复变函数与积分变换试题B==2015

合集下载

复变函数与积分变换试题和答案

复变函数与积分变换试题和答案

复变函数与积分变换试题(一)一、填空(3分×10)1.得模ﻩﻩ、幅角ﻩ。

2.-8i得三个单根分别为:、、。

3.Lnz在得区域内连续。

4.得解极域为:ﻩﻩﻩﻩﻩ。

5.得导数ﻩﻩﻩﻩﻩ。

6. ﻩﻩ。

7.指数函数得映照特点就是:ﻩﻩﻩﻩﻩﻩﻩﻩﻩ。

8.幂函数得映照特点就是: ﻩﻩﻩﻩﻩﻩﻩ。

9.若=F [f(t)]、则= F ﻩﻩﻩﻩ。

10.若f(t)满足拉氏积分存在条件、则L [f(t)]= ﻩﻩﻩ。

二、(10分)已知、求函数使函数为解析函数、且f(0)=0。

三、(10分)应用留数得相关定理计算四、计算积分(5分×2)1.2.C:绕点i一周正向任意简单闭曲线。

五、(10分)求函数在以下各圆环内得罗朗展式。

1.2.六、证明以下命题:(5分×2)(1)与构成一对傅氏变换对。

(2)七、(10分)应用拉氏变换求方程组满足x (0)=y (0)=z (0)=0得解y (t )。

八、(10分)就书中内容、函数在某区域内解析得具体判别方法有哪几种。

复变函数与积分变换试题答案(一)一、1.ﻩﻩ、ﻩ ﻩ2、ﻩ-i ﻩﻩ2iﻩ-i ﻩ3、ﻩZ 不取原点与负实轴 4、 空集5、ﻩ2z ﻩ6.0 7、将常形域映为角形域ﻩ8、 角形域映为角形域 9、ﻩ ﻩ10、 二、解:∵ﻩ ∴ ﻩ(5分)∵f (0)=0ﻩﻩﻩﻩc =0(3分)∴ﻩﻩ(2分)三、解:原式=(2分)ﻩ(2分)⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡⋅--=⎥⎦⎤⎢⎣⎡∞--0,1)31)(11(11Re 2,)3)(1(1Re 266z z z z s z z z s 分)(=0∴原式=(2分) =四、1.解:原式ﻩ(3分) z 1=0 ﻩz2=1ﻩ=0ﻩﻩ(2分)2.解:原式=五、1.解:nn i i z i i z ii z ii z i i z i z z f ∑∞=⎪⎭⎫⎝⎛--⋅-=-+⋅⋅-=+-⋅-=0111111)(111)(11)(分)(分)(分)( ﻩﻩ(2分) ﻩ2.解: (1分)ﻩ(2分)六、1.解:∵ﻩ(3分)ﻩ∴结论成立 (2)解:∵ﻩ(2分)ﻩ ∴与1构成傅氏对∴(2分)七、解:∵ﻩﻩ(3分)S (2)-(1):∴ (3分)∴八、解:①定义;②C-R 充要条件Th ; ③v 为u 得共扼函数ﻩ10分复变函数与积分变换试题(二)一、填空(3分×10)1.函数f (z )在区域D 内可导就是f(z)在D 内解析得(ﻩ ﻩ)条件。

《复变函数与积分变换》试题及答案.

《复变函数与积分变换》试题及答案.

年级专业: 教学班号:学号: 姓名:装订线课程名称:复变函数与积分变换考试时间:110_分钟课程代码:7100031试卷总分:100_分一、计算下列各题(本大题共3小题,每小题5分,总计15分)1; 2、; 3、'|和它的主值二、(8分)设',函数'■在•平面的哪些点可导?若可导,求出在可导点的导数值。

三、(10分)证明为调和函数,并求出它的共轭调和函 数。

四、(25分,每小题各5分)计算下列积分:的正向;-de + sin 05.五、(10分)将函数 gm 在下列圆环域内分别展开为洛朗级数1.2.;・伫一15界 ^: M=i? ・的正向;3. ,■:的正向; 4.们;<:6山「:的正向;(1)(2)六、(10)1、求将上半平面lm(z>0映射到单位圆域,且满足arg r(n =匸■,的分式线性映射,。

