2017年广东省中考数学试卷考点分析
清远市2017年初中毕业生学业考试数学科试卷分析

2017年初中毕业生学业考试数学科试卷分析清远市教育教学研究院章江铢一、试卷分析(一)试卷总体分析:2017年广东省中考数学命题的主要依据是《广东省初中毕业生学业考试大纲》,命题是依纲不靠本(广东省各地级市所使用的教材版本不同)。
总体来看2017年的数学中考题知识面广,起点低,坡度缓,全卷试题与2017年的题型就能化不大,没有新题出现,学生对试题的熟识度较高,2017年广东中考数学试卷,给人的第一印象是“平和”,试题无论从题目的形式结构还是从试题陈述方式与解题技巧看,基础知识占主导地位,属常规问题,没有出现偏题、怪题。
试卷中有相当多的试题是课本上基本题目的直接引用或稍作变形而得来,侧重对数学“三基”的考查,要求全面,但不刻意追求知识点的覆盖率,注重了通性通法,强化了主干知识。
代数着重考查了函数、方程、不等式、统计等主要内容,平几着重考查求角度、作图、四边形、圆等主要内容。
全卷这部分知识有较高的比例,成为试题的主体。
全面考查思维能力、运算能力。
要求学生有创新意识,强调以能力立意命题,对知识考查既有简单的重现,更多侧重于理解和应用。
运算能力中考查了含字母的运算,兼顾对算理和逻辑推理的考查。
考查了函数与方程、数形结合、分类与整合等数学思想。
试题体现的数学逻辑思维方法有:分析与综合、归纳与演绎、比较与类比。
解答题基本设置了多个台阶,形成入口宽、层次分明、有序递进的特点,既注重新增内容又突出与高中数学衔接内容方面的知识考查,同时突显了“重点知识重点考”的命题思路,试题的命题方向既注重常规教学又突出考试功能,有利于引导教师重视《义务教育数学课程标准》的评价理念和教学方式,落实《标准》所设立的课程目标,减轻过重的教学负担,本人认为本试卷值得研讨的地方是:,选择题中第10题有拉分的难度、填空第16题有拉分的难度、设置比较合适,解答题(一)、(二)其题目的难度要求都比较低,基本没有难度稍大的位分题,学生在这部份考查中分不出优中差,也就在39分内没能使考生分出优中差,中上的考生都考出高分,解答(三)中的23、24题其难度、题型与2016年中考试题其本一样,应比较合适,所以全卷最后25题的压轴性就显得十分明显,若本题其拉分功能不能充分体现,本卷学生得分就会拉不开,其选拔功能就会削弱,而本题要对学生拉分,体现其选拔功能,主要设计在分类讨论的考查中体现出来,但本题在设置分类讨论时,把本题需分类讨论所考查的内容,以图形的形式画在试卷上,其考查分类讨论思想被大大削弱,大大失去其命题意图,致使本卷作为压轴题在近几年其得分率是最高的,且解答(一)、(二)试题难度也比较低,所以本卷全省平均分比前几年的平增多分有较大的提高,其中2016年清远市中考数学平均分为62.78,2017清远市中考数学平均分为77.84,足足多了15分。
2017年广东省中考数学试卷(含答案解析版)

完整word版,2017年广东省中考数学试题与参考答案

2017年广东省初中毕业生学业考试数 学说明:1.全卷共6页,满分为120 分,考试用时为100分钟。
2.答卷前,考生务必用黑色字迹的签字笔或钢笔在答题卡填写自己的准考证号、姓名、考场号、座位号。
用2B 铅笔把对应该号码的标号涂黑。
3.选择题每小题选出答案后,用2B 铅笔把答题卡上对应题目选项的答案信息点涂黑,如需改动,用橡皮擦干净后,再选涂其他答案,答案不能答在试题上。
4.非选择题必须用黑色字迹钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再这写上新的答案;不准使用铅笔和涂改液。
不按以上要求作答的答案无效。
5.考生务必保持答题卡的整洁。
考试结束时,将试卷和答题卡一并交回。
一、选择题(本大题10小题,每小题3分,共30分)在每小题列出的四个选项中,只有一个是正确的,请把答题卡上对应题目所选的选项涂黑.1. 5的相反数是( ) A. B.5 C.- D.-52.“一带一路”倡议提出三年以来,广东企业到“一带一路”国家投资越来越活跃.据商务部门发布的数据显示。
2016年广东省对沿线国家的实际投资额超过4 000 000 000美元.将4 000 000 000用科学记数法表示为( )A.0.4×B.0.4×C.4×D.4× 3.已知,则的补角为( )A. B. C. D. 4.如果2是方程的一个根,则常数k 的值为( )A.1B.2C.-1D.-25.在学校举行“阳光少年,励志青春”的演讲比赛中,五位评委给选手小明的评分分别为:90,85,90,80,95,则这组的数据的众数是( )A.95B.90C.85D.80 6.下列所述图形中, 既是轴对称图形又是中心对称图形的是( )A.等边三角形B.平行四边形C.正五边形D.圆 7.如题7图,在同一平面直角坐标系中,直线与双曲线 相交于A 、B 两点,已知点A 的坐标为(1,2), 则点B 的坐标为( ) A.(-1,-2) B.(-2,-1) C.(-1,-1) D.(-2,-2)15159101010910101070A ∠=︒A ∠110︒70︒30︒20︒230x x k -+=11(0)y k x k =≠22(0)k y k x=≠题7图8.下列运算正确的是( )A. B. C. D.9.如题9图,四边形ABCD 内接于⊙O ,DA=DC ,∠CBE=50°, 则∠DAC 的大小为( )A.130°B.100°C.65°D.50°10.如题10图,已知正方形ABCD ,点E 是BC 边的中点,DE 与AC 相交于点F ,连接BF ,下列结论:①;②;③; ④,其中正确的是( ) A.①③ B.②③ C.①④ D.②④二、填空题(本大题6小题,每小题4分,共24分)请将下列各题的正确答案填写在答题卡相应的位置上.11.分解因式:a a +2 .12.一个n 边形的内角和是,那么n= . 13.已知实数a,b 在数轴上的对应点的位置如题13图所示, 则 0(填“>”,“<”或“=”).14.在一个不透明的盒子中,有五个完全相同的小球,把它们分别标号为1,2,3,4,5.随机摸出一个小球,摸出的小球标号为偶数的概率是 . 15.已知,则整式的值为 .16.如题16图(1),矩形纸片ABCD 中,AB=5,BC=3,先按题16图(2)操作,将矩形纸片ABCD沿过点A 的直线折叠,使点D 落在边AB 上的点E 处,折痕为AF ;再按题16图(3)操作:沿过点F 的直线折叠,使点C 落在EF 上的点H 处,折痕为FG,则A 、H 两点间的距离为 .223a a a +=325·a a a =426()a a =424a a a +=ABF ADF S S =△△4CDF CBF S S =△△2ADF CEF S S =△△2ADF CDF S S =△△720︒ab ÷431a b ÷=863a b ÷-三、解答题(一)(本大题共3题,每小题6分,共18分)17.计算:.18.先化简,再求值,其中x =√5 .19.学校团委组织志愿者到图书馆整理一批新进的图书。
2017年广州市中考数学试题(附含答案解析)(K12教育文档)

2017年广州市中考数学试题(附含答案解析)(word版可编辑修改)编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(2017年广州市中考数学试题(附含答案解析)(word版可编辑修改))的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为2017年广州市中考数学试题(附含答案解析)(word版可编辑修改)的全部内容。
2017年广州市中考数学试卷一、选择题(共10小题;共50分)1。
如图,数轴上两点,表示的数互为相反数,则点表示的数是A。
B。
C。
D。
无法确定2. 如图,将正方形中的阴影三角形绕点顺时针旋转后,得到图形为A。
B.C。
D。
3. 某人活动小组为了解本组成员的年龄情况,作了一次调查,统计的年龄如下(单位:岁),,,,,.这组数据的众数,平均数分别为A。
,B。
, C. ,D。
, 4。
下列运算正确的是A。
B.C。
D。
()5. 关于的一元二次方程有两个不相等的实数根,则的取值范围是A. B。
C. D.6. 如图,是的内切圆,则点是的A. 三条边的垂直平分线的交点B。
三条角平分线的交点C. 三条中线的交点D. 三条高的交点7。
计算,结果是A。
B。
C。
D.8. 如图,,分别是平行四边形的边,上的点,,,将四边形沿翻折,得到,交于点,则的周长为A。
B。
C。
D。
9。
如图,在中,是直径,是弦,,垂足为,连接,,,则下列说法中正确的是A。
B.C。
D.10. ,函数与在同一直角坐标系中的大致图象可能是A. B.C。
D.二、填空题(共6小题;共30分)11. 如图,四边形中,,,则.12. 分解因式:.13. 当时,二次函数有最小值.14. 如图,中,,,,则.15。
数学中考试题分析

考点 阅读理解题意找出数量关系及等量关系,列出分式方程方程,解分式方程 分析: (1)由题意列出分式方程(2)利用不等量关系比较求解即可求得答
数学中考试题分析
2017年中考数学试卷很好地继承了往年中考 试题的特点,没有偏题、怪题,基础部分非常到 位,难易程度循序渐进。
此次试题的知识覆盖面广泛而全面,试题不
仅重视对基础知识、基本技能的检测,更加突出 对基本思想、基本活动经验的考查,比如函数的 考查,几何直观的理解,都可以通过知识点的性 质进行计算推理得出,也可以通过作出图像来建 模猜想得出;同时,不同难度的试题分布合理, 对不同的人在数学上能体现出得到不同的发展。
• 这些试题既强调重视生活、社会背景,又 考查数学对某些既定知识的掌握程度,启发学 生对社会热点重大事件的数学感知,体现数学 知识的社会功能。
• 2017年数学中考试卷中有大部分试题来源 于教材原型,比如二次函数图像的性质,不等 式组的解集,分式方程应用题,垂直平分线的 性质及线段之间的转换,三角函数的应用,阴 影面积的计算等等,这对课堂教学起到了很好 的导向作用,引导我们的课堂教学要回归教材, 深挖教材,不要靠刷题、猜题、押题来提高学 生的成绩。
• 在今后的教学中得到的启发:数学学习要 注重基础知识的理解和掌握,注重语言、书写 的规范性,注重答题的思维顺序和细节,注重 多角度、多方法的训练;只有掌握知识核心,才 能灵活运用。
答案:B
考点 一次函数图像上的点的坐标与表达式中自变量之间一一对应关系
分析:由坐标代入表达式,得到一元一次方程,求解a、b值,简单的代数运 算即可求得答案.
