复变函数与积分变换公式汇总

合集下载

复变函数积分方法总结

复变函数积分方法总结

为 B 的一条光滑的有向曲线,把曲线 C 任意分成 n 个弧段,设分点为
A=z0 ,z1,…,zk-1,zk,…,zn=B,在每个弧段 zk-1 zk(k=1,2…n)上任
取一点 k 并作和式 Sn=
(zk-zk-1)=
∆zk 记∆zk=
zk- zk-1,弧段 zk-1 zk 的长度 =
{∆Sk}(k=1,2…,n),当
它的内部完全含于 D,z0 为 C 内的任一点,有:
f(z0)=
例题:1)
2)
解:=2π isin z|z=0=0 解: =
=2πi
| = z=-i
解析函数的高阶导数:
解析函数的导数仍是解析函数,它的 n 阶导数为
f(n)(z0)=
dz(n=1,2…)
其中 C 为 f(z)的解析区域 D 内围绕 z0 的任一条正向简单闭曲线,而
Q(z0)
,则 z0 是 f(z)的一级极点,而且:
Res[f(z),z0]=
无穷远处的留数:
定义:扩充 z 平面上设 z= 为 f(z)上的孤立奇点,即 f(z)在 R< <+ 内解析,C 为圆环绕原点 z=0 的任一条正向简单闭曲线,则积分值
称为 f(z)在 z= 处的留数,记作
Res[f(z), ]=
+…]=
.
*
一个在 0< 级极点。
< 解析,同时
,则 z0 是 f(z)的 m
判断定理:(1)f(z)在 z0 的去心邻域 0<
<
,z0 是 f(z)
的 m 级极点的充要条件是可以表示成*的形式。(2)z0 是 f(z)的 m 级
极点的充要条件是
=.

复变函数与积分变换知识点总复习

复变函数与积分变换知识点总复习

解析函数 f (z) 的导数仍为解析函数, 它的 n阶
导数为:
f
(n)
( z0
)
n! 2πi
C
(z
f
(z) z0 )n1
dz
(n 1,2,)
其中C 为在函数 f (z) 的解析区域 D内围绕 z0 的
任何一条正向简单闭曲线, 而且它的内部全含于 D.
8.调和函数与解析函数的关系
调和函数
满足 Laplace
但u iv不是解析函数。
证明:
因为 u x
2x,
2u x 2
2,
u y
2 y,
2u y 2
2,
2u 2u 2 2 0,所以,u是调和函数。 x2 y2
同理 2v 6x2 y 2y3 , 2v 6x2 y 2y3 , x2 (x2 y2 )3 y2 (x2 y2 )3
2v x 2
解:u(x, y) a ln(x2 y2 ),v(x, y) arct an y ,则 x
u 2ax , u 2ay , v y , v x , x x2 y2 y x2 y2 x x2 y2 y x2 y2 在区域x 0内连续,且 u v , v u 在区域x 0上成立时,2a 1, x y x y 即,当a 1 时,函数f (z)在区域x 0内是解析的。
Байду номын сангаас
而 u y2, u 2xy, v 2xy, v x2,在复平面上
x
y
x
y
处处连续,当x y 0时满足C R方程,
故f (z)仅在(0,0)点可导,在复平面上处处不解析。
2)因为f (z) x2 iy,则u(x, y) x2, v(x, y) y,

复变函数与积分变换公式

复变函数与积分变换公式

复变函数复习提纲(一)复数的概念1.复数的概念:z = X ∙ iy , X, y 是实数,x = Rez,y=lmz.r=_i.中的幅角。

3)arg Z与arctan~y之间的关系如下:Xy当X 0, arg Z= arctan 丄;Xyy -0,arg Z= arctan 二! Xyy :: O,arg Z= arctan -二J X4)三角表示:Z = Z(COS8 +isin0 ),其中日=argz;注:中间一定是“ +”号。

5)指数表示:Z = ZeF,其中V - arg z。

(二)复数的运算1.加减法:若Z I=X I iy1, z2=X2 iy2,贝廿z1二z2= x1二x2iy1- y22.乘除法:1)若z1 = x1 iy1, Z2 =X2 iy2,贝U狂h[N×2 一y$2i x2% x1y2 ;乙_ X1+ i y_ (x1 十i和X—i y_ XX y*y y x;。

