苏科版泰州市重点中学2017年中考适应性考试数学试题及答案(二)

合集下载

2017年江苏省泰州市中考数学真题试卷

2017年江苏省泰州市中考数学真题试卷

2017年江苏省泰州市中考数学试卷一、选择题:本大题共6个小题,每小题3分,共18分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(3分)2的算术平方根是()A.B.C.D.22.(3分)下列运算正确的是()A.a3•a3=2a6B.a3+a3=2a6C.(a3)2=a6D.a6•a2=a33.(3分)把下列英文字母看成图形,既是轴对称图形又是中心对称图形的是()A.B.C. D.4.(3分)三角形的重心是()A.三角形三条边上中线的交点B.三角形三条边上高线的交点C.三角形三条边垂直平分线的交点D.三角形三条内角平分线的交点5.(3分)某科普小组有5名成员,身高分别为(单位:cm):160,165,170,163,167.增加1名身高为165cm的成员后,现科普小组成员的身高与原来相比,下列说法正确的是()A.平均数不变,方差不变B.平均数不变,方差变大C.平均数不变,方差变小D.平均数变小,方差不变6.(3分)如图,P为反比例函数y=(k>0)在第一象限内图象上的一点,过点P分别作x轴,y轴的垂线交一次函数y=﹣x﹣4的图象于点A、B.若∠AOB=135°,则k的值是()A.2 B.4 C.6 D.8二、填空题(每题3分,满分30分,将答案填在答题纸上)7.(3分)|﹣4|=.8.(3分)天宫二号在太空绕地球一周大约飞行42500千米,将42500用科学记数法表示为.9.(3分)已知2m﹣3n=﹣4,则代数式m(n﹣4)﹣n(m﹣6)的值为.10.(3分)“一只不透明的袋子共装有3个小球,它们的标号分别为1,2,3,从中摸出1个小球,标号为“4”,这个事件是.(填“必然事件”、“不可能事件”或“随机事件”)11.(3分)将一副三角板如图叠放,则图中∠α的度数为.12.(3分)扇形的半径为3cm,弧长为2πcm,则该扇形的面积为cm2.13.(3分)方程2x2+3x﹣1=0的两个根为x1、x2,则+的值等于.14.(3分)小明沿着坡度i为1:的直路向上走了50m,则小明沿垂直方向升高了m.15.(3分)如图,在平面直角坐标系xOy中,点A、B、P的坐标分别为(1,0),(2,5),(4,2).若点C在第一象限内,且横坐标、纵坐标均为整数,P是△ABC的外心,则点C的坐标为.16.(3分)如图,在平面内,线段AB=6,P为线段AB上的动点,三角形纸片CDE的边CD所在的直线与线段AB垂直相交于点P,且满足PC=PA.若点P沿AB 方向从点A运动到点B,则点E运动的路径长为.三、解答题(本大题共10小题,共102分.解答应写出文字说明、证明过程或演算步骤.)17.(12分)(1)计算:(﹣1)0﹣(﹣)﹣2+tan30°;(2)解方程:+=1.18.(8分)“泰微课”是学生自主学习的平台,某初级中学共有1200名学生,每人每周学习的数学泰微课都在6至30个之间(含6和30),为进一步了解该校学生每周学习数学泰微课的情况,从三个年级随机抽取了部分学生的相关学习数据,并整理、绘制成统计图如下:根据以上信息完成下列问题:(1)补全条形统计图;(2)估计该校全体学生中每周学习数学泰微课在16至30个之间(含16和30)的人数.19.(8分)在学校组织的朗诵比赛中,甲、乙两名学生以抽签的方式从3篇不同的文章中抽取一篇参加比赛,抽签规则是:在3个相同的标签上分别标注字母A、B、C,各代表1篇文章,一名学生随机抽取一个标签后放回,另一名学生再随机抽取.用画树状图或列表的方法列出所有等可能的结果,并求甲、乙抽中同一篇文章的概率.20.(8分)如图,△ABC中,∠ACB>∠ABC.(1)用直尺和圆规在∠ACB的内部作射线CM,使∠ACM=∠ABC(不要求写作法,保留作图痕迹);(2)若(1)中的射线CM交AB于点D,AB=9,AC=6,求AD的长.21.(10分)平面直角坐标系xOy中,点P的坐标为(m+1,m﹣1).(1)试判断点P是否在一次函数y=x﹣2的图象上,并说明理由;(2)如图,一次函数y=﹣x+3的图象与x轴、y轴分别相交于点A、B,若点P 在△AOB的内部,求m的取值范围.22.(10分)如图,正方形ABCD中,G为BC边上一点,BE⊥AG于E,DF⊥AG 于F,连接DE.(1)求证:△ABE≌△DAF;(2)若AF=1,四边形ABED的面积为6,求EF的长.23.(10分)怡然美食店的A、B两种菜品,每份成本均为14元,售价分别为20元、18元,这两种菜品每天的营业额共为1120元,总利润为280元.(1)该店每天卖出这两种菜品共多少份?(2)该店为了增加利润,准备降低A种菜品的售价,同时提高B种菜品的售价,售卖时发现,A种菜品售价每降0.5元可多卖1份;B种菜品售价每提高0.5元就少卖1份,如果这两种菜品每天销售总份数不变,那么这两种菜品一天的总利润最多是多少?24.(10分)如图,⊙O的直径AB=12cm,C为AB延长线上一点,CP与⊙O相切于点P,过点B作弦BD∥CP,连接PD.(1)求证:点P为的中点;(2)若∠C=∠D,求四边形BCPD的面积.25.(12分)阅读理解:如图①,图形l外一点P与图形l上各点连接的所有线段中,若线段PA1最短,则线段PA1的长度称为点P到图形l的距离.例如:图②中,线段P1A的长度是点P1到线段AB的距离;线段P2H的长度是点P2到线段AB的距离.解决问题:如图③,平面直角坐标系xOy中,点A、B的坐标分别为(8,4),(12,7),点P从原点O出发,以每秒1个单位长度的速度向x轴正方向运动了t秒.(1)当t=4时,求点P到线段AB的距离;(2)t为何值时,点P到线段AB的距离为5?(3)t满足什么条件时,点P到线段AB的距离不超过6?(直接写出此小题的结果)26.(14分)平面直角坐标系xOy中,点A、B的横坐标分别为a、a+2,二次函数y=﹣x2+(m﹣2)x+2m的图象经过点A、B,且a、m满足2a﹣m=d(d为常数).(1)若一次函数y1=kx+b的图象经过A、B两点.①当a=1、d=﹣1时,求k的值;②若y1随x的增大而减小,求d的取值范围;(2)当d=﹣4且a≠﹣2、a≠﹣4时,判断直线AB与x轴的位置关系,并说明理由;(3)点A、B的位置随着a的变化而变化,设点A、B运动的路线与y轴分别相交于点C、D,线段CD的长度会发生变化吗?如果不变,求出CD的长;如果变化,请说明理由.2017年江苏省泰州市中考数学试卷参考答案与试题解析一、选择题:本大题共6个小题,每小题3分,共18分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(3分)(2017•泰州)2的算术平方根是()A.B.C.D.2【分析】根据算术平方根的定义直接解答即可.【解答】解:2的算术平方根是,故选B.【点评】本题考查的是算术平方根的定义,即一个数正的平方根叫这个数的算术平方根.2.(3分)(2017•泰州)下列运算正确的是()A.a3•a3=2a6B.a3+a3=2a6C.(a3)2=a6D.a6•a2=a3【分析】分别利用同底数幂的乘除运算法则以及幂的乘方运算、合并同类项法则判断得出答案.【解答】解:A、a3•a3=a6,故此选项错误;B、a3+a3=2a3,故此选项错误;C、(a3)2=a6,正确;D、a6•a2=a8,故此选项错误.故选:C.【点评】此题主要考查了同底数幂的乘除运算以及幂的乘方运算、合并同类项等知识,正确掌握运算法则是解题关键.3.(3分)(2017•泰州)把下列英文字母看成图形,既是轴对称图形又是中心对称图形的是()A.B.C. D.【分析】根据轴对称图形和中心对称图形的概念对各选项分析判断即可得解.【解答】解:A、是轴对称图形,不是中心对称图形,故本选项错误;B、既不是轴对称图形,又不是中心对称图形,故本选项错误;C、既是轴对称图形又是中心对称图形,故本选项正确;D、不是轴对称图形,是中心对称图形,故本选项错误.故选C.【点评】本题考查了中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.4.(3分)(2017•泰州)三角形的重心是()A.三角形三条边上中线的交点B.三角形三条边上高线的交点C.三角形三条边垂直平分线的交点D.三角形三条内角平分线的交点【分析】根据三角形的重心是三条中线的交点解答.【解答】解:三角形的重心是三条中线的交点,故选:A.【点评】本题考查了三角形重心的定义.掌握三角形的重心是三条中线的交点是解题的关键.5.(3分)(2017•泰州)某科普小组有5名成员,身高分别为(单位:cm):160,165,170,163,167.增加1名身高为165cm的成员后,现科普小组成员的身高与原来相比,下列说法正确的是()A.平均数不变,方差不变B.平均数不变,方差变大C.平均数不变,方差变小D.平均数变小,方差不变【分析】根据平均数的意义、方差的意义,可得答案.【解答】解:==165,S2=,原==165,S2=,平均数不变,方差变小,故选:C.【点评】本题考查了方差,利用方差的定义是解题关键.6.(3分)(2017•泰州)如图,P为反比例函数y=(k>0)在第一象限内图象上的一点,过点P分别作x轴,y轴的垂线交一次函数y=﹣x﹣4的图象于点A、B.若∠AOB=135°,则k的值是()A.2 B.4 C.6 D.8【分析】方法1、作BF⊥x轴,OE⊥AB,CQ⊥AP,易证△BOE∽△AOD,根据相似三角形对应边比例相等的性质即可求出k的值.方法2、先求出OG,OC,再判断出△BOG∽△OAC,得出=,再利用等腰直角三角形的性质得出BG,AC即可得出结论.【解答】解:方法1、作BF⊥x轴,OE⊥AB,CQ⊥AP;设P点坐标(n,),∵直线AB函数式为y=﹣x﹣4,PB⊥y轴,PA⊥x轴,∴C(0,﹣4),G(﹣4,0),∴OC=OG,∴∠OGC=∠OCG=45°∵PB∥OG,PA∥OC,∴∠PBA=∠OGC=45°,∠PAB=∠OCG=45°,∴PA=PB,∵P点坐标(n,),∴OD=CQ=n,∴AD=AQ+DQ=n+4;∵当x=0时,y=﹣x﹣4=﹣4,∴OC=DQ=4,GE=OE=OC=;同理可证:BG=BF=PD=,∴BE=BG+EG=+;∵∠AOB=135°,∴∠OBE+∠OAE=45°,∵∠DAO+∠OAE=45°,∴∠DAO=∠OBE,∵在△BOE和△AOD中,,∴△BOE∽△AOD;∴=,即=;整理得:nk+2n2=8n+2n2,化简得:k=8;故选D.方法2、如图1,过B作BF⊥x轴于F,过点A作AD⊥y轴于D,∵直线AB函数式为y=﹣x﹣4,PB⊥y轴,PA⊥x轴,∴C(0,﹣4),G(﹣4,0),∴OC=OG,∴∠OGC=∠OCG=45°∵PB∥OG,PA∥OC,∴∠PBA=∠OGC=45°,∠PAB=∠OCG=45°,∴PA=PB,∵P点坐标(n,),∴A(n,﹣n﹣4),B(4﹣)∴AD=AQ+DQ=n+4;∵当x=0时,y=﹣x﹣4=﹣4,∴OC=4,当y=0时,x=﹣4.∴OG=4,∵∠AOB=135°,∴∠BOG+∠AOC=45°,∵直线AB的解析式为y=﹣x﹣4,∴∠AGO=∠OCG=45°,∴∠BGO=∠OCA,∠BOG+∠OBG=45°,∴∠OBG=∠AOC,∴△BOG∽△OAC,∴=,∴=,在等腰Rt△BFG中,BG=BF=,在等腰Rt△ACD中,AC=AD=n,∴,∴k=8,故选D.【点评】本题主要考查了相似三角形的判定与性质及反比例函数图象上点的坐标特征,解题的关键是正确作出辅助线,构造相似三角形.二、填空题(每题3分,满分30分,将答案填在答题纸上)7.(3分)(2017•泰州)|﹣4|=4.【分析】因为﹣4<0,由绝对值的性质,可得|﹣4|的值.【解答】解:|﹣4|=4.【点评】本题考查绝对值的化简,正数的绝对值是其本身,负数的绝对值是它的相反数,0的绝对值是0.8.(3分)(2017•泰州)天宫二号在太空绕地球一周大约飞行42500千米,将42500用科学记数法表示为 4.25×104.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值≥1时,n是非负数;当原数的绝对值<1时,n 是负数.【解答】解:将42500用科学记数法表示为:4.25×104.故答案为:4.25×104.【点评】此题考查了科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.9.(3分)(2017•泰州)已知2m﹣3n=﹣4,则代数式m(n﹣4)﹣n(m﹣6)的值为8.【分析】先将原式化简,然后将2m﹣3n=﹣4代入即可求出答案.【解答】解:当2m﹣3n=﹣4时,∴原式=mn﹣4m﹣mn+6n=﹣4m+6n=﹣2(2m﹣3n)=﹣2×(﹣4)=8故答案为:8【点评】本题考查整式的运算,解题的关键是熟练运用整式的运算,本题属于基础题型.10.(3分)(2017•泰州)“一只不透明的袋子共装有3个小球,它们的标号分别为1,2,3,从中摸出1个小球,标号为“4”,这个事件是不可能事件.(填“必然事件”、“不可能事件”或“随机事件”)【分析】根据必然事件、不可能事件、随机事件的概念进行判断即可.【解答】解:∵袋子中3个小球的标号分别为1、2、3,没有标号为4的球,∴从中摸出1个小球,标号为“4”,这个事件是不可能事件,故答案为:不可能事件.【点评】本题考查的是必然事件、不可能事件、随机事件的概念.必然事件指在一定条件下一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件.不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.11.(3分)(2017•泰州)将一副三角板如图叠放,则图中∠α的度数为15°.【分析】根据三角形的外角的性质计算即可.【解答】解:由三角形的外角的性质可知,∠α=60°﹣45°=15°,故答案为:15°.【点评】本题考查的是三角形的外角的性质,掌握三角形的一个外角等于和它不相邻的两个内角的和是解题的关键.12.(3分)(2017•泰州)扇形的半径为3cm,弧长为2πcm,则该扇形的面积为3πcm2.【分析】先用弧长公式求出扇形的圆心角的度数,然后用扇形的面积公式求出扇形的面积.【解答】解:设扇形的圆心角为n,则:2π=,得:n=120°.==3πcm2.∴S扇形故答案为:3π.【点评】本题考查的是扇形面积的计算,根据题意先求出扇形的圆心角的度数,再计算扇形的面积.13.(3分)(2017•泰州)方程2x2+3x﹣1=0的两个根为x1、x2,则+的值等于3.【分析】先根据根与系数的关系得到x1+x2=﹣,x1x2=﹣,再通分得到+=,然后利用整体代入的方法计算.【解答】解:根据题意得x1+x2=﹣,x1x2=﹣,所以+===3.故答案为3.【点评】本题考查了根与系数的关系:若x1,x2是一元二次方程ax2+bx+c=0(a ≠0)的两根时,x1+x2=﹣,x1x2=.14.(3分)(2017•泰州)小明沿着坡度i为1:的直路向上走了50m,则小明沿垂直方向升高了25m.【分析】首先根据题意画出图形,由坡度为1:,可求得坡角∠A=30°,又由小明沿着坡度为1:的山坡向上走了50m,根据直角三角形中,30°所对的直角边是斜边的一半,即可求得答案.【解答】解:如图,过点B作BE⊥AC于点E,∵坡度:i=1:,∴tan∠A=1:=,∴∠A=30°,∵AB=50m,∴BE=AB=25(m).∴他升高了25m.故答案为:25.【点评】此题考查了坡度坡角问题.此题比较简单,注意能构造直角三角形并用解直角三角形的知识求解是解此题的关键,注意数形结合思想的应用.15.(3分)(2017•泰州)如图,在平面直角坐标系xOy中,点A、B、P的坐标分别为(1,0),(2,5),(4,2).若点C在第一象限内,且横坐标、纵坐标均为整数,P是△ABC的外心,则点C的坐标为(7,4)或(6,5)或(1,4).