2009年广东省初中毕业生学业考试 数 学

合集下载

2009年广东省广州市中考数学试题及答案

2009年广东省广州市中考数学试题及答案

2009年广州市初中毕业生学业考试数 学本试卷分选择题和非选择题两部分,共三大题25小题,共4页,满分150分.考试时间120分钟.第一部分 选择题(共30分)一、选择题(本大题共10小题,每小题3分,满分30分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.将图1所示的图案通过平移后可以得到的图案是( )2.如图2,AB CD ∥,直线l 分别与AB CD 、相交,若1130∠=°,则2∠=( ) A .40° B .50° C .130° D .140°3.实数a b 、在数轴上的位置如图3所示,则a 与b 的大小关系是( ) A .a b < B .a b = C .a b > D .无法确定 4.二次函数2(1)2y x =-+的最小值是( )A .2B .1C .1-D .2-5.图4是广州市某一天内的气温变化图,根据图4下列说法中错误的是( )A .这一天中最高气温是24℃B .这一天中最高气温与最低气温的差为16℃C .这一天中2时至14时之间的气温在逐渐升高D .这一天中只有14时至24时之间的气温在逐渐降低 6.下列运算正确的是( ) A .222()m n m n -=- B .221(0)m m m-=≠C .224()m n mn =D .246()m m =7.下列函数中,自变量x 的取值范围是3x ≥的是( ) A .13y x =- B.y =C .3y x =-D .y =A . B . C . D . 图1 A BC D 图212图3 t)8.只用下列正多边形地砖中的一种,能够铺满地面的是( ) A .正十边形 B .正八边形 C .正六边形 D .正五边形 9.已知圆锥的底面半径为5cm ,侧面积为65πcm 2,设圆锥的母线与高的夹角为θ(如图5所示),则sin θ的值为( ) A .512B .513C .1013D .121310.如图6,在A B C D 中,69AB AD ==,,BAD ∠的平分线交BC 于点E ,交DC 的延长线于点F ,BG AE ⊥,垂足为G,若BG =CEF △的周长为( )A .8B .9.5C .10D .11.5第二部分 非选择题(共120分)二、填空题(本大题共6小题,每小题3分,满分18分.) 11.已知函数2y x=,当1x =时,y 的值是 . 12.在某校举行的“艺术节”的文艺演出比赛中,九位评委给其中一个表演节目现场打出的分数如下:9.3,8.9,9.3,9.1,8.9,8.8,9.3,9.5,9.3,则这组数据的众数是 . 13.绝对值是6的数是 .14.已知命题“如果一个平行四边形的两条对角线互相垂直,那么这个平行四边形是菱形”,写出它的逆命题: .15.如图7-①,7-②,7-③,7-④,……是用围棋棋子按照某种规律摆成的一行“广”字,按照这种规律,第5个“广”字中的棋子个数是 ,第n 个“广”字中的棋子个数是 .16.如图8是由一些相同长方体的积木块搭成的几何体的三视图,则此几何体共由 块长方体的积木块搭成.θ图5ADGBCFE 图6图7-① 图7-② 图7-③ 图7-④ …… 正 视 图左视图俯视图三、解答题(本大题共9小题,满分102分.解答应写出文字说明、证明过程或演算步骤.) 17.(本小题满分9分)如图9,在ABC △中,D E F 、、分别为边AB BC CA 、、的中点.证明:四边形DECF 是平行四边形.18.(本小题满分9分)解方程:321x x =-. 19.(本小题满分10分)先化简,再求值:((6)a a a a -+--,其中12a =. 20.(本小题满分10分)如图10,在O ⊙中,60ACB BDC ∠=∠=°,AC =. (1)求BAC ∠的度数; (2)求O ⊙的周长. AF C EDB 图9图10有红、白、蓝三种颜色的小球各一个,它们除颜色外没有任何其他区别.现将3个小球放入编号为①、②、③的三个盒子里,规定每个盒子里放一个且只能放一个小球.(1)请用树状图或其它适当的形式列举出3个小球放入盒子的所有可能情况;(2)求红球恰好被放入②号盒子的概率.22.(本小题满分12分)如图11,在方格纸上建立平面直角坐标系,线段AB的两个端点都在格点上,直线MN经过坐标原点,且点M的坐标是(1,2).、的坐标;(1)写出点A B Array(2)求直线MN所对应的函数关系式;(3)利用尺规作出线段AB关于直线MN的对称图形(保留作图痕迹,不写作法).图1123.(本小题满分12分)为了拉动内需,广东启动“家电下乡”活动.某家电公司销售给农户的I型冰箱和II型冰箱在启动活动前一个月共售出960台,启动活动后的第一个月销售给农户的I型冰箱和II型冰箱的销售量分别比启动活动前一个月增长30%、25%,这两种型号的冰箱共售出1228台.(1)在启动活动前一个月,销售给农户的I型冰箱和II型冰箱分别为多少台?(2)若I型冰箱每台价格是2298元,II型冰箱每台价格是1999元.根据“家电下乡”的有关政策,政府按每台冰箱价格的13%给购买冰箱的农户补贴,问启动活动后的第一个月销售给农户的1228台I型和II 型冰箱,政府共补贴了多少元?(结果保留2个有效数字)如图12,边长为1的正方形ABCD 被两条与边平行的线段EF GH 、分割成四个小矩形,EF 与GH 交于点P .(1)若AG AE =,证明:AF AH =;(2)若45FAH ∠=°,证明:AG AE FH +=;(3)若Rt GBF △的周长为1,求矩形EPHD 的面积.25.(本小题满分14分) 如图13,二次函数2y x px q =++(0p <)的图象与x 轴交于A B 、两点,与y 轴交于点(01)C -,,ABC △的面积为54.(1)求该二次函数的关系式;(2)过y 轴上的一点(0)M m ,作y 轴的垂线,若该垂线与ABC △的外接圆有公共点,求m 的取值范围;(3)在该二次函数的图象上是否存在点D ,使四边形ACBD 为直角梯形?若存在,求出点D 的坐标;若不存在,请说明理由.A E DH G PB FC 图122009年广州市初中毕业生学业考试数学试题参考答案11.2 12.9.3 13.6±14.如果一个平行四边形是菱形,那么这个平行四边形的两条对角线互相垂直 15.15;25n + 16.4三、解答题:本大题考查基础知识和基本运算,及数学能力,满分 102 分.17.本小题主要考查平行四边形的判定、中位线等基础知识,考查几何推理能力和空间观念.满分9分. 证法 1:∵D F 、分别是边AB AC 、的中点, ∴DF BC ∥. 同理DE AC ∥.∴四边形DECF 是平行四边形.证法 2: ∵D F 、分别是边AB AC 、的中点,∴12DF BC∥. ∵E 为BC 的中点,∴12EC BC =.∴DF EC∥. ∴四边形DECF 是平行四边形.18.本小题主要考查分式方程等基本运算技能,考查基本的代数计算能力.满分 9 分. 解:由原方程得3(1)2x x -=,即332x x -=, 即323x x -=, ∴ 3x =.检验:当 3x =时,120x -=≠ ∴ 3x =是原方程的根.19.本小题主要考查整式的运算、平方差公式等基础知识,考查基本的代数计算能力.满分10分.解:((6)a a a a ---23(6)a a a =---2236a a a =--+63a =-.将12a =代入63a -,得 163)3a -=-=.20.本小题主要考查圆、等边三角形等基础知识,考查计算能力、推理能力和空间观念.满分 10 分. 解:(1)∵BC BC =, ∴60BAC BDC ∠=∠=°.(2)∵60BAC ACB ∠=∠=°, ∴60ABC ∠=°.∴ABC △是等边三角形.求O 的半径给出以下四种方法: 方法1:连结AO 并延长交BC 于点E (如图1).∵ABC △是等边三角形,∴圆心O 既是ABC △的外心又是重心,还是垂心.在Rt AEC △中 AC CE ==,,∴3cm AE ==.∴22cm 3AO AE ==,,即O 的半径为2cm . 方法 2:连结OC OA 、,作OE AC ⊥交AC 于点E (如图 2) ∵OA OC =,OE AC ⊥, ∴CE EA =.∴1122AE AC ==⨯=.∵2120AOC ABC OE AC ∠=∠=°,⊥, ∴Rt AOE △中,60AOE ∠=°.在Rt AOE △中,sin AEAOE OA∠=,∴sin 60AEOA=°,= ∴2cm OA =,即O 的半径为2cm .方法3:连结OC OA 、,作OE AC ⊥交AC 于点E (如图 2). ∵O 是等边三角形ABC 的外心,也是ABC △的角平分线的交点,∴113022OAE AE AC ∠===⨯=°,. 在Rt AEO △中,cos AEOAE OA∠=,即cos30=°.=. ∴2cm OA =,即O 的半径为2cm .方法 4:连结OC OA 、,作OE AC ⊥交AC 于点E (如图2). ∵O 是等边三角形的外心,也是ABC △的角平分线的交点,∴1130OAE AE AC ∠===⨯=°,.20题(2)图120题(2)图2在Rt AEO △中,设cm OE x =,则2cm OA x =, ∵222AE OE OA +=,∴222(2)x x +=.解得1x =.∴2cm OA =,即O 的半径为2cm . ∴ O 的周长为2πr ,即4πcm .21.本小题主要考查概率等基本的概念,考查.满分12 分. (1)解法1:可画树状图如下:共6种情况.解法2:3个小球分别放入编号为①、②、③的三个盒子的所有可能情况为:红白蓝、红蓝白、白红蓝、白蓝红、蓝红白、蓝白红共6 种.(2)解:从(1)可知,红球恰好放入 2 号盒子的可能结果有白红蓝、蓝红白共 2种,所以红球恰好放入2号盒子的概率2163P ==. 22.本小题主要考查图形的坐标、轴对称图形、尺规作图、一次函数等基础知识,考查用 待定系数法求函数解析式的基本方法,以及从平面直角坐标系中读图获取有效信息的能 力,满分12分.解:(1)(13)A -,,(42)B -,;(2)解法1:∵直线MN 经过坐标原点, ∴设所求函数的关系式是y kx =, 又点M 的坐标为(1,2), ∴2k =.∴直线MN 所对应的函数关系式是2y x =. 解法 2:设所求函数的关系式是y kx b =+ 则由题意得:0 2.b k b =⎧⎨+=⎩,解这个方程组,得20.k b =⎧⎨=⎩,蓝 白 白 蓝 红 蓝 红 红 蓝 白 白红 红白 蓝 ①号盒子 ②号盒子 ③号盒子∴直线MN 所对应的函数关系式是2y x =.(3)利用直尺和圆规,作线段AB 关于直线MN 的对称图形A B '',如图所示. 23.本小题主要考查建立二元一次方程组模型解决简单实际问题的能力,考查基本的代数计算推理能力.满分12分. 解:(1)设启动活动前的一个月销售给农户的 I 型冰箱和 II 型冰箱分别为x y ,台.根据题意得960(130%)(125%)1228.x y x y +=⎧⎨+++=⎩,解得560400.x y =⎧⎨=⎩,∴启动活动前的一个月销售给农户的 I 型冰箱和 II 型冰箱分别为560台和400台. (2)I 型冰箱政府补贴金额:2298560(130%)13%217482.72⨯⨯+⨯=元, II 型冰箱政府补贴金额:1999400(125%)13%129935⨯⨯+⨯=元. ∴启动活动后第一个月两种型号的冰箱政府一共补贴金额:5217482.72129935347417.72 3.510+=⨯≈元.答:启动活动后第一个月两种型号的冰箱政府一共约补贴农户53.510⨯元.24.本小题主要考查正方形、矩形、三角形全等等基础知识,考查计算能力、推理能力和空间观念.满分14分.(1)证明1:在Rt ADH △与Rt ABF △中, ∵AD AB DH AG AE BF ====,, ∴Rt ADH △≌Rt ABF △. ∴AF AH =.证明2:在Rt AEF △中,222AF AE EF =+. 在Rt AGH △中,222AH AG GH =+∵AG AE GH EF ==,, ∴AF AH =.(2)证明1:将ADH △绕点A 顺时针旋转90°到ABM △的位置. 在AMF △与AHF △中, ∵ AM AH AF AF ==,,904545MAF MAH FAH FAH ∠=∠-∠=-==∠°°°,∴AMF AHF △≌△. ∴MF HF =.∵MF MB BF HD BF AG AE =+=+=+, ∴AG AE FH +=.证明2:延长CB 至点M ,使BM DH =,连结AM . E D GA P∵AB AD BM DH ==,, ∴Rt Rt ABM ADH △≌△.∴AM AH MAB HAD =∠=∠,. ∵45FAH ∠=°,∴904545BAF DAH BAD FAH ∠+∠=∠-∠=-=°°°.∴45MAF MAB BAF HAD BAF FAH ∠=∠+∠=∠+∠==∠°. ∴AMF AHF △≌△. ∴MF FH =.∵MF MB BF HD BF AG AE =+=+=+, ∴AG AE FH +=.(3)设BF x GB y ==,,则1FC x =-,1AG y =-.(0101x y <<<<,) 在Rt GBF △中,22222GF BF BG x y =+=+. ∵Rt GBF △的周长为1,∴1BF BG GF x y ++=+=.1()x y =-+.即22212()()x y x y x y +=-+++. 整理得22210xy x y --+=. (*) 求矩形EPHD 的面积给出以下两种方法: 方法1:由(*)得212(1)x y x -=-. ①∴矩形EPHD 的面积(1)(1)S PH EP FC AG x y ===--·· ② 将①代入②得(1)(1)S x y =--21(1)12(1)x x x ⎡⎤-=--⎢⎥-⎣⎦1(1)2(1)x x -=--12=. ∴矩形EPHD 的面积是12. 方法2:由(*)得1()2x y xy +-=, ∴矩形EPHD 的面积(1)(1)S PHEP FC AG x y ===--··112=- 12= ∴矩形EPHD 的面积是12. 25. 本小题主要考查二次函数、解直角三角形等基础知识,考查运算能力、推理能力和空间观念.满分14分.解:(1)设点1(0)A x ,,2(0)B x ,,其中12x x <. ∵抛物线2y x px q =++过点(01)C -,, ∴2100P q -=+⨯+. ∴1q =-. ∴21y x px =+-.∵抛物线2y x px q =++与x 轴交于A B 、两点, ∴12x x ,是方程210x px +-=的两个实根. 求p 的值给出以下两种方法:方法1:由韦达定理得:12121x x p x x +=-=-,.∵ABC △的面积为54, ∴1524OC AB =·,即21151()24x x ⨯⨯-=. ∴2152x x -=.∴22125()4x x -=.∵22212112()()4x x x x x x -=+-,∴2211225()44x x x x +-=. ∴225()44p -+=. 解得32p =±. ∵0p <, ∴32p =-.∴所求二次函数的关系式为2312y x x =--. 方法2:由求根公式得1x =,2x =21AB x x =-==∵ABC △的面积为54, ∴1524OC AB =·,即21151()24x x ⨯⨯-=.∴15124⨯=. ∴22544p +=.解得32p =±.∵0p <, ∴32p =-. ∴所求二次函数的关系式为2312y x x =--. (2)令23102x x --=,解得12122x x =-=,.∴102A ⎛⎫- ⎪⎝⎭,,(20)B ,.在Rt AOC △中,2222215124AC AO OC ⎛⎫=+=+= ⎪⎝⎭,在Rt BOC △中,22222215BC BO OC =+=+=, ∵15222AB ⎛⎫=--= ⎪⎝⎭, ∴222525544AC BC AB +=+==. ∴90ACB ∠=°.∴ABC △是直角三角形.∴Rt ABC △的外接圆的圆心是斜边AB 的中点. ∴Rt ABC △的外接圆的半径524AB r ==. ∵垂线与ABC △的外接圆有公共点,∴5544m -≤≤. (3)假设在二次函数2312y x x =--的图象上存在点D ,使得四边形ACBD 是直角梯形. ①若AD BC ∥,设点D 的坐标为2000312x x x ⎛⎫-- ⎪⎝⎭,,00x >, 过D 作DE x ⊥轴,垂足为E ,如图1所示.求点D 的坐标给出以下两种方法: 方法1:在Rt AED △中,2000312tan 12x x DE DAE AE x --∠==⎛⎫-- ⎪⎝⎭, 在Rt BOC △中,1tan 2OC CBO OB ∠==,∵DAE CBO ∠=∠,∴tan tan DAE CBO ∠=∠. ∴20003112122x x x --=⎛⎫-- ⎪⎝⎭. 2004850x x --=.解得052x =或012x =-. ∵00x >, ∴052x =,此时点D 的坐标为5322⎛⎫ ⎪⎝⎭,. 而2222454AD AE ED BC =+=≠,因此当AD BC ∥时在抛物线231y x x =--上存在点532D ⎛⎫⎪⎭,,使得四边形DACB 是直角梯形.方法2:在Rt AED △与Rt BOC △中,DAE CBO ∠=∠, ∴Rt Rt AED BOC △∽△. ∴DE OCAE OB=. ∴20003112122x x x --=⎛⎫-- ⎪⎝⎭.以下同方法1.②若AC BD ∥,设点D 的坐标为2000312x x x ⎛⎫-- ⎪⎝⎭,,00x <, 过D 作DF x ⊥轴,垂足为F ,如图2所示.在Rt DFB △中,2000312tan 2x x DEDBF FBx --∠==-, 在Rt COA △中,1tan 212OC CAO OA ∠===, ∵DBF CAO ∠=∠,∴tan tan DBF CAO ∠=∠.∴200031222x x x --=-. 2002100x x +-=.解得052x =-或02x =. ∵00x <, ∴052x =-,此时D 点的坐标为592⎛⎫- ⎪⎝⎭,. 此时BD AC ≠,因此当AC BD ∥时,在抛物线2312y x x =--上存在点592D ⎛⎫- ⎪⎝⎭,,使得四边形DACB 是直角梯形.综上所述,在抛物线2312y x x =--上存在点D ,使得四边形DACB 是直角梯形,并且点D 的坐标为5322⎛⎫ ⎪⎝⎭,或592⎛⎫- ⎪⎝⎭,.。

