220kV变电站母线故障继电保护装置的动作

合集下载

220kV变电站常见保护配置

220kV变电站常见保护配置
作为变压器接地 故障的近后备和 外部接地故障的 远后备保护
作为主变、母线、 出线接地故障的 保护
欢迎加入微信技术交流群
扫描二维码,点击底部菜单栏“加入群聊”
101电力课堂
220kV母线保护、其他保护的配置
母线保护配置情况
四、继母电线保及护母保护联范间围隔的保划护分 范围的划分
母线差动 保护范围
线路保护配置情况
2.1 10kV线路保护
10kV线路保护配置:过流保护、重合闸 2.1.1 过流保护
当线路发生短路故障时,会产生很大的短路电流,并 且当故障点离保护安装处越近,短路电流也相对越大。
保护
当短路电流超过整定值时电流元件动作,并通过动作 时间与下一级线路保护配合,以保证动作的选择性。
2.1.1 过流保护
5、发信号。
低 后 复压过流 备
主变、母线、 线路
t1时限跳本侧开关
作为主变、低压
t2时限跳各侧开关并发 母线、出线相间
信号
故障的保护
3.7 220kV主变电量保护
保护功能
高压侧复 压方向过 流保护
高 中 中性点间 后 隙保护 备
高压侧零 序过流
高压侧过 负荷
保护范围
动作后果
→母线: 本侧母线 线路
2.3.4 双回线相继速动
M
1
L1
N
2
L2
3
4
双回线相继速动保 护原理说明图1
在并列双回线两条线路的双回线相继速动投入的前提下, 它们Ⅲ段距离元件动作或其它保护跳闸时,输出FXJ信号(由 保护1、3发出)分别闭锁另一回线Ⅱ段距离相继速跳元件。
2.4 220kV线路保护 配置基本原则
2
1

浅谈主变220kV侧开关失灵跳主变三侧开关

浅谈主变220kV侧开关失灵跳主变三侧开关

浅谈主变220kV侧开关失灵跳主变三侧开关摘要本文主要分析了在发生母线故障时,保护动作跳主变220kV开关且开关失灵时,跳主变三侧开关的必要性。

以及利用220kV母线保护动作启动220kV 主变非电量保护,实现跳主变三侧开关,同时满足反措的要求。

关键词主变220kV侧开关;故障;非电量保护;跳主变三侧0 引言国家电网十八项反措第4.8.3点要求:220kV及以上电压等级变压器的断路器失灵时,除应跳开失灵断路器相邻的全部断路器外,还应跳开本变压器连接其他电源侧的断路器。

应此反措的做法:母线保护引出一对失灵保护跳闸接点至主变非电量保护,由主变非电量保护动作出口跳主变三侧开关,实行快速切除故障。

1 主变220kV开关失灵跳主变三侧开关的必要性近年来,福建省的电网网架日益完善,特别是500kV的大环网实现了主网架从220kV电网向500kV超高压等级电网的飞跃,同时110kV系统与220kV系统联系紧密,接入的电源日益增多,短路电流水平也不断增加。

下面说明主变220kV开关失灵跳主变三侧开关的必要性:对于某220kV变电站,其一次接线简图如图1所示,正常运行方式为#1主变、273接Ⅰ母;#2主变、274接Ⅱ母运行。

在母线发生故障时,如图1所示中的故障点F1,Ⅰ母差保护动作且27A开关失灵时,274线路通过220kVⅡ母、#2主变、110kV母联开关、#1主变27A 形成的通道,同时110kV系统也将倒送,向220kVⅠ母线的故障点注入短路电流。

此时虽可依靠#1主变后备保护动作隔离故障点,但是由于其保护带有延时(如主变高后备保护:过流Ⅰ段保护4.1S 跳三侧;过流Ⅱ段第一时限为3.8S跳110侧开关,第二时限为4.1S跳三侧。