【分析】由勾股定理求出PA=PB==,由点C在第一象限内,且横坐标、纵坐标均为整数,P是△ABC的外心,得出PC=PA=PB=,即可得出点C 的坐标.【解答】解:∵点A、B、P的坐标分别为(1,0),(2,5),(4,2).∴PA=PB==,∵点C在第一象限内,且横坐标、纵坐标均为整数,P是△ABC的外心,∴PC=PA=PB==,则点C的坐标为(7,4)或(6,5)或(1,4);故答案为:(7,4)或(6,5)或(1,4).【点评】本题考查了三角形的外接圆、坐标与图形性质、勾股定理;熟练掌握勾股定理是解决问题的关键.16.(3分)(2017•泰州)如图,在平面内,线段AB=6,P为线段AB上的动点,三角形纸片CDE的边CD所在的直线与线段AB垂直相交于点P,且满足PC=PA.若点P沿AB方向从点A运动到点B,则点E运动的路径长为6.【分析】如图,由题意可知点C运动的路径为线段AC′,点E运动的路径为EE′,由平移的性质可知AC′=EE′,求出AC′即可解决问题.【解答】解:如图,由题意可知点C运动的路径为线段AC′,点E运动的路径为EE′,由平移的性质可知AC′=EE′,在Rt△ABC′中,易知AB=BC′=6,∠ABC′=90°,∴EE′=AC′==6,故答案为6.【点评】主要考查轨迹、平移变换、勾股定理等知识,解题的关键是学会用转化的思想思考问题,属于中考填空题中的压轴题.三、解答题(本大题共10小题,共102分.解答应写出文字说明、证明过程或演算步骤.)17.(12分)(2017•泰州)(1)计算:(﹣1)0﹣(﹣)﹣2+tan30°;(2)解方程:+=1.【分析】(1)原式利用零指数幂、负整数指数幂法则,以及特殊角的三角函数值计算即可得到结果;(2)分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.【解答】解:(1)原式=1﹣4+1=﹣2;(2)去分母得:x2+2x+1﹣4=x2﹣1,解得:x=1,经检验x=1是增根,分式方程无解.【点评】此题考查了解分式方程,以及实数的运算,熟练掌握运算法则是解本题的关键.18.(8分)(2017•泰州)“泰微课”是学生自主学习的平台,某初级中学共有1200名学生,每人每周学习的数学泰微课都在6至30个之间(含6和30),为进一步了解该校学生每周学习数学泰微课的情况,从三个年级随机抽取了部分学生的相关学习数据,并整理、绘制成统计图如下:根据以上信息完成下列问题:(1)补全条形统计图;(2)估计该校全体学生中每周学习数学泰微课在16至30个之间(含16和30)的人数.【分析】(1)求得16﹣20的频数即可补全条形统计图;(2)用样本估计总体即可;【解答】解:(1)观察统计图知:6﹣10个的有6人,占10%,∴总人数为6÷10%=60人,∴16﹣20的有60﹣6﹣6﹣24﹣12=12人,∴条形统计图为:(2)该校全体学生中每周学习数学泰微课在16至30个之间的有1200×=960人.【点评】本题考查了条形统计图及用样本估计总体的知识,解题的关键是认真读两种统计图,并从统计图中整理出进一步解题的信息,难度不大.19.(8分)(2017•泰州)在学校组织的朗诵比赛中,甲、乙两名学生以抽签的方式从3篇不同的文章中抽取一篇参加比赛,抽签规则是:在3个相同的标签上分别标注字母A、B、C,各代表1篇文章,一名学生随机抽取一个标签后放回,另一名学生再随机抽取.用画树状图或列表的方法列出所有等可能的结果,并求甲、乙抽中同一篇文章的概率.【分析】首先根据题意画出树状图,然后由树状图求得所有等可能的结果与甲、乙抽中同一篇文章的结果,再利用概率公式求解即可求得答案.【解答】解:如图:所有可能的结果有9种,甲、乙抽中同一篇文章的情况有3种,概率为=.【点评】本题主要考查了用列表法或画树状图法求概率.列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件,树状图法适合两步或两步以上完成的事件.注意概率=所求情况数与总情况数之比.20.(8分)(2017•泰州)如图,△ABC中,∠ACB>∠ABC.(1)用直尺和圆规在∠ACB的内部作射线CM,使∠ACM=∠ABC(不要求写作法,保留作图痕迹);(2)若(1)中的射线CM交AB于点D,AB=9,AC=6,求AD的长.【分析】(1)根据尺规作图的方法,以AC为一边,在∠ACB的内部作∠ACM=∠ABC即可;(2)根据△ACD与△ABC相似,运用相似三角形的对应边成比例进行计算即可.【解答】解:(1)如图所示,射线CM即为所求;(2)∵∠ACD=∠ABC,∠CAD=∠BAC,∴△ACD∽△ABC,∴=,即=,∴AD=4.【点评】本题主要考查了基本作图以及相似三角形的判定与性质的运用,解题时注意:两角对应相等的两个三角形相似;相似三角形的对应边成比例.21.(10分)(2017•泰州)平面直角坐标系xOy中,点P的坐标为(m+1,m﹣1).(1)试判断点P是否在一次函数y=x﹣2的图象上,并说明理由;(2)如图,一次函数y=﹣x+3的图象与x轴、y轴分别相交于点A、B,若点P 在△AOB的内部,求m的取值范围.【分析】(1)要判断点(m+1,m﹣1)是否的函数图象上,只要把这个点的坐标代入函数解析式,观察等式是否成立即可.(2)根据题意得出0<m+1<6,0<m﹣1<3,m﹣1<﹣(m+1)+3,解不等式组即可求得.【解答】解:(1)∵当x=m+1时,y=m+1﹣2=m﹣1,∴点P(m+1,m﹣1)在函数y=x﹣2图象上.(2)∵函数y=﹣x+3,∴A(6,0),B(0,3),∵点P在△AOB的内部,∴0<m+1<6,0<m﹣1<3,m﹣1<﹣(m+1)+3∴1<m<.【点评】本题考查了一次函数图象上点的坐标特征,一次函数的性质,图象上的点的坐标适合解析式.22.(10分)(2017•泰州)如图,正方形ABCD中,G为BC边上一点,BE⊥AG 于E,DF⊥AG于F,连接DE.(1)求证:△ABE≌△DAF;(2)若AF=1,四边形ABED的面积为6,求EF的长.【分析】(1)由∠BAE+∠DAF=90°,∠DAF+∠ADF=90°,推出∠BAE=∠ADF,即可根据AAS证明△ABE≌△DAF;(2)设EF=x,则AE=DF=x+1,根据四边形ABED的面积为6,列出方程即可解决问题;【解答】证明:(1)∵四边形ABCD是正方形,∴AB=AD,∵DF⊥AG,BE⊥AG,∴∠BAE+∠DAF=90°,∠DAF+∠ADF=90°,∴∠BAE=∠ADF,在△ABE和△DAF中,,∴△ABE≌△DAF(AAS).(2)设EF=x,则AE=DF=x+1,由题意2××(x+1)×1+×x×(x+1)=6,解得x=2或﹣5(舍弃),∴EF=2.【点评】本题考查正方形的性质、全等三角形的判定和性质、勾股定理等知识,解题的关键是正确寻找全等三角形解决问题,学会利用参数构建方程,属于中考常考题型.23.(10分)(2017•泰州)怡然美食店的A、B两种菜品,每份成本均为14元,售价分别为20元、18元,这两种菜品每天的营业额共为1120元,总利润为280元.(1)该店每天卖出这两种菜品共多少份?(2)该店为了增加利润,准备降低A种菜品的售价,同时提高B种菜品的售价,售卖时发现,A种菜品售价每降0.5元可多卖1份;B种菜品售价每提高0.5元就少卖1份,如果这两种菜品每天销售总份数不变,那么这两种菜品一天的总利润最多是多少?【分析】(1)由A种菜和B种菜每天的营业额为1120和总利润为280建立方程组即可;(2)设出A种菜多卖出a份,则B种菜少卖出a份,最后建立利润与A种菜多卖出的份数的函数关系式即可得出结论.【解答】解:(1)设该店每天卖出A、B两种菜品分别为x、y份,根据题意得,,解得:,答:该店每天卖出这两种菜品共60份;(2)设A种菜品售价降0.5a元,即每天卖(20+a)份;总利润为w元因为两种菜品每天销售总份数不变,所以B种菜品卖(40﹣a)份每份售价提高0.5a元.w=(20﹣14﹣0.5a)(20+a)+(18﹣14+0.5a)(40﹣a)=(6﹣0.5a)(20+a)+(4+0.5a)(40﹣a)=(﹣0.5a2﹣4a+120)+(﹣0.5a2+16a+160)=﹣a2+12a+280=﹣(a﹣6)2+316当a=6,w最大,w=316答:这两种菜品每天的总利润最多是316元.【点评】此题主要考查的是二元一次方程组和二次函数的应用,解本题的关键是正确理解题意,找出题目中的等量关系,再列出方程组或函数关系式,最后计算出价格变化后每天的总利润.24.(10分)(2017•泰州)如图,⊙O的直径AB=12cm,C为AB延长线上一点,CP与⊙O相切于点P,过点B作弦BD∥CP,连接PD.(1)求证:点P为的中点;(2)若∠C=∠D,求四边形BCPD的面积.【分析】(1)连接OP,根据切线的性质得到PC⊥OP,根据平行线的性质得到BD⊥OP,根据垂径定理即可得到结论;(2)根据圆周角定理得到∠POB=2∠D,根据三角形的内角和得到∠C=30°,推出四边形BCPD是平行四边形,于是得到结论.【解答】(1)证明:连接OP,∵CP与⊙O相切于点P,∴PC⊥OP,∵BD∥CP,∴BD⊥OP,∴=,∴点P为的中点;(2)解:∵∠C=∠D,∵∠POB=2∠D,∴∠POB=2∠C,∵∠CPO=90°,∴∠C=30°,∵BD∥CP,∴∠C=∠DBA,∴∠D=∠DBA,∴BC∥PD,∴四边形BCPD是平行四边形,∵PO=AB=6,∴PC=6,∵∠ABD=∠C=30°,∴OE=OB=3,∴PE=3,∴四边形BCPD的面积=PC•PE=6×3=18.【点评】本题考查了切线的性质,垂径定理,平行四边形的判定和性质,解直角三角形,正确的作出辅助线是解题的关键.25.(12分)(2017•泰州)阅读理解:如图①,图形l外一点P与图形l上各点连接的所有线段中,若线段PA1最短,则线段PA1的长度称为点P到图形l的距离.例如:图②中,线段P1A的长度是点P1到线段AB的距离;线段P2H的长度是点P2到线段AB的距离.解决问题:如图③,平面直角坐标系xOy中,点A、B的坐标分别为(8,4),(12,7),点P从原点O出发,以每秒1个单位长度的速度向x轴正方向运动了t秒.(1)当t=4时,求点P到线段AB的距离;(2)t为何值时,点P到线段AB的距离为5?(3)t满足什么条件时,点P到线段AB的距离不超过6?(直接写出此小题的结果)【分析】(1)作AC⊥x轴,由PC=4、AC=4,根据勾股定理求解可得;(2)作BD∥x轴,分点P在AC左侧和右侧两种情况求解,P位于AC左侧时,根据勾股定理即可得;P位于AC右侧时,作AP2⊥AB,交x轴于点P2,证△ACP2≌△BEA得AP2=BA=5,从而知P2C=AE=3,继而可得答案;(3)分点P在AC左侧和右侧两种情况求解,P位于AC左侧时,根据勾股定理即可得;点P位于AC右侧且P3M=6时,作P2N⊥P3M于点N,知四边形AP2NM 是矩形,证△ACP2∽△P2NP3得=,求得P2P3的长即可得出答案.【解答】解:(1)如图1,作AC⊥x轴于点C,则AC=4、OC=8,当t=4时,OP=4,∴PC=4,∴点P到线段AB的距离PA===4;(2)如图2,过点B作BD∥x轴,交y轴于点E,①当点P位于AC左侧时,∵AC=4、P1A=5,∴P1C===3,∴OP1=5,即t=5;②当点P位于AC右侧时,过点A作AP2⊥AB,交x轴于点P2,∴∠CAP2+∠EAB=90°,∵BD∥x轴、AC⊥x轴,∴CE⊥BD,∴∠ACP2=∠BEA=90°,∴∠EAB+∠ABE=90°,∴∠ABE=∠P2AC,在△ACP2和△BEA中,∵,∴△ACP2≌△BEA(ASA),∴AP2=BA===5,而此时P2C=AE=3,∴OP2=11,即t=11;(3)如图3,①当点P位于AC左侧,且AP3=6时,则P3C===2,∴OP3=OC﹣P3C=8﹣2;②当点P位于AC右侧,且P3M=6时,过点P2作P2N⊥P3M于点N,则四边形AP2NM是矩形,∴∠AP2N=90°,∠ACP2=∠P2NP3=90°,AP2=MN=5,∴△ACP2∽△P2NP3,且NP3=1,∴=,即=,∴P2P3=,∴OP3=OC+CP2+P2P3=8+3+=,∴当8﹣2≤t≤时,点P到线段AB的距离不超过6.【点评】本题主要考查一次函数的综合问题,理解题意掌握点到线段的距离概念及分类讨论思想的运用、矩形的判定与性质、相似三角形的判定与性质是解题的关键.26.(14分)(2017•泰州)平面直角坐标系xOy中,点A、B的横坐标分别为a、a+2,二次函数y=﹣x2+(m﹣2)x+2m的图象经过点A、B,且a、m满足2a﹣m=d(d为常数).(1)若一次函数y1=kx+b的图象经过A、B两点.①当a=1、d=﹣1时,求k的值;②若y1随x的增大而减小,求d的取值范围;(2)当d=﹣4且a≠﹣2、a≠﹣4时,判断直线AB与x轴的位置关系,并说明理由;(3)点A、B的位置随着a的变化而变化,设点A、B运动的路线与y轴分别相交于点C、D,线段CD的长度会发生变化吗?如果不变,求出CD的长;如果变化,请说明理由.【分析】(1)①当a=1、d=﹣1时,m=2a﹣d=3,于是得到抛物线的解析式,然后求得点A和点B的坐标,最后将点A和点B的坐标代入直线AB的解析式求得k的值即可;②将x=a,x=a+2代入抛物线的解析式可求得点A和点B的纵坐标,然后依据y1随着x的增大而减小,可得到﹣(a﹣m)(a+2)>﹣(a+2﹣m)(a+4),结合已知条件2a﹣m=d,可求得d的取值范围;(2)由d=﹣4可得到m=2a+4,则抛物线的解析式为y=﹣x2+(2a+2)x+4a+8,然后将x=a、x=a+2代入抛物线的解析式可求得点A和点B的纵坐标,最后依据点A和点B的纵坐标可判断出AB与x轴的位置关系;(3)先求得点A和点B的坐标,于是得到点A和点B运动的路线与字母a的函数关系式,则点C(0,﹣2d),D(0,﹣4d﹣8),于是可得到CD的长度.【解答】解:(1)①当a=1、d=﹣1时,m=2a﹣d=3,所以二次函数的表达式是y=﹣x2+x+6.∵a=1,∴点A的横坐标为1,点B的横坐标为3,把x=1代入抛物线的解析式得:y=6,把x=3代入抛物线的解析式得:y=0,∴A(1,6),B(3,0).将点A和点B的坐标代入直线的解析式得:,解得:,所以k的值为﹣3.②∵y=﹣x2+(m﹣2)x+2m=﹣(x﹣m)(x+2),∴当x=a时,y=﹣(a﹣m)(a+2);当x=a+2时,y=﹣(a+2﹣4)(a+4),∵y1随着x的增大而减小,且a<a+2,∴﹣(a﹣m)(a+2)>﹣(a+2﹣m)(a+4),解得:2a﹣m>﹣4,又∵2a﹣m=d,∴d的取值范围为d>﹣4.(2)∵d=﹣4且a≠﹣2、a≠﹣4,2a﹣m=d,∴m=2a+4.∴二次函数的关系式为y=﹣x2+(2a+2)x+4a+8.把x=a代入抛物线的解析式得:y=a2+6a+8.把x=a+2代入抛物线的解析式得:y=a2+6a+8.∴A(a,a2+6a+8)、B(a+2,a2+6a+8).∵点A、点B的纵坐标相同,∴AB∥x轴.(3)线段CD的长度不变.∵y=﹣x2+(m﹣2)x+2m过点A、点B,2a﹣m=d,∴y=﹣x2+(2a﹣d﹣2)x+2(2a﹣d).∴y A=﹣a2+(2﹣d)a﹣2d,y B=a2+(2﹣d)a﹣4d﹣8.∴点C(0,﹣2d),D(0,﹣4d﹣8).∴DC=|﹣2d﹣(﹣4d﹣8)|=|2d+8|.∵d为常数,∴线段CD的长度不变.【点评】本题主要考查的是二次函数的综合应用,解答本题主要应用了待定系数法求二次函数的解析式,求得点A和点B的坐标是解题的关键.2017年湖北省黄石市中考数学试卷一、选择题1.(3分)下列各数是有理数的是()A.﹣ B.C.D.π2.(3分)地球绕太阳公转的速度约为110000km/h,则110000用科学记数法可表示为()A.0.11×106B.1.1×105C.0.11×105D.1.1×1063.(3分)下列图形中既是轴对称图形,又是中心对称图形的是()A.B.C.D.。