2009年广东省初中毕业生学业考试数学试卷

2009年广东省初中毕业生学业考试数学试卷
C 第 14 题图
15. (本题满分 6 分)如图所示, A 、 B 两城市相距 100km.现计划在这两座城市间修筑一 ,经测量,森林保护中心 P 在 A 城市的北偏东 30° B 城市的北 和 条高速公路(即线段 AB ) 偏西 45° 的方向上. 已知森林保护区的范围在以 P 点为圆心, 50km 为半径的圆形区域内. 请 问计划修筑的这条高速公路会不会穿越保护区.为什么? (参考数据: 3 ≈ 1.732,2 ≈ 1.414 ) E 30° A P
Q O
D
B
P
C
E
第 18 题图
19. (本题满分 7 分)如图所示,在矩形 ABCD 中, AB = 12,AC = 20 ,两条对角线相交 于点 O . OB 、OC 为邻边作第 1 个平行四边形 OBB1C ; 以 对角线相交于点 A1 ; 再以 A1 B1 、
A1C 为邻边作第 2 个平行四边形 A1 B1C1C ,对角线相交于点 O1 ;再以 O1 B1 、 O1C1 为邻边

彰显数学魅力!演绎网站传奇! 彰显数学魅力!演绎网站传奇! 学魅力 网站传奇
小题, 二、填空题(本大题 5 小题,每小题 4 分,共 20 分)请将下列各题的正确答案填写在答题 填空题( 卡相应的位置上. 卡相应的位置上. C 3 6.分解因式 2 x 8 x =__________. 7.已知 ⊙O 的直径 AB = 8 cm, C 为 ⊙O 上的一点, ∠BAC = 30° BC = __________cm. , 则 8.一种商品原价 120 元,按八折(即原价的 80%)出售, 则现售价应为 __________元. 9.在一个不透明的布袋中装有 2 个白球和 n 个黄球, A B O
17. (本题满分 7 分)某中学学生会为了解该校学生喜欢球类活动的情况,采取抽样调查的 方法,从足球、乒乓球、篮球、排球等四个方面调查了若干名学生的兴趣爱好,并将调查的 结果绘制成如下的两幅不完整的统计图(如图 1,图 2,要求每位同学只能选择一种自己喜 欢的球类; 图中用乒乓球、 足球、 排球、 篮球代表喜欢这四种球类的某一种球类的学生人数) ,

深圳市2009年初中毕业生学业考试数学试卷(含答案)

深圳市2009年初中毕业生学业考试数学试卷(含答案)