)故可能会产生不良后果:1)#1主变延时承受110kV系统倒送的较大短路电流而损坏;2)#2主变的后备保护达到定值,切除#2主变三侧开关,扩大事故。

因此在主变220kV侧开关失灵时,尤其是500kV变电站直供的220kV变电站,由于电气距离较近,发生故障时主变220kV开关拒动时,短路电流将增大,对主变的损坏程度将显著增加。

220kV主变跳闸及35kV母线失压事故分析及防范措施

220kV主变跳闸及35kV母线失压事故分析及防范措施

220kV主变跳闸及35kV母线失压事故分析及防范措施杨 鑫 黄佳林 陈 懿(国网上海市电力公司超高压分公司)摘 要:本文介绍某220kV变电站2号主变第一、二套接地变零序过流保护动作,导致2号主变跳闸;35kV二/三段分段自切后加速动作,自切动作不成功,导致35kV三段母线失压。

分析继电保护装置动作情况及一次设备检查情况,制定相应反事故措施及注意事项,减少类似事件的发生。

关键词:接地变零序过流保护动作;主变失电;三段母线失压;自切零序后加速动作0 引言220kV主变在电力系统电力变换中处于重要的地位,电压等级高、容量大的变压器,一旦发生故障,将造成重大影响,严重时甚至会引发爆炸,对附近居民社会生活以及企业发展带来十分严重的后果。

为保证变压器长期安全稳定运行[1 4],降低变压器故障发生,提高变压器运维质量,防止设备事故,避免重大经济损失具有极为特殊的意义。

1 系统运行方式介绍变电站220kV为双母线带旁路接线方式[5 6],220kV母联合位双母线并列运行,35kV母线分段运行。

2号主变220kV副母运行容量为150MW,35kV侧分别送三、四段母线。

故障时该变电站未许可工作票,未执行倒闸操作票。

2 事故简况及原因分析2 1 事故简要过程2022年11月10日14:10:57 639,220kV变电站2号主变第一、二套接地变零序过流I段保护动作,2号主变35kV三、四段开关分闸;2号主变第一、二套接地变零序过流II段动作,2号主变220kV开关分闸;二/三段分段自切零序后加速动作,三段母线失压。

具体保护动作情况见表1。

表1 保护动作情况时间动作情况14:10:57:6532号主变第一套、第二套保护启动14:11:01:6592号主变第一、二套保护接地变零序过流I段动作(续)时间动作情况14:11:01:6812号主变35kV四段开关分闸14:11:01:6832号主变35kV三段开关分闸14:11:01:76435kV张啦3G384保护启动14:11:02:00735kV张绩3G381保护启动14:11:02:1592号主变第一、二套保护接地变零序过流II段动作14:11:02:1702号主变220kV第一、二组出口动作14:11:02:1952号主变220kV开关分闸14:11:06:06635kV四/五分段自切动作14:11:06:07035kV四/五分段自切合分段动作14:11:06:13435kV四/五分段开关合闸14:11:06:20835kV二/三段分段自切动作14:11:06:22735kV二/三段分段自切合分段动作14:11:06:27735kV二/三分段开关合闸14:11:06:49335kV二/三段分段自切后加速动作14:11:06:51735kV二/三分段开关分闸2号主变第一、二套接地变零序过流I段保护动作,2号主变35kV三、四段开关分闸,故障点未切除,35kV三段母线出线张啦3G384、张绩3G381线路保护启动;0 5s后2号主变第一、二套接地变零序过流II段动作,2号主变220kV开关分闸,故障电流切除。