XZ2 X2+ i% (对讪-X )i2y 2+2X222+ 2X222)若Z I=Iz I e i^,z2 =∣z2 e iθ ,则Z1Z2 = ZIll Z2 e i(t1也;3.乘幕与方根1)若Z= Z(COS J isin * n (CoS n i Sinn )= n e i"。

2)幅角:在Z=O时,矢量与X轴正向的夹角, 记为Arg Z (多值函数);主值arg Z 是位于(-理,二]注:两个复数不能比较大小2.复数的表示2)若 Z = IZ(COSB+isinT)=∣ze i ^,则(三)复变函数1∙复变函数: w = f z ,在几何上可以看作把 Z 平面上的一个点集 D 变到W 平面上的一个点集 G的映射. 2 •复初等函数1)指数函数:e z =e x cosy isiny ,在Z 平面处处可导,处处解析;且 注:e z 是以2二i 为周期的周期函数。

(注意与实函数不同) 3)对数函数:LnZ=In z+i (argz + 2kιι) (k=0,±1,±2八)(多值函数);主值:In Z = Inz+iargz 。

复变函数与积分变换重要知识点归纳

复变函数与积分变换重要知识点归纳

复变函数复习重点(一)复数的概念1.复数的概念:z = x • iy , x, y 是实数,x = Rez,y = lmz.r-_i.注:一般两个复数不比较大小,但其模(为实数)有大小2.复数的表示1)模:z =y/x2+y2;2)幅角:在z = 0时,矢量与x轴正向的夹角,记为Arg z (多值函数);主值arg z是位于(-二,二]中的幅角。

3)arg z与arctan y之间的关系如下:xy当x 0, argz=arctan工;x[ yy - 0,arg z = arctan 二当x : 0, xy y :: 0,arg z = arctan 「愿L x4)三角表示:z = z COST i sinv ,其中二-arg z ;注:中间一定是“ +"号5)指数表示:z = z e旧,其中日=arg z。

(二)复数的运算仁加减法:若z1= x1iy1, z2= x2 iy2,贝寸乙 _ z2 = % _ x2i 比 _ y22.乘除法:1 )若z^x1 iy1 ,z2=x2iy2,则ZZ2 二XX2 —y』2 i X2% X』2 ;乙x iy1 % iy1 X2 —iy2 xg yy •- 丫2为-- = --------- = ----------------------- = -------------- T i --------------Z2 x? iy2 X2 iy2 x? - iy? x;y;x;y f2)若乙=乙e°,z2= z2e°, _则3.乘幂与方根ei "'2 ;土評匀)Z2Z21)若z =|z (cos日+isin 日)=|z e旧,则z"=上"(cosnT +i sin 用)=上"d吩。

2)若z =|z (cos日+isin 日)=|ze吩,贝U阪=z n.'cos日+2" +i si肆+2" )(k =0,1,2[|I n—1)(有n个相异的值)l n n丿(三)复变函数1•复变函数:w = f z,在几何上可以看作把z平面上的一个点集D变到w平面上的一个点集G的映射.2•复初等函数1)指数函数:e z=e x cosy - isin y ,在z平面处处可导,处处解析;且e z= e z。

复变函数与积分变换重点公式归纳

复变函数与积分变换重点公式归纳

复变函数与积分变换复习提纲第一章 复变函数一、复变数和复变函数()()()y x iv y x u z f w ,,+== 二、复变函数的极限与连续极限 A z f z z =→)(lim 0连续 )()(lim 00z f z f z z =→第二章 解析函数一、复变函数),(),()(y x iv y x u z f w +==可导与解析的概念。

二、柯西——黎曼方程掌握利用C-R 方程⎪⎩⎪⎨⎧-==xy yx v u v u 判别复变函数的可导性与解析性。

掌握复变函数的导数:yx y x y y x x v iv iu u v iu y fi iv u x f z f +==-=+-=∂∂=+=∂∂=1)('三、初等函数重点掌握初等函数的计算和复数方程的求解。