深圳市2009年初中毕业生学业考试数 学 试 卷说明:1.答卷前,请将姓名、考生号、考场、试室号和座位号用规定的笔写在答题卡指定的位置上,将条形码粘贴好.2.全卷分二部分,第一部分为选择题,第二部分为非选择题,共4页.考试时间90分钟,满分100分.3.本卷试题,考生必须在答题卡上按规定作答;凡在试卷、草稿纸上作答的,其答案一律无效.答题卡必须保持清洁,不能折叠.4.本卷选择题1—10,每小题选出答案后,用2B 铅笔将答题卡选择题答题区内对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案;非选择题11—23,答案(含作辅助线)必须用规定的笔,按作答题目序号,写在答题卡非选择题答题区内.5.考试结束,请将本试卷和答题卡一并交回.第一部分 选择题(本部分共10个小题,每小题3分,共30分.每小题给出4个选项,其中只有一个是正.确.的) 1.3的倒数是( ) A .3-B .13C .13- D .32.经公安部交管局统计,今年5月份全国因道路交通事故造成伤亡共25591人.这个数据用科学记数法可以表示为( ) A .52.559110⨯B .325.59110⨯C .42.559110⨯D .62.559110⨯3.如图1,平放在台面上的圆锥体的主视图是( )4.下列图形中,既是轴对称图形,又是中心对称图形的是( )5.某烟花爆竹厂从20万件同类产品中随机抽取了100件进行质检,发现其中有5件不合格,那么你估计该厂这20万件产品中合格品...约为( ) A .1万件 B .19万件 C .15万件 D .20万件图1 A . B . C . D .A . B. C. D.6.化简26926x x x -+-的结果是( )A .32x + B .292x + C .292x - D .32x -7.班长去文具店买毕业留言卡50张,每张标价2元,店老板说可以按标价九折优惠,则班长应付( )A .45元B .90元C .10元D .100元8.二次函数2y ax bx c =++的图象如图2所示,若点12(1)(2)A y B y ,、,是它图象上的两点,则1y 与2y 的大小关系是( )A .12y y <B .12y y =C .12y y >D .不能确定 9.不等式组26623212x x x x -<-⎧⎪⎨++>⎪⎩的整数解是( )A .12,B .123,,C .133x << D .012,, 10.如图3,在矩形A B C D 中,D E A C ⊥于E ,13E D C E D A ∠∠=∶∶,且10A C =,则D E 的长度是( ) A .3 B .5 C. D .2第二部分 非选择题填空题(本题共6个小题,每小题3分,共18分) 11.计算:()235yy ÷= .12.如图4,A 为反比例函数3y x-=的图象在第二象限上的任一点,A B x ⊥轴于B ,AC y ⊥轴于C .则矩形A B O C 的面积S = . 13.为了准备毕业联欢的抽奖活动,小华准备了10个白球,2个红球,8个黄球,每个球除颜色外都相同,把它们放入不透明的口袋中搅匀,规定每位同学每次抽奖,只能从袋中摸出一个球,记下颜色后放回,摸到红球可获钢笔一图2ABCD OE图3图4图5支.那么小亮抽奖一次得到钢笔的概率是 .14.如图5,小明利用升旗用的绳子测量学校旗杆B C 的高度,他发现绳子刚好比旗杆长11米,若把绳子往外拉直,绳子接触地面A 点并与地面形成30°角时,绳子未端D 距A 点还有1米,那么旗杆B C 的高度为 .15.下面是按一定规律摆放的图案,按此规律,第2009个图案与第1~4个图案中相同的是 .(只填数字)16.如图6,在R t ABC △中,90C ∠=°,点D 是B C 上一点,A DB D =,若85AB BD ==,,则CD = .解答题(本题共7小题,其中第17题5分,第18题6分,第19题6分,第20题8分,第21题8分,第22题9分,第23题10分,共52分)17.(本题5分)计算:02π4320092-⎛⎫---- ⎪⎝⎭.18.(本题6分)解分式方程:3311x x x-=--.第1个第2个第3个第4个第5个第6个…A C D B图619.(本题6分)随着网络的普及,越来越多的人喜欢到网上购物.某公司对某个网站2005年到2008年网上商店的数量和购物顾客人次进行了调查.根据调查结果,将四年来该网站网上商店的数量和每个网上商店年平均购物顾客人次分别制成了折线统计图(如图7)和条形统计图(如图8).请你根据统计图提供的信息完成下列填空:(1)2005年该网站共有网上商店 个;(2分) (2)2008年该网站网上购物顾客共有 万人次;(2分) (3)这4年该网站平均每年网上购物顾客有 万人次.(2分)20.(本题8分)如图9,四边形A B C D 是正方形,BE BF BE BF EF ⊥=,,与B C 交于点G .(1)求证:A B E C B F △≌△;(4分) (2)若50ABE ∠=°,求E G C ∠的大小.(4分)20052006 2007 2008 年个 0每年网上商店的数量 图7万人次5 每个网上商店年平均购物顾客人次图8 ADCE GBF 图921.(本题8分)如图10,A B是O⊙的直径,10A B D C=,切O⊙于点C A D D C⊥,,垂足为D,A D交O⊙于点E.(1)求证:A C平分B A D∠;(4分)(2)若3sin5B E C∠=,求D C的长.(4分)B图1022.(本题9分)某汽车制造厂开发了一款新式电动汽车,计划一年生产安装240辆.由于抽调不出足够的熟练工来完成新式电动汽车的安装,工厂决定招聘一些新工人;他们经过培训后上岗,也能独立进行电动汽车的安装.生产开始后,调研部门发现:1名熟练工和2名新工人每月可安装8辆电动汽车;2名熟练工和3名新工人每月可安装14辆电动汽车.(1)每名熟练工和新工人每月分别可以安装多少辆电动汽车?(4分)(2)如果工厂招聘(010)<<名新工人,使得招聘的新工人和抽调的熟练工刚好n n..能完成一年的安装任务,那么工厂有哪几种...新工人的招聘方案?(3分)(3)在(2)的条件下,工厂给安装电动汽车的每名熟练工每月发2000元的工资,给每名新工人每月发1200元的工资,那么工厂应招聘多少名新工人,使新工人的数量多于熟练工,同时工厂每月支出的工资总额W(元)尽可能的少?(2分)23.(本题10分)已知:R t ABC △的斜边长为5,斜边上的高为2,将这个直角三角形放置在平面直角坐标系中,使其斜边A B 与x 轴重合(其中O A O B <),直角顶点C 落在y 轴正半轴上(如图11).(1)求线段O A O B 、的长和经过A B C 、、的抛物线的关系式.(4分) (2)如图12,点D 的坐标为(20),,点()P m n ,是该抛物线上的一个动点(其中00m n >>,),连接D P 交B C 于点E . ①当B D E △是等腰三角形时,直接写出....此时点E 的坐标.(3分) ②又连接C D C P 、(如图13,)C D P △是否有最大面积?若有,求出C D P △的最大面积和此时点P 的坐标;若没有,请说明理由.(3分)图11x图12图13参考答案及评分意见第一部分 选择题(本题共10个小题,每小题3分,共30分)第二部分 非选择题填空题(本题共6个小题,每小题3分,共18分)(注:第13题的答案写成220的不扣分,第16题的答案写成1410的不扣分)解答题(本题共7小题,其中第17题5分,第18题6分,第19题6分,第20题8分,第21题8分,第22题9分,第23题10分,共52分) 17.解:原式=14319-+- ··············································································· 1+1+1+1分=19·········································································································· 5分(注:运算的第一步正确一项给1分) 18.解:3311x x x +=-- ····························································································· 1分去分母,得:333x x +=-····················································································· 3分 解得:3x = ············································································································ 5分 经检验:3x =是原方程的根,∴原方程的根是:3x =. ······················································································· 5分 (注:不检验扣1分;只要验根,用其他方式书写不扣分.) 19.解:(1)20;(2)3600;(3)1250. (注:每小题答对给2分)20.(1)证明: 四边形A B C D 是正方形,BE BF ⊥90A B C B A B C E B F ∴=∠=∠=,° ································1分 A B C E B C E B F E B ∴∠-∠=∠-∠ 即A B E C B F ∠=∠ ···························································2分 又B E B F = ······································································3分A B E C B F ∴△≌△ ··························································4分(2)解: 90B E B F E B F =∠=,°45BEF ∴∠=° ······································································5分 又40EBG ABC ABE ∠=∠-∠=°·········································6分 ∴85EG C EBG BEF ∠=∠+∠=° ········································8分ADCEG BF 图9(注:其它方法酌情给分)21.(1)证明:连结O C ··············································1分由D C 是切线得O C D C ⊥ 又AD D C ⊥ AD O C ∥······················································ 2分∴D A C A C O ∠=∠又由O A O C =得B A C A C O ∠=∠························ 3分D A C B A C ∴∠=∠ ··············································· 4分 即A C 平分B A D ∠(2)解:方法一:A B 为直径∴90A C B ∠=° ··················································· 5分 又B A C B E C ∠=∠sin sin 6BC AB BAC AB BEC ∴=∠=∠=··························································· 6分8AC ∴== ····················································································· 7分 又D A C B A C B E C ∠=∠=∠ 且AD D C ⊥24sin sin 5C D A C D A C A C B E C ∴=∠=∠=······················································· 8分方法一:A B 为直径90AC B ∴∠=° ····································································································· 5分又B A C B E C ∠=∠sin sin 6BC AB BAC AB BEC ∴=∠=∠=··························································· 6分8AC ∴== ····················································································· 7分 又90D AC BAC D AC B ∠=∠∠=∠= ,°A D C A CB ∴△∽△ DC A C C BA B=,即8610D C =解得245D C = ······································································································· 8分(注:其它方法酌情给分) 22.(1)解:设每名熟练工和新工人每月分别可以安装x 辆和y 辆电动汽车,根据题意,得: ············································································································ 1分282314x y x y +=⎧⎨+=⎩ ·············································································································· 2分 解得,42x y =⎧⎨=⎩ ·············································································································· 3分图10B。

2009年广东省中山市初中毕业生学业考试

2009年广东省中山市初中毕业生学业考试

2009年广东省中山市初中毕业生学业考试数 学说明:1.全卷共4页,考试用时100分钟,满分为120分.2.答卷前,考生务必用黑色字迹的签字笔或钢笔在答题卡填写自己的准考证号、姓名、试室号、座位号.用2B 铅笔把对应该号码的标号涂黑.3.选择题每小题选出答案后,用2B 铅笔把答题卡上对应题目选项的答案信息点涂黑,如需改动,用橡皮擦干净后,再选涂其他答案,答案不能答在试题上.4.非选择题必须用黑色字迹钢笔或签字笔作答、答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新的答案;不准使用铅笔和涂改液.不按以上要求作答的答案无效.5.考生务必保持答题卡的整洁.考试结束时,将试卷和答题卡一并交回.一、选择题(本大题5小题,每小题3分,共15分)在每小题列出的四个选项中,只有一个是正确的,请把答题卡上对应题目所选的选项涂黑. 1.4的算术平方根是( ) A .2±B .2C.D2.计算32()a 结果是( ) A .6aB .9aC .5aD .8a3.如图所示几何体的主(正)视图是( )C .4.《广东省2009年重点建设项目计划(草案)》显示,港珠澳大桥工程估算总投资726亿元,用科学记数法表示正确的是( )A . 107.2610⨯元 B .972.610⨯元 C .110.72610⨯元 D .117.2610⨯元5.方程组223010x y x y +=⎧⎨+=⎩的解是( ) A .1113x y =⎧⎨=⎩2213x y =-⎧⎨=-⎩ B .12123311x x y y ==-⎧⎧⎨⎨=-=⎩⎩ C . 12123311x x y y ==-⎧⎧⎨⎨==-⎩⎩ D.12121133x x y y ==-⎧⎧⎨⎨=-=⎩⎩ 二、填空题:(本大题5小题,每小题4分,共20分)请将下列各题的正确答案填写在答题卡相应的位置上.6.分解因式2233x y x y --- .7.已知O ⊙的直径8cm AB C =,为O ⊙上的一点,30BAC ∠=°,则BC = cm .8.一种商品原价120元,按八折(即原价的80%)出售,则现售价应为 元.9.在一个不透明的布袋中装有2个白球和n 个黄球,它们除颜色不同外,其余均相同.若从中随机摸出一个球,摸到黄球的概率是45,则n =_____________.10.用同样规格的黑白两种颜色的正方形瓷砖,按下图的方式铺地板,则第(3)个图形中有黑色瓷砖 块,第n 个图形中需要黑色瓷砖________块(用含n 的代数式表示).……(1) (2) (3)三、解答题(一)(本大题5小题,每小题6分,共30分) 11.(本题满分6分)计算:1sin 30π+32-+0°+(). 12.(本题满分6分)解方程22111x x =--- 13.(本题满分6分)如图所示,ABC △是等边三角形, D 点是AC 的中点,延长BC 到E ,使CE CD =,(1)用尺规作图的方法,过D 点作DM BE ⊥,垂足是M (不写作法,保留作图痕迹); (2)求证:BM EM =.14.(本题满分6分)已知:关于x 的方程2210x kx +-=(1)求证:方程有两个不相等的实数根;(2)若方程的一个根是1-,求另一个根及k 值.15.(本题满分6分)如图所示,A 、B 两城市相距100km ,现计划在这两座城市间修建一条高速公路(即线段AB ),经测量,森林保护中心P 在A 城市的北偏东30°和B 城市的北偏西45°的方向上,已知森林保护区的范围在以P 点为圆心,50km 为半径的圆形区域内,请问计划修建的这条高速公路会不会穿越保护1.732 1.414)第7题图B第10题图 AD第13题图30° A BFE P45°第15题图四、解答题(二)(本大题4小题,每小题7分,共28分) 16.(本题满分7分)某种电脑病毒传播非常快,如果一台电脑被感染,经过两轮感染后就会有81台电脑被感染.请你用学过的知识分析,每轮感染中平均一台电脑会感染几台电脑?若病毒得不到有效控制,3轮感染后,被感染的电脑会不会超过700台? 17.(本题满分7分)某中学学生会为了解该校学生喜欢球类活动的情况,采取抽样调查的方法,从足球、乒乓球、篮球、排球等四个方面调查了若干名学生的兴趣爱好,并将调查的结果绘制成如下的两幅不完整的统计图(如图1,图2要求每位同学只能选择一种自己喜欢的球类;图中用乒乓球、足球、排球、篮球代表喜欢这四种球类中的某一种球类的学生人数),请你根据图中提供的信息解答下列问题:(1)在这次研究中,一共调查了多少名学生?(2)喜欢排球的人数在扇形统计图中所占的圆心角是多少度? (3)补全频数分布折线统计图.18.(本题满分7分)在ABCD 中,10AB =,AD m =,60D ∠=°,以AB 为直径作O ⊙,(1)求圆心O 到CD 的距离(用含m 的代数式来表示); (2)当m 取何值时,CD 与O ⊙相切.19.(本题满分7分)如图所示,在矩形ABCD 中,12AB AC =,=20,两条对角线相交于点O .以OB 、OC 为邻边作第1个平行四边形1OBB C ,对角线相交于点1A ,再以11A B 、1AC 为邻边作第2个平行四边形111A B C C ,对角线相交于点1O ;再以11OB 、11OC 为邻边图2乒乓球20% 足球排球 篮球40%图1 第17题图 第18题图作第3个平行四边形1121O B B C ……依次类推. (1)求矩形ABCD 的面积;(2)求第1个平行四边形1OBB C 、第2个平行四边形111A B C C 和第6个平行四边形的面积.五、解答题(三)(本大题3小题,每小题9分,共27分) 20、(本题满分9分)(1)如图1,圆心接ABC △中,AB BC CA ==,OD 、OE 为O ⊙的半径,OD BC ⊥于点F ,OE AC ⊥于点G ,求证:阴影部分四边形OFCG 的面积是ABC △的面积的13.(2)如图2,若DOE ∠保持120°角度不变, 求证:当DOE ∠绕着O 点旋转时,由两条半径和ABC △的两条边围成的图形(图中阴影部分)面积始终是ABC △的面积的13.21.(本题满分9分)小明用下面的方法求出方程30=的解,请你仿照他的方法求出下面另外两个方程的解,并把你的解答过程填写在下面的表格中.A 1O 1A 2B 2 B 1C 1 B C 2A OD第19题图 C 第20题图D 图1 图222.(本题满分9分)正方形ABCD 边长为4,M 、N 分别是BC 、CD 上的两个动点,当M 点在BC 上运动时,保持AM 和MN 垂直,(1)证明:Rt Rt ABM MCN △∽△;(2)设BM x =,梯形ABCN 的面积为y ,求y 与x 之间的函数关系式;当M 点运动到什么位置时,四边形ABCN 面积最大,并求出最大面积; (3)当M 点运动到什么位置时Rt Rt ABM AMN △∽△,求x 的值.广东省中山市2009年初中毕业生学业考试数学试题参考答案及评分建议一、选择题(本大题5小题,每小题3分,共15分) 1.B 2.A 3.B 4.A 5.D二、填空题(本大题5小题,每小题4分,共20分)6.()(3)x y x y +-- 7.4 8.96 9.8 10.10,31n + 三、解答题(一)(本大题5小题,每题6分,共30分) 11.解:原式=113122+-+ ··················································································· 4分 =4. ······························································································· 6分12.解:方程两边同时乘以(1)(1)x x +-, ······························································· 2分2(1)x =-+, ···································································································· 4分 3x =-, ··········································································································· 5分经检验:3x =-是方程的解. ················································································ 6分13.解:(1)作图见答案13题图,··························································· 2分 (2)ABC △是等边三角形,D 是AC 的中点, BD ∴平分ABC ∠(三线合一), 2ABC DBE ∴∠=∠. ························································································· 4分NDA C BM第22题图答案13题图AC BDE MCE CD =,CED CDE ∴∠=∠.又ACB CED CDE ∠=∠+∠, 2ACB E ∴∠=∠. ····························································································· 5分 又ABC ACB ∠=∠, 22DBC E ∴∠=∠, DBC E ∴∠=∠, BD DE ∴=. 又DM BE ⊥, BM EM ∴=. ·································································································· 6分14.解:(1)2210x kx +-=,2242(1)8k k ∆=-⨯⨯-=+, ·············································································· 2分 无论k 取何值,2k ≥0,所以280k +>,即0∆>,∴方程2210x kx +-=有两个不相等的实数根. ························································ 3分 (2)设2210x kx +-=的另一个根为x ,则12k x -=-,1(1)2x -=-,·············································································· 4分 解得:12x =,1k =,∴2210x kx +-=的另一个根为12,k 的值为1. ····················································· 6分 15.解:过点P 作PC AB ⊥,C 是垂足,则30APC ∠=°,45BPC ∠=°, ····································· 2分tan 30AC PC =°,tan 45BC PC =°,AC BC AB +=, ························································ 4分 tan 30tan 45100PC PC ∴+=°°,11003PC ⎛⎫∴+= ⎪ ⎪⎝⎭, ··················································· 5分 50(350(3 1.732)63.450PC ∴=⨯->≈≈,答:森林保护区的中心与直线AB 的距离大于保护区的半径,所以计划修筑的这条高速公路不会穿越保护区.································································································ 6分 四、解答题(二)(本大题4小题,每小题7分,共28分) 16.解:设每轮感染中平均每一台电脑会感染x 台电脑, ············································ 1分 依题意得:1(1)81x x x +++=, ··········································································· 3分2(1)81x +=,答案15题图A BF E P C19x +=或19x +=-,12810x x ==-,(舍去),··················································································· 5分 33(1)(18)729700x +=+=>. ············································································ 6分 答:每轮感染中平均每一台电脑会感染8台电脑,3轮感染后,被感染的电脑会超过700台.························································································································ 7分 17.解:(1)2020%100÷=(人). ····································································· 1分(2)30100%30%100⨯=, ··················································································· 2分 120%40%30%10%---=, 36010%36⨯=°°. ···························································································· 3分 (3)喜欢篮球的人数:40%10040⨯=(人), ························································ 4分 喜欢排球的人数:10%10010⨯=(人). ································································ 5分······················· 7分18.解:(1)分别过A O ,两点作AE CD OF CD ⊥⊥,,垂足分别为点E ,点F ,AE OF OF ∴∥,就是圆心O 到CD 的距离. 四边形ABCD 是平行四边形, AB CD AE OF ∴∴=∥,. ·················································································· 2分在Rt ADE △中,60sin sin 60AE AED D AD AD∠=∠==°,,°,AE AE OF AE m ====,,, ························································ 4分 答案17题图答案18题图(1)答案18题图(2)圆心到CD 的距离OF为2. ··········································································· 5分 (2)32OF m =, 为O ⊙的直径,且10AB =,当5OF =时,CD 与O ⊙相切于F点,即523m ==,, ··················································································· 6分当m =时,CD 与O ⊙相切. ······································································· 7分 19.解:(1)在Rt ABC△中,16BC ==,1216192ABCD S AB BC ==⨯=矩形. ······································································ 2分 (2)矩形ABCD ,对角线相交于点O ,4ABCD OBC S S ∴=△. ···························································································· 3分 四边形1OBB C 是平行四边形,11OB CB OC BB ∴∥,∥,11OBC BCB OCB B BC ∴∠=∠∠=∠,. 又BC CB =,1OBC B CB ∴△≌△,112962OBB C OBC ABCD S S S ∴===△, ······································································· 5分 同理,111111148222A B C C OBB C ABCD S S S ==⨯⨯=, ························································ 6分第6个平行四边形的面积为6132ABCD S =. ······························································· 7分五、解答题(三)(本大题3小题,每小题9分,共27分) 20.证明:(1)如图1,连结OA OC ,, 因为点O 是等边三角形ABC 的外心,所以Rt Rt Rt OFC OGC OGA △≌△≌△. ····························· 2分2OFCG OFC OAC S S S ==△△,答案20题图(1)AE O G FBCD因为13OAC ABC S S =△△, 所以13OFCGABC S S =△. ························································································ 4分 (2)解法一:连结OA OB ,和OC ,则AOC COB BOA △≌△≌△,12∠=∠, ··························· 5分不妨设OD 交BC 于点F ,OE 交AC 于点G ,3412054120AOC DOE ∠=∠+∠=∠=∠+∠=°,°,35∴∠=∠. ······································································· 7分 在OAG △和OCF △中, 1235OA OC ∠=∠⎧⎪=⎨⎪∠=∠⎩,,,OAG OCF ∴△≌△, ························································································· 8分13OFCG AOC ABC S S S ∴==△△. ··············································································· 9分解法二: 不妨设OD 交BC 于点F ,OE 交AC 于点G , 作OH BC OK AC ⊥⊥,,垂足分别为H K 、, ·················· 5分 在四边形HOKC 中,9060OHC OKC C ∠=∠=∠=°,°, 360909060120HOK ∴∠=-︒-︒=︒°-?, ························ 6分即12120∠+∠=°.又23120GOF ∠=∠+∠=°,13∴∠=∠. ····································································································· 7分 AC BC =, OH OK ∴=,OGK OFH ∴△≌△, ························································································ 8分13OFCG OHCK ABC S S S ∴==△. ················································································ 9分答案20题图(2)A E O GFB C D 1 2 3 45 答案第20题图(3) A EOGF B C D 1 3 2H K。