江苏省泰州市数学中考二模试卷

江苏省泰州市数学中考二模试卷

江苏省泰州市数学中考二模试卷姓名:________ 班级:________ 成绩:________一、选择题 (共10题;共20分)1. (2分)的相反数是()A .B . 3C . ﹣3D .2. (2分)(2017·西安模拟) 下列计算正确的是()A . a2+a2=a4B . a8÷a2=a4C . (﹣a)2﹣a2=0D . a2•a3=a63. (2分)(2017·宝坻模拟) 移动互联网已经全面进入人们的日常生活,全国用户总数量超过3.87亿人,将3.87亿用科学记数法表示应为()A . 0.387×109B . 3.87×108C . 38.7×107D . 387×1064. (2分)如图,电路图上有四个开关A、B、C、D和一个小灯泡,闭合开关D或同时闭合开关A、B、C都可使小灯泡发光,则任意闭合其中两个开关,小灯泡发光的概率是()A .B .C .D .5. (2分)(2016·苏州) 已知点A(2,y1)、B(4,y2)都在反比例函数y= (k<0)的图象上,则y1、y2的大小关系为()A . y1>y2B . y1<y2C . y1=y2D . 无法确定6. (2分)(2020·旌阳模拟) 已知圆锥的高为,母线为,且,圆锥的侧面展开图为如图所示的扇形.将扇形沿折叠,使A点恰好落在上的F点,则弧长与圆锥的底面周长的比值为()A .B .C .D .7. (2分) (2015九上·汶上期末) 如图,AB是⊙O的直径,C、D是⊙O上一点,∠CDB=20°,过点C作⊙O 的切线交AB的延长线于点E,则∠E等于()A . 40°B . 50°C . 60°D . 70°8. (2分) (2018九上·宜阳期末) 在Rt△ABC中,∠C=90°,tanB= ,BC=2 ,则AC等于()A . 4B . 4C . 3D . 69. (2分)如图,矩形ABCD中,点E,F,G,H分别在边AB,BC,CD,DA上,点P在矩形ABCD内.若AB=4cm,BC=6cm,AE=CG=3cm,BF=DH=4cm,四边形AEPH的面积为5cm2 ,则四边形PFCG的面积为()A . 5cm2B . 6cm2C . 7cm2D . 8cm210. (2分)(2016·湖州) 如图1,在等腰三角形ABC中,AB=AC=4,BC=7.如图2,在底边BC上取一点D,连结AD,使得∠DAC=∠ACD.如图3,将△ACD沿着AD所在直线折叠,使得点C落在点E处,连结BE,得到四边形ABED.则BE的长是()A . 4B .C . 3D . 2二、填空题 (共8题;共12分)11. (1分) (2017八上·深圳月考) 在函数中,自变量x的取值范围是________12. (1分)(2016·绍兴) 分解因式:a3﹣9a=________.13. (1分)(2012·扬州) 已知2a﹣3b2=5,则10﹣2a+3b2的值是________14. (1分)若抛物线y=x2﹣6x+m与x轴没有交点,则m的取值范围是________.15. (1分)(2017·萍乡模拟) 如图,在矩形ABCD中,AB= ,AD=1,把该矩形绕点A顺时针旋转α度得矩形AB′C′D′,点C′落在AB的延长线上,则图中阴影部分的面积是________.16. (1分)抛物线y=ax2+bx+c向左平移3个单位,再向上平移2个单位得y=x2+2x+3,则a=________,b=________,c=________.17. (1分)如图三个反比例函数,,在x轴上方的图象,由此观察得到的大小关系为________18. (5分)(2020·南宁模拟) 如图,在菱形ABCD中,对角线AC,BD交于点O,∠ABC=60°,AB=2,分别以点A、点C为圆心,以AO的长为半径画弧分别与菱形的边相交,则图中阴影部分的面积为________.(结果保留π)三、解答题 (共10题;共69分)19. (5分) (2019七上·海口月考) 计算:(1)(2)(3)(4)(5)(6)a3·a3(7) (x3)5(8) (-2x2y3)3(9) (x-y)6÷(x-y)3(10) a2b(ab-4b2)(11)(2a-3b)(2a+5b)20. (5分)(2020·皇姑模拟) 先化简再求值:( +1)÷ ,其中a是方程a2+a=0的一个根.21. (5分) (2019七下·雨花期末) 阅读理解:例解不等式:.解:把不等式进行整理,得:,即,则有:① ;② .解不等式组①得:;解不等式②得:.所以原不等式的解集为或.请根据以上解不等式的思想方法解不等式:.22. (5分)(2019·黄埔模拟) 某商店订购了A,B两种商品,A商品28元千克,B商品24元千克,若B商品的数量比A商品的2倍少20千克,购进两种商品共用了2560元,求两种商品各多少千克?23. (10分)(2017·武汉模拟) 如图,直线y=﹣x+b与反比例函数的图象相交于点A(a,3),且与x轴相交于点B.(1)求a、b的值;(2)若点P在x轴上,且△AOP的面积是△AOB的面积的,求点P的坐标.24. (2分)(2017·个旧模拟) 某中学现要从两位男生和两位女生中,选派两位同学分别作为1号选手和2号选手代表学校参加汉字听写大赛.(1)请用树形图或列表法列举出所有可能选派的结果;(2)求恰好选派一男一女两位同学参赛的概率.25. (10分) (2019九上·成都开学考) 如图 1,在第四象限的矩形 ABCD,点 A 与坐标原点 O 重合,且 AB=4,AD=3.点 Q 从 B点出发以每秒 1 个单位长度的速度沿B→C→D 运动,当点 Q 到达点 D 时,点 Q 停止运动,设点 Q 运动的时间为 t 秒.(1)请直接写出图 1 中,点 C 的坐标,并求出直线 OC 的表达式;(2)求△ACQ 的面积 S 关于 t 的函数关系式,并写出 t 的取值范围;(3)如图 2,当点 Q 开始运动时,点 P 从 C 点出发以每秒 2 个单位长度的速度运动向点 A运动,当点 P 到达 A 点时点 Q 和点 P 同时停止运动,当△QCP 与△ABC 相似时,求出相应的 t 值.26. (2分)(2017·和平模拟) 如图,AB是⊙O的直径,点C在⊙O上,∠ABC的平分线与AC相交于点D,与⊙O过点A的切线相交于点E.(1)∠ACB=________°,理由是:________;(2)猜想△EAD的形状,并证明你的猜想;(3)若AB=8,AD=6,求BD.27. (10分)(2018·潮南模拟) 正方形ABCD的边长为6cm,点E,M分别是线段BD,AD上的动点,连接AE 并延长,交边BC于F,过M作MN⊥AF,垂足为H,交边AB于点N.(1)如图①,若点M与点D重合,求证:AF=MN;(2)如图②,若点M从点D出发,以1cm/s的速度沿DA向点A运动,同时点E从点B出发,以 cm/s的速度沿BD向点D运动,运动时间为ts.①设BF=ycm,求y关于t的函数表达式;②当BN=2AN时,连接FN,求FN的长.28. (15分)如图1,正方形ABCD和正方形AEFG,连接DG,BE.(1)发现:当正方形AEFG绕点A旋转,如图2,①线段DG与BE之间的数量关系是________;②直线DG与直线BE之间的位置关系是________.(2)探究:如图3,若四边形ABCD与四边形AEFG都为矩形,且AD=2AB,AG=2AE,证明:直线DG⊥BE.(3)应用:在(2)情况下,连结GE(点E在AB上方),若GE∥AB,且AB=,AE=1,则线段DG是多少?(直接写出结论)参考答案一、选择题 (共10题;共20分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、二、填空题 (共8题;共12分)11-1、12-1、13-1、14-1、15-1、16-1、17-1、18-1、三、解答题 (共10题;共69分)19-1、19-2、19-3、19-4、19-5、19-6、19-7、19-8、19-9、19-10、19-11、20-1、21-1、22-1、23-1、23-2、24-1、24-2、25-1、25-2、25-3、26-1、26-2、26-3、27-1、28-1、28-2、28-3、。

2017年江苏省泰州市泰兴市济川中学中考数学二模试卷(解析版)

2017年江苏省泰州市泰兴市济川中学中考数学二模试卷(解析版)