1、幂函数与根式函数θθθθθin n n n n n e r n i n r i r z w =+=+==)sin (cos )sin (cos 单值函数nk z i n ner z w π2arg 1+== (k =0、1、2、…、n-1) n 多值函数2、指数函数:)sin (cos y i y e e w xz+==性质:(1)单值.(2)复平面上处处解析,zze e =)'((3)以i π2为周期 3、对数函数ππk i z k z i z Lnz w 2ln )2(arg ln +=++== (k=0、±1、±2……)性质:(1)多值函数,(2)除原点及负实轴处外解析,(3)在单值解析分枝上:kk z z 1)'(ln =。

4、三角函数:2cos iz iz e e z -+= ie e z iziz 2sin --=性质:(1)单值 (2)复平面上处处解析 (3)周期性 (4)无界5、反三角函数(了解)反正弦函数 )1(1sin 2z iz Ln iz Arc w -+==反余弦函数 )1(1cos 2-+==z z Ln iz Arc w 性质与对数函数的性质相同。

复变函数与积分变换公式笔记

复变函数与积分变换公式笔记

复变函数与积分变换第一章 复数与复变函数1. 任何一个复数 z ≠0 有无穷多个辐角,如θ1是辐角,则有Arg z = 1+2kπ (k =0,±1,±2,…)表示 z 的全部辐角,其中满足-π< 0≤π的辐角 0称为辐角 Argz 的主值, 记为 0=arg z . 2. 棣莫弗公式:(cosθ + sinθ) =cosnθ + sin θ1. 柯西–黎曼方程:第二章 解析函数∂= ∂,∂= −∂ ∂∂∂∂2. 如果二元实函数 ( , )在区域 D 内有二阶连续偏导数,并且满足拉普拉斯方程:∂2 ∂2∂ 2 + ∂ 2 = 0则称 ( , )为区域 D 内的调和函数。

3. 共轭调和函数公式:( , )( , ) = ∫ − ( 0, 0) ∂ ∂d + ∂ ∂d + C其中( 0, 0)为 D 内一个定点,( , )为 D 内任一点,C 为任意常数。

该积分与路径无关。

4. 指数函数的定义5. 指数函数的性质 = + = (cos + sin )2 = 16.ln ,称为 Ln z 的主值,于是有ln = ln | | + arg而其他各支可由下式表达:Ln = ln + 2 ( = ±1, ±2, … )7.余弦函数与正弦函数:cos =sin =8.双曲正弦函数和双曲余弦函数: sh =chz =+ −2 − −2− −2 + −2C C 01. 复积分的计算第三章 复变函数的积分∫ ( )d = ∫ [ ( )] ′( )dC2. 计算:C 为单位圆周| | = 1的上半部分从 1 = 1到 2 = −1的弧。

C 的参数方程为 = (0 ≤ ≤ ),d = d .3. 柯西积分公式:1( 0) = 2 ∮( ) − 0d4. 高阶导数公式:( )∮ C − 0 d = 2 ∙ ( 0)( )(0 !) =2 ( )∮ ( − ) +1d ( = 1,2, ⋯ ).( )∮ d = 2 ( )( ) ( = 1,2, ⋯ ). 0 C( − 0) +1 !1. 幂级数收敛半径公式为第四章级数∞∑=0R = lim ||.2. 幂级数基本展开公式:→∞ +111 −= 1 + + 2 + ⋯ + + ⋯ ,| | < 1; ∞11 += ∑(−1) ,| | < 1; =0 ∞= ∑ =0∞!,| | < +∞;2 +1 sin = ∑(−1) ,| | < +∞;(2 + 1)!=0∞cos = ∑ =0(−1) 2(2 )!,| | < +∞;3. 函数展开结果中可能不含 z 的负幂项,原因在于 ( )在 C 内是解析的。

复变函数与积分变换公式汇总

复变函数与积分变换公式汇总

.复变函数复习重点 (一)复数的概念1.复数的概念:z x iy =+,,x y 是实数,()()Re ,Im x z y z ==.21i =-.注:一般两个复数不比较大小,但其模(为实数)有大小.2.复数的表示 1)模:22z x y =+;2)幅角:在0z ≠时,矢量与x 轴正向的夹角,记为()Arg z (多值函数);主值()arg z 是位于(,]ππ-中的幅角。

