通过阻尼力来减缓车身的上下运动。
弹簧是悬架系统的另一个重要组成部分,它主要负责支撑车身的重量和吸收路面不平的冲击力。
常见的弹簧类型有螺旋弹簧、扭杆弹簧和气囊弹簧等。
螺旋弹簧是最常见的一种,它通过转动螺旋弹簧将车身重力转化为垂直方向的弹簧力,从而支撑车身。
而扭杆弹簧则是通过在车轮上方安装一根扭杆来实现支撑作用。
悬挂臂是连接车轮和车身的重要部件,它通过悬挂臂与车轮轴连接,使车轮能够上下运动。
悬挂臂的设计和材料选择都会影响到车辆的操控性能和乘坐舒适性。
一般来说,悬挂臂分为上控制臂和下控制臂,它们通过球头和悬挂架连接,形成一个可调节的连接点,使车轮能够在不同路况下保持与车身的相对位置。
悬挂架是悬架系统的主体部分,它由悬挂臂、减震器和弹簧等组成。
悬挂架起到支撑和固定悬架系统其他部件的作用,同时也承担着车身重量和承受路面冲击力的重要任务。
悬挂连接件则是悬架系统的连接部件,它们通过连接悬挂架和车身,保证悬架系统的稳定性和安全性。
悬架系统的工作原理主要是通过减震器、弹簧和悬挂臂等部件的协同作用来实现的。
当车轮受到路面不平的冲击时,减震器会通过阻尼力减缓车身的上下运动,从而减少车身的晃动和颠簸感。
同时,弹簧和悬挂臂会吸收和分散路面冲击力,保证车轮与车身的相对位置稳定。
这样一来,悬架系统能够提供良好的乘坐舒适性和操控稳定性,使驾驶者能够更好地掌控车辆。
总结起来,悬架系统结构的原理是通过减震器、弹簧、悬挂臂等部件的协同作用,来实现对车轮的支撑和减震。
汽车悬挂系统结构原图解汇总

Part Five
悬挂系统的发展趋 势
空气悬挂系统
空气悬挂系统是一种利用空气弹簧 和减震器组成的悬挂系统,能够根 据车辆载重和行驶状态自动调整高 度和阻尼,提高行驶舒适性和稳定 性。
空气悬挂系统的优点包括提高乘坐 舒适性、提高行驶稳定性、降低油 耗等,因此受到广泛欢迎。
添加标题
添加标题
添加标题
添加标题
Part Three
悬挂系统的类型
独立悬挂
定义:独立悬挂是指每一侧的车轮通过 弹性悬挂系统单独连接在车架或车身下 方,使两侧车轮可以独立地运动而不互 相干扰。
类型:常见的独立悬挂系统包括麦弗逊悬 挂、双叉臂悬挂、多连杆悬挂等。
优点:提高汽车的操控性和舒适性,减少 车身的振动和噪音,增加轮胎的抓地力, 提高行驶安全性。
麦弗逊悬挂结构原理解析
组成:由下控制臂、弹簧、减震器和转向节等部件组成
作用:提供车辆横向和纵向支撑,吸收来自路面的震动,提高行驶稳定性 工作原理:通过下控制臂和减震器的组合作用,实现车轮的上下运动和转 向功能 特点:结构简单,占用空间较小,适合用于前驱车和横置发动机车型
多连杆悬挂结构原理解析
组成:由连杆、减震器和弹簧等部件组成 作用:通过连杆的连接,使车轮与车身保持恒定的接触状态,减少车身的 振动和侧倾 优点:能够更好地控制车轮的运动轨迹,提高车辆的操控性和舒适性
弹性元件:缓冲和减震作用
导向机构:传递车轮与车身之间的 力和扭矩
添加标题
添加标题
添加标题
添加标题
减震器:吸收震动能量,减少车身 震动
悬挂系统还包括横向稳定杆、纵向 稳定杆等辅助部件
悬挂系统的作用