IU-1"=—-2、平面的区域恥环犬-.被映射映射到’平面的什么区域?「2 (ff(t)--七、(5分)求矩形脉冲函数〔° 曲我的傅氏变换。

八、(6分)求’1的拉普拉斯变换。

九、(5分)求的拉氏逆变换。

十、(6分)利用拉氏变换(其它方法不得分)求解微分方程:一、参考答案及评分标准:(本大题共3小题,每小题5分,总计15分)1、* _ JT It &(1 - = ]6[oos( ——) + /sin( ——)] - m + +4 4=16(QDS(-2JT)-F /SII M -2«))=16 (2)3 3、21四、参考答案及评分标准:(每小题 5分,共25分)由柯西-黎曼方程得: '即 '.所以’在 ’可导.三、参考答案及评分标准:(10分)v^= 2-3?十3穴二…欣空二= “&xJ A 2 dy得,卩二J(-6砂必=-3A y 十 g(y}-r故 -?」;、’;J/'二、参考答案及评分标准:( 8 分)解: ■异上F ,因为dv ov=乩——=0,——=2y Exd 2u 沪 口W C?j/,所以为调和函数.证明:P V (? u由"M 得3A1 d g\y}= 2- ?A22 四、参考答案及评分标准:(每小题5分,共25分)3115~/ -1-4 Sill 0—+ - 44 2 iz2? + 5J >-2JZ一心2/1(2 d3+24 .因为-上在c 内无奇点,所以:cir = 0r/ -J6(Z4 2fl(2z+ “vsinZ? --- -------2J >42.1-------------------------------- S -------------所以洛朗级数为H m _送JJ-0所以洛朗级数为原式- 六、参考答案及评分标准: 1解:将上半平面 内点• (每小题 5分,共10分)lm (z>0映射到单位圆域 的变换为 为上半平面,所以-,故 ,所以解:边界1: ,..= i =i "丄 “0x 〉n ,忑〔故 羔K ;>= f ^dfV . -uj解:r (s}= Hr + 3sin(20■+ /cos Z] =r 2] + 3i(sin 2/J + Zj/cos 小八 (2)2 3x 2=—十 -------------------------$ S~ + 4 2 b二—+ — ------解:设二也上一在方程的两边取 拉氏变换并考虑初始条件得:,故七、 Z特殊点:作图参考答案及评分标准:(5分)十、参考答案及评分标准:(6分) 3+2八、 参考答案及评分标准:(6分)S 1 + 1I - y (/ 4 1)? 九、 参考答案及评分标准: (5分)解:取逆变换得:。

北科大复变函数与积分变换2015-2016-1

北科大复变函数与积分变换2015-2016-1

其中 C : z = 2 为圆周, 取正向.

不题


复变函数与积分变换 B 试卷 A 第 3 页 共 6 页
3. 将函数 f (z) = 3z −10 在圆环域 3 < z < 4 内展开成洛朗级数. (z − 3)(z − 4)
北科大讲师团
4. 求函数 f (t) = tu(t) + δ (3 − t) 的傅里叶变换.
A.
j 2
[
F

+
ω0
)

F


ω0
)]
;
C.
1 2
[
F

+
ω0
)

F


ω0
)]
;
B.
j 2
[
F

+
ω0
)
+
F


ω0
)]
;
D.
1 2
[

+
F


ω0
)]
.
复变函数与积分变换 B 试卷 A 第 2 页 共 6 页
得 分 三、计算题(本题共 4 小题, 每题 8 分,满分 32 分,请写出必要的计 算过程)
证明:F [ f (t0 − at)] =
1
F
−ω (

)e
ω j a t0
,
aa
其中 a ≠ 0 .
.
北科大讲师团 2. 若函数 f (z)在圆盘 z − z0 < R 内解析, 证明: ∀0 < r < R, 均有

复变函数与积分变换习题册(含答案)

复变函数与积分变换习题册(含答案)

第1章 复数与复变函数 (作业1)一、填空题 1、ieπ2的值为 。

2、k 为任意整数,则34+k 的值为 。

3、复数i i (1)-的指数形式为 。

4、设b a ,为实数,当=a , b= 时,).35)(1()3()1(i i b i a ++=-++ 二、判断题(正确的划√,错误的划 ) 1、2121z z z z +=+ ( )2、()()())z Re(iz Im ;z Im iz Re =-= ( )3、()()i i i 125432+=++ ( ) 三、选择题1.当ii z -+=11时,5075100z z z ++的值等于( ) (A )i (B )i - (C )1 (D )1-2.复数)(tan πθπθ<<-=2i z 的三角表示式是( )(A ))]2sin()2[cos(secθπθπθ+++i (B ))]23sin()23[cos(sec θπθπθ+++i (C ))]23sin()23[cos(secθπθπθ+++-i (D ))]2sin()2[cos(sec θπθπθ+++-i 3.使得22z z =成立的复数z 是( )(A )不存在的 (B )唯一的 (C )纯虚数 (D )实数 4.若θi re i i=+--2)1(3,则( ) (A )πθ-==3arctan ,5r (B )πθ-==3arctan ,210r (C )3arctan ,210-==πθr (D )3arctan ,5-==πθr 5. 设复数z 位于第二象限,则z arg 等于( )。