2017年广东省东莞市中考数学试卷解析版

2017年广东省东莞市中考数学试卷解析版一、选择题(本大题共10小题,每小题3分,共30分)1.(3分)5的相反数是( )A .15B .5C .−15D .﹣5【解答】解:根据相反数的定义有:5的相反数是﹣5.故选:D .2.(3分)“一带一路”倡议提出三年以来,广东企业到“一带一路”国家投资越来越活跃,据商务部门发布的数据显示,2016年广东省对沿线国家的实际投资额超过4000000000美元,将4 000 000 000用科学记数法表示为( )A .0.4×109B .0.4×1010C .4×109D .4×1010【解答】解:4000000000=4×109.故选:C .3.(3分)已知∠A =70°,则∠A 的补角为( )A .110°B .70°C .30°D .20°【解答】解:∵∠A =70°,∴∠A 的补角为110°,故选:A .4.(3分)如果2是方程x 2﹣3x +k =0的一个根,则常数k 的值为( )A .1B .2C .﹣1D .﹣2【解答】解:∵2是一元二次方程x 2﹣3x +k =0的一个根,∴22﹣3×2+k =0,解得,k =2.故选:B .5.(3分)在学校举行“阳光少年,励志青春”的演讲比赛中,五位评委给选手小明的评分分别为:90,85,90,80,95,则这组数据的众数是( )A .95B .90C .85D .80【解答】解:数据90出现了两次,次数最多,所以这组数据的众数是90.故选:B .6.(3分)下列所述图形中,既是轴对称图形又是中心对称图形的是( )A.等边三角形B.平行四边形C.正五边形D.圆【解答】解:等边三角形为轴对称图形;平行四边形为中心对称图形;正五边形为轴对称图形;圆既是轴对称图形又是中心对称图形.故选:D.7.(3分)如图,在同一平面直角坐标系中,直线y=k1x(k1≠0)与双曲线y=k2x(k2≠0)相交于A,B两点,已知点A的坐标为(1,2),则点B的坐标为()A.(﹣1,﹣2)B.(﹣2,﹣1)C.(﹣1,﹣1)D.(﹣2,﹣2)【解答】解:∵点A与B关于原点对称,∴B点的坐标为(﹣1,﹣2).故选:A.8.(3分)下列运算正确的是()A.a+2a=3a2B.a3•a2=a5C.(a4)2=a6D.a4+a2=a4【解答】解:A、a+2a=3a,此选项错误;B、a3•a2=a5,此选项正确;C、(a4)2=a8,此选项错误;D、a4与a2不是同类项,不能合并,此选项错误;故选:B.9.(3分)如图,四边形ABCD内接于⊙O,DA=DC,∠CBE=50°,则∠DAC的大小为()A .130°B .100°C .65°D .50°【解答】解:∵∠CBE =50°,∴∠ABC =180°﹣∠CBE =180°﹣50°=130°,∵四边形ABCD 为⊙O 的内接四边形,∴∠D =180°﹣∠ABC =180°﹣130°=50°,∵DA =DC ,∴∠DAC =180°−∠D 2=65°, 故选:C .10.(3分)如图,已知正方形ABCD ,点E 是BC 边的中点,DE 与AC 相交于点F ,连接BF ,下列结论:①S △ABF =S △ADF ;②S △CDF =4S △CEF ;③S △ADF =2S △CEF ;④S △ADF =2S △CDF ,其中正确的是( )A .①③B .②③C .①④D .②④【解答】解:∵四边形ABCD 是正方形,∴AD ∥CB ,AD =BC =AB ,∠F AD =∠F AB ,在△AFD 和△AFB 中,{AF =AF ∠FAD =∠FAB AD =AB,∴△AFD ≌△AFB ,∴S △ABF =S △ADF ,故①正确,∵BE =EC =12BC =12AD ,AD ∥EC ,∴EC AD =CF AF =EF DF =12, ∴S △CDF =2S △CEF ,S △ADF =4S △CEF ,S △ADF =2S △CDF ,故②③错误④正确,故选:C .二、填空题(本大题共6小题,每小题4分,共24分)11.(4分)分解因式:a 2+a = a (a +1) .【解答】解:a 2+a =a (a +1).故答案为:a (a +1).12.(4分)一个n 边形的内角和是720°,则n = 6 .【解答】解:依题意有:(n ﹣2)•180°=720°,解得n =6.故答案为:6.13.(4分)已知实数a ,b 在数轴上的对应点的位置如图所示,则a +b > 0.(填“>”,“<”或“=”)【解答】解:∵a 在原点左边,b 在原点右边,∴a <0<b ,∵a 离开原点的距离比b 离开原点的距离小,∴|a |<|b |,∴a +b >0.故答案为:>.14.(4分)在一个不透明的盒子中,有五个完全相同的小球,把它们分别标号为1,2,3,4,5,随机摸出一个小球,摸出的小球标号为偶数的概率是25 .【解答】解:∵5个小球中,标号为偶数的有2、4这2个,∴摸出的小球标号为偶数的概率是25, 故答案为:25 15.(4分)已知4a +3b =1,则整式8a +6b ﹣3的值为 ﹣1 .【解答】解:∵4a +3b =1,∴8a +6b ﹣3=2(4a +3b )﹣3=2×1﹣3=﹣1;故答案为:﹣1.16.(4分)如图,矩形纸片ABCD 中,AB =5,BC =3,先按图(2)操作:将矩形纸片ABCD沿过点A 的直线折叠,使点D 落在边AB 上的点E 处,折痕为AF ;再按图(3)操作,沿过点F 的直线折叠,使点C 落在EF 上的点H 处,折痕为FG ,则A 、H 两点间的距离为 √10 .【解答】解:如图3中,连接AH .由题意可知在Rt △AEH 中,AE =AD =3,EH =EF ﹣HF =3﹣2=1,∴AH =√AE 2+EH 2=√32+12=√10,故答案为√10.三、解答题(本大题共3小题,每小题6分,共18分)17.(6分)计算:|﹣7|﹣(1﹣π)0+(13)﹣1. 【解答】解:原式=7﹣1+3=9.18.(6分)先化简,再求值:(1x−2+1x+2)•(x 2﹣4),其中x =√5. 【解答】解:原式=[x+2(x+2)(x−2)+x−2(x+2)(x−2)]•(x +2)(x ﹣2) =2x (x+2)(x−2)•(x +2)(x ﹣2)=2x ,当x =√5时,原式=2√5.19.(6分)学校团委组织志愿者到图书馆整理一批新进的图书.若男生每人整理30本,女生每人整理20本,共能整理680本;若男生每人整理50本,女生每人整理40本,共能整理1240本.求男生、女生志愿者各有多少人?【解答】解:设男生志愿者有x 人,女生志愿者有y 人,根据题意得:{30x +20y =68050x +40y =1240, 解得:{x =12y =16. 答:男生志愿者有12人,女生志愿者有16人.四、解答题(本大题共3小题,每小题7分,共21分)20.(7分)如图,在△ABC 中,∠A >∠B .(1)作边AB 的垂直平分线DE ,与AB ,BC 分别相交于点D ,E (用尺规作图,保留作图痕迹,不要求写作法);(2)在(1)的条件下,连接AE ,若∠B =50°,求∠AEC 的度数.【解答】解:(1)如图所示;(2)∵DE 是AB 的垂直平分线,∴AE =BE ,∴∠EAB =∠B =50°,∴∠AEC =∠EAB +∠B =100°.21.(7分)如图所示,已知四边形ABCD ,ADEF 都是菱形,∠BAD =∠F AD ,∠BAD 为锐角.(1)求证:AD ⊥BF ;(2)若BF =BC ,求∠ADC 的度数.【解答】(1)证明:如图,连结DB 、DF .∵四边形ABCD ,ADEF 都是菱形,∴AB =BC =CD =DA ,AD =DE =EF =F A .在△BAD 与△F AD 中,{AB =AF ∠BAD =∠FAD AD =AD,∴△BAD ≌△F AD ,∴DB =DF ,∴D 在线段BF 的垂直平分线上,∵AB =AF ,∴A 在线段BF 的垂直平分线上,∴AD 是线段BF 的垂直平分线,∴AD ⊥BF ;解法二:∵四边形ABCD ,ADEF 都是菱形,∴AB =BC =CD =DA ,AD =DE =EF =F A .∴AB =AF ,∵∠BAD =∠F AD ,∴AD ⊥BF (等腰三角形三线合一);(2)如图,设AD ⊥BF 于H ,作DG ⊥BC 于G ,则四边形BGDH 是矩形,∴DG =BH =12BF .∵BF =BC ,BC =CD ,∴DG=12CD.在直角△CDG中,∵∠CGD=90°,DG=12CD,∴∠C=30°,∵BC∥AD,∴∠ADC=180°﹣∠C=150°.22.(7分)某校为了解九年级学生的体重情况,随机抽取了九年级部分学生进行调查,将抽取学生的体重情况绘制如下不完整的统计图表,如图表所示,请根据图表信息回答下列问题:体重频数分布表组边体重(千克)人数A45≤x<5012B50≤x<55mC55≤x<6080D60≤x<6540E65≤x<7016(1)填空:①m=52(直接写出结果);②在扇形统计图中,C组所在扇形的圆心角的度数等于144度;(2)如果该校九年级有1000名学生,请估算九年级体重低于60千克的学生大约有多少人?【解答】解:(1)①调查的人数为:40÷20%=200(人),∴m =200﹣12﹣80﹣40﹣16=52;②C 组所在扇形的圆心角的度数为80200×360°=144°; 故答案为:52,144;(2)九年级体重低于60千克的学生大约有12+52+80200×1000=720(人).五、解答题(本大题共3小题,每小题9分,共27分)23.(9分)如图,在平面直角坐标系中,抛物线y =﹣x 2+ax +b 交x 轴于A (1,0),B (3,0)两点,点P 是抛物线上在第一象限内的一点,直线BP 与y 轴相交于点C .(1)求抛物线y =﹣x 2+ax +b 的解析式;(2)当点P 是线段BC 的中点时,求点P 的坐标;(3)在(2)的条件下,求sin ∠OCB 的值.【解答】解:(1)将点A 、B 代入抛物线y =﹣x 2+ax +b 可得,{0=−12+a +b 0=−32+3a +b, 解得,a =4,b =﹣3,∴抛物线的解析式为:y =﹣x 2+4x ﹣3;(2)∵点C 在y 轴上,所以C 点横坐标x =0,∵点P 是线段BC 的中点,∴点P 横坐标x P =0+32=32,∵点P 在抛物线y =﹣x 2+4x ﹣3上,∴y P =−(32)2+4×32−3=34,∴点P 的坐标为(32,34);(3)∵点P 的坐标为(32,34),点P 是线段BC 的中点, ∴点C 的纵坐标为2×34−0=32,∴点C 的坐标为(0,32), ∴BC =√(32)2+32=3√52,∴sin ∠OCB =OB BC =3352=2√55. 24.