220kV母线故障短线路远跳拒动分析

220kV母线故障短线路远跳拒动分析

220kV母线故障短线路远跳拒动分析摘要:220KV母线差动保护动作时,切除故障母线上所有开关,同时通过操作箱的三跳继电器启动远跳切除对侧开关。

本文以220KV线路CSC103光纤保护装置为研究对象,对其保护远跳拒动进行分析,同时还介绍其发送和接收远跳功能的原理。

希望通过本文的分析能对今后的运行及继保人员熟悉掌握220kV线路的远跳功能,出现类似的故障问题,能够迅速准确有效地分析保护动作行为。

关键词:短线路;近端母线故障;保护拒动;动作行为分析我国电力系统中,220KV及以上电压等级通常采用光纤作为传播数据信息的通道。

这种方式有其独特的优点:首先,其有很强的抗干扰能力,可靠性较高。

其次,数字光纤通道,在交换了两侧电流数据的同时,还交换了开关量信息,远跳保护就是利用主保护的光纤通道进行数据交换,从而实现远跳功能。

本文以某220kV线路CSC103光纤差动保护装置为研究对象,对其远跳保护拒动进行分析。

1远跳的概念故障点在母差保护动作范围,由其快速动作,切除故障母线运行开关,对侧变电站故障点没有在线路保护范围,无法快速解除故障,要由对侧线路保护装置的后备保护经延时切除故障,影响系统的稳定运行。

为了实现快速保护动作,设置远跳功能,在母差和失灵保护动作后,启动三跳继电器,利用主保护光纤通道,远跳对侧开关。

2远跳动作原理将采集得到远跳开入为高电平时,经滤波处理确认,作为开关量,连同电流采样数据及CRC校验码等一起打包为完整的一帧信息,通过数字通道,传送给对侧保护装置。

启动元件主要包括重合闸启动元件、零序电流启动元件、静稳破坏的启动元件、弱馈低电压启动元件以及电流突变量启动元件。

无论启动哪一元件动作,在动作启动之后,都是将保护及在开放出口安装的继电器的正电源进行启动。

220kV某线路长度3kM,配置两套主保护。

2017年3月25日,电厂侧母差保护动作,给220kV线路主保护CSC103B远跳开入,变电站侧CSC-103B保护未动作。

220kV变电站继电保护设计正文

220kV变电站继电保护设计正文

前言继电保护的发展是随着电力系统和自动化技术的发展而发展的.几十年来,随着我国电力系统向高电压、大机组、现代化大电网发展,继电保护技术及其装置应用水平获得很大提高。

在20世纪50年代及以前,差不多都是用电磁型的机械元件构成。

随着半导体器件的发展,陆续推广了利用整流二极管构成的整流型元件和半导体分立元件组成的装置。

70年代以后,利用集成电路构成的装置在电力系统继电保护中得到广泛的运用.到80年代,微型机在安全自动装置和继电保护装置中逐渐应用.在电力系统中,由于雷击或鸟兽跨接电气设备、设备制造上的缺陷、设计和安装的错误、检修质量不高或运行维护不当等原因,往往发生各种事故。

为了保证电力系统安全可靠地运行,电力系统中的各个设备必须装设性能完善的继电保护装置。

继电保护是利用被保护线路或设备故障前后某些突变的物理量为信息量,当突变量达到一定值时,起动逻辑控制环节,发生相应的跳闸脉冲或信号。

继电保护虽然种类很多,但是一般由测量部分、逻辑部分、执行部分三部分组成。

测量部分是测量被保护元件工作状态的一个或几个物理量,并和已给的整定值进行比较,从而判断保护是否应该起动。

逻辑部分是根据测量部分输出量的大小、性质、出现的顺序或它们的组合、使保护装置按一定的逻辑程序工作,最后传到执行部分。

执行部分是根据逻辑部分送的信号,最后完成保护装置所担负的任务。

如发生信号,跳闸或不动作等.继电保护的基本性能要求是选择性、速动性、灵敏性、可靠性。

随着新技术、新工艺的采用,继电保护硬件设备的可靠性、运行维护方便性也不断得到提高。

继电保护技术将达到更高的水平.由于编者水平和时间所限,文中疏漏和不足之处在所难免,恳请老师批评指正。

目录摘要 (1)第1章设计说明书 (2)第2章主变压器保护设计 (3)2。

1 主变压器保护设计 (3)2。

2 变压器容量选择 (4)2.3 变压器主保护 (8)2。

4 过电流保护 (13)2.5 接地保护 (14)2.6 其他保护 (16)第3章母线保护 (19)3。

WMH-801九统一智能变电站220kV母线保护技术说明书(v2.00)