2009年深圳市初中毕业生学业考试数学试卷及参考答案

2009年深圳市初中毕业生学业考试数学试卷及参考答案

深圳市2009年初中毕业生学业考试数学试卷第一部分 选择题(本部分共10小题,每小题3分,共30分。

每小题给出4个选项,其中只有一个是正确..的) 1.3的倒数是B A .3- B .13C .31- D .32.经公安部交管局统计,今年5月份全国因道路交通事故造成伤亡共25591人。

这个数据用科学记数法可以表示为C .A .5105591.2⨯B .310591.25⨯C .4105591.2⨯D .6105591.2⨯3.如图1,平放在台面上的圆锥体的主视图是A .图1 A . B . C . D .4.下列图形中,既是轴对称图形,又是中心对称图形的是DA .B .C .D .5.某烟花爆竹厂从20万件同类产品中随机抽取了100件进行质检,发现其中有5件不合格,那么你估计该厂这20万件产品中合格品约为BA .1万件B .19万件C .15万件D .20万件 6.化简62962-+-x x x 的结果是DA .23+xB .292+xC .292-x D .23-x7.班长去文具店买毕业留言卡50张,每张标价2元,店老板说可以按标价九折优惠,则班长应付BA .45元B .90元C .10元D .100元 8.二次函数c bx ax y ++=2的图象如图2所示,若点A (1,y 1)、B (2,y 2)是它图象上的两点,则y 1与y 2的大小关系是CA .21y y <B .21y y =C .21y y >D .不能确定9.不等式组26623212x x x x -<-⎧⎪⎨++>⎪⎩的整数解是AA .1,2B .1,2,3C .331<<x D .0,1,210.如图3,在矩形ABCD 中,DE ⊥AC 于E ,∠EDC ∶∠EDA=1∶3,且AC=10,则DE 和长度是DA .3B .5C .25D .225第二部分 非选择题填空题(本题共6小题,每小题3分,共18分)11.计算:()=÷523y y y12.如图4,A 为反比例函数xy 3-=的图象在第二象限上的任 一点,AB ⊥x 轴于B ,AC ⊥y 轴于C 。

2009年广东省湛江市中考数学试题及答案

2009年广东省湛江市中考数学试题及答案
3 2 5 2
,则输出的
输入 x 值
) B.
2 5
y x 1 ( 1 ≤ x 0)
y x
2
y
1 x
C.
4 25

D.
25 4
(0 ≤ x 2)
(2 ≤ x ≤ 4)
9.下列说法中: ①4 的算术平方根是±2; ② 2 与 8 是同类二次根式; ③点 P (2, 3) 关于原点对称的点的坐标是 ( 2, 3) ; ④抛物线 y
第 2 页 共 12 页
16.如图, A B 是 ⊙ O 的直径, C 、 D 、 E 是 ⊙ O 上的点, °. 则 1 2 17.一件衬衣标价是 132 元,若以 9 折降价出售,仍可获 利 10%,则这件衬衣的进价是 元.
⊙ ⊙ 18. 如图, O1、 O 2 的直径分别为 2cm 和 4cm, 现将 ⊙ O 1
二、填空题:本大题共 10 小题,其中 11~15 每小题 3 分,16~20 每小题 4 分,共 35 分. 11.2 12. x 3 13. 1 2 5 ° 14. ( m n )( m n ) 15.15 16.90
17.108 18.1 或 3 19.71 20.3 三、解答题:本大题共 2 小题,每小题 8 分,共 16 分. 21.解: (1)由题意可得 m 2 ··········· ·········· ········· ·········· ··········· ········ 2 ······························2 分
O 图①
P
A
x
O
P 图②
A
x
第 28 题图
第 6 页 共 12 页