2017年江苏省泰州市泰兴市济川中学中考数学二模试卷一、选择题(共6小题,每小题3分,满分18分)1.(3分)﹣2017的倒数是()A.2017B.﹣2017C.D.﹣2.(3分)下列计算正确的是()A.4a﹣3a=1B.a6÷a3=a2C.2a2•a=2a3D.3a+2b=5ab 3.(3分)我国传统文化中的“福禄寿喜”图(如图)由四个图案构成.这四个图案中既是轴对称图形,又是中心对称图形的是()A.B.C.D.4.(3分)下面四个几何体中,主视图与其它几何体的主视图不同的是()A.B.C.D.5.(3分)在学校举办的“中华诗词大赛”中,有11名选手进入决赛,他们的决赛成绩各不相同,其中一名参赛选手想知道自己是否能进入前6名,他需要了解这11名学生成绩的()A.中位数B.平均数C.众数D.方差6.(3分)甲、乙两人在直线跑道上同起点、同终点、同方向匀速运动600米,先到终点的人在终点处休息.已知甲先出发2秒.在运动过程中,甲、乙两人的距离y(米)与乙出发的时间t(秒)之间的关系如图所示,则下列结论正确的是()A.b=200,c=150B.b=192,c=150C.b=200,c=148D.b=192,c=148二、填空题(本大题共有10小题,每小题3分,共30分.请把答案直接填写在答题卡相应位置上)7.(3分)使代数式有意义的x的取值范围是.8.(3分)分解因式:a3﹣4a=.9.(3分)共享单车为人们带来了极大便利,有效缓解了出行“最后一公里”问题,而且经济环保.2016年全国共享单车用户数量达18860 000,将18860 000用科学记数法表示应为.10.(3分)一个多边形的内角和是外角和的2倍,则这个多边形的边数为.11.(3分)若2m﹣n=1,则多项式5n﹣10m+1的值是.12.(3分)某工厂甲、乙两名工人参加操作技能培训,现分别从他们在培训期间参加若干次测试成绩中随机抽取8次,计算得两人的平均成绩都是85分,方差分别是S甲2=35.5,S乙2=41,从操作技能稳定的角度考虑,选派参加比赛.13.(3分)一个圆锥的底面圆的直径为6cm,高为4cm,则它的侧面积为cm2(结果保留π).14.(3分)已知反比例函数y=(k是常数,k≠0)的图象在第二、四象限,点A(x1,y1)和点B(x2,y2)在函数的图象上,当x1<x2<0时,可得y1y2.(填“>”、“=”、“<”).15.(3分)如图,点G是△ABC的重心,连结AG并延长交BC于点D,过点G作EF∥AB 交BC于E,交AC于F.若AB=12,那么EF=.16.(3分)如图,边长为4的正方形ABCD中,点E、F分别在线段AB、CD上,AE=CF =1,O为EF的中点,动点G、H分别在线段AD、BC上,EF与GH的交点P在O、F 之间(与O、F不重合),且∠GPE=45°.设AG=m,则m的取值范围为.三、解答题(本大题共有10题,计102分.请在答题卡指定区域内作答,解答时应写出必要的文字说明、证明过程或演算步骤)17.(12分)(1)计算:(﹣1)﹣2+|2﹣|+2cos30°;(2)先化简,再求值:(1﹣)÷,其中x=+1.18.(8分)小亮与小明做投骰子(质地均匀的正方体)的实验与游戏.(1)在实验中他们共做了50次试验,试验结果如下:①填空:此次实验中,“1点朝上”的频率是;②小亮说:“根据实验,出现1点朝上的概率最大.”他的说法正确吗?为什么?(2)在游戏时两人约定:每次同时掷两枚骰子,如果两枚骰子的点数之和超过6,则小亮获胜,否则小明获胜.则小亮与小明谁获胜的可能性大?试说明理由.19.(8分)某校全体学生积极参加校团委组织的“献爱心捐款”活动,为了解捐款情况,随机抽取了部分学生并对他们的捐款情况作了统计,绘制了两幅不完整的统计图(统计图中每组含最小值,不含最大值).请依据图中信息解答下列问题:(1)求随机抽取的学生人数.(2)填空:(直接填答案)①“20元~25元”部分对应的圆心角度数为.②捐款的中位数落在(填金额范围).(3)若该校共有学生3500人,请估算全校捐款不少于20元的人数.20.(8分)为了加强公民的节水意识,某市采用价格调控手段来引导市民节约用水:每户居民每月用水不超过6立方米时,每立方米按基本价格收费;每月用水超过6立方米时,超过的部分要加价收费.该市某户居民今年4、5月份的用水量和水费如右表所示:求该市居民用水的两种收费价格.21.(10分)已知,如图,E、F是四边形ABCD的对角线AC上的两点,AF=CE,DF=BE,DF∥BE.(1)求证:△AFD≌△CEB;(2)四边形ABCD是平行四边形吗?请说明理由.22.(10分)某校兴趣小组想测量一座大楼AB的高度.如图,大楼前有一段斜坡BC,已知BC的长为12米,它的坡度i=1:.在离C点40米的D处,用测角仪测得大楼顶端A的仰角为37°,测角仪DE的高为1.5米,求大楼AB的高度约为多少米?(结果精确到0.1米)(参考数据:sin37°≈0.60,cos37°≈0.80,tan37°≈0.75,≈1.73.)23.(10分)如图,在平面直角坐标系中,直线AB与y轴相交于点A(0,﹣2),与反比例函数在第一象限内的图象相交于点B(m,2),△AOB的面积为4.(1)求该反比例函数和直线AB的函数关系式;(2)求sin∠OBA的值.24.(10分)如图,在矩形ABCD中,点O在对角线AC上,以OA的长为半径的圆O与AD交于点E,且∠ACB=∠DCE.(1)求证:CE是⊙O的切线;(2)若AB=3,BC=4,求⊙O的半径.25.(12分)如图,在Rt△ABC中,∠A=90°,AB=AC=2cm,将△ABC折叠,使点B 落在射线CA上点D处,折痕为PQ.(1)当点D与点A重合时,求PQ长;(2)当点D与C、A不重合时,设AD=xcm,AP=ycm.①求y与x的函数关系式,并写出x的取值范围;②当重叠部分为等腰三角形时,请直接写出x的值.26.(14分)如图,已知抛物线y=ax2+4(a≠0)与x轴交于点A和点B(2,0),与y轴交于点C,点D是抛物线在y轴右侧的一动点,线段AD、直线BD分别交y轴于点F、E,设点D的横坐标为m.(1)求抛物线的表达式;(2)当0<m<2时,求证:tan∠DAB+tan∠DBA为定值;(3)若△DBF为直角三角形,求m的值.2017年江苏省泰州市泰兴市济川中学中考数学二模试卷参考答案与试题解析一、选择题(共6小题,每小题3分,满分18分)1.(3分)﹣2017的倒数是()A.2017B.﹣2017C.D.﹣【解答】解:﹣2017的倒数是﹣,故选:D.2.(3分)下列计算正确的是()A.4a﹣3a=1B.a6÷a3=a2C.2a2•a=2a3D.3a+2b=5ab【解答】解:A.4a﹣3a=a,所以A错误;B.a6÷a3=a3,所以B错误;C.2a2•a=2a3,所以C正确;D.3a与2b不是同类项,不能合并,所以D错误;故选:C.3.(3分)我国传统文化中的“福禄寿喜”图(如图)由四个图案构成.这四个图案中既是轴对称图形,又是中心对称图形的是()A.B.C.D.【解答】解:A、不是轴对称图形,也不是中心对称图形.故错误;B、是轴对称图形,也是中心对称图形.故正确;C、是轴对称图形,不是中心对称图形.故错误;D、不是轴对称图形,也不是中心对称图形.故错误.故选:B.4.(3分)下面四个几何体中,主视图与其它几何体的主视图不同的是()A.B.C.D.【解答】解:A、主视图为长方形;B、主视图为长方形;C、主视图为两个相邻的三角形;D、主视图为长方形;故选:C.5.(3分)在学校举办的“中华诗词大赛”中,有11名选手进入决赛,他们的决赛成绩各不相同,其中一名参赛选手想知道自己是否能进入前6名,他需要了解这11名学生成绩的()A.中位数B.平均数C.众数D.方差【解答】解:由于总共有11个人,且他们的分数互不相同,第6的成绩是中位数,要判断是否进入前6名,故应知道中位数的多少.故选:A.6.(3分)甲、乙两人在直线跑道上同起点、同终点、同方向匀速运动600米,先到终点的人在终点处休息.已知甲先出发2秒.在运动过程中,甲、乙两人的距离y(米)与乙出发的时间t(秒)之间的关系如图所示,则下列结论正确的是()A.b=200,c=150B.b=192,c=150C.b=200,c=148D.b=192,c=148【解答】解:由图象,得甲的速度为:8÷2=4米/秒,乙走完全程时甲乙相距的路程为:b=600﹣4(100+2)=192,乙走完全程甲还需要192÷4=48秒,所以c=148秒,故选:D.二、填空题(本大题共有10小题,每小题3分,共30分.请把答案直接填写在答题卡相应位置上)7.(3分)使代数式有意义的x的取值范围是x≠2.【解答】解:要使代数式有意义,则x﹣2≠0,x≠2.故答案为x≠2.8.(3分)分解因式:a3﹣4a=a(a+2)(a﹣2).【解答】解:原式=a(a2﹣4)=a(a+2)(a﹣2).故答案为:a(a+2)(a﹣2)9.(3分)共享单车为人们带来了极大便利,有效缓解了出行“最后一公里”问题,而且经济环保.2016年全国共享单车用户数量达18860 000,将18860 000用科学记数法表示应为 1.886×107.【解答】解:18860 000=1.886×107.故答案为:1.886×107.10.(3分)一个多边形的内角和是外角和的2倍,则这个多边形的边数为6.【解答】解:∵多边形的外角和是360度,多边形的内角和是外角和的2倍,则内角和是720度,720÷180+2=6,∴这个多边形是六边形.故答案为:6.11.(3分)若2m﹣n=1,则多项式5n﹣10m+1的值是﹣4.【解答】解:∵2m﹣n=1,∴5n﹣10m=﹣5.∴5n﹣10m+1=﹣5+1=﹣4.故答案为:﹣4.12.(3分)某工厂甲、乙两名工人参加操作技能培训,现分别从他们在培训期间参加若干次测试成绩中随机抽取8次,计算得两人的平均成绩都是85分,方差分别是S甲2=35.5,S乙2=41,从操作技能稳定的角度考虑,选派甲参加比赛.【解答】解:∵S甲2=35.5,S乙2=41,乙的方差为大于甲的方差,∴选甲参加合适.故答案为:甲.13.(3分)一个圆锥的底面圆的直径为6cm,高为4cm,则它的侧面积为15πcm2(结果保留π).【解答】解:∵底面圆的直径为6cm,∴底面圆的半径为3cm,而高为4cm,∴圆锥的母线长==5cm,∴圆锥的侧面积=•2π•3•5=15π(cm2).故答案为15π.14.(3分)已知反比例函数y=(k是常数,k≠0)的图象在第二、四象限,点A(x1,y1)和点B(x2,y2)在函数的图象上,当x1<x2<0时,可得y1<y2.(填“>”、“=”、“<”).【解答】解:∵反比例函数y=(k是常数,k≠0)的图象在第二、四象限,∴k<0,且在每一象限内y随x的增大而增大.∵x1<x2<0,∴y1<y2.故答案为:<.15.(3分)如图,点G是△ABC的重心,连结AG并延长交BC于点D,过点G作EF∥AB 交BC于E,交AC于F.若AB=12,那么EF=8.【解答】解:∵点G是△ABC的重心,∴DG:AG=1:2,∴DG:DA=1:3,∵GE∥AB,∴=,∴=,即=,∴==,∴=,∴=,∴=,∵AB=12,∴EF=8,故答案为8.16.(3分)如图,边长为4的正方形ABCD中,点E、F分别在线段AB、CD上,AE=CF =1,O为EF的中点,动点G、H分别在线段AD、BC上,EF与GH的交点P在O、F之间(与O、F不重合),且∠GPE=45°.设AG=m,则m的取值范围为<m≤.【解答】解:①假设P与O重合,如图1,∵O为EF的中点,∴O为正方形ABCD的对称中心,过A作AN∥EF交CD于N,则NF=AE=1,∴DN=CN=2,过O作G′H′∥GH交AD于G′,交BC于H′,∴AG′=CH′,DG′=BH′,过A作AM∥G′H′交BC于M,∴AG′=MH′,∠G′OE=45°,∴∠MAN=45°,延长CD到Q,使DQ=BM,由AB=AD,∠B=∠ADQ,BM=DQ,可得△ABM≌△ADQ,∴AM=AQ,∠BAM=∠DAQ,∵∠MAN=45°,∠BAD=90°,∴∠BAM+∠DAN=45°=∠DAQ+∠DAN=∠QAN,∴∠MAN=∠QAN,由AM=AQ,∠MAN=∠QAN,AN=AN,可得△MAN≌△QAN,∴MN=NQ,设BM=a,则CM=4﹣a,MN=QN=a+2,∵MN2=CM2+CN2,∴(2+a)2=(4﹣a)2+22,解得:a=,∴BM=,CM=,又∵AG'=CH'=MH',∴AG′=×=;②当H与C重合时,如图2,由①知BM=,∴AG″=CM=4﹣=;∴m的取值范围为:<m≤.故答案为:<m≤.三、解答题(本大题共有10题,计102分.请在答题卡指定区域内作答,解答时应写出必要的文字说明、证明过程或演算步骤)17.(12分)(1)计算:(﹣1)﹣2+|2﹣|+2cos30°;(2)先化简,再求值:(1﹣)÷,其中x=+1.【解答】解:(1)原式=1+2﹣=3;(2)原式=(﹣)•(x+1)(x﹣1),=•(x+1)(x﹣1),=x2﹣2x+1,当x =+1时,原式=(1)2﹣2(1)+1,=3+1+2﹣2﹣2+1,=3.18.(8分)小亮与小明做投骰子(质地均匀的正方体)的实验与游戏.(1)在实验中他们共做了50次试验,试验结果如下:①填空:此次实验中,“1点朝上”的频率是0.2;②小亮说:“根据实验,出现1点朝上的概率最大.”他的说法正确吗?为什么?(2)在游戏时两人约定:每次同时掷两枚骰子,如果两枚骰子的点数之和超过6,则小亮获胜,否则小明获胜.则小亮与小明谁获胜的可能性大?试说明理由.【解答】解:(1)①0.2,②不正确,因为在一次实验中频率并不等于概率,只有当实验中试验次数很大时,频率才趋近于概率.(2)列表如下:所有可能的结果共有36种,每一种结果出现的可能性相同.所以P(点数之和超过6)=,P(点数之和不超过6)=,因为>,所以小亮获胜的可能性大.19.(8分)某校全体学生积极参加校团委组织的“献爱心捐款”活动,为了解捐款情况,随机抽取了部分学生并对他们的捐款情况作了统计,绘制了两幅不完整的统计图(统计图中每组含最小值,不含最大值).请依据图中信息解答下列问题:(1)求随机抽取的学生人数.(2)填空:(直接填答案)①“20元~25元”部分对应的圆心角度数为72°.②捐款的中位数落在15元~20元(填金额范围).(3)若该校共有学生3500人,请估算全校捐款不少于20元的人数.【解答】解:(1)随机抽取的学生人数是:=60(人);(2)10元﹣15元的人数是60×40%=24(人),20元﹣25元的人数是60﹣24﹣18﹣6=12(人),①“20元~25元”部分对应的圆心角度数为×360°=72°;②∵共有60人,∴捐款的中位数落在15元~20元;故答案为:72°,15元~20元;(3)根据题意得:3500×=1050(人).答:全校捐款不少于20元的人数是1050人.20.(8分)为了加强公民的节水意识,某市采用价格调控手段来引导市民节约用水:每户居民每月用水不超过6立方米时,每立方米按基本价格收费;每月用水超过6立方米时,超过的部分要加价收费.该市某户居民今年4、5月份的用水量和水费如右表所示:求该市居民用水的两种收费价格.【解答】解:设每户居民每月用水不超过6m3时,收费为x元/m3,超过6m3时,收费为y 元/m3.,解得:.答:每户居民每月用水不超过6m3时,收费为2元/m3,超过6m3时,收费为5元/m3.21.(10分)已知,如图,E、F是四边形ABCD的对角线AC上的两点,AF=CE,DF=BE,DF∥BE.(1)求证:△AFD≌△CEB;(2)四边形ABCD是平行四边形吗?请说明理由.【解答】证明:(1)∵DF∥BE,∴∠DF A=∠BEC,在△ADF和△CBE中,∴△AFD≌△CEB(SAS);(2)四边形ABCD是平行四边形,理由:∵△AFD≌△CEB,∴AD=CB,∠DAF=∠BCE,∴AD∥BC,∴四边形ABCD是平行四边形.22.(10分)某校兴趣小组想测量一座大楼AB的高度.如图,大楼前有一段斜坡BC,已知BC的长为12米,它的坡度i=1:.在离C点40米的D处,用测角仪测得大楼顶端A的仰角为37°,测角仪DE的高为1.5米,求大楼AB的高度约为多少米?(结果精确到0.1米)(参考数据:sin37°≈0.60,cos37°≈0.80,tan37°≈0.75,≈1.73.)【解答】解:延长AB交直线DC于点F,过点E作EH⊥AF,垂足为点H.∵在Rt△BCF中,=i=1:,∴设BF=k,则CF=,BC=2k.又∵BC=12,∴k=6,∴BF=6,CF=.∵DF=DC+CF,∴DF=40+6.∵在Rt△AEH中,tan∠AEH=,∴AH=tan37°×(40+6)≈37.785(米),∵BH=BF﹣FH,∴BH=6﹣1.5=4.5.∵AB=AH﹣HB,∴AB=37.785﹣4.5≈33.3.答:大楼AB的高度约为33.3米.23.(10分)如图,在平面直角坐标系中,直线AB与y轴相交于点A(0,﹣2),与反比例函数在第一象限内的图象相交于点B(m,2),△AOB的面积为4.(1)求该反比例函数和直线AB的函数关系式;(2)求sin∠OBA的值.【解答】解:(1)∵△AOB的面积为4,A(0,﹣2),∴OA×x B=×2×x B=4,∴x B=4,∴B点坐标为(4,2),设反比例函数关系式为y=,∴k=4×2=8,反比例函数关系式为y=,设直线AB函数关系式为y=nx﹣2,把(4,2)代入,得4n﹣2=2,∴n=1,∴直线AB函数关系式为y=x﹣2;(2)如图,过点O作OD⊥AB于点D,设AB与x轴相交于点E,由直线AB:y=x﹣2可得,OA=OE=2,∴∠OAE=45°∴OD=OA•sin45°=,由B点坐标为(4,2),可得OB==2,∴sin∠OBA===.24.(10分)如图,在矩形ABCD中,点O在对角线AC上,以OA的长为半径的圆O与AD交于点E,且∠ACB=∠DCE.(1)求证:CE是⊙O的切线;(2)若AB=3,BC=4,求⊙O的半径.【解答】(1)证明:连接OE,∵OA=OE,∴∠CAD=∠OEA,∵四边形ABCD是矩形,∴∠D=90°,BC∥AD,∴∠BCA=∠CAD,∵∠ACB=∠DCE,∴∠CAE=∠DCE,∵∠DCE+∠CED=180°﹣∠D=90°,∴∠OEA+∠CED=90°,∴∠OEC=180°﹣90°=90°,∴CE是⊙O的切线;(2)解:设⊙O与AC交于F,连接EF,则∠AEF=90°,∵∠B=∠D=90°,∠ACB=∠DCE,∴△ABC∽△CDE,∴,即,∴DE=∵AC==5,∵EF∥CD,∴=,∴AF=,∴⊙O的半径为.25.(12分)如图,在Rt△ABC中,∠A=90°,AB=AC=2cm,将△ABC折叠,使点B 落在射线CA上点D处,折痕为PQ.(1)当点D与点A重合时,求PQ长;(2)当点D与C、A不重合时,设AD=xcm,AP=ycm.①求y与x的函数关系式,并写出x的取值范围;②当重叠部分为等腰三角形时,请直接写出x的值.【解答】解:(1)如图,当点D和点A重合时,由折叠知,AP=BP,∠BPQ=∠APQ,∵∠APQ+∠BPQ=180°,∴∠BPQ=∠APQ=90°=∠BAC,∴PQ∥AC,∵AP=BP,∴PQ是△ABC的中位线,∴PQ=AC=1;(2)①∵AD=x,AC=2,∴CD=2﹣x,∵AP=y,AB=2,∴BP=2﹣y,在△ABC中,∠BAC=90°,AC=AB=2,∴BC=2,∠B=∠C=45°,如图1,由折叠知,DP=BP=2﹣y,在Rt△ADP中,根据勾股定理得,AP2+AD2=PD2,∴y2+x2=(2﹣y)2,∴y=﹣x2+1(0<x<2);②、Ⅰ、PD=DQ时,BP=BQ,由翻折变换得,BP=PD,BQ=DQ,∴BP=BQ=PD=DQ,∴四边形BQDP是菱形,∴PD∥BC,BP∥DQ,∵∠A=90°,AB=AC,∴△ABC是等腰直角三角形,∴△APD和△CDQ都是等腰直角三角形,在Rt△APD中,PD=AD=x,在Rt△CDQ中,CD=DQ,∵PD=DQ,∴CD=AD,∵AC=AD+CD,∴AD+AD=2,即:x+x=2解得AD=2﹣2;Ⅱ、DQ=PQ时,BQ=PQ,∴∠BPQ=∠B=45°,∴△BPQ是等腰直角三角形,∴点B与点C重合,∴x=AD=AC=2(舍);Ⅲ、PD=PQ时,PQ=BP,∴∠BQP=∠B=45°,∴△BPQ是等腰直角三角形,∴点B与点A重合,此时,点B与点A重合,不符合题意,舍去;综上所述,AD的长度为2﹣2.26.(14分)如图,已知抛物线y=ax2+4(a≠0)与x轴交于点A和点B(2,0),与y轴交于点C,点D是抛物线在y轴右侧的一动点,线段AD、直线BD分别交y轴于点F、E,设点D的横坐标为m.(1)求抛物线的表达式;(2)当0<m<2时,求证:tan∠DAB+tan∠DBA为定值;(3)若△DBF为直角三角形,求m的值.【解答】解:(1)∵抛物线y=ax2+4(a≠0)与x轴交于点A和点B(2,0),∴0=4a+4,∴a=﹣1,∴抛物线的表达式为y=﹣x2+4;(2)∵点D的横坐标为m,∴D(m,﹣m2+4),过D作DG⊥AB于G,∴DG=﹣m2+4,OG=m,∵在y=﹣x2+4中,当y=0时,x=±2,∴A(﹣2,0),B(2,0),∴AG=2+m,BG=2﹣m,∴tan∠DAB+tan∠DBA=+==4(定值);(3)∵△DBF为直角三角形,①当∠FDB=90°时,如图1,过D作DG⊥AB于G,则DG2=AG•BG,由(2)知,DG=﹣m2+4,OG=m,AG=2+m,BG=2﹣m,∴(﹣m2+4)2=(2+m)(2﹣m),∴m2=4(不合题意,舍去),m2=3,∵点D是抛物线在y轴右侧的一动点,∴m>0,∴m=;②当∠BFD=90°时,如图2,则∠AFB=90°,∵OF⊥AB,AO=BO,∴OF=AB=2,∴F(0,2)或(﹣2,0),∴直线AF的解析式为y=x+2,或y=﹣x﹣2解或,解得x=﹣2或x=1或x=﹣2或x=3,∵m>0,∴m=1或m=3,③如图3中,当∠DBF=90°时,作DH⊥x轴于H.∵直线AD的解析式为y=(2﹣m)x+4﹣2m,∴F(0,4﹣2m),∴OF=2m﹣4,∵△OBF∽△HDB,∴=,∴=,解得m=或﹣(舍弃),综上所述,若△DBF为直角三角形,m的值是或1或3或.。

江苏省泰泰州市2017中考数学试卷(含答案)

江苏省泰泰州市2017中考数学试卷(含答案)