(A) x y arctan 2+π (B) x y arctan +π (C) x y arctan 2-π (D) xy arctan +-π 四、计算与证明题 1、设ii i i z -+-=11,求.),Im(),Re(z z z z2、当x y ,等于什么实数时,等式()i iy i x +=+-++13531成立?3、求复数ii-+23的辐角。

复变函数与积分变换试题与答案

复变函数与积分变换试题与答案

复变函数与积分变换试题与答案一、单项选择题(本大题共10小题,每小题2分,共20分)在每小题列出的四个备选项中只有一个是符合题目要求的,请将其代码填写在题后的括号内。

错选、多选或未选均无分。

1.设复数z 1cos i sin 33ππ=++,则arg z=( ) A.-3π B.6πC.3πD.23π2.w=z 2将Z 平面上的实轴映射为W 平面的( )A.非负实轴B.实轴C.上半虚轴D.虚轴3.下列说法正确的是( )A.ln z 的定义域为 z>0B.|sin z|≤1C.e z ≠0D.z -3的定义域为全平面4.设C 为正向圆周|z|=1,n C sin zdz z⎰=2π i ,则整数n 为( )A.-1B.0C.1D.2 5.设C 为正向圆周|z|=2,则2Czdz z ⎰=( )A.-2πiB.0C.2πiD.4πi6.设C 为正向圆周|ξ|=2,f(z)=2C sin 6d (z)πςςς-⎰,则f′(1)=( )A.-3i 36π B.3i 36π7.设nn n 0a z∞=∑n n n 0b z ∞=∑和n n n n 0(a b )z ∞=+∑的收敛半径分别为R 1,R 2和R ,则( )A.R=R 1B.R=min{R 1,R 2}C.R=R 2D.R≥min{R 1,R 2}8.罗朗级数nn n 1n 0n 01z z 2∞∞-==+∑∑的收敛域为( ) A.|z|<1 B.|z|<2C.1<|z|<2D.|z|>29.已知sinz=n 2n 1n 0(1)z (2n 1)!+∞=-+∑,则Res 4sin z,0z ⎡⎤=⎢⎥⎣⎦( )A.1B.-13!C.13! D.15!10.整数k≠0,则Res[cot kz, π]=( ) A.-1k B.0 C.1kD.k 二、填空题(本大题共6小题,每小题2分,共12分)请在每小题的空格中填上正确答案。