2009年广东省梅州市中考数学试题(word版含答案)1

2009年梅州市初中毕业生学业考试数 学 试 卷说明:本试卷共 4 页,23 小题,满分 120 分.考试用时 90 分钟.注意事项:1.答题前,考生务必在答题卡上用黑色字迹的钢笔或签字笔填写准考证号、姓名、试室号、座位号,再用2B 铅笔把试室号、座位号的对应数字涂黑.2.选择题每小题选出答案后,用2B 铅笔把答题卡上对应答案选项涂黑,如需改动,用橡皮擦擦干净后,再重新选涂其他答案,答案不能答在试卷上.3.非选择题必须用黑色字迹钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新的答案;不准使用铅笔和涂改液.不按以上要求作答的答案无效.4.考生必须保持答题卡的整洁.考试结束后,将试卷和答题卡一并交回. 5.本试卷不用装订,考完后统一交县招生办(中招办)封存. 参考公式: 抛物线2y ax bx c =++的对称轴是直线2b x a=-, 顶点坐标是424b ac b a a 2⎛⎫-- ⎪⎝⎭,.一、选择题:每小题 3分,共 15 分.每小题给出四个答案,其中只有一个是正确的. 1.12-的倒数为( ) A .12B .2C .2-D .1-2.下列图案是我国几家银行的标志,其中不是..轴对称图形的是( )) A .8、8 B . 8、9 C .9、9 D .9、8 4.下列函数:①y x =-;②2y x =;③1y x=-;④2y x =.当0x <时,y 随x 的增大而减小的函数有()A .1 个B .2 个C .3 个D .4 个A .B .C .D .5.一个正方体的表面展开图可以是下列图形中的( )二、填空题:每小题 3分,共 24 分. 6.计算:2()a a -÷= .7.梅州是中国著名侨乡,祖籍在梅州的华侨华人及港澳台同胞超过360万人,360万用科学计数法表示为 .8.如图1,在O ⊙中,20ACB ∠=°,则AOB ∠=_______度.9.如图2 所示,五角星的顶点是一个正五边形的五个顶点.这个五角星可以由一个基本图形(图中的阴影部分)绕中心O 至少经过____________次旋转而得到, 每一次旋转_______度.10.小张和小李去练习射击,第一轮10发子弹打完后,两人的成绩如图3所示.根据图中的信息,小张和小李两人中成绩较稳定的是 .11.已知一元二次方程22310x x --=的两根为12x x ,,则12x x =___________. 12.如图4,把一个长方形纸片沿EF 折叠后,点D C 、分别落在11 D C 、的位置.若65EFB ∠=°,则1AED ∠等于_______度.13. 如图5,每一幅图中有若干个大小不同的菱形,第1幅图中有1个,第2幅图中有3个,第3幅图中有5个,则第4幅图中有 个,第n 幅图中共有 个.A .B .C .D .C 图1图3 A E D C F B D 1C 1图4… …三、解答下列各题:本题有 10 小题,共 81 分.解答应写出文字说明、推理过程或演算步骤.14.本题满分 7 分. 如图 6,已知线段AB ,分别以A B 、为圆心,大于12AB 长为半径画弧,两弧相交于点C 、Q ,连结CQ 与AB 相交于点D ,连结AC ,BC .那么: (1)∠ ADC =________度;(2)当线段460A B A C B =∠=,°时,ACD ∠= ______度, ABC △的面积等于_________(面积单位).15.本题满分 7 分.星期天,小明从家里出发到图书馆去看书,再回到家.他离家的距离y (千米)与时间t (分钟)的关系如图7所示.根据图象回答下列问题:(1)小明家离图书馆的距离是____________千米; (2)小明在图书馆看书的时间为___________小时; (3)小明去图书馆时的速度是______________千米/小时.16.本题满分 7 分.计算:1012)4cos30|3-⎛⎫++- ⎪⎝⎭°.17.本题满分 7 分. 求不等式组1184 1.x x x x --⎧⎨+>-⎩≥,的整数解.C BD A 图6Q(分)图718.本题满分 8 分.先化简,再求值:2224441x x xx x x x --+÷-+-,其中32x =.19.本题满分 8 分.如图 8,梯形ABCD 中,AB CD ∥,点F 在BC 上,连DF 与AB 的延长线交于点G . (1)求证:CDF BGF △∽△; (2)当点F 是BC 的中点时,过F 作EF CD ∥交AD 于点E ,若6cm 4cm AB EF ==,,求CD 的长.20.本题满分 8 分.“五·一”假期,梅河公司组织部分员工到A 、B 、C 三地旅游,公司购买前往各地的车票种类、数量绘制成条形统计图,如图9.根据统计图回答下列问题:(1)前往 A 地的车票有_____张,前往C 地的车票占全部车票的________%;(2)若公司决定采用随机抽取的方式把车票分配给 100 名员工,在看不到车票的条件下,每人抽取一张(所有车票的形状、大小、质地完全相同且充分洗匀),那么员工小王抽到去 B 地车票的概率为______;(3)若最后剩下一张车票时,员工小张、小李都想要,决定采用抛掷一枚各面分别标有数字1,2,3,4的正四面体骰子的方法来确定,具体规则是:“每人各抛掷一次,若小张掷得着地一面的数字比小李掷得着地一面的数字大,车票给小张,否则给小李.”试用“列表法或画树状图”的方法分析,这个规则对双方是否公平?21.本题满分 8 分.D C FE A BG 图8图9地点如图10,已知抛物线2y =与x 轴的两个交点为A B 、,与y 轴交于点C . (1)求A B C ,,三点的坐标;(2)求证:ABC △是直角三角形; (3)若坐标平面内的点M ,使得以点M 和三点 A B C 、、为顶点的四边形是平行四边形,求点M 的坐标.(直接写出点的坐标,不必写求解过程)22.本题满分 10 分.如图 11,矩形ABCD 中,53AB AD ==,.点E 是CD 上的动点,以AE 为直径的O ⊙与AB 交于点F ,过点F 作FG BE ⊥于点G . (1)当E 是CD 的中点时:①tan EAB ∠的值为______________; ② 证明:FG 是O ⊙的切线;(2)试探究:BE 能否与O ⊙相切?若能,求出此时DE 的长;若不能,请说明理由.23.本题满分 11 分.(提示:为了方便答题和评卷,建议在答题卡上画出你认为必须的图形)如图 12,已知直线L 过点(01)A ,和(10)B ,,P 是x 轴正半轴上的动点,OP 的垂直平分线交L 于点Q ,交x 轴于点M . (1)直接写出直线L 的解析式;(2)设OP t =,OPQ △的面积为S ,求S 关于t 的函数关系式;并求出当02t <<时,S 的最大值;(3)直线1L 过点A 且与x 轴平行,问在1L 上是否存在点C , 使得CPQ △是以Q 为直角顶点的等腰直角三角形?若存在,求出点C 的坐标,并证明;若不存在,请说明理由.xC B 图112009年梅州市初中毕业生学业考试数学参考答案及评分意见一、选择题:每小题 3分,共 15 分.每小题给出四个答案,其中只有一个是正确的. 1.C 2.B 3.D 4.B 5.C 二、填空题:每小题 3分,共 24 分.6.a 7.63.610⨯ 8.40 9.4(1分),72(2分) 10.小张 11.12-12.50 13.7(1分),21n -(2分) 三、解答下列各题:本题有 10 小题,共 81 分.解答应写出文字说明、推理过程或演算步骤.14.本题满分7分. (1)90 ········································································································ 2分 (2)30 ········································································································ 4分··································································································· 7分 15.本题满分 7 分. (1)3 ·········································································································· 2分 (2)1 ·········································································································· 4分 (3)15 ········································································································ 7分 16.本题满分 7 分.解:1012)4cos30|3-⎛⎫++- ⎪⎝⎭°.1342=++················································································ 4分43=+-······················································································· 6分 4= ·········································································································· 7分17.本题满分 7 分.解:由11x x --≥得1x ≥, ·········································································· 2分 由841x x +>-,得3x <. ·········································································· 4 分 所以不等式组的解为:13x <≤, ·································································· 6 分 所以不等式组的整数解为:1,2. ···································································· 7 分18.本题满分 8 分.解:2224441x x x x x x x --+÷-+-2(2)(2)(1)(2)1x x x x x x x -+-=+÷-- ···································· 3分 212x x +=+- 22x x =- ········································································································ 6分 当32x =时,原式3226322⨯==--. ······································································ 8分 19.本题满分8 分.(1)证明:∵梯形ABCD ,AB CD ∥, ∴CDF FGB DCF GBF ∠=∠∠=∠,, ················· 2 分∴CDF BGF △∽△. ······················3分(2) 由(1)CDF BGF △∽△,又F 是BC 的中点,BF FC = ∴CDF BGF △≌△, ∴DF FG CD BG ==, ······································ 6分又∵EF CD ∥,AB CD ∥,∴EF AG ∥,得2EF BG AB BG ==+. ∴22462BG EF AB =-=⨯-=, ∴2cm CD BG ==. ···················································································· 8分 20.本题满分 8 分. 解:(1)30;20. ······················································································ 2 分 (2)12. ·································································································· 4 分 或画树状图如下:D C F EA BG19题图 1 2 3 4开始小张共有 16 种可能的结果,且每种的可能性相同,其中小张获得车票的结果有6种: (2,1),(3,1),(3,2),(4,1),(4,2),(4,3), ∴小张获得车票的概率为63168P ==;则小李获得车票的概率为35188-=. ∴这个规则对小张、小李双方不公平. ············································ 8 分21.本题满分 8 分.(1)解:令0x =,得y =(0C . ············································ 1分令0y =,得20x x ,解得1213x x =-=,, ∴(10)(30)A B -,,,. ·············································································· 3分(2)法一:证明:因为22214AC =+=,222231216BC AB =+==,, ··················· 4分 ∴222AB AC BC =+, ····································· 5分 ∴ABC △是直角三角形. ································· 6分法二:因为13OC OA OB ===,,∴2OC OA OB =, ························································································ 4分∴OC OBOA OC=,又AOC COB ∠=∠, ∴Rt Rt AOC COB △∽△. ············································································ 5分 ∴90ACO OBC OCB OBC ∠=∠∠+∠=,°, ∴90ACO OCB ∠+∠=°,∴90ACB ∠=°, 即ABC △是直角三角形. ·········································· 6 分(3)1(4M,2(4M -,3(2M .(只写出一个给1分,写出2个,得1.5分) ······················································ 8分22.本题满分 10 分.(1)①65······················································ 2分 ②法一:在矩形ABCD 中,AD BC =, ADE BCE ∠=∠,又CE DE =, ∴ADE BCE △≌△, ······································ 3分 得AE BE EAB EBA =∠=∠,,连OF ,则OF OA =, ∴OAF OFA ∠=∠,22题图21题图M 1 3OFA EBA ∠=∠, ∴OF EB ∥, ································································· 4 分 ∵FG BE ⊥, ∴FG OF ⊥, ∴FG 是O ⊙的切线 ············································································· 6分 (法二:提示:连EF DF ,,证四边形DFBE 是平行四边形.参照法一给分.) (2)法一:若BE 能与O ⊙相切, ∵AE 是O ⊙的直径, ∴AE BE ⊥,则90DEA BEC ∠+∠=°,又90EBC BEC ∠+∠=°, ∴DEA EBC ∠=∠,∴Rt Rt ADE ECB △∽△, ∴AD DE EC BC =,设DE x =,则53EC x AD BC =-==,,得353xx =-, 整理得2590x x -+=. ················································································· 8 分 ∵242536110b ac -=-=-<, ∴该方程无实数根.∴点E 不存在,BE 不能与O ⊙相切. ································· 10分 法二: 若BE 能与O ⊙相切,因AE 是O ⊙的直径,则90AE BE AEB ∠=⊥,°,设DE x =,则5EC x =-,由勾股定理得:222AE EB AB +=,即22(9)[(5)9]25x x ++-+=, 整理得2590x x -+=, ······························ 8分 ∵242536110b ac -=-=-<, ∴该方程无实数根.∴点E 不存在,BE 不能与O ⊙相切. ································· 10分 (法三:本题可以通过判断以AB 为直径的圆与DC 是否有交点来求解,参照前一解法给分) 23.本题满分 11 分.(1)1y x =- ······························································································· 2分 (2)∵OP t =,∴Q 点的横坐标为12t , ①当1012t <<,即02t <<时,112QM t =-, ∴11122OPQ S t t ⎛⎫=- ⎪⎝⎭△. ················································································ 3分 ②当2t ≥时,111122QM t t =-=-, ∴11122OPQ S t t ⎛⎫=- ⎪⎝⎭△.∴1110222111 2.22t t tSt t t⎧⎛⎫-<<⎪⎪⎪⎝⎭=⎨⎛⎫⎪-⎪⎪⎝⎭⎩,,,≥···········································································4分当1012t<<,即02t<<时,211111(1)2244S t t t⎛⎫=-=--+⎪⎝⎭,∴当1t=时,S有最大值14. ··········································································6分(3)由1OA OB==,所以OAB△是等腰直角三角形,若在1L上存在点C,使得CPQ△是以Q为直角顶点的等腰直角三角形,则PQ QC=,所以OQ QC=,又1L x∥轴,则C,O两点关于直线L对称,所以1AC OA==,得(11)C,. ····································· 7 分下证90PQC∠=°.连CB,则四边形OACB是正方形.法一:(i)当点P在线段OB上,Q在线段AB上(Q与B C、不重合)时,如图–1.由对称性,得BCQ QOP QPO QOP∠=∠∠=∠,,∴180QPB QCB QPB QPO∠+∠=∠+∠=°,∴360()90PQC QPB QCB PBC∠=-∠+∠+∠=°°. ······································8分(ii)当点P在线段OB的延长线上,Q在线段AB上时,如图–2,如图–3∵12QPB QCB∠=∠∠=∠,,∴90PQC PBC∠=∠=°.·····················9分(iii)当点Q与点B重合时,显然90PQC∠=°.综合(i)(ii)(iii),90PQC∠=°.∴在1L上存在点(11)C,,使得CPQ△是以Q为直角顶点的等腰直角三角形.··········11 分L1法二:由1OA OB==,所以OAB△是等腰直角三角形,若在1L上存在点C,使得CPQ△是以Q为直角顶点的等腰直角三角形,则PQ QC=,所以OQ QC=,又1L x∥轴,则C,O两点关于直线L对称,所以1AC OA==,得(11)C,. ···································· 7 分延长MQ与1L交于点N.(i)如图–4,当点Q在线段AB上(Q与A B、不重合)时,∵四边形OACB是正方形,∴四边形OMNA和四边形MNCB都是矩形,AQN△和QBM△都是等腰直角三角形.∴90NC MB MQ NQ AN OM QNC QMB====∠=∠=,,°.又∵OM MP=,∴MP QN=,∴QNC QMP△≌△,∴MPQ NQC∠=∠,又∵90MQP MPQ∠+∠=°,∴90MQP NQC∠+∠=°.∴90CQP∠=°. ·····················································································8分(ii)当点Q与点B重合时,显然90PQC∠=°.····································9分(iii)Q在线段AB的延长线上时,如图–5,∵BCQ MPQ∠=∠,∠1=∠2∴90CQP CBM∠=∠=°综合(i)(ii)(iii),90PQC∠=°.∴在1L上存在点(11)C,,使得CPQ△是以Q为直角顶点的等腰直角三角形. ····· 11分L1L1知识改变命运法三:由1OA OB ==,所以OAB △是等腰直角三角形,若在1L 上存在点C ,使得CPQ △是以Q 为直角顶点的等腰直角三角形,则PQ QC =,所以OQ QC =,又1L x ∥轴,则C ,O 两点关于直线L 对称,所以1AC OA ==,得(11)C ,. ··················· 9分连PC ,∵|1|PB t =-,12OM t =,12tMQ =-, ∴22222(1)122PC PB BC t t t =+=-+=-+,2222222211222t t tOQ OP CQ OM MQ t ⎛⎫⎛⎫===+=+-=-+ ⎪ ⎪⎝⎭⎝⎭.∴222PC OP QC =+,∴90CQP ∠=°. ························································ 10分∴在1L 上存在点(11)C ,,使得CPQ △是以Q 为直角顶点的等腰直角三角形. ········ 11分薄雾浓云愁永昼, 瑞脑消金兽。