3)()arg z 与arctanyx 之间的关系如下:当0,x >arg arctany z x =;当0,arg arctan 0,0,arg arctan yy z x x y y z x ππ⎧≥=+⎪⎪<⎨⎪<=-⎪⎩;4)三角表示:()cos sin z z i θθ=+,其中arg z θ=;注:中间一定是“+”号。

5)指数表示:i z z e θ=,其中arg z θ=。

(二) 复数的运算 1.加减法:若111222,z x iy z x iy =+=+,则()()121212z z x x i y y ±=±+±2.乘除法: 1)若111222,z x iy z x iy =+=+,则()()1212122112z z x x y y i x y x y =-++;()()()()112211112121221222222222222222x i y x i y z x i y x x y y y x y x i z x i y x i y x i y x y x y+-++-===+++-++。

2)若121122,i i z z e z z e θθ==, 则()121212i z z z z e θθ+=;()121122i z z e z z θθ-=3.乘幂与方根 若(cos sin )i z z i z e θθθ=+=,则(cos sin )nnn in z z n i n z e θθθ=+=。

复变函数与积分变换公式汇总

复变函数与积分变换公式汇总

复变函数与积分变换公式汇总一、复变函数的基本概念和性质1. 复数集的定义:复数集是由实数和虚数构成的集合,形式为a + bi,其中a和b都是实数,i是虚数单位,满足i² = -12. 复变函数的定义:设有一个定义在平面上的函数f(z),其中z = x + yi是平面上的点,x和y是实数。

如果对任意给定的z都有唯一确定的复数w与之对应,那么称函数f(z)是复数域上的一个函数。

3.复变函数的连续性:如果在z0处存在一个复数A,使得当z趋于z0时,函数f(z)趋于复数A,则称函数f(z)在点z0处连续。

4.复变函数的可导性:如果函数f(z)在z0处连续,并且当z趋于z0时,函数f(z)的导数存在有一个有限的极限L,则称函数f(z)在z0处可导,并记为f'(z0)=L。

二、复变函数的常用公式1. 欧拉公式:e^(iθ) = cosθ + isinθ2. 增补公式:sinh(x + iy) = sinh(x)cos(y) + isin(y)cosh(x)3.多项式的根公式:设P(z)=aₙzⁿ+aₙ₋₁zⁿ⁻¹+…+a₀是一个非常数多项式,aₙ≠0,则P(z)=0在复数域存在n个根。

4.共轭根公式:如果z是复数P(z)=0的根,则z^*也是复数P(z)=0的根。

5. 辐角公式:对于复数z = x + yi,其中x和y是实数,辐角θ = arctan(y/x),其中-π < θ ≤ π。

6. 复数的模公式:对于复数z = x + yi,其中x和y是实数,模,z,= √(x² + y²)。

7. 三角和指数函数的关系:sinθ = (e^(iθ) - e^(-iθ))/(2i),cosθ = (e^(iθ) + e^(-iθ))/28. 三角函数和指数函数的关系:sin(ix) = i sinh(x),cos(ix) = cosh(x)。

三、复变函数的常用积分变换公式1.度量积分变换:对于复变函数f(z),定义如下的度量积分变换公式:∫(f(z)dz) = ∫(f(z₁)dz₁ + f(z₂)dz₂ + … + f(zₙ)dzₙ),(z₁,z₂,…,zₙ)为路径连续的点。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

复变函数复习重点 (一)复数的概念1.复数的概念:z x iy =+,,x y 是实数,()()Re ,Im x z y z ==.21i =-.注:一般两个复数不比较大小,但其模(为实数)有大小.2.复数的表示 1)模:22z x y =+;2)幅角:在0z ≠时,矢量与x 轴正向的夹角,记为()Arg z (多值函数);主值()arg z 是位于(,]ππ-中的幅角。

3)()arg z 与arctanyx 之间的关系如下:当0,x >arg arctany z x =;当0,arg arctan 0,0,arg arctan yy z x x y y z x ππ⎧≥=+⎪⎪<⎨⎪<=-⎪⎩;4)三角表示:()cos sin z z i θθ=+,其中arg z θ=;注:中间一定是“+”号。

5)指数表示:i z z e θ=,其中arg z θ=。

(二) 复数的运算 1.加减法:若111222,z x iy z x iy =+=+,则()()121212z z x x i y y ±=±+±2.乘除法: 1)若111222,z x iy z x iy =+=+,则()()1212122112z z x x y y i x y x y =-++;()()()()112211112121221222222222222222x iy x iy z x iy x x y y y x y x i z x iy x iy x iy x y x y +-++-===+++-++。