连接车轮与车身,传递力矩和载荷 缓冲减震,提高乘坐舒适性 维持车身姿态稳定,保证车辆操控性能 吸收和衰减振动和冲击,提高行驶平顺性
汽车基础知识汽车悬挂系统的基本原理和构成(图解)

汽车基础知识--汽车悬挂系统的基本原理和构成(图解)悬挂系统的基本构成简单说来,汽车悬挂包括弹性元件、减振器和传力装置等三部分,分别起缓冲、减振和受力传递的作用。
从轿车上来讲,弹性元件多指螺旋弹簧,它只承受垂直载荷,缓和及抑制不平路面对车体的冲击,具有占用空间小、质量小、无需润滑的优点,但由于本身没有摩擦而没有减振作用。
减振器又指液力减振器,其功能是为加速衰减车身的振动,它也是悬挂系统中最精密和复杂的机械件。
传力装置则是指车架的上下摆臂等叉形钢架、转向节等元件,用来传递纵向力、侧向力及力矩,并保证车轮相对于车架有确定的相对运动规律。
在实际中,只要具备上述三种作用也一样可行。
轿车配独立悬挂成趋势悬挂系统的两种分类:(l)非独立式悬挂:将非独立悬挂的车轮装在一根整体车轴的两端,这样当一边车轮运转跳动时,就会影响另一侧车轮也作出相应的跳动,使整个车身振动或倾斜。
采取这种悬挂系统的汽车一般平稳性和舒适性较差,但由于其构造较简单,承载力大,该悬挂多用于载重汽车、普通客车和一些其他特种车辆上。
(2)独立式悬挂:独立悬挂的车轴分成两段,每只车轮用螺旋弹簧独立地安装在车架下面,这样当一边车轮发生跳动时,另一边车轮不受波及,车身的震动大为减少,汽车舒适性也得以很大的提升,尤其在高速路面行驶时,它还可提高汽车的行驶稳定性。
不过,这种悬挂构造较复杂,承载力小,还会连带使汽车的驱动系统、转向系统变得复杂起来。
目前大多数轿车的前后悬挂都采用了独立悬挂的形式,并已成为一种发展趋势。
独立悬挂的结构分有烛式、麦弗逊式、连杆式等多种,其中烛式和麦弗逊式形状相似,两者都是将螺旋弹簧与减振器组合在一起,但因结构不同又有重大区别。
烛式采用车轮沿主销轴方向移动的悬挂形式,形状似烛形而得名,特点是主销位置和前轮定位角不随车轮的上下跳动而变化,有利于汽车的操控和稳定性。
麦弗逊式是绞结式滑柱与下横臂组成的悬挂形式,减振器可兼做转向主销,转向节可以绕着它转动,特点是主销位置和前轮定位角随车轮的上下跳动而变化,与烛式悬架正好相反。
汽车悬架如何工作

汽车悬架如何工作汽车悬架是汽车重要的组成部分之一,它的主要功能是支撑和连接车身与车轮。
悬架系统在汽车行驶中起到了减震、稳定、保持车身平稳和提高驾乘舒适性的作用。
下面将详细介绍汽车悬架的工作原理。
首先,汽车悬架系统主要由减震器、弹簧、悬臂、悬挂杆、防护杆、撞减杆等组成。
其中,减震器起到了减震和抑制车身较大振动的作用,弹簧则起到了支撑和弹性缓冲作用,而悬臂、悬挂杆、防护杆、撞减杆等则起到了连接车身与车轮的作用。
其次,汽车悬架系统的工作原理可以分为两个方面:一是车轮运动的控制,二是减震功能的实现。
车轮运动的控制主要通过悬挂杆和悬臂来实现。
当汽车行驶时,车轮会受到地面的不平衡力的作用,导致车身产生较大的颠簸。
这时,悬挂杆会起到连接车身和车轮的作用,通过弹簧的支撑和悬臂的运动,使车轮能够相对于车身进行运动,从而减少车身的摆动,并保持良好的行驶稳定性。