泰州市二○一二年初中毕业、升学统一考试数 学 试 题(考试时间:120分钟 满分:150分)请注意:1.本试卷分选择题和非选择题两个部分.2.所有试题的答案均填写在答题卡上,答案写在试卷上无效. 3.作图必须用2B 铅笔,并请加黑加粗.第一部分 选择题(共24分)一、选择题(本大题共有8小题,每小题3分,共24分.在每小题所给出的四个选项中,恰有一项是符合题目要求的,请将正确选项的字母代号填涂在答题卡...相应..位置..上) 1.13-等于A .3B .31-C .-3D .312.下列计算正确的是A .6232x x x =⋅B .824x x x =⋅C .632)(x x -=-D .523)(x x = 3.过度包装既浪费资源又污染环境.据测算,如果全国每年减少10%的过度包装纸用量,那么可减排二氧化碳3120000吨,把数3120000用科学记数法表示为 A .51012.3⨯ B .61012.3⨯ C .5102.31⨯ D .710312.0⨯ 4.某种药品原价为36元/盒,经过连续两次降价后售价为25元/盒.设平均每次降价的百分率为x ,根据题意所列方程正确的是A .2536)1(362-=-xB .25)21(36=-xC .25)1(362=-xD .25)1(362=-x5.有两个事件,事件A :367人中至少有2人生日相同;事件B :抛掷一枚均匀的骰子,朝上的面点数为偶数.下列说法正确..的是 A .事件A 、B 都是随机事件 B .事件A 、B 都是必然事件C .事件A 是随机事件,事件B 是必然事件D .事件A 是必然事件,事件B 是随机事件6.用4个小立方块搭成如图所示的几何体,该几何体的左视图是(第6题图)ABCD7.如图,△ABC 内接于⊙O ,OD ⊥BC 于D ,∠A =50°,则∠OCD 的度数是 A .40° B .45° C .50° D .60° 8.下列四个命题:①一组对边平行且一组对角相等的四边形是平行四边形;②对角线互相垂直且相等的四边形是正方形;③顺次连结矩形四边中点得到的四边形是菱形;④正五边形既是轴对称图形又是中心对称图形.其中真命题...共有 A .1个 B .2个 C .3个 D .4个第二部分 非选择题(共126分)二、填空题(本大题共有10小题,每小题3分,共30分.请把答案直接填写在答题..卡相应位置.....上) 9. 3的相反数是 ▲ .10.如图,数轴上的点P 表示的数是-1,将点P 向右移动3个单位长度得到点P ',则点P '表示的数是 ▲ . 11.若52=-b a ,则多项式b a 36-的值是 ▲ . 12.一组数据2、-2、4、1、0的中位数是 ▲ . 13.已知∠α的补角是130°,则∠α= ▲ 度.14.根据排列规律,在横线上填上合适的代数式:x ,23x ,35x , ▲ ,59x ,…. 15.分解因式:962+-a a = ▲ .16.如图,△ABC 中,∠C =90°,∠BAC 的平分线交BC 于点D ,若CD =4,则点D到AB 的距离是 ▲ .17.若代数式232++x x 可以表示为b x a x +-+-)1()1(2的形式,则a +b 的值是 ▲ .18.如图,在边长相同的小正方形组成的网格中,点A 、B 、C 、D 都在这些小正方形的顶点上,AB 、CD 相交于点P ,则tan ∠APD 的值是 ▲ .三、解答题(本大题共有10小题,共96分.请在答题卡指定区域内作答,解答时应写出必要的文字说明、证明过程或演算步骤) 19.(本题满分8分) 计算或化简:(1)︒--++30cos 4|3|2012120; (2)aa a a a 211122+-÷--.(第7题图)(第18题图) ADC BP (第10题图)P-1AB CD(第16题图)┐20.(本题满分8分) 当x 为何值时,分式x x --23的值比分式21-x 的值大3 ?21.(本题满分8分) 小明有2件上衣,分别为红色和蓝色,有3条裤子,其中2条为蓝色、1条为棕色.小明任意拿出1件上衣和1条裤子穿上.请用画树状图或列表的方法列出所有可能出现的结果,并求小明穿的上衣和裤子恰好都是蓝色的概率.22.(本题满分8分) 某校组织学生书法比赛,对参赛作品按A 、B 、C 、D 四个等级进行了评定.现随机抽取部分学生书法作品的评定结果进行分析,并绘制扇形统计图和条形统计图如下:根据上述信息完成下列问题:(1)求这次抽取的样本的容量; (2)请在图②中把条形统计图补充完整;(3)已知该校这次活动共收到参赛作品750份,请你估计参赛作品达到B 级以上(即A 级和B 级)有多少份?(第22题图)图① D 级 B 级A 级20%C 级 30%分析结果的扇形统计图图②人数分析结果的条形统计图23.(本题满分10分) 如图,四边形ABCD 中,AD ∥BC ,AE ⊥AD 交BD 于点E ,CF ⊥BC 交BD 于点F ,且AE =CF .求证:四边形ABCD 是平行四边形.24.(本题满分10分) 如图,一居民楼底部B 与山脚P 位于同一水平线上,小李在P 处测得居民楼顶A 的仰角为60°,然后他从P 处沿坡角为45°的山坡向上走到C 处,这时,PC =30 m ,点C 与点A 恰好在同一水平线上,点A 、B 、P 、C 在同一平面内. (1)求居民楼AB 的高度; (2)求C 、A 之间的距离.(精确到0.1m ,参考数据:41.12≈,73.13≈,45.26≈)25.(本题满分10分) 如图,在平面直角坐标系xOy 中,边长为2的正方形OABC 的顶点A 、C 分别在x 轴、y 轴的正半轴上,二次函数c bx x y ++-=232的图象经过B 、C 两点. (1)求该二次函数的解析式;(2)结合函数的图象探索:当y >0时x 的取值范围.BACDEF(第23题图) (第25题图)(第24题图)26.(本题满分10分) 如图,在边长为1个单位长度的小正方形组成的网格中,△ABC 的顶点A 、B 、C 在小正方形的顶点上.将△ABC 向下平移4个单位、再向右平移3个单位得到△1A 1B 1C ,然后将△1A 1B 1C 绕点1A 顺时针旋转90°得到△1A 2B 2C .(1)在网格中画出△1A 1B 1C 和△1A 2B 2C ;(2)计算线段AC 在变换到1A 2C 的过程中扫过区域的面积(重叠部分不重复计算).27.(本题满分12分) 如图,已知直线l 与⊙O 相离,OA ⊥l 于点A ,OA =5,OA 与⊙O 相交于点P ,AB 与⊙O 相切于点B ,BP 的延长线交直线l 于点C . (1)试判断线段AB 与AC 的数量关系,并说明理由; (2)若PC =52,求⊙O 的半径和线段PB 的长;(3)若在⊙O 上存在点Q ,使△QAC 是以AC 为底边的等腰三角形,求⊙O 的半径r 的取值范围.ABC (第26题图) (第27题图)(备用图)28.(本题满分12分) 如图,已知一次函数b kx y +=1的图象与x 轴相交于点A ,与反比例函数xcy =2的图象相交于B (-1,5)、C (25,d )两点.点P (m 、n )是一次函数b kx y +=1的图象上的动点. (1)求k 、b 的值;(2)设231<<-m ,过点P 作x 轴的平行线与函数xcy =2的图象相交于点D .试问△P AD 的面积是否存在最大值?若存在,请求出面积的最大值及此时点P的坐标;若不存在,请说明理由;(3)设a m -=1,如果在两个实数m 与n 之间(不包括m 和n )有且只有一个整数,求实数a 的取值范围.(第28题图)参考答案一、选择题: D C B C D A A B 二、填空题:-3;2;15;1;50;7x 4;(a -3)2;4;11;2; 三、解答题: 19.(1)4;(2)11a -+; 20.x =1,检验室原方程的根; 21.略、P (。

2017年江苏泰州中考数学试题及答案word版

2017年江苏泰州中考数学试题及答案word版

泰州市二○一二年初中毕业、升学统一考试数学试题<考试时间:120分钟满分:150分)请注意:1.本试卷分选择题和非选择题两个部分.2.所有试题地答案均填写在答题卡上,答案写在试卷上无效.3.作图必须用2B铅笔,并请加黑加粗.第一部分选择题<共24分)一、选择题<本大题共有8小题,每小题3分,共24分.在每小题所给出地四个选项中,恰有一项是符合题目要求地,请将正确选项地字母代号填涂在答题卡相应位置.......上)1.等于A.3 B. C.-3 D.2.下列计算正确地是A. B.C.D.3.过度包装既浪费资源又污染环境.据测算,如果全国每年减少10%地过度包装纸用量,那么可减排二氧化碳3120000吨,把数3120000用科学记数法表示为A. B.C.D.4.某种药品原价为36元/盒,经过连续两次降价后售价为25元/盒.设平均每次降价地百分率为x,根据题意所列方程正确地是A.B.C.D.5.有两个事件,事件A :367人中至少有2人生日相同;事件B :抛掷一枚均匀地骰子,朝上地面点数为偶数.下列说法正确..地是A .事件A 、B 都是随机事件 B .事件A 、B 都是必然事件C .事件A 是随机事件,事件B 是必然事件D .事件A 是必然事件,事件B 是随机事件 6.用4个小立方块搭成如图所示地几何体,该几何体地左视图是7.如图,△ABC 内接于⊙O ,OD ⊥BC 于D ,∠A =50°,则∠A .40° B .45° C .50° D .60°8.下列四个命题:①一组对边平行且一组对角相等地四边形是平行四边形;②对角线互相垂直且相等地四边形是正方形;③顺次连结矩形四边中点得到地四边形是菱形;④正五边形既是轴对称图形又是中心对称图形.其中真命题...共有A .1个 B .2个 C .3个 D .4个第二部分 非选择题<共126分)二、填空题<本大题共有10小题,每小题3分,共30分.请把答案直接填写在答题..卡相应位置.....上) 9. 3地相反数是▲.10.如图,数轴上地点P 表示地数是-1,将点P 向右移动3个单位长度得到点,则点表示地数是▲. 11.若,则多项式地值是▲.12.一组数据2、-2、4、1、0地中位数是▲. 13.已知∠α地补角是130°,则∠α=▲度. 14.根据排列规律,在横线上填上合适地代数式:,,,▲,,….15.分解因式:=▲.<第7题<第A B C D16.如图,△ABC 中,∠C =90°,∠BAC 地平分线交BC 于点D ,若CD =4,则点D 到AB 地距离是▲.17.若代数式可以表示为地形式,则a +b 地值是▲.18.如图,在边长相同地小正方形组成地网格中,点A 、B 、C 、D 都在这些小正方形地顶点上,AB 、CD 相交于点P ,则tan ∠APD 地值是▲.三、解答题<本大题共有10小题,共96分.请在答题卡指定区域内作答,解答时应写出必要地文字说明、证明过程或演算步骤)19.(本题满分8分> 计算或化简: <1);<2).20.(本题满分8分> 当x 为何值时,分式地值比分式地值大3 ?21.(本题满分8分> 小明有2件上衣,分别为红色和蓝色,有3条裤子,其中2条为蓝色、1条为棕色.小明任意拿出1件上衣和1条裤子穿上.请用画树状图或列表地方法列出所有可能出现地结果,并求小明穿地上衣和裤子恰好都是蓝色地概率.22.(本题满分8分> 某校组织学生书法比赛,对参赛作品按A 、B 、C 、D 四个等级进行了评定.现随机抽取部分学生书法作品地评定结果进行分析,并绘制扇形统计图和条形统计图如下:根据上述信息完成下列问题: <1)求这次抽取地样本地容量;<2)请在图②中把条形统计图补充完整;<3)已知该校这次活动共收到参赛作品B 级以上<即A 级和B <第22题图)图①D 级 B 级A 级 20%C 级30%分析结果地扇形统计图 图②A B C D 等级分析结果地条形统计图<第18题图) ADCBP <第10题图)PAB C D <第16题图) ┐23.(本题满分10分> 如图,四边形ABCD 中,AD ∥BC ,AE ⊥AD 交BD 于点E ,CF ⊥BC 交BD 于点F ,且AE =CF .求证:四边形ABCD 是平行四边形.24.(本题满分10分>如图,一居民楼底部B 与山脚P 位于同一水平线上,小李在P 处测得居民楼顶A 地仰角为60°,然后他从P 处沿坡角为45°地山坡向上走到C 处,这时,PC =30 m ,点C 与点A 恰好在同一水平线上,点A 、B 、P 、C 在同一平面内.<1)求居民楼AB 地高度; <2)求C 、A 之间地距离.<精确到0.1m ,参考数据:,,)25.(本题满分10分> 如图,在平面直角坐标系地顶点A 、C 分别在x 轴、y B 、C 两点.<1)求该二次函数地解读式;<2)结合函数地图象探索:当y >0时x 地取值范围.26.(本题满分10分> 如图,在边长为1ABC 地顶点A 、B 、C 在小正方形地顶点上.将△右平移3个单位得到△,然后将△绕点顺时针旋转△.<1)在网格中画出△和△;<2)计算线段AC 在变换到地过程中扫过区域地面积<重叠部分不重复计算).27.(本题满分12分> 如图,已知直线l 与⊙O 相离,ABOA ⊥l 于点A ,OA =5,OA 与⊙O 相交于点P ,ABCB ACEF<第23题图) <第25题图)BP<第24题图)与⊙O 相切于点B ,BP 地延长线交直线l 于点C .<1)试判断线段AB 与AC 地数量关系,并说明理由; <2)若PC =,求⊙O 地半径和线段PB 地长;<3)若在⊙O 上存在点Q ,使△QAC 是以AC 为底边地等腰三角形,求⊙O 地半径r 地取值范围.28.(本题满分地图象与x 轴相交于点A ,与反比例函数<,P <m 、n )是一次函数<1)求k 、b 地值; <2)设,过点P 作x 轴地平行线与函数地图象相交于点D .试问△PAD 地面积是否存在最大值?若存在,请求出面积地最大值及此时点P 地坐标;若不存在,请说明理由;<3)设,如果在两个实数m 与n 之间<不包括m 和n )有且只有一个整数,求实数a 地取值范围.一、 选择题: D C B C D A A B 二、填空题:-3;2;15;1;50;7x 4;<a-3)2;4;11三、解答题: 19.<1)4;<2);20.x=1,检验室原方程地根; 21.略、P<.....)=;22.<1)容量为120;<2)C 36、D12;<3)450<人)过程略.<第28题图)<第27题图)C l A lA <备用图)23.略;24.<1)AB=21.2<m)<2)CA=略<注意精确度)25.<1)将B<2,2)C<0,2)代入,;<2)令y=0,求出与X轴地交点坐标分别为<-1,0)、<3,0);结合函数图象,当y>0 时,.26.<1)略<2)S=.27.<1)AB=AC; 连接OB,利用切线性质,圆半径相等,对顶角相等,余角性质,推出AB,AC两底角相等;<2)设圆半径为r,则OP=OB=r,PA=5-r;从而建立等量关系,r=3;利用相似,求出PB=4;<3)作出线段AC地垂直平分线MN,作OD垂直于MN,则可推出OD==;由题意,圆O要与直线MN有交点,所以;又因为圆O与直线l相离;所以r<5;综上,28.<1)申明:所有资料为本人收集整理,仅限个人学习使用,勿做商业用途.。

2017年江苏省泰州市靖江三中中考数学二模试卷(解析版)

2017年江苏省泰州市靖江三中中考数学二模试卷(解析版)

12. (3 分)在平面直角坐标系中,把直线 y=2x 向左平移 1 个单位长度,平移后的直线解 析式是 .
13. (3 分)已知扇形的半径为 3cm,圆心角为 120°,用它做成一个圆锥的侧面,则该圆锥 的底面圆的半径是 cm.
14. (3 分)如图,在平面直角坐标系中,菱形 ABOC 的顶点 O 在坐标原点,边 BO 在 x 轴 的负半轴上,顶点 C 的坐标为(﹣3,3 ) ,反比例函数 y= 的图象与菱形对角线 AO .
试根据统计图中提供的数据,回答下面问题: (1)计算样本中,成绩为 98 分的学生有 (2)样本中,测试成绩的中位数是 分,并补全条形统计图. 分,众数是 分.
(3) 若该校九年级共有 2000 名学生, 根据此次模拟成绩估计该校九年级中考综合速度测试 将有多少名学生可以获得满分.
第 3 页(共 24 页)
B.对角分别相等 D.对角线相等 )
4. (3 分)如图,AB∥EF,CD⊥EF,∠ACD=130°,则∠BAC=(
A.40°
ቤተ መጻሕፍቲ ባይዱ
B.50°
C.60°
2
D.70°
5. (3 分)⊙O 的半径为 4,圆心到点 P 的距离为 d,且 d 是方程 x ﹣2x﹣8=0 的根,则点 P 与⊙O 的位置关系是( A.点 P 在⊙O 内部 C.点 P 在⊙O 外部
2
) B.点 P 在⊙O 上 D.点 P 不在⊙O 上
6. (3 分)已知关于 x 的二次函数 y=x +(1﹣a)x+1,当 x 的取值范围是 1≤x≤3 时,y 在 x=1 时取得最大值,则实数 a 的取值范围是( A.a=5 B.a≥5 ) D.a≥3
C.a=3
第 1 页(共 24 页)