(9分)如图,AB 是⊙O 的直径,AB =4√3,点E 为线段OB 上一点(不与O ,B 重合),作CE ⊥OB ,交⊙O 于点C ,垂足为点E ,作直径CD ,过点C 的切线交DB 的延长线于点P ,AF ⊥PC 于点F ,连接CB .(1)求证:CB 是∠ECP 的平分线;(2)求证:CF =CE ;(3)当CFCP =34时,求劣弧BC ̂的长度(结果保留π)【解答】(1)证明:∵OC =OB ,∴∠OCB =∠OBC ,∵PF 是⊙O 的切线,CE ⊥AB ,∴∠OCP =∠CEB =90°,∴∠PCB +∠OCB =90°,∠BCE +∠OBC =90°,∴∠BCE =∠BCP ,∴BC 平分∠PCE .(2)证明:连接AC .∵AB 是直径,∴∠ACB =90°,∴∠BCP +∠ACF =90°,∠ACE +∠BCE =90°,∵∠BCP =∠BCE ,∴∠ACF =∠ACE ,∵∠F =∠AEC =90°,AC =AC ,∴△ACF ≌△ACE ,∴CF =CE .解法二:证明:连接AC .∵OA =OC∴∠BAC =∠ACO ,∵CD 平行AF ,∴∠F AC =∠ACD ,∴∠F AC =∠CAO ,∵CF ⊥AF ,CE ⊥AB ,∴CF =CE .(3)解:作BM ⊥PF 于M .则CE =CM =CF ,设CE =CM =CF =3a ,PC =4a ,PM =a , ∵∠MCB +∠P =90°,∠P +∠PBM =90°,∴∠MCB =∠PBM ,∵CD 是直径,BM ⊥PC ,∴∠CMB =∠BMP =90°,∴△BMC ∽△PMB ,∴BM PM =CM BM ,∴BM 2=CM •PM =3a 2,∴BM =√3a ,∴tan ∠BCM =BM CM =√33, ∴∠BCM =30°,∴∠OCB =∠OBC =∠BOC =60°,∴BC ̂的长=60⋅π⋅2√3180=2√33π.25.(9分)如图,在平面直角坐标系中,O 为原点,四边形ABCO 是矩形,点A ,C 的坐标分别是A (0,2)和C (2√3,0),点D 是对角线AC 上一动点(不与A ,C 重合),连结BD ,作DE ⊥DB ,交x 轴于点E ,以线段DE ,DB 为邻边作矩形BDEF .(1)填空:点B 的坐标为 (2√3,2) ;(2)是否存在这样的点D ,使得△DEC 是等腰三角形?若存在,请求出AD 的长度;若不存在,请说明理由;(3)①求证:DE DB =√33; ②设AD =x ,矩形BDEF 的面积为y ,求y 关于x 的函数关系式(可利用①的结论),并求出y 的最小值.【解答】解:(1)∵四边形AOCB 是矩形,∴BC =OA =2,OC =AB =2√3,∠BCO =∠BAO =90°,∴B (2√3,2).故答案为(2√3,2).(2)存在.理由如下:∵OA=2,OC=2√3,∵tan∠ACO=AOOC=√33,∴∠ACO=30°,∠ACB=60°①如图1中,当E在线段CO上时,△DEC是等腰三角形,观察图象可知,只有ED=EC,∴∠DCE=∠EDC=30°,∴∠DBC=∠BCD=60°,∴△DBC是等边三角形,∴DC=BC=2,在Rt△AOC中,∵∠ACO=30°,OA=2,∴AC=2AO=4,∴AD=AC﹣CD=4﹣2=2.∴当AD=2时,△DEC是等腰三角形.②如图2中,当E在OC的延长线上时,△DCE是等腰三角形,只有CD=CE,∠DBC =∠DEC=∠CDE=15°,∴∠ABD=∠ADB=75°,∴AB=AD=2√3,综上所述,满足条件的AD的值为2或2√3.(3)①如图1,过点D作MN⊥AB交AB于M,交OC于N,∵A(0,2)和C(2√3,0),∴直线AC的解析式为y=−√33x+2,设D(a,−√33a+2),∴DN=−√33a+2,BM=2√3−a∵∠BDE=90°,∴∠BDM+∠NDE=90°,∠BDM+∠DBM=90°,∴∠DBM=∠EDN,∵∠BMD=∠DNE=90°,∴△BMD ∽△DNE ,∴DE BD =DN BM =−√33a+22√3−a =√33. ②如图2中,作DH ⊥AB 于H .在Rt △ADH 中,∵AD =x ,∠DAH =∠ACO =30°,∴DH =12AD =12x ,AH =√AD 2−DH 2=√32x , ∴BH =2√3−√32x ,在Rt △BDH 中,BD =√BH 2+DH 2=(12x)2+(2√3−32x)2, ∴DE =√33BD =√33•(12x)2+(2√3−32x)2,∴矩形BDEF 的面积为y =√33[(12x)2+(2√3−32x)2]2=√33(x 2﹣6x +12),即y =√33x 2﹣2√3x +4√3, ∴y =√33(x ﹣3)2+√3, ∵√33>0, ∴x =3时,y 有最小值√3.2017年广东省东莞市中考数学试卷一、选择题(本大题共10小题,每小题3分,共30分)1.(3分)5的相反数是( )A .15B .5C .−15D .﹣52.(3分)“一带一路”倡议提出三年以来,广东企业到“一带一路”国家投资越来越活跃,据商务部门发布的数据显示,2016年广东省对沿线国家的实际投资额超过4000000000美元,将4 000 000 000用科学记数法表示为( )A .0.4×109B .0.4×1010C .4×109D .4×10103.(3分)已知∠A =70°,则∠A 的补角为( )A .110°B .70°C .30°D .20°4.(3分)如果2是方程x 2﹣3x +k =0的一个根,则常数k 的值为( )A .1B .2C .﹣1D .﹣25.(3分)在学校举行“阳光少年,励志青春”的演讲比赛中,五位评委给选手小明的评分分别为:90,85,90,80,95,则这组数据的众数是( )A .95B .90C .85D .806.(3分)下列所述图形中,既是轴对称图形又是中心对称图形的是( )A .等边三角形B .平行四边形C .正五边形D .圆7.(3分)如图,在同一平面直角坐标系中,直线y =k 1x (k 1≠0)与双曲线y =k 2x (k 2≠0)相交于A ,B 两点,已知点A 的坐标为(1,2),则点B 的坐标为( )A .(﹣1,﹣2)B .(﹣2,﹣1)C .(﹣1,﹣1)D .(﹣2,﹣2)8.(3分)下列运算正确的是( )A .a +2a =3a 2B .a 3•a 2=a 5C .(a 4)2=a 6D .a 4+a 2=a 49.(3分)如图,四边形ABCD内接于⊙O,DA=DC,∠CBE=50°,则∠DAC的大小为()A.130°B.100°C.65°D.50°10.(3分)如图,已知正方形ABCD,点E是BC边的中点,DE与AC相交于点F,连接BF,下列结论:①S△ABF=S△ADF;②S△CDF=4S△CEF;③S△ADF=2S△CEF;④S△ADF=2S△CDF,其中正确的是()A.①③B.②③C.①④D.②④二、填空题(本大题共6小题,每小题4分,共24分)11.(4分)分解因式:a2+a=.12.(4分)一个n边形的内角和是720°,则n=.13.(4分)已知实数a,b在数轴上的对应点的位置如图所示,则a+b0.(填“>”,“<”或“=”)14.(4分)在一个不透明的盒子中,有五个完全相同的小球,把它们分别标号为1,2,3,4,5,随机摸出一个小球,摸出的小球标号为偶数的概率是.15.(4分)已知4a+3b=1,则整式8a+6b﹣3的值为.16.(4分)如图,矩形纸片ABCD中,AB=5,BC=3,先按图(2)操作:将矩形纸片ABCD 沿过点A的直线折叠,使点D落在边AB上的点E处,折痕为AF;再按图(3)操作,沿过点F的直线折叠,使点C落在EF上的点H处,折痕为FG,则A、H两点间的距离为.三、解答题(本大题共3小题,每小题6分,共18分)17.(6分)计算:|﹣7|﹣(1﹣π)0+(13)﹣1. 18.(6分)先化简,再求值:(1x−2+1x+2)•(x 2﹣4),其中x =√5.19.(6分)学校团委组织志愿者到图书馆整理一批新进的图书.若男生每人整理30本,女生每人整理20本,共能整理680本;若男生每人整理50本,女生每人整理40本,共能整理1240本.求男生、女生志愿者各有多少人?四、解答题(本大题共3小题,每小题7分,共21分)20.(7分)如图,在△ABC 中,∠A >∠B .(1)作边AB 的垂直平分线DE ,与AB ,BC 分别相交于点D ,E (用尺规作图,保留作图痕迹,不要求写作法);(2)在(1)的条件下,连接AE ,若∠B =50°,求∠AEC 的度数.21.(7分)如图所示,已知四边形ABCD ,ADEF 都是菱形,∠BAD =∠F AD ,∠BAD 为锐角.(1)求证:AD ⊥BF ;(2)若BF =BC ,求∠ADC 的度数.22.(7分)某校为了解九年级学生的体重情况,随机抽取了九年级部分学生进行调查,将抽取学生的体重情况绘制如下不完整的统计图表,如图表所示,请根据图表信息回答下列问题:体重频数分布表组边体重(千克)人数A45≤x<5012B50≤x<55mC55≤x<6080D60≤x<6540E65≤x<7016(1)填空:①m=(直接写出结果);②在扇形统计图中,C组所在扇形的圆心角的度数等于度;(2)如果该校九年级有1000名学生,请估算九年级体重低于60千克的学生大约有多少人?五、解答题(本大题共3小题,每小题9分,共27分)23.(9分)如图,在平面直角坐标系中,抛物线y=﹣x2+ax+b交x轴于A(1,0),B(3,0)两点,点P是抛物线上在第一象限内的一点,直线BP与y轴相交于点C.(1)求抛物线y=﹣x2+ax+b的解析式;(2)当点P是线段BC的中点时,求点P的坐标;(3)在(2)的条件下,求sin∠OCB的值.24.(9分)如图,AB 是⊙O 的直径,AB =4√3,点E 为线段OB 上一点(不与O ,B 重合),作CE ⊥OB ,交⊙O 于点C ,垂足为点E ,作直径CD ,过点C 的切线交DB 的延长线于点P ,AF ⊥PC 于点F ,连接CB .(1)求证:CB 是∠ECP 的平分线;(2)求证:CF =CE ;(3)当CF CP =34时,求劣弧BC ̂的长度(结果保留π)25.(9分)如图,在平面直角坐标系中,O 为原点,四边形ABCO 是矩形,点A ,C 的坐标分别是A (0,2)和C (2√3,0),点D 是对角线AC 上一动点(不与A ,C 重合),连结BD ,作DE ⊥DB ,交x 轴于点E ,以线段DE ,DB 为邻边作矩形BDEF .(1)填空:点B 的坐标为 ;(2)是否存在这样的点D ,使得△DEC 是等腰三角形?若存在,请求出AD 的长度;若不存在,请说明理由;(3)①求证:DE DB =√33; ②设AD =x ,矩形BDEF 的面积为y ,求y 关于x 的函数关系式(可利用①的结论),并求出y 的最小值.。