悬挂杆的设计和悬臂的长度、弹性系数等都会对车轮运动的控制起到重要的影响。
减震功能的实现主要依靠减震器。
减震器通过其中的油封、活塞和阻尼液压装置等,在车轮受到颠簸时能够消耗一部分能量,减少车身振动,从而提高驾乘的舒适性。
减震器中的阻尼装置具有阻尼力的特性,能够根据车轮的运动变化实时调整阻尼力,使车身始终保持平稳的状态。
同时,减震器还能够对车轮在过减速带、颠簸路面等情况下产生的冲击力起到一定的缓冲作用,保护车身和乘客。
除了以上核心部件,汽车悬架系统还会配备其他辅助装置,如防护杆和撞减杆。
防护杆主要用于防护悬架系统,在遇到碰撞时能够起到保护车身和悬架的作用。
撞减杆则能够在碰撞时通过变形消耗部分碰撞能量,减少对车身和乘客的冲击力。
总体来说,汽车悬架系统通过弹簧支撑和悬臂的运动,使车轮能够相对于车身进行运动,从而减少车身的颠簸。
减震器则通过阻尼装置和阻尼液压装置,消耗部分能量,减少车身振动,提高驾乘舒适性。
悬架系统中配备的防护杆和撞减杆能够在遭受碰撞时起到保护车身和乘客的作用。
汽车悬挂系统的工作原理揭秘

汽车悬挂系统的工作原理揭秘随着汽车技术的不断发展,悬挂系统在车辆性能和乘坐舒适性方面起着至关重要的作用。
本文将揭秘汽车悬挂系统的工作原理,帮助读者更好地理解车辆的悬挂装置。
一、悬挂系统的作用悬挂系统是连接车身和车轮的重要组成部分,主要作用是减震和支撑车身,保持车轮与路面的接触,并使车辆在行驶过程中具有良好的操控性和乘坐舒适性。
二、悬挂系统的组成汽车悬挂系统由几个主要组成部分组成,包括弹簧、避震器、悬挂杆、收束杆等。
其中,弹簧和避震器是悬挂系统中最重要的两个部件。
1. 弹簧弹簧是悬挂系统中用来支撑车身并缓冲路面震动的关键部件。
它可以分为螺旋弹簧和叶片弹簧两种类型。
螺旋弹簧通常由钢制成,通过将弹簧装置在车轮与车身之间,可以吸收来自路面的冲击力,使乘坐舒适性得到提高。
叶片弹簧则由多条曲线叶片组成,广泛应用于重型车辆中。
2. 避震器避震器是悬挂系统中用来控制和减少弹簧振动的装置。
它通过精确的阻尼调节,将来自弹簧的振动能量转化为热能。
避震器可以分为液压避震器和气压避震器两种类型,常见的是液压避震器。
液压避震器内部含有一定量的液体,当车辆经过不平路面时,液体将通过阻尼阀门来控制阻尼力,使车辆保持稳定。
3. 悬挂杆和收束杆悬挂杆用于连接车身和车轮,保持车轮的位置与姿态。
它的设计和选材直接影响着车辆的操控性和平稳性。
收束杆则用于固定车轮的位置,防止车轮因转向运动而产生的不稳定。
三、工作原理悬挂系统通过弹簧和避震器的协同作用,实现对路面的过滤和对车身的支撑。
当车辆行驶在不平路面上时,路面的震动将通过车轮传递给悬挂系统。
弹簧首先接受并吸收大部分冲击力,然后通过避震器的阻尼调节将余下的振动转化为热能,使车辆保持平稳。
悬挂系统的工作原理可以简单归纳为以下几个方面:1. 弹性支撑:弹簧通过自身弹性将车体与车轮连接,并在路面冲击力的作用下发生弹性变形,吸收震动的冲击。
2. 阻尼调节:避震器通过阻尼力的调节来减缓和消除弹簧振动,使得车辆保持平稳的行驶状态。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