2017年泰州市中考数学试题含答案解析

2017年泰州市中考数学试题含答案解析

一、选择题:本大题共6个小题,每小题3分,共18分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.2的算术平方根是()A.2±B.2C.2-D.2【答案】B.试题分析:一个数正的平方根叫这个数的算术平方根,根据算术平方根的定义可得2的算术平方根是2,故选B.考点:算术平方根.2.下列运算正确的是()A.a3•a3=2a6B.a3+a3=2a6C.(a3)2=a6D.a6•a2=a3 【答案】C.试题分析:选项A,a3•a3=a6;选项B,a3+a3=2a3;选项C,(a3)2=a6;选项D,a6•a2=a8.故选C.考点:整式的运算.3.把下列英文字母看成图形,既是轴对称图形又是中心对称图形的是()A.B.C. D.【答案】C.考点:中心对称图形;轴对称图形.4.三角形的重心是()A.三角形三条边上中线的交点B.三角形三条边上高线的交点C.三角形三条边垂直平分线的交点D.三角形三条内角平行线的交点【答案】A.试题分析:三角形的重心是三条中线的交点,故选A . 考点:三角形的重心.5.某科普小组有5名成员,身高分别为(单位:cm ):160,165,170,163,167.增加1名身高为165cm 的成员后,现科普小组成员的身高与原来相比,下列说法正确的是( )A .平均数不变,方差不变B .平均数不变,方差变大C .平均数不变,方差变小D .平均数变小,方差不变【答案】C . 试题分析:160+165+170+163+167==1655x 原 ,S 2原=585;160+165+170+163+167+165==1656x 新,S2新=586,平均数不变,方差变小,故选C .学#科网 考点:平均数;方差.6.如图,P 为反比例函数y=k x(k >0)在第一象限内图象上的一点,过点P分别作x轴,y轴的垂线交一次函数y=﹣x﹣4的图象于点A、B.若∠AOB=135°,则k的值是()A.2 B.4 C.6 D.8【答案】D.∴C(0,﹣4),G(﹣4,0),∴OC=OG,∴∠OGC=∠OCG=45° ∵PB ∥OG ,PA ∥OC ,∵∠AOB=135°, ∴∠OBE+∠OAE=45°, ∵∠DAO+∠OAE=45°, ∴∠DAO=∠OBE , ∵在△BOE 和△AOD 中,090BEO ADO DAO OBE⎧∠=∠=⎨∠=∠⎩,∴△BOE ∽△AOD ;∴OE BE OD AD =,即222224kn n n+=+;整理得:nk+2n 2=8n+2n 2,化简得:k=8; 故选D .考点:反比例函数综合题.二、填空题(每题3分,满分30分,将答案填在答题纸上)7. |﹣4|= . 【答案】4.试题分析:正数的绝对值是其本身,负数的绝对值是它的相反数,0的绝对值是0.由此可得|﹣4|=4. 考点:绝对值.8.天宫二号在太空绕地球一周大约飞行42500千米,将42500用科学记数法表示为 . 【答案】4.25×104.考点:科学记数法.9.已知2m﹣3n=﹣4,则代数式m(n﹣4)﹣n(m﹣6)的值为.【答案】8.试题分析:当2m﹣3n=﹣4时,原式=mn﹣4m﹣mn+6n=﹣4m+6n=﹣2(2m﹣3n)=﹣2×(﹣4)=8. 考点:整式的运算;整体思想. 学#科.网10.一只不透明的袋子共装有3个小球,它们的标号分别为1,2,3,从中摸出1个小球,标号为“4”,这个事件是.(填“必然事件”、“不可能事件”或“随机事件”)【答案】不可能事件.试题分析:已知袋子中3个小球的标号分别为1、2、3,没有标号为4的球,即可知从中摸出1个小球,标号为“4”,这个事件是不可能事件.考点:随机事件.11.将一副三角板如图叠放,则图中∠α的度数为.【答案】15°.试题分析:由三角形的外角的性质可知,∠α=60°﹣45°=15°.考点:三角形的外角的性质.12.扇形的半径为3cm,弧长为2πcm,则该扇形的面积为cm2.【答案】3π.试题分析:设扇形的圆心角为n,则:2π=3nπ⨯,解得:180n=120°.所以S 扇形=21203360π⨯=3πcm 2.考点:扇形面积的计算.13.方程2x 2+3x ﹣1=0的两个根为x 1、x 2,则1211x x+的值等于 . 【答案】3.试题分析:根据根与系数的关系得到x 1+x 2=﹣32,x 1x 2=﹣12, 所以1211x x +=12123212x x x x -+=-=3.考点:根与系数的关系.14.小明沿着坡度i 为1:的直路向上走了50m ,则小明沿垂直方向升高了 m . 【答案】25.考点:解直角三角形的应用.15.如图,在平面直角坐标系xOy中,点A、B、P的坐标分别为(1,0),(2,5),(4,2).若点C 在第一象限内,且横坐标、纵坐标均为整数,P是△ABC 的外心,则点C的坐标为.【答案】(7,4)或(6,5)或(1,4).考点:三角形的外接圆;坐标与图形性质;勾股定理. 16.如图,在平面内,线段AB=6,P为线段AB上的动点,三角形纸片CDE的边CD所在的直线与线段AB垂直相交于点P,且满足PC=PA.若点P沿AB方向从点A运动到点B,则点E运动的路径长为.【答案】62试题分析:如图,由题意可知点C运动的路径为线段AC′,点E运动的路径为EE′,由平移的性质可知AC′=EE′,在Rt △ABC′中,易知AB=BC′=6,∠ABC′=90°,∴EE′=AC′=2266+=62.21世纪教育网考点:轨迹;平移变换;勾股定理.三、解答题(本大题共10小题,共102分.解答应写出文字说明、证明过程或演算步骤.)17.(1)计算:(7﹣1)0﹣(﹣12)﹣2+3tan30°; (2)解方程:214111x x x ++=--.【答案】(1)-2;(2)分式方程无解.考点:实数的运算;解分式方程.18.“泰微课”是学生自主学习的平台,某初级中学共有1200名学生,每人每周学习的数学泰微课都在6至30个之间(含6和30),为进一步了解该校学生每周学习数学泰微课的情况,从三个年级随机抽取了部分学生的相关学习数据,并整理、绘制成统计图如下:根据以上信息完成下列问题:(1)补全条形统计图;(2)估计该校全体学生中每周学习数学泰微课在16至30个之间(含16和30)的人数.【答案】(1)详见解析;(2)960.(2)该校全体学生中每周学习数学泰微课在16至30个之间的有1200×121224++=960人.60考点:条形统计图;用样本估计总体.21世纪教育网19.在学校组织的朗诵比赛中,甲、乙两名学生以抽签的方式从3篇不同的文章中抽取一篇参加比赛,抽签规则是:在3个相同的标签上分别标注字母A、B、C,各代表1篇文章,一名学生随机抽取一个标签后放回,另一名学生再随机抽取.用画树状图或列表的方法列出所有等可能的结果,并求甲、乙抽中同一篇文章的概率.【答案】1.3考点:用列表法或画树状图法求概率.20.(8分)如图,△ABC中,∠ACB>∠ABC.(1)用直尺和圆规在∠ACB的内部作射线CM,使∠ACM=∠ABC(不要求写作法,保留作图痕迹);(2)若(1)中的射线CM交AB于点D,AB=9,AC=6,求AD的长.【答案】(1)详见解析;(2)4.试题分析:(1)根据尺规作图的方法,以AC为一边,在∠ACB的内部作∠ACM=∠ABC即可;(2)根据△ACD与△ABC相似,运用相似三角形的对应边成比例进行计算即可.试题解析:(1)如图所示,射线CM即为所求;(2)∵∠ACD=∠ABC ,∠CAD=∠BAC ,∴△ACD ∽△ABC , ∴AD AC AC AB =,即669AD =, ∴AD=4. 学@科网考点:基本作图;相似三角形的判定与性质.21.平面直角坐标系xOy 中,点P 的坐标为(m+1,m ﹣1).(1)试判断点P 是否在一次函数y=x ﹣2的图象上,并说明理由;(2)如图,一次函数y=﹣12x+3的图象与x 轴、y 轴分别相交于点A 、B ,若点P 在△AOB 的内部,求m 的取值范围.【答案】(1)点P 在一次函数y=x ﹣2的图象上,理由见解析;(2)1<m<7.3考点:一次函数图象上点的坐标特征;一次函数的性质.22.如图,正方形ABCD中,G为BC边上一点,BE ⊥AG于E,DF⊥AG于F,连接DE.(1)求证:△ABE≌△DAF;(2)若AF=1,四边形ABED的面积为6,求EF的长.【答案】(1)详见解析;(2)2.由题意2×12×(x+1)×1+12×x×(x+1)=6,解得x=2或﹣5(舍弃),∴EF=2.考点:正方形的性质;全等三角形的判定和性质;勾股定理.23.怡然美食店的A、B两种菜品,每份成本均为14元,售价分别为20元、18元,这两种菜品每天的营业额共为1120元,总利润为280元.(1)该店每天卖出这两种菜品共多少份?(2)该店为了增加利润,准备降低A种菜品的售价,同时提高B种菜品的售价,售卖时发现,A种菜品售价每降0.5元可多卖1份;B种菜品售价每提高0.5元就少卖1份,如果这两种菜品每天销售总份数不变,那么这两种菜品一天的总利润最多是多少?【答案】(1) 该店每天卖出这两种菜品共60份;(2) 这两种菜品每天的总利润最多是316元.试题分析:(1)由A种菜和B种菜每天的营业额为1120和总利润为280建立方程组即可;(2)设出A种菜多卖出a份,则B种菜少卖出a份,最后建立利润与A种菜少卖出的份数的函数关系式即可得出结论.试题解析:=(6﹣0.5a)(20+a)+(4+0.5a)(40﹣a)=(﹣0.5a2﹣4a+120)+(﹣0.5a2+16a+160)=﹣a2+12a+280=﹣(a﹣6)2+316当a=6,w最大,w=316答:这两种菜品每天的总利润最多是316元.考点:二元一次方程组和二次函数的应用.24.如图,⊙O的直径AB=12cm,C为AB延长线上一点,CP与⊙O相切于点P,过点B作弦BD∥CP,连接PD.(1)求证:点P为BD的中点;(2)若∠C=∠D,求四边形BCPD的面积.【答案】(1)详见解析;(2)183.试题分析:(1)连接OP,根据切线的性质得到PC⊥OP,根据平行线的性质得到BD⊥OP,根据垂径定理∵∠POB=2∠D,∴∠POB=2∠C,∵∠CPO=90°,∴∠C=30°,∵BD∥CP,∴∠C=∠DBA,∴∠D=∠DBA,∴BC∥PD,∴四边形BCPD是平行四边形,∴四边形BCPD的面积=PC•PE=63×3=183.学科%网考点:切线的性质;垂径定理;平行四边形的判定和性质.25.阅读理解:如图①,图形l外一点P与图形l上各点连接的所有线段中,若线段PA1最短,则线段PA1的长度称为点P 到图形l的距离.例如:图②中,线段P1A的长度是点P1到线段AB的距离;线段P2H的长度是点P2到线段AB的距离.解决问题:如图③,平面直角坐标系xOy中,点A、B的坐标分别为(8,4),(12,7),点P从原点O出发,以每秒1个单位长度的速度向x轴正方向运动了t秒.(1)当t=4时,求点P到线段AB的距离;(2)t为何值时,点P到线段AB的距离为5?(3)t满足什么条件时,点P到线段AB的距离不超过6?(直接写出此小题的结果)【答案】(1) 42;(2) t=5或t=11;(3)当8﹣25≤t≤383时,点P到线段AB的距离不超过6.试题分析:(1)作AC⊥x轴,由PC=4、AC=4,根据勾股定理求解可得;(2)作BD ∥x 轴,分点P 在AC则AC=4、OC=8,当t=4时,OP=4,∴PC=4,∴点P 到线段AB 的距离PA=22PC CA +=2244+=42;(2)如图2,过点B 作BD ∥x 轴,交y 轴于点E ,①当点P 位于AC 左侧时,∵AC=4、P 1A=5,∴P 1C=2222154P A AC -=-=3,∴OP 1=5,即t=5;②当点P 位于AC 右侧时,过点A 作AP 2⊥AB ,交x轴于点P 2,∴∠CAP 2+∠EAB=90°,∵BD ∥x 轴、AC ⊥x 轴,∴CE ⊥BD ,(3)如图3,①当点P 位于AC 左侧,且AP 3=6时,则P 3C=2222364P A AC -=-=25,∴OP 3=OC ﹣P 3C=8﹣25;②当点P 位于AC 右侧,且P 3M=6时,过点P2作P2N⊥P3M于点N,考点:一次函数的综合题.26.平面直角坐标系xOy中,点A、B的横坐标分别为a、a+2,二次函数y=﹣x2+(m﹣2)x+2m的图象经过点A、B,且a、m满足2a﹣m=d(d为常数).(1)若一次函数y1=kx+b的图象经过A、B两点.①当a=1、d=﹣1时,求k的值;②若y1随x的增大而减小,求d的取值范围;(2)当d=﹣4且a≠﹣2、a≠﹣4时,判断直线AB与x轴的位置关系,并说明理由;(3)点A、B的位置随着a的变化而变化,设点A、B 运动的路线与y轴分别相交于点C、D,线段CD的长度会发生变化吗?如果不变,求出CD的长;如果变化,请说明理由.【答案】(1)①-3;②d>﹣4;(2)AB∥x轴,理由见解析;(3)线段CD的长随m的值的变化而变化.当8﹣2m=0时,m=4时,CD=|8﹣2m|=0,即点C与点D重合;当m>4时,CD=2m﹣8;当m<4时,CD=8﹣2m.试题分析:(1)①当a=1、d=﹣1时,m=2a﹣d=3,于是得到抛物线的解析式,然后求得点A和点B的坐标,最后将点A和点B的坐标代入直线AB的解析式求得k的值即可;②将x=a,x=a+2代入抛物线的解析式可求得点A和点B的纵坐标,然后依据y1随着x的增大而减小,可得到﹣(a﹣m)(a+2)>﹣(a+2﹣m)(a+4),结合已知条件2a﹣m=d,可求得d的取值范围;(2)由d=﹣4可得到m=2a+4,则抛物线的解析式为y=﹣x2+(2a+2)x+4a+8,然后将x=a、x=a+2代入抛物线的解析式可求得点A和点B的纵坐标,最后依据点A和点B的纵坐标可判断出AB与x轴的位置关系;(3)先求得点A和点B的坐标,于是得到点A和点B运动的路线与字母a的函数关系式,则点C(0,2m),D(0,4m﹣8),于是可得到CD与m 的关系式.试题解析:(1)①当a=1、d=﹣1时,m=2a﹣d=3,所以二次函数的表达式是y=﹣x2+x+6.∵a=1,∴点A的横坐标为1,点B的横坐标为3,把x=1代入抛物线的解析式得:y=6,把x=3代入抛物线的解析式得:y=0,∴A (1,6),B (3,0).将点A 和点B 的坐标代入直线的解析式得:630k b k b +=⎧⎨+=⎩,解得:39k b =-⎧⎨=⎩, 所以k 的值为﹣3.把x=a+2代入抛物线的解析式得:y=a 2+6a+8.∴A (a ,a 2+6a+8)、B (a+2,a 2+6a+8).∵点A 、点B 的纵坐标相同,∴AB ∥x 轴.(3)线段CD 的长随m 的值的变化而变化.∵y=﹣x2+(m﹣2)x+2m过点A、点B,∴当x=a时,y=﹣a2+(m﹣2)a+2m,当x=a+2时,y=﹣(a+2)2+(m﹣2)(a+2)+2m,∴A(a,﹣a2+(m﹣2)a+2m)、B(a+2,﹣(a+2)2+(m﹣2)(a+2)+2m).∴点A运动的路线是的函数关系式为y1=﹣a2+(m﹣2)a+2m,点B运动的路线的函数关系式为y2=﹣(a+2)考点:二次函数综合题.。