2017--2019近几年广州中考数学情考点分析及建议

2017--2019近几年广州中考数学情考点分析及建议近几年考情分析引言2019年广州中考数学试卷整体难度保持稳定,在稳定的基础上注重数学基础知识的考查,更加重视数学素养和数学方法。
选择填空题考法常规,考查范围以基础知识为主。
解答题部分,17-23题题型结构稳定,着重考查学生的“四基”。
24-25题着重考查学生的“代几”综合运用能力、作图探究能力、图形变换、数形结合思想的运用。
本次命题依据考试大纲,着力体现新课标的教学理念,突出对学生基本数学素养的评价,既考查了四基——基础知识、基本技能、基本数学思想方法和基本活动经验,又突出课本核心内容,关注学生研究的结果,也重视研究的过程。
2019广州中考数学命题,有利于培养学生对知识点的综合运用能力、动手作图能力与运算能力,有助于学生构建知识体系。
本次命题不设置偏题,确保了试题的科学性、公平性和严谨性。
一、整体评价试卷难度稳定,整体布局与往年的广州中考类似。
选择填空考法常规,但计算量增大;解答题梯度明显,区分度很高,注重知识接洽,请求学生具备计算本领、多个知识点灵活运用本领、作图本领等数学基本头脑和本领。
二、试卷特点试卷题型分为选择题、填空题、解答题,在分值分布和题型特征方面与往年相似。
今年函数部分分值降低,压轴题与以往同等,考查一题函数、一题几何的模式。
函数压轴题,考查含参问题、函数过定点的问题,注重初高衔接;另一道压轴题,以等边三角形为背景的翻折问题,通过构造“辅助圆”解决最值问题。
今年的试题主要特点:①重视基础,考查灵活运用知识点的本领;②突显学生作图本领,加强着手本领;③注重知识点交汇;④常规但不俗套;⑤注重学生计算本领的考查;⑥相比往年,今年减少了分类讨论头脑的考查。
今年第10题,难度不大,但涉及的知识点较多,考查一元二次方程根的判别式、根与系数的关系、平方差公式以及整体思想等知识点。
第16题,则是引入“半角模型”和“三垂直模型”的构造,以及利用函数求最值问题,强调了学生平时在研究过程中,对常见的典型几何模型的归纳,以及函数思想解决最值问题。
2017年广东省中考数学试卷解析版

2017年广东省中考数学试卷(解)析版.年广东省中考数学试卷2017分)分,共30一、选择题(本大题共10小题,每小题3) 1.5的相反数是(.﹣ D.﹣.5 CA5. B2.“一带一路”倡议提出三年以来,广东企业到“一带一路”国家投资越来越活跃,据商务部门发布的数据显示,2016年广东省对沿线国家的实际投资额超)用科学记数法表示为(过4000000000美元,将400000000010991010D.4 C.4×10A.0.4×10× B.0.4×10) 3.已知∠A=70°,则∠A的补角为(.20°DC.30° A.110° B.70°2﹣3x+k=0的一个根,则常数k的值为(.如果2是方程x )42.﹣C.﹣1 DA.1 B.25.在学校举行“阳光少年,励志青春”的演讲比赛中,五位评委给选手小明的平分分别为:90,85,90,80,95,则这组数据的众数是()80.85 DB.90 C.A.95 6.下列所述图形中,既是轴对称图形又是中心对称图形的是()A.等边三角形 B.平行四边形 C.正五边形 D.圆y=0)与双曲线x(k≠.如图,在同一平面直角坐标系中,直线7y=kk(112≠0)相交于A,B两点,已知点A的坐标为(1,2),则点B的坐标为())22,﹣) D.(﹣(﹣2,﹣1)C.(﹣1,﹣1 1A.(﹣,﹣2)B.) 8.下列运算正确的是(6452222443(a.a+a)=aB.a?a=a=a C.a+2a=3aA. D9.如图,四边形ABCD内接于⊙O,DA=DC,∠CBE=50°,则∠DAC的大小为()第2页(共26页).50° DA.130° B.100° C.65°,连接F10.如图,已知正方形ABCD,点E是BC边的中点,DE与AC相交于点,其中S,下列结论:①=S;②S=4S;③S=2S=2S;④SBF CDF△ABF△△ADFCEF△CDFADF△CEF△ADF△△)正确的是(.②④ D.②③ C.①④BA.①③分)分,共6小题,每小题424二、填空题(本大题共2.+a= a 11.分解因式:.n= 12.一个n边形的内角和是720°,则(填0,b在数轴上的对应点的位置如图所示,则.a+b 13.已知实数a“>”,“<”或“=”),,214.在一个不透明的盒子中,有五个完全相同的小球,把它们分别标号为1.,5,随机摸出一个小球,摸出的小球标号为偶数的概率是,34.的值为 15.已知4a+3b=1,则整式8a+6b﹣3ABCD,先按图(2)操作:将矩形纸片中,16.如图,矩形纸片ABCDAB=5,BC=3);再按图(3EAB上的点处,折痕为AF沿过点A的直线折叠,使点D落在边HA、,则上的点C落在EFH处,折痕为FG的直线折叠,使点操作,沿过点F.两点间的距离为263第页(共页)分)186分,共三、解答题(本大题共3小题,每小题1﹣0.(+17.计算:|﹣7|﹣(1﹣π))2x=,其中(﹣+4).)?(x18.先化简,再求值:本,若男生每人整理3019.学校团委组织志愿者到图书馆整理一批新进的图书.本,女生每人整理本;若男生每人整理5020本,共能整理680女生每人整理本.求男生、女生志愿者各有多少人?40本,共能整理1240分)21小题,每小题7分,共四、解答题(本大题共3.BA>∠20.如图,在△ABC中,∠(用尺规作图,,E,BC分别相交于点D,与(1)作边AB的垂直平分线DEAB;保留作图痕迹,不要求写作法)的度数.AEC)的条件下,连接AE,若∠B=50°,求∠1(2)在(为锐角.BAD∠FAD,∠∠ABCD21.如图所示,已知四边形,ADEF都是菱形,BAD=;BF⊥(1)求证:AD的度数.ADC)若2BF=BC,求∠( 264第页(共页).某校为了解九年级学生的体重情况,随机抽取了九年级部分学生进行调查,22将抽取学生的体重情况绘制如下不完整的统计图表,如图表所示,请根据图标信息回答下列问题:体重频数分布表体重(千人数组边克)5045A ≤x<1255xB<50m≤60<C≤5580x65<60≤D40x7065≤x16E<; m= (直接写出结果))填空:①(1度;组所在扇形的圆心角的度数等于②在扇形统计图中,C千克的学生大名学生,请估算九年级体重低于60(2)如果该校九年级有1000约有多少人?分)27小题,每小题9分,共五、解答题(本大题共32,3,B(0A+ax+b交x 轴于(1,)xy=在平面直角坐标系中,.23如图,抛物线﹣.C与BPy轴相交于点是抛物线上在第一象限内的一点,直线)两点,点0P 265第页(共页)2的解析式;x+ax+b(1)求抛物线y=﹣的坐标;P是线段BC的中点时,求点(2)当点P的值.sin∠OCB)在((32)的条件下,求,,B重合)为线段OB上一点(不与O24.如图,AB是⊙O的直径,AB=4,点E 的延长的切线交DBE,作直径CD,过点COB作CE⊥,交⊙O于点C,垂足为点.CBPC 于点F,连接AF线于点P,⊥的平分线;CB是∠ECP1()求证:;)求证:CF=CE2(π)时,求劣弧(3=)当的长度(结果保留的坐C是矩形,点A,25.如图,在平面直角坐标系中,O为原点,四边形ABCO重,CAC,点D是对角线上一动点(不与AA标分别是(0,2)和C(2,0).,DB为邻边作矩形BDEFE,作DE⊥DB,交x轴于点,以线段DEBD合),连结;的坐标为(1)填空:点B(2)是否存在这样的点D,使得△DEC是等腰三角形?若存在,请求出AD的长度;若不存在,请说明理由;; =(3)①求证:②设AD=x,矩形BDEF的面积为y,求y关于x的函数关系式(可利用①的结论),的最小值.y并求出第6页(共26页)页)26页(共7第年广东省中考数学试卷2017参考答案与试题解析一、选择题(本大题共10小题,每小题3分,共30分)1.5的相反数是().﹣ D.﹣B.5 CA5.:相反数.14【考点】【分析】根据相反数的概念解答即可.【解答】解:根据相反数的定义有:5的相反数是﹣5..D故选:2.“一带一路”倡议提出三年以来,广东企业到“一带一路”国家投资越来越活跃,据商务部门发布的数据显示,2016年广东省对沿线国家的实际投资额超)4000000000美元,将4000000000用科学记数法表示为(过109910104×10× D..0.4×10B .0.4×10. C4A:科学记数法—表示较大的数.1I【考点】n的形式,其中1≤|a|<10,n【分析】科学记数法的表示形式为a×10为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值大于10时,n是正数;当原数的绝对值小于1是负数.n 时,9.10解:4000000000=4×【解答】.C故选:3.已知∠A=70°,则∠A的补角为()A.110° B.70° D.20°C.30°:余角和补角.IL【考点】页)26页(共8第的度数求出其补角即可.A【分析】由∠解:∵∠A=70°,【解答】110°,A的补角为∴∠A故选2﹣3x+k=0的一个根,则常数kx的值为()4.如果2是方程A.1 B.2 C.﹣1 D.﹣2【考点】A3:一元二次方程的解.【分析】把x=2代入已知方程列出关于k的新方程,通过解方程来求k的值.2﹣3x+k=0的一个根,2是一元二次方程x解:∵【解答】2,×2+k=0﹣3∴2.解得,k=2.故选:B 5.在学校举行“阳光少年,励志青春”的演讲比赛中,五位评委给选手小明的平分分别为:90,85,90,80,95,则这组数据的众数是()80D.90 C.85 .A.95 B:众数.W5【考点】【分析】众数指一组数据中出现次数最多的数据,根据众数的定义就可以求解.【解答】解:数据90出现了两次,次数最多,所以这组数据的众数是90..B故选6.下列所述图形中,既是轴对称图形又是中心对称图形的是()A.等边三角形 B.平行四边形 C.正五边形 D.圆:轴对称图形.:中心对称图形;R5P3【考点】【分析】根据中心对称图形和轴对称图形的定义对各选项进行判断.【解答】解:等边三角形为轴对称图形;平行四边形为中心对称图形;正五边形为轴对称图形;圆既是轴对称图形又是中心对称图形. 269第页(共页).故选Dy=0)与双曲线(k(k≠7.如图,在同一平面直角坐标系中,直线y=kx112≠0)相交于A,B两点,已知点A的坐标为(1,2),则点B的坐标为())22,﹣) D.(﹣1(﹣2,﹣1) C.(﹣,﹣11A.(﹣,﹣2) B.:反比例函数与一次函数的交点问题.G8【考点】【分析】反比例函数的图象是中心对称图形,则经过原点的直线的两个交点一定关于原点对称.