2)若121122,i i z z e z z e θθ==, 则()121212i z z z z e θθ+=;()121122i z z e z z θθ-=3.乘幂与方根 若(cos sin )i z z i z e θθθ=+=,则(cos sin )nnn in z z n i n z e θθθ=+=。

若(cos sin )i z z i z e θθθ=+=,则122cos sin (0,1,21)nnk k z z i k n n n θπθπ++⎛⎫=+=- ⎪⎝⎭L (有n 个相异的值)(三)复变函数 1.复变函数:()w f z =,在几何上可以看作把z 平面上的一个点集D 变到w 平面上的一个点集G的映射.2.复初等函数 1)指数函数:()cos sin z x e e y i y =+,在z 平面处处可导,处处解析;且()zze e '=。

注:ze 是以2i π为周期的周期函数。

(注意与实函数不同) 对数函数: ln (arg 2)Lnz z i z k π=++(0,1,2)k =±±L (多值函数);主值:ln ln arg z z i z=+。

(单值函数)Lnz 的每一个主值分支ln z 在除去原点及负实轴的z 平面内处处解析,且()1lnz z '=;注:负复数也有对数存在。

(与实函数不同)3)乘幂与幂函数:(0)b bLnaa e a =≠;(0)b bLnzz e z =≠注:在除去原点及负实轴的z 平面内处处解析,且()1bb z bz -'=。

4)三角函数:sin cos sin ,cos ,t ,22cos sin iz iz iz iz e e e e z z z z gz ctgz i z z ---+====sin ,cos z z 在z 平面内解析,且()()sin cos ,cos sin z z z z ''==-注:有界性sin 1,cos 1z z ≤≤不再成立;(与实函数不同)双曲函数,22z z z ze e e e shz chz ---+==; shz 奇函数,chz 是偶函数。

,shz chz 在z 平面内解析,且()(),shz chz chz shz ''==。

(四)解析函数的概念 1.复变函数的导数1)点可导:()0f z '=()()000limz f z z f z z ∆→+∆-∆;2)区域可导:()f z 在区域内点点可导。

2.解析函数的概念 1)点解析:()f z 在z 及其z 的邻域内可导,称()f z 在z 点解析;2)区域解析:()f z 在区域内每一点解析,称()f z 在区域内解析;3)若()f z 在0z 点不解析,称0z为()f z 的奇点;3.解析函数的运算法则:解析函数的和、差、积、商(除分母为零的点)仍为解析函数;解析函数的复合函数仍为解析函数;(五)函数可导与解析的充要条件 1.函数可导的充要条件:()()(),,f z u x y iv x y =+在z x iy =+可导⇔(),u x y 和(),v x y 在(),x y 可微,且在(),x y 处满足C D -条件:,u v u vx y y x ∂∂∂∂==-∂∂∂∂此时, 有()u vf z ix x ∂∂'=+∂∂。

2.函数解析的充要条件:()()(),,f z u x y iv x y =+在区域内解析⇔(),u x y 和(),v x y 在(),x y 在D 内可微,且满足C D -条件:,u v u vx y y x ∂∂∂∂==-∂∂∂∂;此时()u vf z ix x ∂∂'=+∂∂。

注意: 若()(),,,u x y v x y 在区域D 具有一阶连续偏导数,则()(),,,u x y v x y 在区域D 内是可微的。

因此在使用充要条件证明时,只要能说明,u v 具有一阶连续偏导且满足C R -条件时,函数()f z u iv =+一定是可导或解析的。

3.函数可导与解析的判别方法1)利用定义 (题目要求用定义,如第二章习题1) 2)利用充要条件 (函数以()()(),,f z u x y iv x y =+形式给出,如第二章习题2)3)利用可导或解析函数的四则运算定理。

(函数()f z 是以z 的形式给出,如第二章习题3)(六)复变函数积分的概念与性质复变函数积分的概念:()()1lim nkkcn k f z dz f zξ→∞==∆∑⎰,c 是光滑曲线。