汽车悬挂系统的基本原理和构成
兰格钢铁2004年6月10日
现代的汽车越来越注重乘坐的舒适性,以致消费者往往将车的舒适性列为购买的一个重要衡量标准。
事实上,汽车乘坐的舒适性除了座椅的柔软程度、支撑力等因素外,关系最大的就是汽车的悬挂系统它还是车架与车轴之间连接的传力机件,对其他性能诸如行驶的安全性、通过性、稳定性以及附着性能都有重大影响。
悬挂系统的基本构成
简单说来,汽车悬挂包括弹性元件、减振器和传力装置等三部分,分别起缓冲、减振和受力传递的作用。
从轿车上来讲,弹性元件多指螺旋弹簧,它只承受垂直载荷,缓和及抑制不平路面对车体的冲击,具有占用空间小、质量小、无需润滑的优点,但由于本身没有摩擦而没有减振作用。
减振器又指液力减振器,其功能是为加速衰减车身的振动,它也是悬挂系统中最精密和复杂的机械件。
传力装置则是指车架的上下摆臂等叉形钢架、转向节等元件,用来传递纵向力、侧向力及力矩,并保证车轮相对于车架有确定的相对运动规律。
在实际中,只要具备上述三种作用也一样可行。
轿车配独立悬挂成趋势
悬挂系统的两种分类:
(l)非独立式悬挂:将非独立悬挂的车轮装在一根整体车轴的两端,这样当一边车轮运转跳动时,就会影响另一侧车轮也作出相应的跳动,使整个车身振动或倾斜。
采取这种悬挂系统的汽车一般平稳性和舒适性较差,但由于其构造较简单,承载力大,该悬挂多用于载重汽车、普通客车和一些其他特种车辆上。
(2)独立式悬挂:独立悬挂的车轴分成两段,每只车轮用螺旋弹簧独立地安装在车架下面,这样当一边车轮发生跳动时,另一边车轮不受波及,车身的震动大为减少,汽车舒适性也得以很大的提升,尤其在高速路面行驶时,它还可提高汽车的行驶稳定性。
不过,这种悬挂构造较复杂,承载力小,还会连带使汽车的驱动系统、转向系统变得复杂起来。
目前大多数轿车的前后悬挂都采用了独立悬挂的形式,并已成为一种发展趋势。
独立悬挂的结构分有烛式、麦弗逊式、连杆式等多种,其中烛式和麦弗逊式形状相似,两者都是将螺旋弹簧与减振器组合在一起,但因结构不同又有重大区别。
烛式采用车轮沿主销轴方向移动的悬挂形式,形状似烛形而得名,特点是主销位置和前轮定位角不随车轮的上下跳动而变化,有利于汽车的操控和稳定性。
麦弗逊式是绞结式滑柱与下横臂组成的悬挂形式,减振器可兼做转向主销,转向节可以绕着它转动,特点是主销位置和前轮定位角随车轮的上下跳动而变化,与烛式悬架正好相反。
这种悬架构造简单、布置紧凑、前轮定位变化小,具有良好的行驶稳定性。
所以,目前轿车使用最多的独立悬挂是麦弗逊式悬挂。
弹性元件优劣各异
(1)钢板弹簧:由多片不等长和不等曲率的钢板叠合而成。
安装好后两端自然向上弯曲。
钢板弹簧除具有缓冲作用外,还有一定的减振作用,纵向布置时还具有导向传力的作用。
非独立悬挂大多采用钢板弹簧做弹性元件,可省去导向装置和减振器,结构简单。
(2)螺旋弹簧:只具备缓冲作用,多用于轿车独立悬挂装置。
由于没有减振和传力的功能,还必须设有专门的减振器和导向装置。
(3)油气弹簧:以气体作为弹性介质,液体作为传力介质,它不但具有良好的缓冲能力,还具有减振作用,同时还可调节车架的高度,适用于重型车辆和大客车使用。