【解答】解:∵点A与B关于原点对称,∴B点的坐标为(﹣1,﹣2)..故选:A8.下列运算正确的是()2325264244a?aA=a C.(a)..Da=a+a=aa+2a=3aB.【考点】47:幂的乘方与积的乘方;35:合并同类项;46:同底数幂的乘法.【分析】根据整式的加法和幂的运算法则逐一判断即可.,此选项错误;a+2a=3aA、【解答】解:325,此选项正确;a?a=aB、428,此选项错误;)C、(a=a24不是同类项,不能合并,此选项错误;与D、aa.B故选:9.如图,四边形ABCD内接于⊙O,DA=DC,∠CBE=50°,则∠DAC的大小为()页(共10第26页).50°DC.65° A.130° B.100°:圆内接四边形的性质.【考点】M6再由圆内接四边形的性质求出∠的度数,【分析】先根据补角的性质求出∠ABC的度数.DACADC的度数,由等腰三角形的性质求得∠解:∵∠CBE=50°,【解答】∴∠ABC=180°﹣∠CBE=180°﹣50°=130°,的内接四边形,OABCD为⊙∵四边形∴∠D=180°﹣∠ABC=180°﹣130°=50°,,∵DA=DC=65°,∴∠DAC=.C故选,连接相交于点F边的中点,DE与AC.如图,已知正方形10ABCD,点E是BC,其中=2S=2SS;④S=SBF,下列结论:①S;②S=4S;③CDFADF△ABF△△ADFCEFCDF△ADF△CEF△△△)正确的是(.②④D.①④ B.②③ CA.①③:正方形的性质.【考点】LE,BE=EC=AD故①正确,即可推出AFB,S=S,由BC=AFD【分析】由△≌△ADFABF△△,故②③S=2S,S,推出=2S==,可得=S,=4SECAD∥CDFADF△CEF△CDF△ADF△△CEF△页)26页(共11第错误④正确,由此即可判断.是正方形,解:∵四边形ABCD【解答】,FAB,AD=BC=AB,∠FAD=∠∴AD∥CB中,AFB在△AFD和△,,AFB∴△AFD≌△,故①正确,=S∴S ADFABF△△,,AD∵∥BE=EC=ECBC=AD,∴===,S=2S=2S∴S,S=4S,CDF△△CDF△CEFADF△△ADF△CEF故②③错误④正确,.C 故选分)46小题,每小题分,共24二、填空题(本大题共2.) 11.分解因式:a+a= a(a+1:因式分解﹣提公因式法.【考点】53直接提取公因式分解因式得出即可.【分析】2.a)+a=a(a+1【解答】解:.a(a+1)故答案为:.n= .一个12n边形的内角和是720°,则6:多边形内角与外角.【考点】L3 2612第页(共页))?180°,依此列方程可求解.n﹣2【分析】多边形的内角和可以表示成(,边形边数为n【解答】解:设所求正n)?180°=720°,则(n﹣2.n=6解得< 0,b在数轴上的对应点的位置如图所示,则.(填“>”,a+b 13.已知实数a“<”或“=”)【考点】2A:实数大小比较;29:实数与数轴.【分析】首先根据数轴判断出a、b的符号和二者绝对值的大小,根据“异号两数相加,取绝对值较大的符号,并用较大的绝对值减去较小的绝对值”来解答即可.【解答】解:∵a在原点左边,b在原点右边,∴a<0<b,∵a离开原点的距离比b离开原点的距离大,∴|a|>|b|,.<0∴a+b故答案为:<.14.在一个不透明的盒子中,有五个完全相同的小球,把它们分别标号为1,2,,随机摸出一个小球,摸出的小球标号为偶数的概率是,5,. 34:概率公式.【考点】X4【分析】确定出偶数有2个,然后根据概率公式列式计算即可得解.【解答】解:∵5个小球中,标号为偶数的有2、4这2个,,∴摸出的小球标号为偶数的概率是故答案为:2613第页(共页).1 的值为﹣15.已知4a+3b=1,则整式8a+6b﹣3:代数式求值.【考点】33【分析】先求出8a+6b的值,然后整体代入进行计算即可得解.,4a+3b=1【解答】解:∵,∴8a+6b=28a+6b﹣3=2﹣3=﹣1;故答案为:﹣1.16.如图,矩形纸片ABCD中,AB=5,BC=3,先按图(2)操作:将矩形纸片ABCD 沿过点A的直线折叠,使点D落在边AB上的点E处,折痕为AF;再按图(3)操作,沿过点F的直线折叠,使点C落在EF上的点H处,折痕为FG,则A、H.两点间的距离为:矩形的性质.LB:翻折变换(折叠问题);【考点】PB【分析】如图3中,连接AH.由题意可知在Rt△AEH中,AE=AD=3,EH=EF﹣HF=3,计算即可.AH=﹣2=1,根据.AH3中,连接【解答】解:如图,2=1﹣HF=3﹣EH=EFAEH由题意可知在Rt△中,AE=AD=3,,==∴AH=.故答案为2614第页(共页)分)18小题,每小题6分,共三、解答题(本大题共310﹣.+﹣π)()17.计算:|﹣7|﹣(1【考点】2C:实数的运算;6E:零指数幂;6F:负整数指数幂.【分析】直接利用绝对值的性质以及零指数幂的性质和负整数指数幂的性质分别化简求出答案.【解答】解:原式=7﹣1+3.=92(.先化简,再求值:x)?(.﹣4),其中18x=+【考点】6D:分式的化简求值.【分析】先计算括号内分式的加法,再计算乘法即可化简原式,将x的值代入求解可得.=[【解答】解:原式xx+2)(﹣2)+]?()2x+2)(x﹣?(=,=2x时,x=当.=2原式19.学校团委组织志愿者到图书馆整理一批新进的图书.若男生每人整理30本,女生每人整理20本,共能整理680本;若男生每人整理50本,女生每人整理本.求男生、女生志愿者各有多少人?124040本,共能整理:二元一次方程组的应用.【考点】9A【分析】设男生志愿者有x人,女生志愿者有y人,根据“若男生每人整理30本,女生每人整理20本,共能整理680本;若男生每人整理50本,女生每人整理40本,共能整理1240本”,即可得出关于x、y的二元一次方程组,解之即可得出结论.【解答】解:设男生志愿者有x人,女生志愿者有y人,页(共15第26页),根据题意得:.解得:人.人,女生志愿者有16答:男生志愿者有12分)分,共213小题,每小题7四、解答题(本大题共.B中,∠A>∠ABC20.如图,在△(用尺规作图,ED,分别相交于点DE,与AB,BC)作边(1AB的垂直平分线;保留作图痕迹,不要求写作法)的度数.AECAE,若∠B=50°,求∠2)在(1)的条件下,连接(:线段垂直平分线的性质.KG【考点】N2:作图—基本作图;)根据题意作出图形即可;【分析】(1,根据等腰三角形的性质得到∠AE=BE是AB的垂直平分线,得到(2)由于DE∠B=50°,由三角形的外角的性质即可得到结论.EAB=)如图所示;(1【解答】解:的垂直平分线,是AB(2)∵DE,∴AE=BE∠B=50°,EAB=∴∠∠B=100°.EAB+∠∴∠AEC=2616第页(共页)21.如图所示,已知四边形ABCD,ADEF都是菱形,∠BAD=∠FAD,∠BAD为锐角.(1)求证:AD⊥BF;(2)若BF=BC,求∠ADC的度数.【考点】L8:菱形的性质.【分析】(1)连结DB、DF.根据菱形四边相等得出AB=AD=FA,再利用SAS证明△BAD≌△FAD,得出DB=DF,那么D在线段BF的垂直平分线上,又AB=AF,即A;⊥BFBF的垂直平分线上,进而证明AD在线段DG=CD.在直角△CDG于G,证明中得出∠C=30°,BC⊥(2)设ADBF于H,作DG⊥再根据平行线的性质即可求出∠ADC=180°﹣∠C=150°..DFDB、【解答】(1)证明:如图,连结∵四边形ABCD,ADEF都是菱形,.AD=DE=EF=FAAB=BC=CD=DA∴,中,FAD在△BAD与△,∴△BAD≌△FAD,,DB=DF∴∴D在线段BF的垂直平分线上,∵AB=AF,∴A在线段BF的垂直平分线上,的垂直平分线,BF是线段∴AD;BF⊥∴AD 第17页(共26页)是矩形,,则四边形BGDHBC于G,作AD⊥BF于HDG⊥(2)如图,设.∴BFDG=BH=∵BF=BC,BC=CD,.∴CDDG=DG=CD中,∵∠CGD=90°,,在直角△CDG∴∠C=30°,,ADBC∥∵∴∠ADC=180°﹣∠C=150°.22.某校为了解九年级学生的体重情况,随机抽取了九年级部分学生进行调查,将抽取学生的体重情况绘制如下不完整的统计图表,如图表所示,请根据图标信息回答下列问题:体重频数分布表体重(千组边人数克)50<xA≤451255x50mB≤<60x55C≤80<65<40Dx≤60第页(共1826页)1665<70≤xE52 (直接写出结果)(1)填空:①m= ;②在扇形统计图中,C组所在扇形的圆心角的度数等于 144 度;(2)如果该校九年级有1000名学生,请估算九年级体重低于60千克的学生大约有多少人?:频数(率)分布表.V7V5:用样本估计总体;【考点】VB:扇形统计图;【分析】(1)①根据D组的人数及百分比进行计算即可得到m的值;②根据C组的百分比即可得到所在扇形的圆心角的度数;(2)根据体重低于60千克的学生的百分比乘上九年级学生总数,即可得到九千克的学生数量.60年级体重低于【解答】解:(1)①调查的人数为:40÷20%=200(人),;﹣16=5280﹣4012∴m=200﹣﹣组所在扇形的圆心角的度数为②C×360°=144°;;,故答案为:52144×1000=720(人).(2)九年级体重低于60千克的学生大约有五、解答题(本大题共3小题,每小题9分,共27分)2+ax+b交x轴于A(1,0),B(3,﹣如图,23.在平面直角坐标系中,抛物线y=x0)两点,点P是抛物线上在第一象限内的一点,直线BP与y轴相交于点C.2的解析式;+ax+b ﹣1)求抛物线y=x((2)当点P是线段BC的中点时,求点P的坐标;(3)在(2)的条件下,求sin∠OCB的值.第19页(共26页):T7轴的交点;H8:待定系数法求二次函数解析式;HA【考点】:抛物线与x解直角三角形.2可得解析式;b,解得ay=﹣x,+ax+b、【分析】(1)将点AB代入抛物线)中抛物线解1P点横坐标代入(点横坐标为0可得P点横坐标,将C (2)由点坐标;析式,易得P长,BCC的坐标,利用勾股定理可得A、B、(3)由P点的坐标可得C点坐标,可得结果.OCB=sin利用∠2可得,+ax+b代入抛物线y=﹣x【解答】解:(1)将点A、B,,﹣3a=4,b=解得,2;3+4x﹣∴抛物线的解析式为:y=﹣x轴上,yC在(2)∵点,x=0所以C点横坐标的中点,是线段BC∵点P,==x∴点P横坐标P2上,3+4x﹣y=∵点P在抛物线﹣x,∴y﹣3==P;P,的坐标为()∴点的中点,BC,点)P是线段P3()∵点的坐标为(, 2620第页(共页),0=×﹣∴点C的纵坐标为2,,)∴点C的坐标为(0,∴=BC==OCB=.∴sin∠=AB=4的直径,是⊙O重合),24.