WMH-801九统一智能变电站220kV母线保护技术说明书(v2.00)

WMH-801 九统一智能变电站 220kV 微机母线保护技术说明书 1. 应用说明 WMH-801 系列是全面支持新一代智能变电站的继电保护装置。满足国网公司 《Q/GDW441—2010 智能变电站继电保护技术规范》 、 《Q/GDW 1175-2013 变压器、 高压并 联电抗器和母线保护及辅助装置标准化设计规范》等标准的规范要求。所有保护装置按照 《Q/GDW1396—2012 IEC61850 工程继电保护应用模型》 、 《Q/GDW XXX-201X 继电保护信 息规范》的规范要求进行建模。保护装置在满足“可靠性、选择性、灵敏性、速动性”的基 础上,利用电子式互感器的特性进行了一些新原理、新特性的保护性能提升工作。
WMH-801 九统一智能变电站 220kV 微机母线保护技术说明书


1. 概述.................................................................. 1 1.1. 应用范围 .......................................................... 1 1.2. 保护配置 .......................................................... 1 1.3. 装置主要特点 ...................................................... 2 2. 技术指标.............................................................. 3 2.1. 基本电气参数 ...................................................... 3 2.2. 主要技术指标 ...................................................... 4 2.3. 环境条件 .......................................................... 7 2.4. 通信接口 .......................................................... 7 3. 保护原理介绍.......................................................... 7 3.1. 差动保护 .......................................................... 7 3.2. 母联失灵保护 ..................................................... 18 3.3. 断路器失灵保护 ................................................... 20 3.4. 母联充电过流保护 ................................................. 23 3.5. 母联非全相保护 ................................................... 24 3.6. PT 断线告警 ....................................................... 25 3.7. 运行方式识别 ..................................................... 25 3.8. 自检功能 ......................................................... 28 4. 保护装置输出信息..................................................... 31 4.1. 保护动作信息 ..................................................... 31 4.2. 在线监测信息 ..................................................... 32 4.3. 装置告警信息 ..................................................... 33 4.4. 状态变位信息 ..................................................... 36 5. 装置硬件介绍及典型接线............................................... 43 5.1. 装置整体介绍 ..................................................... 43 5.2. 结构与安装 ....................................................... 46 5.3. 装置插件介绍 ..................................................... 48 5.4. SV 采样装置过程层插件端子定义 ..................................... 52 5.5. 常规采样装置过程层插件端子定义 ................................... 55 6. 定值、软压板清单及整定说明........................................... 59

220kV 变电站继电保护问题研究

220kV 变电站继电保护问题研究

(作者单位:呼和浩特供电局)220kV 变电站继电保护问题研究◎王可一、变电站继电保护重要性随着经济的发展,电能已经成为各方面建设及人们生活中不可缺少的能源,电能的使用已遍及各行各业,电力系统电能质量逐渐成为人们关注的焦点,如何保证电力系统安全稳定运行成为重要研究对象,变电站作为电力系统中不可缺少的重要环节,对电网的安全和经济运行起着举足轻重的作用,是电能传输与控制的枢纽,其安全、稳定运行尤为重要。

继电保护装置作为变电站重要二次设备,对一次系统的运行状况进行监视,迅速反应异常和事故,然后作用于断路器,进行保护控制。

继电保护装置是一种有继电器和其他辅助元件构成的安全装置,它能够反映电气元件的故障;和不正常运行状态,并动作于断路器跳闸或发信号,是电力系统安全、稳定运行的可靠保证。

当电力系统出现故障时发出跳闸信号将故障设备切除,保证无故障部分继续运行;当电力系统出现不正常运行状态时继电保护发出信号以便运行人员及时对不正常工作状态进行处理,防止不正常运行工作状态发展成为故障而造成事故。