2017年江苏省泰州市中考数学试卷含答案解析

2017年江苏省泰州市中考数学试卷含答案解析

徐老师江苏省泰州市2017年中考试卷数学本试卷满分120分,考试时间120分钟.一、选择题(每小题3分,共18分)1.2的算术平方根是()A .BC .D .22.下列运算正确的是()A .3362a a a = B .3362a a a +=C .326()a a =D .623a a a = 3.把下列英文字母看成图形,既是轴对称图形又是中心对称图形的是()AB C D4.三角形的重心是()A .三角形三条边上中线的交点B .三角形三条边上高线的交点C .三角形三条边垂直平分线的交点D .三角形三条内角平行线的交点5.某科普小组有5名成员,身高分别为(单位:cm ):160,165,170,163,167.增加1名身高为165cm 的成员后,现科普小组成员的身高与原来相比,下列说法正确的是()A .平均数不变,方差不变B .平均数不变,方差变大C .平均数不变,方差变小D .平均数变小,方差不变6.如图,P 为反比例函数(0)k y k x=>在第一象限内图像上的一点,过点P 分别作x 轴,y 轴的垂线交一次函数4y x =--的图像于点A 、B ,若135AOB =∠°,则k 的值是()A .2B .4C .6D .8二、填空题(每小题3分,共30分)7.4-=8.天宫二号在太空绕地球一周大约飞行42500千米,将42500用科学记数法表示为.9.已知234m n -=-,则代数式(4)(6)m n n m ---的值为.10.一只不透明的袋子共装有3个小球,它们的标号分别为1,2,3,从中摸出1个小球,标号为“4”,这个事件是.(填“必然事件”、“不可能事件”或“随机事件”)11.将一副三角板如图叠放,则图中α∠的度数为.12.扇形的半径为3cm ,弧长为2πcm ,则该扇形的面积为2cm .13.方程22310x x +-=的两个根为1x 、2x ,则1211x x +的值等于.14.小明沿着坡度i为的直路向上走了50m ,则小明沿垂直方向升高了m .15.如图,在平面直角坐标系xOy 中,点A 、B 、P 的坐标分别为(1,0),(2,5),(4,2),若点C 在第一象限内,且横坐标、纵坐标均为整数,P 是ABC △的外心,则点C 的坐标为.(第15题)(第16题)16.如图,在平面内,线段6AB =,P 为线段AB 上的动点,三角形纸片CDE 的边CD 所在的直线与线段AB 垂直相交于点P ,且满足PC PA =,若点P 沿AB 方向从点A 运动到点B ,则点E 运动的路径长为.三、解答题(本大题共10小题,共102分)17.(12分)(1)计算:0211)()302----+°;徐老师(2)解方程:214111x x x++=--.18.(8分)“泰微课”是学生自主学习的平台,某初级中学共有1200名学生,每人每周学习的数学泰微课都在6至30个之间(含6和30),为进一步了解该校学生每周学习数学泰微课的情况,从三个年级随机抽取了部分学生的相关学习数据,并整理、绘制成统计图如下:每周学习数学泰微课人数的条形统计图每周学习数学泰微课人数的扇形统计图根据以上信息完成下列问题:(1)补全条形统计图;(2)估计该校全体学生中每周学习数学泰微课在16至30个之间(含16和30)的人数.19.(8分)在学校组织的朗诵比赛中,甲、乙两名学生以抽签的方式从3篇不同的文章中抽取一篇参加比赛,抽签规则是:在3个相同的标签上分别标注字母A 、B 、C ,各代表1篇文章,一名学生随机抽取一个标签后放回,另一名学生再随机抽取.用画树状图或列表的方法列出所有等可能的结果,并求甲、乙抽中同一篇文章的概率.20.(8分)如图,ABC △中,ACB ABC ∠>∠.(1)用直尺和圆规在ACB ∠的内部作射线CM ,使ACM ABC =∠∠(不要求写作法,保留作图痕迹);(2)若(1)中的射线CM 交AB 于点D ,9AB =,6AC =,求AD 的长.21.(10分)平面直角坐标系xOy 中,点P 的坐标为(1,1)m m +-.(1)试判断点P 是否在一次函数2y x =-的图像上,并说明理由;(2)如图,一次函数132y x =-+的图像与x 轴、y 轴分别相交于点A 、B ,若点P 在AOB △的内部,求m 的取值范围.徐老师22.(10分)如图,正方形ABCD 中,G 为BC 边上一点,BE AG ⊥于E ,DF AG ⊥于F ,连接DE .(1)求证:ABE DAF △≌△;(2)若1AF =,四边形ABED 的面积为6,求EF 的长.23.(10分)怡然美食店的A 、B 两种菜品,每份成本均为14元,售价分别为20元、18元,这两种菜品每天的营业额共为1120元,总利润为280元.(1)该店每天卖出这两种菜品共多少份?(2)该店为了增加利润,准备降低A 种菜品的售价,同时提高B 种菜品的售价,售卖时发现,A 种菜品售价每降0.5元可多卖1份;B 种菜品售价每提高0.5元就少卖1份,如果这两种菜品每天销售总份数不变,那么这两种菜品一天的总利润最多是多少?24.(10分)如图,O ⊙的直径12cm AB =,C 为AB 延长线上一点,CP 与O ⊙相切于点P ,过点B 作弦BD CP ∥,连接PD .(1)求证:点P 为 BD的中点;(2)若C D =∠∠,求四边形BCPD 的面积.25.(12分)阅读理解:PA最短,则线如图①,图形l外一点P与图形l上各点连接的所有线段中,若线段1PA的长度称为点P到图形l的距离.段1例如:图②中,线段i P A的长度是点i P到线段AB的距离;线段2P H的长度是点2P 到线段AB的距离.解决问题:如图③,平面直角坐标系xOy中,点A、B的坐标分别为(8,4),(12,7),点P从原点O出发,以每秒1个单位长度的速度向x轴正方向运动了t秒.(1)当4t=时,求点P到线段AB的距离;(2)t为何值时,点P到线段AB的距离为5?(3)t满足什么条件时,点P到线段AB的距离不超过6?(直接写出此小题的结果)26.(14分)平面直角坐标系xOy中,点A、B横坐标分别为a、2a+,二次函数2(2)2=-+-+的图像经过点A、B,且a、m足2a m dy x m x m-=(d为常数).=+的图像经过A、B两点.(1)若一次函数1y kx b①当1d=-时,求k的值;a=、1②若1y随x的增大而减小,求d的取值范围;(2)当4a≠-时,判断直线AB与x轴的位置关系,并说明理由;a≠-、4d=-且2(3)点A、B的位置随着a的变化而变化,设点A、B运动的路线与y轴分别相交于点C、D,线段CD的长度会发生变化吗?如果不变,求出CD的长;如果变化,请说明理由.徐老师江苏省泰州市2017年中考试卷数学答案解析一、选择题1.【答案】B【解析】解:2,故选B .【提示】根据算术平方根的定义直接解析即可.【考点】算术平方根.2.【答案】C【解析】解:A .336•a a a =,故此选项错误;B .3332a a a +=,故此选项错误;C .326()a a =,正确;D .628•a a a =,故此选项错误,故选:C .【提示】分别利用同底数幂的乘除运算法则以及幂的乘方运算、合并同类项法则判断得出答案.【考点】幂的运算及合并同类项.3.【答案】C【解析】解:A .是轴对称图形,不是中心对称图形,故本选项错误;B .既不是轴对称图形,又不是中心对称图形,故本选项错误;C .既是轴对称图形又是中心对称图形,故本选项正确;D .不是轴对称图形,是中心对称图形,故本选项错误,故选C .【提示】根据轴对称图形和中心对称图形的概念对各选项提示判断即可得解.【考点】轴对称图形与中心对称图形的定义.4.【答案】A【解析】解:三角形的重心是三条中线的交点,故选:A .【提示】根据三角形的重心是三条中线的交点解析.【考点】三角形重心的定义.5.【答案】C 【解析】解:160165170163167=1655x ++++原,258=5S 原,160165170163167=6x ++++新,258=6S 新,平均数不变,方差变小,故选:C .【提示】根据平均数的意义,方差的意义,可得答案.【考点】平均数,方差的计算.6.【答案】D【解析】解:方法1.作BF x ⊥轴,OE AB CQ AP ⊥⊥,,如图1,设P 点坐标,k n n⎛⎫⎪⎝⎭,∵直线AB 函数式为4y x =--,PB y ⊥轴,PA x ⊥轴,∴0,4(40)),(C G --,,∴OC OG =,∴45OGC OCG ∠=∠= ,∵PB OG PA OC∥,∥,∴4545PBA OGC PAB OCG ∠=∠=∠=∠= ,,∴PA PB =,∵P 点坐标,k n n⎛⎫⎪⎝⎭,∴OD CQ n ==,∴4AD AQ DQ n =+=+;∵当0x =时,44y x =--=-,∴42OC DQ GE OE =====,,同理可证:2BG n ===,∴2BE BG EG n=+=+∵135AOB ∠= ,∴45OBE OAE ∠+∠= ,∵45DAO OAE ∠+∠= ,∴DAO OBE ∠=∠,∵在BOE △和AOD △中,90DAO OBEBEO ADO ∠=∠⎧⎨∠=∠=⎩,∴BOE AOD △∽△;∴OE BEOD AD=,即2224nnn+=+;整理得:22282nk n n n +=+,化简得:8k =,故选D.方法2.如图2,过B 作BF x ⊥轴于F ,过点A 作AD y ⊥轴于D ,∵直线AB 函数式为4y x PB y =--⊥,轴,PA x ⊥轴,∴0,4(40)),(C G --,,∴OC OG =,∴45OGC OCG ∠=∠=∵PB OG PA OC ∥,∥,∴45PBA OGC ∠=∠= ,45PAB OCG ∠=∠= ,∴PA PB =,∵P徐老师点坐标,k n n ⎛⎫ ⎪⎝⎭,∴,44(,)k kA n nB n n⎛⎫---- ⎪⎝⎭,∵当0x =时,44y x =--=-,∴4OC =,当0y =时,4x =-.∴4OG =,∵135AOB ∠= ,∴45BOG AOC ∠+∠= ,∵直线AB 的解析式为4y x =--,∴45AGO OCG ∠=∠= ,∴45BGO OCA BOG OBG ∠=∠∠+∠= ,,∴OBG AOC ∠=∠,∴BOG OAC △∽△,∴OG BG AC OC =,∴44BG AC =,在等腰Rt BFG △中,BG ==,在等腰Rt ACD △中,AC ==4n =,∴8k =.【提示】方法1.作BF x ⊥轴,OE AB CQ AP ⊥⊥,,易证BOE AOD △∽△,根据相似三角形对应边比例相等的性质即可求出k 的值.方法2.先求出OG OC ,,再判断出BOG OAC △∽△,得出OG BGAC OC=,再利用等腰直角三角形的性质得出BG AC ,即可得出结论.【考点】一次函数,反比例函数的图像与性质.二、填空题7.【答案】4【解析】解:44-=.【提示】因为40-<,由绝对值的性质,可得4-的值.【考点】绝对值的性质.8.【答案】44.2510⨯【解析】解:将42500用科学记数法表示为:44.2510⨯.【提示】科学记数法的表示形式为10n a ⨯的形式,其中110a n ≤<,为整数.确定n的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值1≥时,n 是非负数;当原数的绝对值1<时,n 是负数.【考点】科学计数法.9.【答案】8【解析】解:当234m n -=-时,∴原式46mn m mn n=--+(4622(3)24)8m n m n =-+=--=-⨯-=.【提示】先将原式化简,然后将234m n -=-代入即可求出答案.【考点】求代数式的值和整体思想.10.【答案】不可能事件【解析】解:∵袋子中3个小球的标号分别为1,2,3,没有标号为4的球,∴从中摸出1个小球,标号为“4”,这个事件是不可能事件,故答案为:不可能事件.【提示】根据必然事件,不可能事件,随机事件的概念进行判断即可.【考点】必然事件.11.【答案】15°【解析】解:由三角形的外角的性质可知,604515α∠=-= .【提示】根据三角形的外角的性质计算即可.【考点】三角形外角定理.12.【答案】3π【解析】解:设扇形的圆心角为n ,则:π32π=180n g g ,得:120n = .∴22120π33πcm 360S ==g g 扇形【提示】先用弧长公式求出扇形的圆心角的度数,然后用扇形的面积公式求出扇形的面积.【考点】扇形面积的求法.13.【答案】3【解析】解:根据题意得1232x x +=-,1212x x =-,所以121212113x x x x x x ++==.【提示】先根据根与系数的关系得到1232x x +=-,1212x x =-,再通分得到12121211x x x x x x ++=,然后利用整体代入的方法计算.徐老师【考点】一元二次方程的根与系数的关系.14.【答案】25【解析】解:如图,过点B 作BE AC ⊥于点E ,∵坡度i =:,∴tan A ∠==,∴30A ∠= ,∵50m AB =,∴125)2(BE AB m ==.【提示】首先根据题意画出图形,由坡度为,可求得坡角30A ∠= ,又由小明沿着坡度为的山坡向上走了50m ,根据直角三角形中,30 所对的直角边是斜边的一半,即可求得答案.【考点】解直角三角形.15.【答案】(7,4)或(6,5)或(1,4)【解析】解:如图,∵点A B P ,,的坐标分别为1025(,(42))(),,,,.∴PA PB ===,∵点C 在第一象限内,且横坐标、纵坐标均为整数,P是ABC △的外心,∴PC PA PB ====,则点C 的坐标为(7,4)或(6,5)或(1,4).【提示】由勾股定理求出PA PB ===由点C 在第一象限内,且横坐标、纵坐标均为整数,P 是ABC △的外心,得出PC PA PB ====,即可得出点C 的坐标.【考点】三角形的外心,三角形的外接圆,勾股定理.16.【答案】【解析】解:如图,由题意可知点C 运动的路径为线段AC ',点E 运动的路径为EE ',由平移的性质可知AC EE '=',在Rt ABC '△中,易知690AB BC ABC ='=∠'= ,,∴EE AC '='==.【提示】如图,由题意可知点C 运动的路径为线段AC ',点E 运动的路径为EE ',由平移的性质可知AC EE '=',求出AC '即可解决问题.【考点】平移的性质,等腰三角形的性质.三、解答题17.【答案】(1)答案见解析(2)答案见解析【解析】解:(1)原式1412=-+=-(2)去分母得:222141x x x ++-=-,解得:1x =,经检验1x =是增根,分式方程无解.【提示】(1)原式利用零指数幂,负整数指数幂法则,以及特殊角的三角函数值计算即可得到结果.(2)分式方程去分母转化为整式方程,求出整式方程的解得到x 的值,经检验即可得到分式方程的解.【考点】0次幂,负整数指数幂,特殊三角函数值,二次根式的运算.18.【答案】(1)答案见解析(2)960人【解析】解:(1)观察统计图知:6-10个的有6人,占10%,∴总人数为610%60÷=人,∴16-20的有6066241212----=人,∴条形统计图为:徐老师(2)该校全体学生中每周学习数学泰微课在16至30个之间的有121224120096060++⨯=人.【提示】(1)求得16-20的频数即可补全条形统计图.(2)用样本估计总体即可.【考点】条形统计图,扇形统计图,频数的概念.19.【答案】13【解析】解:如图:所有可能的结果有9种,甲,乙抽中同一篇文章的情况有3种,概率为31=93.【提示】首先根据题意画出树状图,然后由树状图求得所有等可能的结果与甲,乙抽中同一篇文章的结果,再利用概率公式求解即可求得答案.【考点】画树状图,列表求等可能条件下的概率.20.【答案】(1)答案见解析(2)4AD =【解析】解:(1)如图所示,射线CM 即为所求;(2)∵ACD ABC CAD BAC ∠=∠∠=∠,,∴ACD ABC △∽△,∴AD AC AC AB =,即669AD =,∴4AD =.【提示】(1)根据尺规作图的方法,以AC 为一边,在ACB ∠的内部作ACM ABC∠=∠即可.(2)根据ACD △与ABC △相似,运用相似三角形的对应边成比例进行计算即可.【考点】基本尺规作图,三角形相似的判定和性质.21.【答案】(1)答案见解析(2)713m <<【解析】解:(1)∵当1x m =+时,121y m m =+-=-,∴点1,)1(P m m +-在函数2y x =-图像上.(2)∵函数132y x =-+,∴()6,0,)3(0A B ,,∵点P 在AOB △的内部,∴016m <+<,013m <-<,(111)32m m -<-++,∴713m <<.【提示】(1)要判断点1,1()m m +-是否的函数图像上,只要把这个点的坐标代入函数解析式,观察等式是否成立即可.(2)根据题意得出016m <+<,013m <-<,(111)32m m -<-++,解不等式组即可求得.【考点】一次函数的图像,点在函数图像上的意义,不等式的解法.22.【答案】(1)答案见解析(2)2EF =【解析】证明:(1)∵四边形ABCD 是正方形,∴AB AD =,∵DF AG BE AG ⊥⊥,,∴90BAE DAF ∠+∠= ,90DAF ADF ∠+∠= ,∴BAE ADF ∠=∠,在ABE △和DAF△中,==BAE ADF AEB DFA AB AD ∠∠⎧⎪∠∠⎨⎪=⎩,∴()ABE DAF AAS △≌△.(2)设EF x =,则1AE DF x ==+,由题意112(1)11)62(2x x x ⨯⨯+⨯+⨯⨯+=,解得2x =或5-(舍弃),∴2EF =.徐老师【提示】(1)由9090BAE DAF DAF ADF ∠+∠=∠+∠= ,,推出BAE ADF ∠=∠,即可根据AAS 证明ABE DAF △≌△.