如图,AB,点E为线段OB上一点(不与O,B 作CE⊥OB,交⊙O于点C,垂足为点E,作直径CD,过点C的切线交DB的延长线于点P,AF⊥PC于点F,连接CB.的平分线;是∠ECP)求证:(1CB;CF=CE)求证:(2π)=3(的长度(结果保留)当时,求劣弧【考点】S9:相似三角形的判定与性质;M2:垂径定理;MC:切线的性质;MN:弧长的计算.【分析】(1)根据等角的余角相等证明即可;(2)欲证明CF=CE,只要证明△ACF≌△ACE即可;(3)作BM⊥PF于M.则CE=CM=CF,设CE=CM=CF=4a,PC=4a,PM=a,利用相似三角形的性质求出BM,求出tan∠BCM的值即可解决问题;,)证明:∵OC=OB(【解答】1,OBC∴∠OCB=∠∵PF是⊙O的切线,CE⊥AB,∠CEB=90°,∴∠OCP=第2621页(共页)∠OBC=90°,BCE+PCB+∠OCB=90°,∠∴∠∴∠BCE=∠BCP,.平分∠PCE ∴BC.)证明:连接AC(2∵AB是直径,∴∠ACB=90°,∠BCE=90°,∠ACF=90°,∠ACE+∴∠BCP+∵∠BCP=∠BCE,,∴∠ACF=∠ACE,AC=AC∵∠F=∠AEC=90°,,ACF≌△ACE∴△.∴CF=CE(3)解:作BM⊥PF于M.则CE=CM=CF,设CE=CM=CF=4a,PC=4a,PM=a,,∽△PMB∵△BMC,∴=22,∴BM=CM?PM=3aBM=a∴,BCM=,∴=tan∠∴∠BCM=30°,∴∠OCB=∠OBC=∠BOC=60°,=∴=π.的长第22页(共26页)的坐,C.如图,在平面直角坐标系中,O为原点,四边形ABCO是矩形,点A252((0,重2)和C标分别是AD,0),点是对角线AC上一动点(不与A,C.DE,DB为邻边作矩形BDEF,以线段合),连结BD,作DE⊥DB,交x轴于点E; 2,(1)填空:点B2)的坐标为(的长是等腰三角形?若存在,请求出ADDEC2)是否存在这样的点D,使得△(度;若不存在,请说明理由;;(3)①求证: =,的函数关系式(可利用①的结论)y关于x矩形AD=x,BDEF的面积为y,求②设的最小值.y并求出:相似形综合题.SO【考点】的长即可解决问题;BC)求出AB、【分析】(1四点、C、D、EBK)存在.连接BE,取BE的中点,连接DK、KC.首先证明(2ACO=∠,由tan∠DBC=∠DCE,∠,=推出∠ACO=30°,EDC=EBC共圆,可得∠∠DBC=ED=EC,推出∠DEC∠ACD=60°由△是等腰三角形,观察图象可知,只有是等边三角形,推∠BCD=60°,可得△DBCEDC=DCE=∠∠EBC=30°,推出∠DBC=,由此即可解决问题;DC=BC=2出∠DCE=30°,由此即DBC=、EC四点共圆,推出∠、、)可知,)①由((32BD 2623第页(共页)可解决问题;②作DH⊥AB于H.想办法用x表示BD、DE的长,构建二次函数即可解决问题;是矩形,AOCB1)∵四边形【解答】解:(∠BAO=90°,BCO=OC=AB=2∴BC=OA=2,,∠.),B(22∴.2故答案为()2,)存在.理由如下:(2.、KCK,连接DKBE连接,取BE的中点∠BCE=90°,∵∠BDE=,KD=KB=KE=KC∴四点共圆,C、E、∴B、D,EBCEDC=∠DBC=∴∠∠DCE,∠,ACO=∵tan∠=∴∠ACO=30°,∠ACB=60°,是等腰三角形,观察图象可知,只有ED=EC①如图1中,△DEC∠EBC=30°,EDC=∠DCE=∠∴∠DBC=∠BCD=60°,∴∠DBC=是等边三角形,∴△DBC,∴DC=BC=2,OA=2Rt在△AOC 中,∵∠ACO=30°,,AC=2AO=4∴.﹣2=2AD=AC∴﹣CD=4是等腰三角形.AD=2∴当时,△DEC 2624第页(共页)∠CDE=15°,DEC=,∠DBC=∠②如图2中,∵△DCE是等腰三角形,易知CD=CE ∠ADB=75°,∴∠ABD=,AB=AD=2∴2或AD.的值为2综上所述,满足条件的(3)①由(2)可知,B、D、E、C四点共圆,∠DCE=30°,DBC=∴∠,DBE=∴tan∠.∴=②如图2中,作DH⊥AB于H.在Rt△ADH中,∵AD=x,∠DAH=∠ACO=30°,,x∴AH=DH==AD=x,,﹣∴xBH=2BD=中,Rt=在△BDH,?,DE=∴BD=22 [BDEF6x+12),的面积为]y==x(∴矩形﹣2,2﹣y=x+4即x2+﹣,3)(x∴y=,0>∵有最小值时,∴x=3y.页(共25第26页)页)26页(共26第。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2017年广东省中考数学试卷一、选择题(本大题共10小题,每小题3分,共30分)1.(3分)5的相反数是()A.B.5 C.﹣ D.﹣52.(3分)“一带一路”倡议提出三年以来,广东企业到“一带一路”国家投资越来越活跃,据商务部门发布的数据显示,2016年广东省对沿线国家的实际投资额超过4000000000美元,将4000000000用科学记数法表示为()A.0.4×109B.0.4×1010C.4×109D.4×10103.(3分)已知∠A=70°,则∠A的补角为()A.110°B.70°C.30°D.20°4.(3分)如果2是方程x2﹣3x+k=0的一个根,则常数k的值为()A.1 B.2 C.﹣1 D.﹣25.(3分)在学校举行“阳光少年,励志青春”的演讲比赛中,五位评委给选手小明的评分分别为:90,85,90,80,95,则这组数据的众数是()A.95 B.90 C.85 D.806.(3分)下列所述图形中,既是轴对称图形又是中心对称图形的是()A.等边三角形B.平行四边形C.正五边形D.圆7.(3分)如图,在同一平面直角坐标系中,直线y=k1x(k1≠0)与双曲线y=(k2≠0)相交于A,B两点,已知点A的坐标为(1,2),则点B的坐标为()A.(﹣1,﹣2)B.(﹣2,﹣1)C.(﹣1,﹣1)D.(﹣2,﹣2)8.(3分)下列运算正确的是()A.a+2a=3a2B.a3•a2=a5 C.(a4)2=a6D.a4+a2=a49.(3分)如图,四边形ABCD内接于⊙O,DA=DC,∠CBE=50°,则∠DAC的大小为()A.130°B.100°C.65°D.50°10.(3分)如图,已知正方形ABCD,点E是BC边的中点,DE与AC相交于点F,连接BF,下列结论:①S△ABF =S△ADF;②S△CDF=4S△CEF;③S△ADF=2S△CEF;④S△ADF=2S△CDF,其中正确的是()A.①③B.②③C.①④D.②④二、填空题(本大题共6小题,每小题4分,共24分)11.(4分)分解因式:a2+a=.12.(4分)一个n边形的内角和是720°,则n=.13.(4分)已知实数a,b在数轴上的对应点的位置如图所示,则a+b0.(填“>”,“<”或“=”)14.(4分)在一个不透明的盒子中,有五个完全相同的小球,把它们分别标号为1,2,3,4,5,随机摸出一个小球,摸出的小球标号为偶数的概率是.15.(4分)已知4a+3b=1,则整式8a+6b﹣3的值为.16.(4分)如图,矩形纸片ABCD中,AB=5,BC=3,先按图(2)操作:将矩形纸片ABCD沿过点A的直线折叠,使点D落在边AB上的点E处,折痕为AF;再按图(3)操作,沿过点F的直线折叠,使点C落在EF上的点H处,折痕为FG,则A、H两点间的距离为.三、解答题(本大题共3小题,每小题6分,共18分)17.(6分)计算:|﹣7|﹣(1﹣π)0+()﹣1.18.(6分)先化简,再求值:(+)•(x2﹣4),其中x=.19.(6分)学校团委组织志愿者到图书馆整理一批新进的图书.若男生每人整理30本,女生每人整理20本,共能整理680本;若男生每人整理50本,女生每人整理40本,共能整理1240本.求男生、女生志愿者各有多少人?四、解答题(本大题共3小题,每小题7分,共21分)20.(7分)如图,在△ABC中,∠A>∠B.(1)作边AB的垂直平分线DE,与AB,BC分别相交于点D,E(用尺规作图,保留作图痕迹,不要求写作法);(2)在(1)的条件下,连接AE,若∠B=50°,求∠AEC的度数.21.(7分)如图所示,已知四边形ABCD,ADEF都是菱形,∠BAD=∠FAD,∠BAD 为锐角.(1)求证:AD⊥BF;(2)若BF=BC,求∠ADC的度数.22.(7分)某校为了解九年级学生的体重情况,随机抽取了九年级部分学生进行调查,将抽取学生的体重情况绘制如下不完整的统计图表,如图表所示,请根据图表信息回答下列问题:体重频数分布表组边体重(千克)人数A45≤x<5012B50≤x<55mC55≤x<6080D60≤x<6540E65≤x<7016(1)填空:①m=(直接写出结果);②在扇形统计图中,C组所在扇形的圆心角的度数等于度;(2)如果该校九年级有1000名学生,请估算九年级体重低于60千克的学生大约有多少人?五、解答题(本大题共3小题,每小题9分,共27分)23.(9分)如图,在平面直角坐标系中,抛物线y=﹣x2+ax+b交x轴于A(1,0),B(3,0)两点,点P是抛物线上在第一象限内的一点,直线BP与y轴相交于点C.(1)求抛物线y=﹣x2+ax+b的解析式;(2)当点P是线段BC的中点时,求点P的坐标;(3)在(2)的条件下,求sin∠OCB的值.24.(9分)如图,AB是⊙O的直径,AB=4,点E为线段OB上一点(不与O,B重合),作CE⊥OB,交⊙O于点C,垂足为点E,作直径CD,过点C的切线交DB的延长线于点P,AF⊥PC于点F,连接CB.(1)求证:CB是∠ECP的平分线;(2)求证:CF=CE;(3)当=时,求劣弧的长度(结果保留π)25.(9分)如图,在平面直角坐标系中,O为原点,四边形ABCO是矩形,点A,C的坐标分别是A(0,2)和C(2,0),点D是对角线AC上一动点(不与A,C重合),连结BD,作DE⊥DB,交x轴于点E,以线段DE,DB为邻边作矩形BDEF.(1)填空:点B的坐标为;(2)是否存在这样的点D,使得△DEC是等腰三角形?若存在,请求出AD的长度;若不存在,请说明理由;(3)①求证:=;②设AD=x,矩形BDEF的面积为y,求y关于x的函数关系式(可利用①的结论),并求出y的最小值.2017年广东省中考数学试卷参考答案与试题解析一、选择题(本大题共10小题,每小题3分,共30分)1.(3分)(2017•广东)5的相反数是()A.B.5 C.﹣ D.﹣5【考点】14:相反数.【分析】根据相反数的概念解答即可.【解答】解:根据相反数的定义有:5的相反数是﹣5.故选:D.【点评】本题考查了相反数的意义,一个数的相反数就是在这个数前面添上“﹣”号;一个正数的相反数是负数,一个负数的相反数是正数,0的相反数是0.2.