二、220kV 变电站继电保护的运行现状目前,220kV 变电站的发展速度非常快,增加继电保护的压力,促使继电保护在技术、装置方面呈现复杂的运行现状。

1.变压器继电干扰异常。

变电站主要是对输电线路电压进行改变,在该场所通过磁场的作用通过。

伏电压将发电厂发出来的电能输送到较远区域,实现对电能的合理输送,降低电能的消耗。

影响220KV 以上变电站继电保护与自动装置的电磁干扰包括来以下几种:第一,来自一次系统的干扰如雷击等。

第二,电力系统本身发生的短路故障。

第三,工作人员人身触及设备外壳产生的火花放电及话机使用。

第四,断电器本身发生的故障。

上述继电干扰对整体输电线路进行阻断,导致电磁干扰源和受干扰的二次回路会通过各种方式联接起来,形成连接回路,导致变压器输电电压出现严重问题。

辐射干扰主要包括步话机幅射干扰和高压开关场的干扰,其中以高压开关场的电磁干扰为最主要因素。

220KV变电站设计毕业论文5

220KV变电站设计毕业论文5

引言随着经济的腾飞,电力系统的发展和负荷的增长,电力网容量的增大,电压等级和综合自动化水平也不断提高,科学技术突飞猛进,新技术、新电力设备日新月异,该地原有变电所设备陈旧,占地较大,自动化程度不高,为满足该地区经济的持续发展和人民生活的需要,电网正在进行大规模的改造,对变电所的设计提出了更高、更新的要求。

建设新的变电所,采用先进的设备,使其与世界先进变电所接轨,这对提高电力网的供电可靠性,降低线路损耗,改善电能质量,增加电力企业的经济效益有很大的现实意义。

1、绪论由于经济社会和现代科学技术的发展,电力网容量的增大,电压等级的提高,综合自动化水平的需求,使变电所设计问题变得越来越复杂。

除了常规变电所之外,还出现了微机变电所、综合自动化变电所和无人值班变电所等。

目前,随着我国城乡电网建设与改革工作的开展,对变电所设计也提出了更高、更新的要求。

1.1 我国变电所发展现状变电技术的发展与电网的发展和设备的制造水平密切相关。

近年来,为了满足经济快速增长对电力的需求,我国电力工业也在高速发展,电网规模不断扩大。

目前我国建成的500kV变电所有近200座,220kV变电所有几千座;500kV电网已成为主要的输电网络,大经济区之间实现了联网,最终将实现全国联网。

电气设备的制造水平也在不断提高,产品的性能和质量都有了较大的改进。

除空气绝缘的高压电气设备外,GIS、组合化、智能化、数字化的高压配电装置也有了新的发展;计算机监控微机保护已经在电力系统中全面推广采用;代表现代输变电技术最高水平的750kV直流输电,500kV交流可控串联补偿也已经投入商业运行。

我国电网供电的可靠性近年来也有了较大的提高,在发达国家连续发生严重的电网事故的同时,我国电网的运行比较稳定,保证了经济的高速发展。

1.2 变电所未来发展需要解决的问题在未来,随着经济的增长,变电技术还将有新的发展,同时也给电力工程技术人员提出了一些需要解决的问题,例如:高压、大容量变电所深入负荷中心进入市区所带来的如何减少变电所占地问题、环境兼容问题;电网联系越来越紧密,如何解决在事故时快速切除隔离故障点,保证电力系统安全稳定问题;系统短路电流水平不断提高,如何限制短路电流问题;在保证供电可靠性的前提下,如何恰当的选择主接线和电气设备、降低工程造价问题等。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

220kV变电站母线故障继电保护装置的
动作
摘要:变电站的运行稳定是保证电力系统稳定供电的基础,但是由于变电系
统容易受到外界环境的影响,从而致使系统受到外力的破坏,母线因此发生故障,此外继电保护装置的误动以及工作人员的操作失误等问题,最终导致母线故障,
从而变电系统发生问题。