注:复变函数的积分实际是复平面上的线积分。

复变函数积分的性质()()1c c f z dz f z dz-=-⎰⎰(1c -与c 的方向相反);()()()()[],,cccf zg z dz f z dz g z dz αβαβαβ+=+⎰⎰⎰是常数;3) 若曲线c 由1c 与2c连接而成,则()()()12cc c f z dz f z dz f z dz=+⎰⎰⎰。

3.复变函数积分的一般计算法 1)化为线积分:()cccf z dz udx vdy i vdx udy =-++⎰⎰⎰;(常用于理论证明)2)参数方法:设曲线c :()()z z t t αβ=≤≤,其中α对应曲线c 的起点,β对应曲线c 的终点,则 ()()[]()cf z dz f z t z t dtβα'=⎰⎰。

(七)关于复变函数积分的重要定理与结论 1.柯西—古萨基本定理:设()f z 在单连域B 内解析,c 为B 内任一闭曲线,则()0cf z dz =⎰Ñ2.复合闭路定理: 设()f z 在多连域D 内解析,c 为D 内任意一条简单闭曲线,12,,nc c c L 是c内的简单闭曲线,它们互不包含互不相交,并且以12,,nc c c L 为边界的区域全含于D 内,则①()cf z dz ⎰Ñ()1,knk c f z dz ==∑⎰Ñ其中c 与kc 均取正向;②()0f z dz Γ=⎰Ñ,其中Γ由c 及1(1,2,)c k n -=L 所组成的复合闭路。

3.闭路变形原理 : 一个在区域D 内的解析函数()f z 沿闭曲线c 的积分,不因c 在D 内作连续变形而改变它的值,只要在变形过程中c 不经过使()f z 不解析的奇点。

4.解析函数沿非闭曲线的积分: 设()f z 在单连域B 内解析,()G z 为()f z 在B 内的一个原函数,则()()()212112(,)z z f z dz G z G z z z B =-∈⎰说明:解析函数()f z 沿非闭曲线的积分与积分路径无关,计算时只要求出原函数即可。

5。

柯西积分公式:设()f z 在区域D 内解析,c 为D 内任一正向简单闭曲线,c 的内部完全属于D ,0z 为c内任意一点,则()()002c f z dz if z z z π=-⎰Ñ6.高阶导数公式:解析函数()f z 的导数仍为解析函数,它的n 阶导数为()()()0102(1,2)()!n n c f z i dz f z n z z n π+==-⎰L Ñ其中c 为()f z 的解析区域D 内围绕z 的任何一条正向简单闭曲线,而且它的内部完全属于D 。

7.重要结论:12,010,0()n ci n dz n z a π+=⎧=⎨≠-⎩⎰Ñ。

(c 是包含a 的任意正向简单闭曲线)8.复变函数积分的计算方法 1)若()f z 在区域D 内处处不解析,用一般积分法()()()[]cf z dz f z t z t dtβα'=⎰⎰2)设()f z 在区域D 内解析,c 是D 内一条正向简单闭曲线,则由柯西—古萨定理,()0c f z dz =⎰Ñc 是D 内的一条非闭曲线,12,z z 对应曲线c 的起点和终点,则有()()()()2121z cz f z dz f z dz F z F z ==-⎰⎰3)设()f z 在区域D 内不解析曲线c 内仅有一个奇点:()()()()()0001022()!c n n c f z dz i f z z z f z i dz f z z z n ππ+⎧=⎪-⎪⎨⎪=⎪-⎩⎰⎰ÑÑ(()f z 在c 内解析)曲线c 内有多于一个奇点:()cf z dz ⎰Ñ()1knk c f z dz ==∑⎰Ñ(ic 内只有一个奇点kz )或:()12Re [(),]nkk cf z dz i s f z z π==∑⎰Ñ(留数基本定理)若被积函数不能表示成()1()n o f z z z +-,则须改用第五章留数定理来计算。

(八)解析函数与调和函数的关系1.调和函数的概念:若二元实函数(,)x y ϕ在D 内有二阶连续偏导数且满足22220x y ϕϕ∂∂+=∂∂,(,)x y ϕ为D 内的调和函数。

2.解析函数与调和函数的关系 解析函数()f z u iv=+的实部u 与虚部v 都是调和函数,并称虚部v 为实部u 的共轭调和函数。

相关文档
最新文档