(3分)(2017•广东)“一带一路”倡议提出三年以来,广东企业到“一带一路”国家投资越来越活跃,据商务部门发布的数据显示,2016年广东省对沿线国家的实际投资额超过4000000000美元,将4000000000用科学记数法表示为()A.0.4×109B.0.4×1010C.4×109D.4×1010【考点】1I:科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值大于10时,n是正数;当原数的绝对值小于1时,n是负数.【解答】解:4000000000=4×109.故选:C.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.3.(3分)(2017•广东)已知∠A=70°,则∠A的补角为()A.110°B.70°C.30°D.20°【考点】IL:余角和补角.【专题】11 :计算题;511:实数.【分析】由∠A的度数求出其补角即可.【解答】解:∵∠A=70°,∴∠A的补角为110°,故选A【点评】此题考查了余角与补角,熟练掌握补角的性质是解本题的关键.4.(3分)(2017•广东)如果2是方程x2﹣3x+k=0的一个根,则常数k的值为()A.1 B.2 C.﹣1 D.﹣2【考点】A3:一元二次方程的解.【分析】把x=2代入已知方程列出关于k的新方程,通过解方程来求k的值.【解答】解:∵2是一元二次方程x2﹣3x+k=0的一个根,∴22﹣3×2+k=0,解得,k=2.故选:B.【点评】本题考查的是一元二次方程的根即方程的解的定义.一元二次方程的根就是一元二次方程的解,就是能够使方程左右两边相等的未知数的值.即用这个数代替未知数所得式子仍然成立.5.(3分)(2017•广东)在学校举行“阳光少年,励志青春”的演讲比赛中,五位评委给选手小明的评分分别为:90,85,90,80,95,则这组数据的众数是()A.95 B.90 C.85 D.80【考点】W5:众数.【分析】众数指一组数据中出现次数最多的数据,根据众数的定义就可以求解.【解答】解:数据90出现了两次,次数最多,所以这组数据的众数是90.故选B.【点评】考查了众数的定义,众数是一组数据中出现次数最多的数据,注意众数可以不止一个.6.(3分)(2017•广东)下列所述图形中,既是轴对称图形又是中心对称图形的是()A.等边三角形B.平行四边形C.正五边形D.圆【考点】R5:中心对称图形;P3:轴对称图形.【分析】根据中心对称图形和轴对称图形的定义对各选项进行判断.【解答】解:等边三角形为轴对称图形;平行四边形为中心对称图形;正五边形为轴对称图形;圆既是轴对称图形又是中心对称图形.故选D.【点评】本题考查了中心对称图形:把一个图形绕某一点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形,这个点叫做对称中心.也考查了轴对称图形.7.(3分)(2017•广东)如图,在同一平面直角坐标系中,直线y=k1x(k1≠0)与双曲线y=(k2≠0)相交于A,B两点,已知点A的坐标为(1,2),则点B 的坐标为()A.(﹣1,﹣2)B.(﹣2,﹣1)C.(﹣1,﹣1)D.(﹣2,﹣2)【考点】G8:反比例函数与一次函数的交点问题.【分析】反比例函数的图象是中心对称图形,则它与经过原点的直线的两个交点一定关于原点对称.【解答】解:∵点A与B关于原点对称,∴B点的坐标为(﹣1,﹣2).故选:A.【点评】本题主要考查了反比例函数图象的中心对称性,要求同学们要熟练掌握.8.(3分)(2017•广东)下列运算正确的是()A.a+2a=3a2B.a3•a2=a5 C.(a4)2=a6D.a4+a2=a4【考点】47:幂的乘方与积的乘方;35:合并同类项;46:同底数幂的乘法.【分析】根据整式的加法和幂的运算法则逐一判断即可.【解答】解:A、a+2a=3a,此选项错误;B、a3•a2=a5,此选项正确;C、(a4)2=a8,此选项错误;D、a4与a2不是同类项,不能合并,此选项错误;故选:B.【点评】本题主要考查幂的运算和整式的加法,掌握同类项的定义和同底数幂相乘、幂的乘方法则是解题的关键.9.(3分)(2017•广东)如图,四边形ABCD内接于⊙O,DA=DC,∠CBE=50°,则∠DAC的大小为()A.130°B.100°C.65°D.50°【考点】M6:圆内接四边形的性质.【分析】先根据补角的性质求出∠ABC的度数,再由圆内接四边形的性质求出∠ADC的度数,由等腰三角形的性质求得∠DAC的度数.【解答】解:∵∠CBE=50°,∴∠ABC=180°﹣∠CBE=180°﹣50°=130°,∵四边形ABCD为⊙O的内接四边形,∴∠D=180°﹣∠ABC=180°﹣130°=50°,∵DA=DC,∴∠DAC==65°,故选C.【点评】本题考查的是圆内接四边形的性质及等腰三角形的性质,即在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.10.(3分)(2017•广东)如图,已知正方形ABCD,点E是BC边的中点,DE与AC相交于点F,连接BF,下列结论:①S△ABF=S△ADF;②S△CDF=4S△CEF;③S△ADF=2S△CEF ;④S△ADF=2S△CDF,其中正确的是()A.①③B.②③C.①④D.②④【考点】LE:正方形的性质.【分析】由△AFD≌△AFB,即可推出S△ABF =S△ADF,故①正确,由BE=EC=BC=AD,AD∥EC,推出===,可得S△CDF=2S△CEF,S△ADF=4S△CEF,S△ADF=2S△CDF,故②③错误④正确,由此即可判断.【解答】解:∵四边形ABCD是正方形,∴AD∥CB,AD=BC=AB,∠FAD=∠FAB,在△AFD和△AFB中,,∴△AFD≌△AFB,∴S△ABF =S△ADF,故①正确,∵BE=EC=BC=AD,AD∥EC,∴===,∴S△CDF =2S△CEF,S△ADF=4S△CEF,S△ADF=2S△CDF,故②③错误④正确,故选C.【点评】本题考查正方形的性质、全等三角形的判定和性质、平行线分线段成比例定理等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.二、填空题(本大题共6小题,每小题4分,共24分)11.(4分)(2017•广东)分解因式:a2+a=a(a+1).【考点】53:因式分解﹣提公因式法.【分析】直接提取公因式分解因式得出即可.【解答】解:a2+a=a(a+1).故答案为:a(a+1).【点评】此题主要考查了提取公因式法分解因式,正确得出公因式是解题关键.12.(4分)(2017•广东)一个n边形的内角和是720°,则n=6.【考点】L3:多边形内角与外角.【分析】多边形的内角和可以表示成(n﹣2)•180°,依此列方程可求解.【解答】解:依题意有:(n﹣2)•180°=720°,解得n=6.故答案为:6.【点评】本题考查根据多边形的内角和计算公式求多边形的边数,解答时要会根据公式进行正确运算、变形和数据处理.13.(4分)(2017•广东)已知实数a,b在数轴上的对应点的位置如图所示,则a+b>0.(填“>”,“<”或“=”)【考点】2A:实数大小比较;29:实数与数轴.【分析】首先根据数轴判断出a、b的符号和二者绝对值的大小,根据“异号两数相加,取绝对值较大的符号,并用较大的绝对值减去较小的绝对值”来解答即可.【解答】解:∵a在原点左边,b在原点右边,∴a<0<b,∵a离开原点的距离比b离开原点的距离小,∴|a|<|b|,∴a+b>0.故答案为:>.【点评】本题考查了实数与数轴,有理数的加法法则,根据数轴得出a、b的符号和二者绝对值的大小关系是解题的关键.14.(4分)(2017•广东)在一个不透明的盒子中,有五个完全相同的小球,把它们分别标号为1,2,3,4,5,随机摸出一个小球,摸出的小球标号为偶数的概率是.【考点】X4:概率公式.【分析】确定出偶数有2个,然后根据概率公式列式计算即可得解.【解答】解:∵5个小球中,标号为偶数的有2、4这2个,∴摸出的小球标号为偶数的概率是,故答案为:【点评】本题考查了概率公式,用到的知识点为:概率=所求情况数与总情况数之比.15.(4分)(2017•广东)已知4a+3b=1,则整式8a+6b﹣3的值为﹣1.【考点】33:代数式求值.【分析】先求出8a+6b的值,然后整体代入进行计算即可得解.【解答】解:∵4a+3b=1,∴8a+6b=2,8a+6b﹣3=2﹣3=﹣1;故答案为:﹣1.【点评】本题考查了代数式求值,整体思想的利用是解题的关键.16.(4分)(2017•广东)如图,矩形纸片ABCD中,AB=5,BC=3,先按图(2)操作:将矩形纸片ABCD沿过点A的直线折叠,使点D落在边AB上的点E处,折痕为AF;再按图(3)操作,沿过点F的直线折叠,使点C落在EF上的点H 处,折痕为FG,则A、H两点间的距离为.【考点】PB:翻折变换(折叠问题);LB:矩形的性质.【分析】如图3中,连接AH.由题意可知在Rt△AEH中,AE=AD=3,EH=EF﹣HF=3﹣2=1,根据AH=,计算即可.【解答】解:如图3中,连接AH.由题意可知在Rt△AEH中,AE=AD=3,EH=EF﹣HF=3﹣2=1,∴AH===,故答案为.【点评】本题考查翻折变换、矩形的性质、勾股定理等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.三、解答题(本大题共3小题,每小题6分,共18分)17.(6分)(2017•广东)计算:|﹣7|﹣(1﹣π)0+()﹣1.【考点】2C:实数的运算;6E:零指数幂;6F:负整数指数幂.【分析】直接利用绝对值的性质以及零指数幂的性质和负整数指数幂的性质分别化简求出答案.【解答】解:原式=7﹣1+3=9.【点评】本题主要考查了实数的综合运算能力,是各地中考题中常见的计算题型.解决此类题目的关键是熟练掌握零指数幂、负整数指数幂的性质、绝对值等考点的运算.18.(6分)(2017•广东)先化简,再求值:(+)•(x2﹣4),其中x=.【考点】6D:分式的化简求值.【分析】先计算括号内分式的加法,再计算乘法即可化简原式,将x的值代入求解可得.【解答】解:原式=[+]•(x+2)(x﹣2)=•(x+2)(x﹣2)=2x,当x=时,原式=2.【点评】本题主要考查分式的化简求值,熟练掌握分式的混合运算顺序和法则是解题的关键.19.(6分)(2017•广东)学校团委组织志愿者到图书馆整理一批新进的图书.若男生每人整理30本,女生每人整理20本,共能整理680本;若男生每人整理50本,女生每人整理40本,共能整理1240本.求男生、女生志愿者各有多少人?【考点】9A:二元一次方程组的应用.