2009年广东省广州市中考数学试题及答案

页眉内容阅读使人充实,会谈使人敏捷,写作使人精确。

——培根2009年广州市初中毕业生学业考试数 学本试卷分选择题和非选择题两部分,共三大题25小题,共4页,满分150分.考试时间120分钟.第一部分 选择题(共30分)一、选择题(本大题共10小题,每小题3分,满分30分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.将图1所示的图案通过平移后可以得到的图案是( )2.如图2,AB CD ∥,直线l 分别与AB CD 、相交,若1130∠=°,则2∠=( ) A .40° B .50° C .130° D .140°3.实数a b 、在数轴上的位置如图3所示,则a 与b 的大小关系是( )A .a b <B .a b =C .a b > D.无法确定4.二次函数2(1)2y x =-+的最小值是( )A .2B .1C .1-D .2-5.图4是广州市某一天内的气温变化图,根据图4下列说法中错误的是( ) A .这一天中最高气温是24℃ B .这一天中最高气温与最低气温的差为C .这一天中2时至14D .这一天中只有14时至246.下列运算正确的是( )A .222()m n m n -=-B .221(m m -=C .224()m n mn =D .24()m 7.下列函数中,自变量x 的取值范围是3x ≥A .13y x =- B .y = C .3y x =- A . B . C . D .图1 A B C D 图21 2 图3 t )A .正十边形B .正八边形C .正六边形D .正五边形9.已知圆锥的底面半径为5cm ,侧面积为65πcm 2,设圆锥的母线与高的夹角为θ(如图5所示),则sin θ的值为( )A .512B .513C .1013D .121310.如图6,在A B C D 中,69AB AD ==,,BAD ∠的平分线交BC 于点E ,交DC 的延长线于点F ,BG AE ⊥,垂足为G,若BG =CEF △的周长为( )A .8B .9.5C .10D .11.5第二部分 非选择题(共120分)二、填空题(本大题共6小题,每小题3分,满分18分.)11.已知函数2y x=,当1x =时,y 的值是 . 12.在某校举行的“艺术节”的文艺演出比赛中,九位评委给其中一个表演节目现场打出的分数如下:9.3,8.9,9.3,9.1,8.9,8.8,9.3,9.5,9.3,则这组数据的众数是 .13.绝对值是6的数是 .14.已知命题“如果一个平行四边形的两条对角线互相垂直,那么这个平行四边形是菱形”,写出它的逆命题: .15.如图7-①,7-②,7-③,7-④,……是用围棋棋子按照某种规律摆成的一行“广”字,按照这种规律,第5个“广”字中的棋子个数是 ,第n 个“广”字中的棋子个数是 .16.如图8是由一些相同长方体的积木块搭成的几何体的三视图,则此几何体共由 块长方体的积木块搭成.θ图5A D G BC F E 图6 图7-① 图7-② 图7-③ 图7-④……正 视 图 左 视 图 俯 视 图三、解答题(本大题共9小题,满分102分.解答应写出文字说明、证明过程或演算步骤.)17.(本小题满分9分)如图9,在ABC △中,D E F 、、分别为边AB BC CA 、、的中点.证明:四边形DECF 是平行四边形.18.(本小题满分9分) 解方程:321x x =-.19.(本小题满分10分)先化简,再求值:((6)a a a a +--,其中12a =.20.(本小题满分10分)如图10,在O ⊙中,60ACB BDC ∠=∠=°,AC =.(1)求BAC ∠的度数;(2)求O ⊙的周长.A F C E DB 图9 D 图10有红、白、蓝三种颜色的小球各一个,它们除颜色外没有任何其他区别.现将3个小球放入编号为①、②、③的三个盒子里,规定每个盒子里放一个且只能放一个小球.(1)请用树状图或其它适当的形式列举出3个小球放入盒子的所有可能情况;(2)求红球恰好被放入②号盒子的概率.22.(本小题满分12分)如图11,在方格纸上建立平面直角坐标系,线段AB 的两个端点都在格点上,直线MN 经过坐标原点,且点M 的坐标是(1,2).(1)写出点A B 、的坐标;(2)求直线MN 所对应的函数关系式;(3)利用尺规作出线段AB 关于直线MN 的对称图形(保留作 图痕迹,不写作法).23.(本小题满分12分)为了拉动内需,广东启动“家电下乡”活动.某家电公司销售给农户的I 型冰箱和II 型冰箱在启动活动前一个月共售出960台,启动活动后的第一个月销售给农户的I 型冰箱和II 型冰箱的销售量分别比启动活动前一个月增长30%、25%,这两种型号的冰箱共售出1228台.(1)在启动活动前一个月,销售给农户的I 型冰箱和II 型冰箱分别为多少台?(2)若I 型冰箱每台价格是2298元,II 型冰箱每台价格是1999元.根据“家电下乡”的有关政策,政府按每台冰箱价格的13%给购买冰箱的农户补贴,问启动活动后的第一个月销售给农户的1228台I 型和II型冰箱,政府共补贴了多少元?(结果保留2个有效数字)图11如图12,边长为1的正方形ABCD 被两条与边平行的线段EF GH 、分割成四个小矩形,EF 与GH交于点P .(1)若AG AE =,证明:AF AH =; (2)若45FAH ∠=°,证明:AG AE FH +=;(3)若Rt GBF △的周长为1,求矩形EPHD 的面积.25.(本小题满分14分)如图13,二次函数2y x px q =++(0p <)的图象与x 轴交于A B 、两点,与y 轴交于点(01)C -,,ABC △的面积为54. (1)求该二次函数的关系式;(2)过y 轴上的一点(0)M m ,作y 轴的垂线,若该垂线与ABC △的外接圆有公共点,求m 的取值范围;(3)在该二次函数的图象上是否存在点D ,使四边形ACBD 为直角梯形?若存在,求出点D 的坐标;若不存在,请说明理由.A E D H G PB FC 图12 x2009年广州市初中毕业生学业考试数学试题参考答案 分.分.11.2 12.9.3 13.6±14.如果一个平行四边形是菱形,那么这个平行四边形的两条对角线互相垂直15.15;25n + 16.4三、解答题:本大题考查基础知识和基本运算,及数学能力,满分 102 分.17.本小题主要考查平行四边形的判定、中位线等基础知识,考查几何推理能力和空间观念.满分9分.证法 1:∵D F 、分别是边AB AC 、的中点,∴DF BC ∥.同理DE AC ∥.∴四边形DECF 是平行四边形.证法 2: ∵D F 、分别是边AB AC 、的中点,∴12DF BC ∥. ∵E 为BC 的中点,∴12EC BC =. ∴DF EC∥. ∴四边形DECF 是平行四边形.18.本小题主要考查分式方程等基本运算技能,考查基本的代数计算能力.满分 9 分.解:由原方程得3(1)2x x -=,即332x x -=,即323x x -=,∴ 3x =.检验:当 3x =时,120x -=≠∴ 3x =是原方程的根.19.本小题主要考查整式的运算、平方差公式等基础知识,考查基本的代数计算能力.满分10分.解:((6)a a a a +--23(6)a a a =---2236a a a =--+63a =-.将12a =代入63a -,得 163)3a -=-=.20.本小题主要考查圆、等边三角形等基础知识,考查计算能力、推理能力和空间观念.满分 10 分.解:(1)∵BC BC =,∴60BAC BDC ∠=∠=°.(2)∵60BAC ACB ∠=∠=°,∴60ABC ∠=°.∴ABC △是等边三角形.求O方法1:连结AO 并延长交BC 于点E ∵ABC △是等边三角形,∴圆心O 既是ABC △在Rt AEC△中 AC CE =,∴3cm AE ==. ∴22cm 3AO AE ==,,即O 的半径为2cm . 方法 2:连结OC OA 、,作OE AC ⊥交AC 于点E (如图 2)∵OA OC =,OE AC ⊥,∴CE EA =.∴1122AE AC ==⨯=. ∵2120AOC ABC ∠=∠=°,∴Rt AOE △中,AOE ∠=在Rt AOE △中,sin AOE ∠=∴sin 60AE OA=°,=. ∴2cm OA =,即O 的半径为2cm .方法3:连结OC OA 、,作OE AC ⊥交AC 于点E (如图 2).∵O 是等边三角形ABC 的外心,也是ABC △的角平分线的交点,∴113022OAE AE AC ∠===⨯=°,. 在Rt AEO △中,cos AE OAE OA ∠=,即cos30=°. =. ∴2cm OA =,即O 的半径为2cm .方法 4:连结OC OA 、,作OE AC ⊥交AC 于点E (如图2).∵O 是等边三角形的外心,也是ABC △的角平分线的交点,∴1130OAE AE AC ∠===⨯=°,. 20题(2)图1 20题(2)图2在Rt AEO △中,设cm OE x =,则2cm OA x =,∵222AE OE OA +=,∴222(2)x x +=. 解得1x =.∴2cm OA =,即O 的半径为2cm .∴ O 的周长为2πr ,即4πcm .21.本小题主要考查概率等基本的概念,考查.满分12 分.(1)解法1:可画树状图如下:共6种情况.解法2:3个小球分别放入编号为①、②、③的三个盒子的所有可能情况为:红白蓝、红蓝白、白红蓝、白蓝红、蓝红白、蓝白红共6 种.(2)解:从(1)可知,红球恰好放入 2 号盒子的可能结果有白红蓝、蓝红白共 2种,所以红球恰好放入2号盒子的概率2163P ==. 22.本小题主要考查图形的坐标、轴对称图形、尺规作图、一次函数等基础知识,考查用待定系数法求函数解析式的基本方法,以及从平面直角坐标系中读图获取有效信息的能力,满分12分.解:(1)(13)A -,,(42)B -,;(2)解法1:∵直线MN 经过坐标原点,∴设所求函数的关系式是y kx =,又点M 的坐标为(1,2),∴2k =.∴直线MN 所对应的函数关系式是2y x =.解法 2:设所求函数的关系式是y kx b =+则由题意得:0 2.b k b =⎧⎨+=⎩, 解这个方程组,得20.k b =⎧⎨=⎩, 蓝 白 白 蓝 红 蓝 红 红 蓝 白 白 红红 白蓝 ①号盒子 ②号盒子 ③号盒子∴直线MN 所对应的函数关系式是2y x =.(3)利用直尺和圆规,作线段AB 关于直线MN 的对称图形A B '',如图所示.23.本小题主要考查建立二元一次方程组模型解决简单实际问题的能力,考查基本的代数计算推理能力.满分12分.解:(1)设启动活动前的一个月销售给农户的 I 型冰箱和 II 型冰箱分别为x y ,台.根据题意得960(130%)(125%)1228.x y x y +=⎧⎨+++=⎩, 解得560400.x y =⎧⎨=⎩, ∴启动活动前的一个月销售给农户的 I 型冰箱和 II 型冰箱分别为560台和400台.(2)I 型冰箱政府补贴金额:2298560(130%)13%217482.72⨯⨯+⨯=元,II 型冰箱政府补贴金额:1999400(125%)13%129935⨯⨯+⨯=元.∴启动活动后第一个月两种型号的冰箱政府一共补贴金额:5217482.72129935347417.72 3.510+=⨯≈元.答:启动活动后第一个月两种型号的冰箱政府一共约补贴农户53.510⨯元.24.本小题主要考查正方形、矩形、三角形全等等基础知识,考查计算能力、推理能力和空间观念.满分14分.(1)证明1:在Rt ADH △与Rt ABF △中,∵AD AB DH AG AE BF ====,,∴Rt ADH △≌Rt ABF △.∴AF AH =.证明2:在Rt AEF △中,222AF AE EF =+.在Rt AGH △中,222AH AG GH =+∵AG AE GH EF ==,,∴AF AH =.(2)证明1:将ADH △绕点A 顺时针旋转90°到ABM △的位置.在AMF △与AHF △中,∵ AM AH AF AF ==,, 904545MAF MAH FAH FAH ∠=∠-∠=-==∠°°°,∴AMF AHF △≌△.∴MF HF =. ∵MF MB BF HD BF AG AE =+=+=+, ∴AG AE FH +=.证明2:延长CB 至点M ,使BM DH =,连结AM .EDH G A P∵AB AD BM DH ==,,∴Rt Rt ABM ADH △≌△.∴AM AH MAB HAD =∠=∠,.∵45FAH ∠=°,∴904545BAF DAH BAD FAH ∠+∠=∠-∠=-=°°°.∴45MAF MAB BAF HAD BAF FAH ∠=∠+∠=∠+∠==∠°.∴AMF AHF △≌△.∴MF FH =.∵MF MB BF HD BF AG AE =+=+=+,∴AG AE FH +=.(3)设BF x GB y ==,,则1FC x =-,1AG y =-.(0101x y <<<<,)在Rt GBF △中,22222GF BF BG x y =+=+.∵Rt GBF △的周长为1,∴1BF BG GF x y ++=+=.1()x y =-+.即22212()()x y x y x y +=-+++.整理得22210xy x y --+=. (*)求矩形EPHD 的面积给出以下两种方法:方法1:由(*)得212(1)x y x -=-. ① ∴矩形EPHD 的面积(1)(1)S PH EP FC AG x y ===--·· ②将①代入②得(1)(1)S x y =--21(1)12(1)x x x ⎡⎤-=--⎢⎥-⎣⎦1(1)2(1)x x -=-- 12=. ∴矩形EPHD 的面积是12. 方法2:由(*)得1()2x y xy +-=, ∴矩形EPHD 的面积(1)(1)S PHEP FC AG x y ===--··1()x y xy =-++112=-12=∴矩形EPHD 的面积是12. 25. 本小题主要考查二次函数、解直角三角形等基础知识,考查运算能力、推理能力和空间观念.满分14分.解:(1)设点1(0)A x ,,2(0)B x ,,其中12x x <. ∵抛物线2y x px q =++过点(01)C -,,∴2100P q -=+⨯+.∴1q =-.∴21y x px =+-.∵抛物线2y x px q =++与x 轴交于A B 、两点,∴12x x ,是方程210x px +-=的两个实根.求p 的值给出以下两种方法:方法1:由韦达定理得:12121x x p x x +=-=-,.∵ABC △的面积为54, ∴1524OC AB =·,即21151()24x x ⨯⨯-=. ∴2152x x -=. ∴22125()4x x -=. ∵22212112()()4x x x x x x -=+-,∴2211225()44x x x x +-=. ∴225()44p -+=. 解得32p =±. ∵0p <,∴32p =-. ∴所求二次函数的关系式为2312y x x =--. 方法2:由求根公式得1x =2x =21AB x x =-== ∵ABC △的面积为54, ∴1524OC AB =·,即21151()24x x ⨯⨯-=.∴15124⨯=. ∴22544p +=. 解得32p =±. ∵0p <,∴32p =-. ∴所求二次函数的关系式为2312y x x =--. (2)令23102x x --=,解得12122x x =-=,. ∴102A ⎛⎫- ⎪⎝⎭,,(20)B ,. 在Rt AOC △中,2222215AC AO OC ⎛⎫=+= ⎝在Rt BOC △中,222BC BO OC =+=∵15222AB ⎛⎫=--= ⎪⎝⎭, ∴22525544AC BC +=+==∴90ACB ∠=°.∴ABC △是直角三角形.∴Rt ABC △的外接圆的圆心是斜边AB 的中点.∴Rt ABC △的外接圆的半径524AB r ==.∵垂线与ABC △的外接圆有公共点, ∴5544m -≤≤. (3)假设在二次函数2312y x x =--的图象上存在点D ,使得四边形ACBD 是直角梯形. ①若AD BC ∥,设点D 的坐标为2000312x x x ⎛⎫-- ⎪⎝⎭,,00x >, 过D 作DE x ⊥轴,垂足为E ,如图1所示.求点D方法1:在Rttan DE DAE AE ∠==在Rt BOC △中,tan ∵DAE ∠=∴tan tan DAE CBO ∠=∠.∴20003112122x x x --=⎛⎫-- ⎪⎝⎭. 2004850x x --=.解得052x =或012x =-. ∵00x >,∴052x =,此时点D 的坐标为5322⎛⎫ ⎪⎝⎭,. 而2222454AD AE ED BC =+=≠,因此当AD BC ∥时在抛物线231y x x =--上存在点532D ⎛⎫ ⎪⎭,,使得四边形DACB 是直角梯形. 方法2:在Rt AED △与Rt BOC △中,DAE ∠∴Rt Rt AED BOC △∽△.∴DE OC AE OB=. x x∴20003112122x x x --=⎛⎫-- ⎪⎝⎭. 以下同方法1.②若AC BD ∥,设点D 的坐标为2000312x x x ⎛⎫-- ⎪⎝⎭,,00x <, 过D 作DF x ⊥轴,垂足为F ,如图2所示.在Rt DFB △中,2000312tan 2x x DE DBF FB x --∠==-, 在Rt COA △中,1tan 212OC CAO OA ∠===, ∵DBF CAO ∠=∠,∴tan tan DBF CAO ∠=∠. ∴200031222x x x --=-. 2002100x x +-=. 解得052x =-或02x =. ∵00x <, ∴052x =-,此时D 点的坐标为592⎛⎫- ⎪⎝⎭,. 此时BD AC ≠,因此当AC BD ∥时,在抛物线2312y x x =--上存在点592D ⎛⎫- ⎪⎝⎭,,使得四边形DACB 是直角梯形. 综上所述,在抛物线2312y x x =--上存在点D ,使得四边形DACB 是直角梯形,并且点D 的坐标为5322⎛⎫ ⎪⎝⎭,或592⎛⎫- ⎪⎝⎭,.卖炭翁白居易(唐) 字乐天号香山居士卖炭翁,伐薪烧炭南山中。