(2)设EF x =,则1AE DF x ==+,根据四边形ABED 的面积为6,列出方程即可解决问题;【考点】正方形的性质,三角形全等的判定及性质,一元二次方程的解法.23.【答案】(1)60(2)316【解析】解:(1)设该店每天卖出A B ,两种菜品分别为x y ,份,根据题意得,20181120(2014)(1814)280x y x y +=⎧⎨-+-=⎩,解得:2040x y =⎧⎨=⎩,所以该店每天卖出这两种菜品共60份.(2)设A 种菜品售价降0.5a 元,即每天卖(20)a +份;总利润为w 元因为两种菜品每天销售总份数不变,所以B v种菜品卖(40)a -份,每份售价提高0.5a 元,20140.5)20)1814((0.5)4)(0(w a a a a =--++-+-60.5)2((((0)40.5)40)a a a a =-+++-26)36(1a =--+,当6a w =,最大,316w =【提示】(1)由A 种菜和B 种菜每天的营业额为1120和总利润为280建立方程组即可.(2)设出A 种菜多卖出a 份,则B 种菜少卖出a 份,最后建立利润与A 种菜多卖出的份数的函数关系式即可得出结论.【考点】二元一次方程组的应用及解法,二次函数的应用,配方法.24.【答案】(1)答案见解析(2)183【解析】(1)证明:连接OP ,∵CP 与O 相切于点P ,∴PC OP ⊥,∴90OPC ∠= ,∵BD CP ∥,∴90OEP OPC ∠== ,∴BD OP ⊥,∴点P 为»BD的中点.(2)解:∵C D ∠=∠,∵2POB D ∠=∠,∴2POB C ∠=∠,∵90CPO ∠= ,∴30C ∠= ,∵BD CP ∥,∴C DBA ∠=∠,∴D DBA ∠=∠,∴BC PD ∥,∴四边形BCPD 是平行四边形,∵162PO AB ==,∴PC =30ABD C ∠=∠= ,∴132OE OB ==,∴3PE =,∴四边形BCPD 的面积•3PC PE ===.【提示】(1)连接OP ,根据切线的性质得到PC OP ⊥,根据平行线的性质得到BD OP ⊥,根据垂径定理即可得到结论.(2)根据圆周角定理得到2POB D ∠=∠,根据三角形的内角和得到30C ∠= ,推出四边形BCPD 是平行四边形,于是得到结论.【考点】切线的性质,垂径定理,平行线的性质与判定,三角形全等的判定与性质,圆心角定理,锐角三角函数,勾股定理.25.【答案】(1)(2)11t =(3)3883t -≤≤【解析】解:(1)如图1,作AC x ⊥轴于点C ,则48AC OC ==,,当4t =时,4OP =,∴4PC =,∴点P 到线段AB 的距离PA ==.徐老师(2)如图2,过点B 作BD x ∥轴,交y 轴于点D ,①当点P 位于AC 左侧时,∵145AC P A ==,,∴13PC ===,∴15OP =,即5t =;②当点P 位于AC 右侧时,过点A 作2AP AB ⊥,交x 轴于点2P ,∴290CAP EAB ∠+∠= ,∵BD x ∥轴,AC x ⊥轴,∴CE BD ⊥,∴290ACP BEA ∠=∠= ,∴90EAB ABE ∠+∠= ,∴2ABE P AC ∠=∠,在2ACP △和BEA △中,∵22904ACP BEA AC BE P AC ABE ⎧∠=∠=⎪==⎨⎪∠=∠⎩,∴2()ACP BEA ASA △≌△,∴25AP BA ==+=,而此时23P C AE ==,∴211OP =,即11t =;(3)如图3,①当点P 位于AC 左侧,且36AP =时,则3PC ==,∴338OP OC PC =-=-②当点P 位于AC 右侧,且36P M =时,过点2P 作23P N P M ⊥于点N ,则四边形2AP NM是矩形,∴2223290905AP N ACP P NP AP MN ∠=∠=∠=== ,,,∴223ACP P NP △∽△,且31NP =,∴22233AP CP P P NP =,即23531P P =,∴2353P P =,∴32235388333OP OC CP P P =++=++=,∴当3883t -≤≤时,点P 到线段AB 的距离不超过6.【提示】(1)作AC x ⊥轴,由44PC AC ==,,根据勾股定理求解可得.(2)作BD x ∥轴,分点P 在AC 左侧和右侧两种情况求解,P 位于AC 左侧时,根据勾股定理即可得;P 位于AC 右侧时,作2AP AB ⊥,交x 轴于点2P ,证2ACP BEA △≌△得25AP BA ==,从而知23P C AE ==,继而可得答案.(3)分点P 在AC 左侧和右侧两种情况求解,P 位于AC 左侧时,根据勾股定理即可得;点P 位于AC 右侧且36P M =时,作23P N P M ⊥于点N ,知四边形2AP NM 是矩形,证223ACP P NP △∽△得22233AP CP P P NP =,求得23P P 的长即可得出答案.【考点】点的坐标的意义,勾股定理,相似三角形的判定与性质,锐角三角函数定义,分类讨论思想.26.【答案】(1)①3-②4d >-(2)当d=-4且a ≠-2、a ≠-4时,判断直线AB 与x 轴的位置关系,并说明理由;(3)点A 、B 的位置随着a 的变化而变化,设点A 、B 运动的路线与y 轴分别相交于点C 、D ,线段CD 的长度会发生变化吗?如果不变,求出CD 的长;如果变化,请说明理由.【解析】解:(1)①当11a d ==-,时,23m a d =-=,所以二次函数的表达式是26y x x =-++.∵1a =,∴点A 的横坐标为1,点B 的横坐标为3,把1x =代入抛物线的解析式得:6y =,把3x =代入抛物线的解析式得:01,6()()3,0y A B =∴,,.将点A 和点B 的坐标代入直线的解析式得:630k b k b +=⎧⎨+=⎩,解得:39k b =-⎧⎨=⎩,所以k 的值为3-.②∵22)2)(()2(y x m x m x m x =-+-+=--+,∴当x a =时,)2)((y a m a =--+;徐老师当2x a =+时,24)(()4y a a =-+-+,∵1y 随着x 的增大而减小,且2a a <+,∴)2)(2)4((()a m a a m a --+>-+-+,解得:24a m ->-,又∵2a m d -=,∴d 的取值范围为4d >-.(2)∵4d =-且24a a ≠-≠-,,2a m d -=,∴24m a =+∴二次函数的关系式为2(22)48y x a x a =-++++把x a =代入抛物线的解析式得:268y a a =++把2x a =+代入抛物线的解析式得:268y a a =++.∴22,682(),8()6A a a a B a a a +++++,.∵点A ,点B 的纵坐标相同,∴AB x ∥轴.(3)线段CD 的长度不变.∵22)2(y x m x m =-+-+过点A ,点B ,2a m d -=,∴2(2(2)22)y x a d x a d =-+--+-.∴222)22)48.((A B y a d a d y a d a d =-+--=+---,∵把0a =代入22()2A y a d a d =-+--,得:2y d =-,∴2(0,)C d -.∵点D 在y 轴上,即20a +=,∴2a =-,.把2a =-代入22)4(8B y a d a d =+---得:28y d =--.∴0,2(8)D d --∴228)8(DC d d =----=∴线段CD 的长度不变.【提示】(1)①当11a d ==-,时,23m a d =-=,于是得到抛物线的解析式,然后求得点A 和点B 的坐标,最后将点A 和点B 的坐标代入直线AB 的解析式求得k 的值即可.②将2x a x a ==+,代入抛物线的解析式可求得点点A 和点B 的纵坐标,然后依据1y 随着x 的增大而减小,可得到)2)(2)4((()a m a a m a --+>-+-+,结合已知条件2a m d -=,可求得d 的取值范围.(2)由4d =-可得到24m a =+,则抛物线的解析式为222)48(y x a x a =-++++,然后将2x a x a ==+,代入抛物线的解析式可求得点A 和点B 的纵坐标,最后依据点A 和点B 的纵坐标可判断出AB 与x 轴的位置关系.(3)先求得点A 和点B 的坐标,于是得到A 和点B 的点运动的路线与字母a 的函数关系式,则点2(0,)C d -,0,2(8)D d --,于是可得到CD 的长度.【考点】一次函数的图像与性质,待定系数法,点的坐标规律,二次函数的性质.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2017年中考适应性考试(二)九年级数学试题(考试时间:120分钟 总分:150分)请注意:1.本试卷分选择题和非选择题两个部分.2.所有试题的答案均填写在答题卡上,答案写在试卷上无效. 3.作图必须用2B 铅笔,并请加黑加粗.....第一部分 选择题(共18分)一、选择题(本大题共有6小题,每小题3分,共18分.在每小题所给出的四个选项中,恰有一项是符合题目要求的,请将正确选项的字母代号填涂在答题卡...相应位置....上) 1. ︒30tan 的值为( ▲ ) A .1B .22C .33D .23 2. 下列运算中,正确的是( ▲ )A .xy y x 222=+B .32)(1)(xy xy xy =÷C .54232)(y x y x =D .xy yx xy =-32 3. 一个几何体的三视图如图所示,则这个几何体的名称是( ▲ ) A .圆柱体B .三棱锥C .球体D .圆锥体4. 口袋中装有形状、大小与质地都相同的红球2个,黄球1个,下列事件为随机事件的是( ▲ )A .随机摸出1个球,是白球B .随机摸出1个球,是红球C .随机摸出1个球,是红球或黄球D .随机摸出2个球,都是黄球5. 在由相同的小正方形组成的3×4的网格中,有3个小正方形已经涂黑,请你再涂黑一个小正方形,使涂黑的四个小正方形构成的图形为轴对称图形,则还需要涂黑的小正方形序号是( ▲ ) A .①或② B .③或⑥C .④或⑤D .③或⑨6. 我们用[a ]表示不大于a 的最大整数,例如:[2.5]=2,[3]=3,[-2.5]=-3;.已知x 、y 满足方程组[][][][]32930x y x y ⎧+=⎪⎨-=⎪⎩,则[]y x +可能的值有( ▲ )(第5题图)(第3题图)A .1个B .2个C .3个D .4个第二部分 非选择题(共132分)二、填空题(本大题共有10小题,每小题3分,共30分.请把答案直接填写在答题卡相....应位置...上) 7.2)21(--= ▲ .8.若∠α=31°42′,则∠α的补角的度数为 ▲ .9.点M 关于x 轴对称的点的坐标是(-1,3),则点M 的坐标是 ▲ .则这些学生年龄的众数是 ▲ .11.若a >1,则a +2017 ▲ 2a +2016.(填“>”或“<”)12.如果A 、B 两地的实际距离是20km ,且A 、B 两点在地图上的距离是4cm ,那么实际距 离是500km 的两地在地图上的距离是 ▲ cm .13.如图,在直角三角形ABC 中,斜边AB 上的中线CD=AC ,则∠B= ▲ °. 14.如图,四边形ABCD 内接于⊙O ,点E 在AB 的延长线上,BF ∥AC ,AB =BC , ∠ADC=130°,则∠FBE= ▲ °.15.已知,二次函数)0(222≠++-=a a ax ax y 图像的顶点为A ,与x 轴交于B 、C 两点, D 为BC 的中点且AD=12BC ,则a = ▲ . 16.一次函数4+-=x y 图像与x 轴、y 轴分别交于点A 、点B ,点P 为正比例函数)0(>=k kx y 图像上一动点,且满足∠PBO=∠POA ,则AP 的最小值为 ▲ .三、解答题(本大题共有10题,共102分.请在答题卡指定区域内作答,解答时应写出必要的文字说明、证明过程或演算步骤) 17.(本题满分12分)(1)计算:︒--+--45cos 4|3|)2017(80(2)化简:)11112(1222---++÷-a a a a a a(第13题图)(第14题图)近年来,学校对“在初中数学教学时总使用计算器是否直接影响学生计算能力的发展”这一问题密切关注,为此,某校随机调查了n名学生对此问题的看法(看法分为三种:没有影响,影响不大,影响很大),并将调查结果绘制成如下不完整的统计表和扇形统计图,根据统计图表提供的信息,解答下列问题:看法没有影响影响不大影响很大学生人数(人)40 60 m(2)统计表中的m= ;(3)估计该校1800名学生中认为“影响很大”的学生人数.19.(本题满分8分)在一个不透明袋子中有1个红球、1 个绿球和n个白球,这些球除颜色外都相同.(1)从袋中随机摸出1个球,记录下颜色后放回袋子中并搅匀.经大量试验,发现摸到白球的频率稳定在0.75左右,求n的值;(2)当n=2时,把袋中的球搅匀后任意摸出2个球,用树状图或列表求摸出的2个球颜色不同的概率.20.(本题满分8分)如图,△ABC.(1)用尺规作图作出A点关于BC的对称点D(保留作图痕迹);(2)在(1)的情况下,连接CD、AD,若AB=5,AC=AD=8,求BC的长.某剧院举办文艺演出.经调研,如果票价定为每张30元,那么1200张门票可以全部售出;如果票价每增加1元,那么售出的门票就减少30张.要使门票收入达到36750元,则票价应定为多少元?22.(本题满分10分)如图,A、B、C三地在同一直线上,D地在A地北偏东30°方向、在C地北偏西45°方向.C地在A地北偏东75°方向.且BD=BC=30m.(1)求∠ADC的度数;(2)求A、D两地的距离.23.(本题满分10分)如图,在⊙O中,AB是直径,D、E为⊙O上两点,过点D作⊙O的切线CD交AB的延长线于点C,OD与BE交于F点,四边形BCDE是平行四边形.(1)求证:四边形AODE是平行四边形.;(2)若⊙O的半径为6,求图中阴影部分的面积.如图,已知在ABC ∆中,10==AC AB ,34tan =∠B . (1)求BC 的长;(2)点D 在边AB 上,且AD=1,M 为边BC 上一动点,连接DM .当BDM ∆是直角三角形时,求BM 的长.25.(本题满分12分)如图,A 、B 为反比例函数(0)ky x x=>图像上的两点,A 、B 两点坐标分别为(,5m m -)、(,5n n -)(m <n ),连接AB 并延长交x 轴于点C . (1)求m n +的值;(2)若B 为AC 的中点,求k 的值;(3)过B 点作OA 的平行线交x 轴于(0x ,0),若m 为整数,求0x 值.CB A已知二次函数)0(3221>--=m mx mx y 与一次函数12+=x y ,令W=21y y -. (1)若1y 、2y 的函数图像交于x 轴上的同一点. ①求m 的值;②当x 为何值时,W 的值最小,试求出该最小值; (2)当23x -<<时,W 随x 的增大而减小. ①求m 的取值范围; ②求证:12y y <.2017年中考适应性考试(二)九年级数学参考答案第一部分 选择题(共18分)一、选择题1. C2. B3.A4. B5. B6.B第二部分 非选择题(共132分)二、填空题7.4 8.148°18′ 9.(-1,-3) 10.1712.< 12.100 13.30 14.65 15.21-16.252- 三、解答题17. (1)2 ……………6分 (2)a ……………12分 18.(1)200 ……………2分;(2)100……………4分 (3)900人……………7分;答:该校1800名学生中约有900名学生认为“影响很大”……………8分. 19.(1)6……………4分(2)用树状图或列表列出所有等可能性结果……………6分 P (摸出的2个球颜色不同)=61……………8分 20.(1)作图略……………4分 (2)343+……………8分21.设票价应定为x 元,[]36750)30(301200=--x x ……………5分解之得3521==x x ……………9分答:设票价应定为35元……………10分22. (1)75°……………4分(2)615……………10分 23.(1)略……………5分(2)π6……………10分 24.(1)12……………4分(2)若︒=∠90BMD ,BM=5.4……………6分; 若︒=∠90BDM ,BM=15……………8分; 因为15>12,所以BM=15应舍去……………9分;故BM=5.4……………10分25.(1)5;………………4分 (2)310,35==n m …………………7分;950=k ………………8分;(3)由m <n 和(1)的结论,可知:250<<m , 又因为m 为整数,所以1=m 或2=m ……………………10分 由1=m 可求得0x =415;………………11分;由2=m 可求得0x =35……………12分26.(1)①1…………………3分;②425)23(43132222--=--=----=x x x x x x W …………………5分 当x =23时,W 的值最小,最小值为425-;…………………………6分(2)①4)12(13222-+-=----=x m mx x mx mx W对称轴为mm m m x 2122)12(+=+--=因为0>m ,23x -<<时,且W 随x 的增大而减小.所以,3212≥+m m ,………………………………………………………8分 所以41≤m …………………………………………………………………9分所以410≤<m ……………………………………………………………10分②当x=-2时,280-=m W因为23x -<<时,W 随x 的增大而减小.所以,280-=<m W W ………………………………………………12分因为410≤<m ,所以028≤-m ,即00≤W ………………………13分所以00≤<W W ,即21y y -<0,所以12y y <.………………………14分。

相关文档
最新文档