【分析】设男生志愿者有x人,女生志愿者有y人,根据“若男生每人整理30本,女生每人整理20本,共能整理680本;若男生每人整理50本,女生每人整理40本,共能整理1240本”,即可得出关于x、y的二元一次方程组,解之即可得出结论.【解答】解:设男生志愿者有x人,女生志愿者有y人,根据题意得:,解得:.答:男生志愿者有12人,女生志愿者有16人.【点评】本题考查了二元一次方程组的应用,找准等量关系,列出二元一次方程组是解题的关键.四、解答题(本大题共3小题,每小题7分,共21分)20.(7分)(2017•广东)如图,在△ABC中,∠A>∠B.(1)作边AB的垂直平分线DE,与AB,BC分别相交于点D,E(用尺规作图,保留作图痕迹,不要求写作法);(2)在(1)的条件下,连接AE,若∠B=50°,求∠AEC的度数.【考点】N2:作图—基本作图;KG:线段垂直平分线的性质.【分析】(1)根据题意作出图形即可;(2)由于DE是AB的垂直平分线,得到AE=BE,根据等腰三角形的性质得到∠EAB=∠B=50°,由三角形的外角的性质即可得到结论.【解答】解:(1)如图所示;(2)∵DE是AB的垂直平分线,∴AE=BE,∴∠EAB=∠B=50°,∴∠AEC=∠EAB+∠B=100°.【点评】本题考查了作图﹣基本作图,线段垂直平分线的性质,三角形的外角的性质,等腰三角形的性质,熟练掌握线段垂直平分线的性质是解题的关键.21.(7分)(2017•广东)如图所示,已知四边形ABCD,ADEF都是菱形,∠BAD=∠FAD,∠BAD为锐角.(1)求证:AD⊥BF;(2)若BF=BC,求∠ADC的度数.【考点】L8:菱形的性质.【分析】(1)连结DB、DF.根据菱形四边相等得出AB=AD=FA,再利用SAS证明△BAD≌△FAD,得出DB=DF,那么D在线段BF的垂直平分线上,又AB=AF,即A在线段BF的垂直平分线上,进而证明AD⊥BF;(2)设AD⊥BF于H,作DG⊥BC于G,证明DG=CD.在直角△CDG中得出∠C=30°,再根据平行线的性质即可求出∠ADC=180°﹣∠C=150°.【解答】(1)证明:如图,连结DB、DF.∵四边形ABCD,ADEF都是菱形,∴AB=BC=CD=DA,AD=DE=EF=FA.在△BAD与△FAD中,,∴△BAD≌△FAD,∴DB=DF,∴D在线段BF的垂直平分线上,∵AB=AF,∴A在线段BF的垂直平分线上,∴AD是线段BF的垂直平分线,∴AD⊥BF;(2)如图,设AD⊥BF于H,作DG⊥BC于G,则四边形BGDH是矩形,∴DG=BH=BF.∵BF=BC,BC=CD,∴DG=CD.在直角△CDG中,∵∠CGD=90°,DG=CD,∴∠C=30°,∵BC∥AD,∴∠ADC=180°﹣∠C=150°.【点评】本题考查了菱形的性质,全等三角形的判定与性质,线段垂直平分线的判定,平行线的性质等知识,证明出AD是线段BF的垂直平分线是解题的关键.22.(7分)(2017•广东)某校为了解九年级学生的体重情况,随机抽取了九年级部分学生进行调查,将抽取学生的体重情况绘制如下不完整的统计图表,如图表所示,请根据图表信息回答下列问题:体重频数分布表组边体重(千克)人数A45≤x<5012B50≤x<55mC55≤x<6080D60≤x<6540E65≤x<7016(1)填空:①m=52(直接写出结果);②在扇形统计图中,C组所在扇形的圆心角的度数等于144度;(2)如果该校九年级有1000名学生,请估算九年级体重低于60千克的学生大约有多少人?【考点】VB:扇形统计图;V5:用样本估计总体;V7:频数(率)分布表.【分析】(1)①根据D组的人数及百分比进行计算即可得到m的值;②根据C 组的百分比即可得到所在扇形的圆心角的度数;(2)根据体重低于60千克的学生的百分比乘上九年级学生总数,即可得到九年级体重低于60千克的学生数量.【解答】解:(1)①调查的人数为:40÷20%=200(人),∴m=200﹣12﹣80﹣40﹣16=52;②C组所在扇形的圆心角的度数为×360°=144°;故答案为:52,144;(2)九年级体重低于60千克的学生大约有×1000=720(人).【点评】本题主要考查了扇形统计图,用样本估计总体以及频数分布表的运用,从扇形图上可以清楚地看出各部分数量和总数量之间的关系.各部分扇形圆心角的度数=部分占总体的百分比×360°.五、解答题(本大题共3小题,每小题9分,共27分)23.(9分)(2017•广东)如图,在平面直角坐标系中,抛物线y=﹣x2+ax+b交x 轴于A(1,0),B(3,0)两点,点P是抛物线上在第一象限内的一点,直线BP与y轴相交于点C.(1)求抛物线y=﹣x2+ax+b的解析式;(2)当点P是线段BC的中点时,求点P的坐标;(3)在(2)的条件下,求sin∠OCB的值.【考点】HA:抛物线与x轴的交点;H8:待定系数法求二次函数解析式;T7:解直角三角形.【分析】(1)将点A、B代入抛物线y=﹣x2+ax+b,解得a,b可得解析式;(2)由C点横坐标为0可得P点横坐标,将P点横坐标代入(1)中抛物线解析式,易得P点坐标;(3)由P点的坐标可得C点坐标,由B、C的坐标,利用勾股定理可得BC长,利用sin∠OCB=可得结果.【解答】解:(1)将点A、B代入抛物线y=﹣x2+ax+b可得,,解得,a=4,b=﹣3,∴抛物线的解析式为:y=﹣x2+4x﹣3;(2)∵点C在y轴上,所以C点横坐标x=0,∵点P是线段BC的中点,∴点P横坐标x P==,∵点P在抛物线y=﹣x2+4x﹣3上,∴y P=﹣3=,∴点P的坐标为(,);(3)∵点P的坐标为(,),点P是线段BC的中点,∴点C的纵坐标为2×﹣0=,∴点C的坐标为(0,),∴BC==,∴sin∠OCB===.【点评】本题主要考查了待定系数法求二次函数解析式和解直角三角形,利用中点求得点P的坐标是解答此题的关键.24.(9分)(2017•广东)如图,AB是⊙O的直径,AB=4,点E为线段OB上一点(不与O,B重合),作CE⊥OB,交⊙O于点C,垂足为点E,作直径CD,过点C的切线交DB的延长线于点P,AF⊥PC于点F,连接CB.(1)求证:CB是∠ECP的平分线;(2)求证:CF=CE;(3)当=时,求劣弧的长度(结果保留π)【考点】S9:相似三角形的判定与性质;M2:垂径定理;MC:切线的性质;MN:弧长的计算.【分析】(1)根据等角的余角相等证明即可;(2)欲证明CF=CE,只要证明△ACF≌△ACE即可;(3)作BM⊥PF于M.则CE=CM=CF,设CE=CM=CF=4a,PC=4a,PM=a,利用相似三角形的性质求出BM,求出tan∠BCM的值即可解决问题;【解答】(1)证明:∵OC=OB,∴∠OCB=∠OBC,∵PF是⊙O的切线,CE⊥AB,∴∠OCP=∠CEB=90°,∴∠PCB+∠OCB=90°,∠BCE+∠OBC=90°,∴∠BCE=∠BCP,∴BC平分∠PCE.(2)证明:连接AC.∵AB是直径,∴∠ACB=90°,∴∠BCP+∠ACF=90°,∠ACE+∠BCE=90°,∵∠BCP=∠BCE,∴∠ACF=∠ACE,∵∠F=∠AEC=90°,AC=AC,∴△ACF≌△ACE,∴CF=CE.(3)解:作BM⊥PF于M.则CE=CM=CF,设CE=CM=CF=3a,PC=4a,PM=a,∵△BMC∽△PMB,∴=,∴BM2=CM•PM=3a2,∴BM=a,∴tan∠BCM==,∴∠BCM=30°,∴∠OCB=∠OBC=∠BOC=60°,∴的长==π.【点评】本题考查切线的性质、角平分线的判定、全等三角形的判定和性质、相似三角形的判定和性质、锐角三角函数、弧长公式等知识,解题的关键是灵活运用所学知识解决问题,学会添加常用辅助线,属于中考常考题型.25.(9分)(2017•广东)如图,在平面直角坐标系中,O为原点,四边形ABCO 是矩形,点A,C的坐标分别是A(0,2)和C(2,0),点D是对角线AC上一动点(不与A,C重合),连结BD,作DE⊥DB,交x轴于点E,以线段DE,DB为邻边作矩形BDEF.(1)填空:点B的坐标为(2,2);(2)是否存在这样的点D,使得△DEC是等腰三角形?若存在,请求出AD的长度;若不存在,请说明理由;(3)①求证:=;②设AD=x,矩形BDEF的面积为y,求y关于x的函数关系式(可利用①的结论),并求出y的最小值.【考点】SO:相似形综合题.【分析】(1)求出AB、BC的长即可解决问题;(2)存在.连接BE,取BE的中点K,连接DK、KC.首先证明B、D、E、C四点共圆,可得∠DBC=∠DCE,∠EDC=∠EBC,由tan∠ACO==,推出∠ACO=30°,∠ACD=60°由△DEC是等腰三角形,观察图象可知,只有ED=EC,推出∠DBC=∠DCE=∠EDC=∠EBC=30°,推出∠DBC=∠BCD=60°,可得△DBC是等边三角形,推出DC=BC=2,由此即可解决问题;(3)①由(2)可知,B、D、E、C四点共圆,推出∠DBC=∠DCE=30°,由此即可解决问题;②作DH⊥AB于H.想办法用x表示BD、DE的长,构建二次函数即可解决问题;【解答】解:(1)∵四边形AOCB是矩形,∴BC=OA=2,OC=AB=2,∠BCO=∠BAO=90°,∴B(2,2).故答案为(2,2).(2)存在.理由如下:连接BE,取BE的中点K,连接DK、KC.∵∠BDE=∠BCE=90°,∴KD=KB=KE=KC,∴B、D、E、C四点共圆,∴∠DBE=∠DCE,∠EDC=∠EBC,∵tan∠ACO==,∴∠ACO=30°,∠ACB=60°①如图1中,当E在线段CO上时,△DEC是等腰三角形,观察图象可知,只有ED=EC,∴∠DBE=∠DCE=∠EDC=∠EBC=30°,∴∠DBC=∠BCD=60°,∴△DBC是等边三角形,∴DC=BC=2,在Rt△AOC中,∵∠ACO=30°,OA=2,∴AC=2AO=4,∴AD=AC﹣CD=4﹣2=2.∴当AD=2时,△DEC是等腰三角形.②如图2中,当E在OC的延长线上时,△DCE是等腰三角形,只有CD=CE,∠DBC=∠DEC=∠CDE=15°,∴∠ABD=∠ADB=75°,∴AB=AD=2,综上所述,满足条件的AD的值为2或2.(3)①由(2)可知,B、D、E、C四点共圆,∴∠DBE=∠DCO=30°,∴tan∠DBE=,∴=.②如图2中,作DH⊥AB于H.在Rt△ADH中,∵AD=x,∠DAH=∠ACO=30°,∴DH=AD=x,AH==x,∴BH=2﹣x,在Rt△BDH中,BD==,∴DE=BD=•,∴矩形BDEF的面积为y=[]2=(x2﹣6x+12),即y=x2﹣2x+4,∴y=(x﹣3)2+,∵>0,∴x=3时,y有最小值.【点评】本题考查相似形综合题、四点共圆、锐角三角函数、相似三角形的判定和性质、勾股定理、二次函数的性质等知识,解题的关键是学会添加辅助线,证明B、D、E、C四点共圆,学会构建二次函数解决问题,属于中考压轴题.。