2009年---2014广东省中考数学试题及答案

2009年---2014广东省中考数学试题及答案C 2x (x+2)依题意可得:xy=9=OB·OC,又四边形ABCD为正方形,所以OC=OB=3所以有A(3,3),(1)因为四边形ABCD为菱形,所以BE//AD,AC//DE,故四边形ABCD为平行四边形,则有AB=AD=BC=CE=5, 所以BE=BC+CE=10,……1分AC=DE=6,……2分又OA=1/2AC=(1/2)6=3,AB=5,OA垂直于OB,所以在Rt三角形AOB中有AB2=OB2+OA2机密☆启用前2010年广东中考数学试题及答案说明:1.全卷共4页,考试用时100分钟,满分为120分.2.答卷前,考生务必用黑色字迹的签字笔或钢笔在答题卡填写自己的准考证号、姓名、试室号、座位号.用2B铅笔把对应该号码的标号涂黑.3.选择题每小题选出答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑,如需改动,用像皮檫干净后,再选涂其他答案,答案不能答在试题上.4.非选择题必须用黑色字迹钢笔或签字笔作答、答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新的答案;不准使用铅笔和涂改液.不按以上要求作答的答案无效.5.考生务必保持答题卡的整洁.考试结束时,将试卷和答题卡一并交回.一、选择题(本大题5小题,每小题3分,共15分)在每小题列出的四个选项中,只有一个是正确的,请把答题卡上对应题目所选的选项涂黑.1.-3的相反数是( )A .3B .31C .-3D .13- 2.下列运算正确的是( )A .ab b a 532=+B .()b a b a -=-422C .()()22b ab a b a -=-+D . ()222b a b a +=+ 3.如图,已知∠1=70°,如果CD ∥BE ,那么∠B 的度数为( )A.70°B.100°C.110°D.120°4.某学习小组7位同学,为玉树地震灾区捐款,捐款金额分别为5元、6元、6元、7元、8元、 9元,则这组数据的中位数与众数分别为()A.6,6B.7,6C. 7,8D.6,85. 左下图为主视方向的几何体,它的俯视图是()二、填空题(本大题5小题,每小题4分,共20分)请将下列各题的正确答案填写在答题卡相应的位置上.6.根据新网上海6月1日电:世博会开园一个月来,客流平稳,累计到当晚19时,参观者已超过8000000人次,试用科学记数法表示8000000= .7.分式方程112=+x x 的解x = .8.如图,已知R t △ABC 中,斜边BC 上的高AD =4,cosB =54,则AC = .9.某市2007年、2009年商品房每平方米平均价格分别为4000元、5760元,假设2007年后的两年内,商品房每平方米平均价格的年增长率都为x ,试列出关于x 的方程: .10.如图(1),已知小正方形ABCD 的面积为1,把它的各边延长一倍得到新正方形A 1B 1C 1D 1;把正方形A 1B 1C 1D 1边长按原法延长一倍得到新正方形A 2B 2C 2D 2(如图(2));以此下去…,则正方形A 4B 4C 4D 4的面积为 .三、解答题(一)(本大题5小题,每小题6分,共30分)11.计算:()001260cos 2214π-+-⎪⎭⎫ ⎝⎛+-.12. 先化简,再求值()x x x x x 224422+÷+++ ,其中 x = 2 .13. 如图,方格纸中的每个小方格都是边长为1个单位长度的正方形,R t △ABC 的顶点均在格点上,在建立平面直角坐标系以后,点A 的坐标为(-6,1),点B 的坐标为(-3,1),点C 的坐标为(-3,3).(1)将R t △ABC 沿X 轴正方向平移5个单位得到R t △A 1B 1C 1,试在图上画出R t △A 1B 1C 1的图形,并写出点A 1的坐标。