(4)扭杆弹簧:将用弹簧杆做成的扭杆一端固定于车架,另一端通过摆臂与车轮相连,利用车轮跳动时扭杆的扭转变形起到缓冲作用,适合于独立悬挂使用。
筒式减振器更受欢迎
减振器上端与车身或者车架相连,下端与车桥相连。
当轿车在不平坦路上行驶,车身会发生振动,减振器能迅速衰减车身振动,利用本身油液流动的阻力来消耗振动的能量。
现代轿车大多都是采用筒式减振器,当车架与车轴相对运动时,减振器内的油液与孔壁间的摩擦形成了对车身振动的阻力,这种阻力工程上称为阻尼力。
阻尼力会将车身的振动能转化为热能,被油液和壳体所吸收。
人们为了更好地实现轿车的行驶平稳性和安全性,将阻尼系数不固定在某一数值上,而是随轿车运行的状态而变化,使悬挂性能总是处在最优的状态附近。
因此,有些轿车的减振器是可调式的可根据传感器信号自动选择。
传力装置必须另设
独立悬挂上的弹性元件,大多只能传递垂直载荷而不能传递纵向力和横向力,必须另设导向传力装置,如上、下摆臂和纵向、横向稳定器等。
说到独立悬架,现在最流行的也是我们最常听到的就是麦弗逊,双叉臂和多连杆三种形式。
那么这三种主流悬架有些什么特点?各自有哪些性能特征呢?
虽然按照悬架的档次和复杂程度以及用料来排名的话,多连杆是最好的,其次是双叉臂再其次是麦弗逊,虽然档次可以这样划分,但世界上的事物都是有利有弊的,这三种悬架之所以能在各种车型上大量存在当然有着各自的性能优点。
在这三种悬架中,麦弗逊是结构最简单的,也是制造成本最低用途最广的。
它主要用在大多数中小型车的前桥上。
它以简单独霸天下。
也正是因为他简单所以他轻,响应速度快。
并且在一个下摇臂和支柱的几何结构下能自动调整车轮外倾角,让其能在过弯时自适应路面,让轮胎的接地面积最大化,而且占用空间小适合小型车以及大部分中型车使用。
但是由于结构简单使得悬挂刚度较弱,稳定性差,转弯侧倾明显。
双差臂悬挂拥有上下两个摇臂,起横向力由两个摇臂同时吸收,支柱只承载车身重量。
因此横向刚度大。
由于上下使用不等长摇臂(上长下短),让车轮在上下运动时能自动改变外倾角并且减小轮距变化减小轮胎磨损。
并且也能自适应路面,轮胎接地面积大,贴地性好。
但是由于多了一个上摇臂,所以需要站用较大的空间,因此小型车的前桥一般布置不下此种悬挂。
多连杆悬挂,通过各种连杆配置(通常有三连杆,四连杆,五连杆),首先能实现双叉臂悬挂的所有性能,然后在双叉臂的基础上通过连杆连接轴的约束作用使得轮胎在上下运动时前束角也能相应改变,这就意味着弯道适应性更好,如果用在前驱车的前悬挂,可以在一定
程度上缓解转向不足,给人带来精确转向的感觉;如果用在后悬挂上,能在转向侧倾的作用下改变后轮的前束角,这就意味着后轮可以一定程度的随前轮一同转向,达到舒适操控两不误的目的。
跟双叉臂一样,多连杆悬挂同样需要占用较多的空间,而且多连杆悬挂无论是制造成本还是研发成本都是最高的所以常用在中高级车的后桥上。
所以总的来说,现在最经济适用,性价比最高的前独立悬挂是麦弗逊,能做高性能调校和匹配的悬挂是多连杆和双叉臂。
结构最复杂实现性能最多的是多连杆。
但由于后两者在结构上使其质量较重所以为了达到更好的响应速度常用铝合金打造,那么成本就可想而知了。