如何有效处理变电系统母线故障,稳定电力系统的运行,文章针对此类问题进行了详细的分析,并针对故障发生后,继电保护装置动作展
开了详细的论述。

关键词:220kV;母线故障;继电保护;动作分析
1220kV母线保护原理
1.1动作原理
基于基尔霍夫电流定律是差动保护的基本原则。

当正常运行或者故障发生在
保护范围外时,在理想情况下流出母线的电流与流入母线的电流相等,差电流为零;而当故障在保护范围内时,故障电流等于差动电流。

考虑到电流互感器饱和
或者电流互感器传动误差等因素的影响,在实际运行中,差动继电器的动作电流
的整定计算需要躲开外部故障时产生的最大不平衡电流。

现在的微机型母线差动
保护回路有两种:一种是由除了母联开关和分段开关外所有支路电流所构成的差
动回路的母线大差;另外一种是由该段母线上所连接的所有支路(包含分段开关、母联开关)电流所构成的差动回路的母线小差。

判断母线区外与区内故障采用母
线大差比率差动,判断故障母线的选择采用母线小差比率差动。

1.2主要功能
目前母差保护能够实现如下8个功能:(1)准确区分母线区内、区外故障,区内故障时候保护可以迅速动作且出口,区外故障能够可靠制动,CT在饱和情况
下能够不影响保护装置正确动作。

(2)具备断路器失灵保护功能且可以与母差
共出口或者单独组屏使用。

(3)对母线运行状态实现实时跟踪,具备自适应性。

但双母线解列运行时保护依然可以正常工作。

(4)具备低电压闭锁功能。

(5)
具备母联充电保护、母联死区(失灵)保护以及母联过流保护功能。

(6)有些
型号具备母联非全相保护(用户可以自行选择是否投入该功能)。

(7)当直流
消失时能够发预告信号。

(8)具备检测交直流口功能,电流互感器能够闭锁保
护且断线恢复后能够自动解除闭锁。

电压回路断线告警且断线恢复后能够自动解
除告警。

2母线保护装置的闭锁与可靠性的问题
2.1复合电压闭锁的作用
为防止电流互感器断线造成母线、失灵保护误动作或出口继电器误碰而引起
的断路器误跳闸,母线保护装置在每一组母线电压回路中各设有—套复合电压继
电器,将复合电压的重动继电器接点对应串接在每个跳闸回路中。

对于双母线接线,当任一组母线电压互感器因故停用或检修时,应有将复合电压闭锁回路通过
连接片切换到运行的那组母线电压感器的复合电压闭锁回路上的功能。

2.2复合电压闭锁在微机母差、失灵出口回路中的应用
1.失灵出口回路设置电压闭锁触点的目的
断路器失灵保护是指断路器在故障跳闸的过程中发生拒动,失灵保护先以相
对较短的时间跳开母联(分段)断路器,然后以较长的时间跳开失灵断路器所在
母线上连接的其他断路器。

由于断路器失灵保护误动作的后果严重,所以对其相
关回路的设计,必须遵循一个原则,即回路中任一环节的误动作均不得引起断路
器失灵回路出口的误动作,在设计回路时不允许存在任何公用触点或公用回路,
同时将启动环节与监控环节相互串联。

2.主变失灵应自动解除失灵出口回路设置电压闭锁触点
主变低压侧母线故障时,反应到高压侧的故障电压下降很小。

高压侧后备保
护作用于高压侧断路器失灵时,将启动220kV母差保护。

由于母差保护出口回路
被复合电压闭锁将拒动,按照《国家电网公司十八项电网重大反事故措施》的继
电保护专业重点实施要求,增加主变解除复压闭锁回路。

主变低压侧母线故障高
压侧复合电压灵敏度不能满足要求时,通过主变保护解除复压闭锁回路开入,使
母差保护出口解除复压闭锁,大大提高了母差保护的正确动作率。

3母线保护装置动作故障分析
3.1设备自身问题
比如当母线本身有质量问题,或者当连接母线的设备本身有质量问题,容易
造成母线、断路器、电压互感器、电流互感器、避雷器等长期运行后,由于材料
老化导致爆炸事故,造成母线保护动作。