2009年广州市初中毕业生学业考试

2009年广州市初中毕业生学业考试数学试题参考答案一、选择题:本题考查基础知识和基本运算,每小题3分,满分30分.二、填空题:本题考查基础知识和基本运算,每小题3分,满分18分. 11. 2 12. 9.3 13. 6±14. 如果一个平行四边形是菱形,那么这个平行四边形的两条对角线互相垂直 15. 15;25n + 16. 4三、解答题:本大题考查基础知识和基本运算,及数学能力,满分102分.17.本小题主要考查平行四边形的判定、中位线等基础知识,考查几何推理能力和空间观念.满分9分. 证法1:D F 、分别是边AB AC 、的中点,∴//DF BC . 同理//DE AC . ∴四边形DECF 是平行四边形. 证法2:D F 、分别是边AB AC 、的中点,∴1//2DF BC . E 为BC 的中点,∴12EC BC =.∴//DF EC . ∴四边形DECF 是平行四边形.18.本小题主要考查分式方程等基本运算技能,考查基本的代数计算能力.满分9分. 解:由原方程得3(1)2x x -=,即332x x -=,即323x x -=, ∴ 3.x = 检验:当x = 3时,120x -=≠. ∴3x =是原方程的根.19.本小题主要考查整式的运算、平方差公式等基础知识,考查基本的代数计算能力.满分10分.解: (()6a a a a --=23(6)a a a --- =2236a a a --+ =63a -.将12a =代入63a -,得:163632a -=-)=20.本小题主要考查圆、等边三角形等基础知识,考查计算能力、推理能力和空间观念.满分10分.解:(1) BCBC = , ∴60BAC BDC ∠=∠=. (2)60BAC ACB ∠=∠=, ∴60ABC ∠=.∴ABC ∆是等边三角形.求O 的半径给出以下四种方法:方法1:连结AO 并延长交BC 于点E (如图1). ∵ABC ∆是等边三角形,∴圆心O 既是ABC ∆的外心又是重心,还是垂心. 在Rt AEC ∆中AC =,CE =,∴3cm AE =.∴22cm 3AO AE ==,即O 的半径为2cm . 方法2:连结OC 、OA ,作OE AC ⊥交AC 于点E (如图2).,,OA OC OE AC =⊥∴CE EA =.∴1122AE AC ==⨯=. ∵2120,AOC ABC OE AC ∠=∠=⊥, ∴Rt AOE ∆中60AOE ∠=. 在Rt AOE ∆中,sin AEAOE OA∠=, ∴sin 60AE OA =,即2OA=.∴2cm OA =,即O 的半径为2cm . 方法3:连结OC 、OA ,作OE AC ⊥交AC 于点E (如图2).O 是等边三角形ABC 的外心,也是ABC ∆的角平分线的交点,∴30OAE ∠=,1122AE AC ==⨯=. 在Rt AEO ∆中,cos AE OAE OA ∠=,即cos30=. 20题(2)图220题(2)图1=∴2cmOA=,即O的半径为2cm.方法4:连结OC、OA,作OE AC⊥交AC于点E(如图2).O是等边三角形的外心,也是ABC∆的角平分线的交点,∴30OAE∠= ,1122AE AC==⨯=.在Rt AEO∆中,设cmOE x=,则2cmOA x=,∵222AE OE OA+=.∴222(2)x x+=.解得1x=.∴2cmOA=,即O的半径为2cm.∴O的周长为2rπ,即4cmπ.21.本小题主要考查概率等基本的概念,考查.满分12分.(1)解法1:可画树状图如下:共6种情况.解法2:3个小球分别放入编号为①、②、③的三个盒子的所有可能情况为:红白蓝、红蓝白、白红蓝、白蓝红、蓝红白、蓝白红共6种.(2)解:从(1)可知,红球恰好放入2号盒子的可能结果有白红蓝、蓝红白共2种,所以红球恰好放入2号盒子的概率2163P==.22. 本小题主要考查图形的坐标、轴对称图形、尺规作图、一次函数等基础知识,考查用待定系数法求函数解析式的基本方法,以及从平面直角坐标系中读图获取有效信息的能力,满分12分.解:(1)(1,3)A-,(4,2)B-;(2)解法1:∵直线MN经过坐标原点,∴设所求函数的关系式是y kx=,又点M的坐标为(1,2),∴2k=,∴直线MN所对应的函数关系式是2y x=.解法2:设所求函数的关系式是y kx b =+, 则由题意得:0,2.b k b =⎧⎨+=⎩ 解这个方程组,得2,0.k b =⎧⎨=⎩∴直线MN 所对应的函数关系式是2y x =. (3)利用直尺和圆规,作线段AB 关于直线MN 的对称图形A B '',如图所示.23.本小题主要考查建立二元一次方程组模型解决简单实际问题的能力,考查基本的代数计算推理能力.满分12分. 解:(1)设启动活动前的一个月销售给农户的I 型冰箱和II 型冰箱分别为x 、y 台. 根据题意得960,(130%)(125%)1228.x y x y +=⎧⎨+++=⎩解得560,400.x y =⎧⎨=⎩∴启动活动前的一个月销售给农户的I 型冰箱和II 型冰箱分别为560台和400台. (2)I 型冰箱政府补贴金额:2298560(130%)13%217482.72⨯⨯+⨯=元,II 型冰箱政府补贴金额:1999400(125%)13%129935⨯⨯+⨯=元. ∴启动活动后第一个月两种型号的冰箱政府一共补贴金额:5217482.72129935347417.72 3.510+=≈⨯元答:启动活动后第一个月两种型号的冰箱政府一共约补贴农户53.510⨯元.24. 本小题主要考查正方形、矩形、三角形全等等基础知识,考查计算能力、推理能力和空间观念.满分14分.(1)证明1:在Rt ADH ∆与Rt ABF ∆中, ∵AD AB =,DH AG AE BF ===, ∴Rt ADH ∆≌Rt ABF ∆.∴AF AH =.证明2:在Rt AEF ∆中,222AF AE EF =+.在Rt AGH ∆中,222AH AG GH =+. ∵AG AE =,GH EF =,∴AF AH =. (2)证明1:将ADH ∆绕点A 顺时针旋转90到ABM ∆的位置. 在AMF ∆与AHF ∆中, ∵AM AH =,AF AF =,904545MAF MAH FAH FAH ∠=∠-∠=-==∠ , ∴AMF ∆≌AHF ∆. ∴MF HF =.∵MF MB BF HD BF AG AE =+=+=+,∴AG AE FH +=.证明2:延长CB 至点M ,使BM DH =,连结AM . 在Rt ABM ∆与Rt ADH ∆中, ∵AB AD =,BM DH =,∴Rt ABM ∆≌Rt ADH ∆. ∴AM AH =,MAB HAD ∠=∠. ∵45FAH ∠=,∴904545BAF DAH BAD FAH ∠+∠=∠-∠=-=.∴45MAF MAB BAF HAD BAF FAH ∠=∠+∠=∠+∠==∠. ∴AMF ∆≌AHF ∆. ∴MF FH =.∵MF MB BF HD BF AG AE =+=+=+,∴AG AE FH +=. (3)设BF x =,GB y =,则1FC x =-,1AG y =-.(01,01x y <<<<) 在Rt GBF ∆中,22222GF BF BG x y =+=+. ∵Rt GBF ∆的周长为1,∴1BF BG GF x y ++=+=.1()x y =-+.即22212()()x y x y x y +=-+++.整理得22210xy x y --+=. (*) 求矩形EPHD 的面积给出以下两种方法: 方法1:由(*)得212(1)x y x -=-. ①∴矩形EPHD 的面积(1)(1)S PH EP FC AG x y ===-- ② 将①代入②得(1)(1)S x y =--21(1)12(1)x x x ⎡⎤-=--⎢⎥-⎣⎦1(1)2(1)x x -=--12=. ∴矩形EPHD 的面积是12. 方法2:由(*)得1()2x y xy +-=,∴矩形EPHD 的面积(1)(1)S PH EP FC AG x y ===--=1()x y xy -++ =112-=12∴矩形EPHD 的面积是12.25. 本小题主要考查二次函数、解直角三角形等基础知识,考查运算能力、推理能力和空间观念.满分14分.解:(1)设点()(),0,,0,21x B x A 其中21x x <.∵抛物线q px x y ++=2过点()1,0-C , ∴q p +⨯+=-0012.∴1-=q . ∴12-+=px x y .∵ 抛物线q px x y ++=2与x 轴交于A 、B 两点, ∴ 21,x x 是方程012=-+px x 的两个实根. 求p 的值给出以下两种方法:方法1:由韦达定理得:1,2121-=-=+x x p x x . ∵ABC ∆的面积为45, ∴4521=⋅⋅AB OC ,即()4512112=-⨯⨯x x . ∴2512=-x x .∴()425212=-x x .∵()()212122124x x x x x x -+=-,∴()425421212=-+x x x x . ∴()42542=+-p . 解得23±=p . ∵0<p . ∴23-=p . ∴所求二次函数的关系式为1232--=x x y .方法2:由求根公式得12x x ==21AB x x =-==.∵ABC ∆的面积为45, ∴4521=⋅⋅AB OC ,即()4512112=-⨯⨯x x .∴15124⨯=. ∴22544p +=.解得23±=p .∵0<p . ∴23-=p . ∴所求二次函数的关系式为1232--=x x y . (2)令01232=--x x ,解得,211-=x 22=x .∴()0,2,0,21B A ⎪⎭⎫⎝⎛-. 在R t △AOC 中,4512122222=+⎪⎭⎫⎝⎛=+=OC AO AC ,在R t △BOC 中,51222222=+=+=OC BO BC , ∵25212=⎪⎭⎫ ⎝⎛--=AB , ∴222425545AB BC AC ==+=+. ∴︒=∠90ACB .∴ABC ∆是直角三角形.∴Rt ABC ∆的外接圆的圆心是斜边AB 的中点. ∴Rt ABC ∆的外接圆的半径524AB r ==. ∵垂线与ABC ∆的外接圆有公共点,∴5544m -≤≤. (3)假设在二次函数2312y x x =--的图象上存在点D ,使得四边形ACBD 是直角梯形.① 若BC AD //,设点D 的坐标为20003,12x x x ⎛⎫-- ⎪⎝⎭,00>x ,25题(2)图过D 作⊥DE x 轴,垂足为E , 如图1所示. 求点D 的坐标给出以下两种方法: 方法1:在R t △AED 中,2000312tan 12x x DE DAE AE x --∠==⎛⎫-- ⎪⎝⎭, 在R t △BOC 中,1tan 2OC CBO OB ∠==, ∵DAE CBO ∠=∠,∴tan tan DAE CBO ∠=∠.∴20003112122x x x --=⎛⎫-- ⎪⎝⎭.2004850x x --=.解得=0x 52或=0x 12-. ∵00>x , ∴=0x 52,此时点D 的坐标为53,22⎛⎫ ⎪⎝⎭. 而2222454AD AE ED BC =+=≠,因此当BC AD //时在抛物线2312y x x =--上存在点D 53,22⎛⎫⎪⎝⎭,使得四边形DACB 是直角梯形. 方法2:在R t △AED 与R t △BOC 中,DAE CBO ∠=∠, ∴R t △AED ∽ R t △BOC . ∴DE OCAE OB=. ∴20003112122x x x --=⎛⎫-- ⎪⎝⎭.以下同方法1.② 若BD AC //,设点D 的坐标为20003,12x x x ⎛⎫-- ⎪⎝⎭,00<x , 过D 作⊥DF x 轴,垂足为F , 如图2所示,………5分在R t △DFB 中,2000312tan 2x x DFDBF FBx --∠==-, 25题(3)图125题(3)图2在R t △COA 中,1tan 212OC CAO OA ∠===, ∵DBF CAO ∠=∠,∴tan tan DBF CAO ∠=∠.∴200031222x x x --=-. 2002100x x +-=.解得=0x 52-或=0x 2. ∵00<x , ∴=0x 52-,此时点D 的坐标为5,92⎛⎫- ⎪⎝⎭. 此时BD AC ≠,因此当BD AC //时,在抛物线2312y x x =--上存在点D 5,92⎛⎫- ⎪⎝⎭,使得四边形DACB 是直角梯形.综上所述,在抛物线1232--=x x y 上存在点D ,使得四边形DACB 是直角梯形,并且点D 的坐标为⎪⎭⎫ ⎝⎛23,25或5,92⎛⎫- ⎪⎝⎭.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第18题图Q P
O E D C B A 第17题图图2
足球乒乓球20%
篮球40%
排球
第19题图
C 2
C 1A 2
B 2
B 1
O 1
O
A 1
D
C
B
A
C OBB 1C C B A 1112009年广东省初中毕业生学业考试 数 学
四、解答题(二)
16. 某种电脑病毒传播非常快,如果一台电脑被感染,经过两轮被感染后就会有81台电脑被感染.请你用学过的知识分析,每轮感染中平均一台电脑会感染几台电脑?若病毒得不到有效控制,3轮感染后,被感染的电脑会不会超过700台?
17. 某中学学生会为了解该校学生喜欢球类活动的情况,采取抽样调查地方法,从足球、乒乓球、篮球、排球等四个方面调查了若干名学生的兴趣爱好,并将调查的结果绘制成如下的两幅不完整的统计图(如图1、图2,要求每位同学只能选择一种自己喜欢的球类;图中用乒乓球、足球、排球、篮球代表喜欢这四种球类中的某一种球类的学生人数),请你根据图中提供的信息解答下列问题:
(1)在这次研究中,一共调查了多少位学生?
(2)喜欢排球的人数在扇形统计图中所占的圆心角是多少度? (3)补全频数分布折线统计图.
18. 在菱形ABCD 中,对角线AC 与BD 相交于点O ,AB=5,AC=6.过D点作DE ∥AC 交BC的延长线于点E. (1)求△BDE 的周长;
(2)点P为线段BC 上的点,
连接PO 并延长交AD 于点Q.求证:BP=DQ.
19. 如图所示,在矩形ABCD 中,AB=12,AC=20,两条对角线相交于点O.以OB 、OC 为邻边作第1个平行四边形C OBB 1,对角线相交于点1A ;再以C A B A
111、为邻边作第2个平行四边形C C B A 111,对角线相交于点1O ;再以1111C O B O 、为 邻边作第3个平行四边形1211C B B O ……依此类推. (1)求矩形ABCD 的面积; (2)求第1个平行四边形 、第2个
平行四边形
和第6个平行四边形的面积.
第22题图N M
D
C B A 第20题图图2图1
A
五、解答题(三)(本大题3小题,每小题9分,共27分)
20.(1)如图1,圆内接△ABC 中,AB=BC=CA ,OD 、OE 为⊙O 的半径,OD ⊥BC 于点F ,OE ⊥AC
于点G ,求证:阴影部分四边形OFCG 的面积是△ABC 的面积的3
1
.
(2)如图2,若∠DOE 保持120°角度不变,求证:当∠DOE 绕着O 点旋转时,由两条半径和△
ABC 的两条边围成的图形(图中阴影部分)面积始终是△ABC 的面积的31
.
21. 小明用下面的方法求出方程032=-x 的解,请你仿照他的方法求出下面另外两个方程的
22. 正方形ABCD 边长为4,M 、N 分别是BC 、CD 上的两个动点,当M 点在BC 上运动时,保持AM 和MN 垂直,
(1)证明:Rt △ABM ∽Rt △MCN ;
(2)设BM=x ,梯形ABCN 的面积为y ,求y 与x 之间的函数关系式;当M 点运动到什么位置时,
四边形ABCN 的面积最大,并求出最大面积; (3)当M 点运动到什么位置时Rt △ABM ∽Rt △AMN , 求此时x 的值.。

相关文档
最新文档