比如所选的设备不匹配时,例如所选的
电流互感器磁滞饱和曲线不合格,当短路电流很大时,二次电流不合格,容易使
母差保护误动。

对于GIS母线,比如当导体部分接触不良、母线表面有毛刺和突
出的尖角、绝缘子表面有气泡或裂纹、筒内有导电微粒等,很容易造成电场强度
不均匀,导致在过电压冲击下造成击穿故障,进而引发母线保护动作。

3.2自然环境因素
恶劣自然天气容易造成母线保护动作,比如大风容易引起母线设备变形,造
成母线短路;也容易把漂浮物刮到母线上,造成母线短路。

3.3日常运维不到位
由于运维人员技术不熟练,再加上安全意识也比较淡薄,在日常运维工作中,容易造成不能及时发现设备缺陷,给母线保护动作埋下隐患。

除此之外,就算运
维人员发现缺陷后,也容易因为粗心大意造成消缺工作不彻底,还容易将工具误
落在母差保护回路上,导致母线检修后送电时再次跳闸。

3.4现场违章施工作业
现场施工时也容易造成母线保护动作,由于施工人员水平参差不齐,执行安
规时不彻底,容易导致工具误碰母线,造成母线绝缘损坏,也容易造成连接在母
线上的隔离开关、断路器、避雷器、互感器、支持绝缘子损坏,当母线送电时,
造成母线发生接地或短路故障,引起母线保护动作。

3.5误操作误整定
误操作误整定也是造成母线保护动作的一个原因,如果运行人员误投切压板,或者工作人员不了解现场接线方式,违规使用五防解锁钥匙,擅自操作设备,合
上断路器、隔离开关、接地刀闸等,会造成母线故障。

除此之外,当保护人员误
整定时,也容易造成母线差动保护动作。

3.6越级跳闸
当下级线路发生故障,断路器拒动时,造成越级跳闸,引起母差保护误动。

除此之外,当上下级开关的保护定值配合不合理时,也会越级跳闸,造成母差保
护动作。

4母线保护动作的处理方法
当安装有母线差动保护且保护装置正常运行,当母线保护动作时,现场工作
人员应根据仪表指示、故障录波、事件打印,继电保护动作状况及设备外观,及
时判断出故障发生的原因及地点,特别要认真检查母差保护范围内的设备,有无
爆炸、击穿、起火、冒烟、异物等。

如果经判断是母线本身故障所引起的,对于
非GIS设备,应将故障母线上的所有开关和刀闸拉开,将故障母线上元件倒至备
用的母线上恢复送电,然后联系调度送电。

如果经判断是连接在该母线上的元件
故障所造成的,首先要把故障元件进行隔离,然后才能恢复对该母线送电。

考虑到母线故障时,由于故障电流很大,故障录波装置必然启动,如果经查看,故障录波装置上没有明显的故障电流电压波形,微机打印报告也无明显的故
障电流电压波形,可以认为是母差保护误动。

如果母差保护动作信号能够复归,
此时运行人员可暂时停用母差保护,然后请示调度后,对母线试送电,然后再对
各个馈线逐一送电。

如果母差保护动作信号不能复归,此时运行人员应检查母差
保护装置有无异常、直流母线绝缘是否良好等。

5总结
母线对电力系统非常重要,当母线故障发生后,生产人员应该能根据各种信息量正确的判断出母线故障原因及故障范围,隔离故障点后恢复母线供电,为了确保母线安全,保证电网的安全稳定运行,还应该采取一定的措施减少母线故障发生的概率。

参考文献
[1]陈家斌.变电设备运行异常及故障处理技术[M].北京:中国电力出版社,2019.
[2]曹旺华.浅谈母线故障事故的分析与处理[J].中国电业,2019(2):17-19.。

相关文档
最新文档