(完整版)复变函数与积分变换习题答案

(完整版)复变函数与积分变换习题答案

一、将下列复数用代数式、三角式、指数式表示出来。

(1) i 解:2cossin22ii e i πππ==+(2) -1解:1cos sin i e i πππ-==+ (3)1+解:()/3122cos /3sin /3i e i πππ+==+ (4) 1cos sin i αα-+ 解:2221cos sin 2sin 2sincos2sin(sincos )2222222sincos()sin()2sin 222222i i i i i e πααααααααααπαπαα⎛⎫- ⎪⎝⎭-+=+=+⎛⎫=-+-= ⎪⎝⎭(5) 3z解:()3333cos3sin3i z r e r i θθθ==+ (6) 1i e +解:()1cos1sin1i i e ee e i +==+(7)11ii-+ 解:3/411cos3/4sin 3/411i i i i e i i i πππ--==-==+++二、计算下列数值(1) 解:1ar 21ar 21ar 2 b i ctg k a bi ctg abi ctgaπ⎛⎫+ ⎪⎝⎭==⎧⎪=⎨⎪⎩(2)解:6226363463222i k i i i i e i ee e iπππππππ⎛⎫⎛⎫++ ⎪ ⎪⎝⎭⎝⎭⎛⎫+ ⎪⎝⎭⎧=+⎪⎪⎪⎨====-+⎪⎪⎪=-⎩(3) i i 解:()2222ii k k i i e eππππ⎛⎫⎛⎫+-+ ⎪ ⎪⎝⎭⎝⎭==(4)解:()1/2222ii k k eeππππ⎛⎫⎛⎫++ ⎪ ⎪⎝⎭⎝⎭==(5) cos5α解:由于:()()552cos5i i e e ααα-+=,而:()()()()()()()()5555555555cos sin cos sin cos sin cos sin nni nn nni n n e i C i e i C i αααααααααα-=--==+==-=-∑∑所以:()()()()()()()()()()()555505555043253543251cos5cos sin cos sin 21 cos sin 112 5cos sin cos sin cos 5cos sin 10cos sin cos n n n nn n n n nn n C i i C i i C i ααααααααααααααααα--=--=⎡⎤=+-⎣⎦⎡⎤=+-⎣⎦=++=-+∑∑(6) sin5α解:由于:()()552sin 5i i ee ααα--=,所以:()()()()()()()()()()()()55550555505234245552341sin 5cos sin cos sin 21 cos sin 1121 sin cos sin sin cos sin 10cos sin 5sin cos n n n nn n n n nn n C i i i C i i i C i C i iααααααααααααααααα--=--=⎡⎤=--⎣⎦⎡⎤=--⎣⎦=++=-+∑∑ (7) cos cos2cos n ααα+++L L 解:()()221cos cos 2cos ()()2(1)1(1)11(1)(1)1 21122(1cos )1 2i i in i i in i in i i in i i in i in i i i n e e e e e e e e e e e e e e e e e e e e ααααααααααααααααααααααα----------⎡⎤+++=+++++++⎣⎦⎡⎤--+--⎡⎤--⎢⎥=+=⎢⎥---⎢⎥⎣⎦⎣⎦+=L L L L L L (1)(1)22(1cos )12cos 22cos(1)2cos cos 1cos(1)cos 22(1cos )2(1cos )1sin()sin22 2sin2i i n i n in in e e e e n n n n n ααααααααααααααααα+-+-⎡⎤---++⎢⎥-⎣⎦⎡⎤--++--++==⎢⎥--⎣⎦+-=(8) sin sin 2sin n ααα+++L L 解:()()221sin sin 2sin ()()2(1)1(1)11(1)(1)1 21122(1cos )1 2i i in i i in i in i i in i i in i in i i i n e e e e e e i e e e e e e e e e e i e e i e i αααααααααααααααααααααα---------⎡⎤+++=+++-+++⎣⎦⎡⎤-----⎡⎤--⎢⎥=-=⎢⎥---⎢⎥⎣⎦⎣⎦=L L L L L L (1)(1)112(1cos )12sin 2sin(1)2sin sin sin(1)sin 22(1cos )2(1cos )1cos()cos22 2sin2i n in i i n in e e e e e i i n i n n n i n αααααααααααααααααα+--+-⎡⎤--+-++-⎢⎥-⎣⎦⎡⎤-++-++==⎢⎥--⎣⎦-++=1.2 复变函数1、试证明函数f (z )=Arg(z ) (-π<Arg(z) ≤π),在负实轴上(包括原点)不连续。

(整理)《复变函数与积分变换电信B》试卷答案.

(整理)《复变函数与积分变换电信B》试卷答案.

中国计量学院201 1 ~ 201 2 学年第二学期《 复变函数与积分变换 》课程试卷(B )参考答案及评分标准开课二级学院: 理学院_ ,学生专业: ,教师: 武丹一、 选择题1、D2、D3、D4、C5、C二、 填空题1、四级极点2、|z-4|<123、-14、-5025、4 三、判断题1、错2、错3、错4、错5、对四、计算题1、0,2、03、04、 2sin 2i π5、2cos2i π五、解答题1、解:6,u xy x∂=-∂ 2233u y x y ∂=-∂ ……………………………(1分) y v ∂∂=6,u xy x ∂=-∂,(1)-=∂∂x v 2233u y x y∂=-∂, (2)………………(2分) 将(1)式对y 积分得(,)6v x y xydy =-⎰=23()xy x ϕ-+,(3) …………………………………(4分)(3)对x 求导,带入(2),2()3x x ϕ'=,得 3()x x c ϕ=+ 于是,23(,)3v x y xy x c =-++,…………………………………………(8分) 由iv u z f +=)(,且(0)f i =,得 1=c因此所求的解析函数为:)(z f =32323(31)y x y i x xy -+-+………………(10分)2、z=3为奇点, …………………………………………(1分)2101(1)1(3)cos 0|z-3|3(2)!(3)n n n z z n z ∞-=--=⋅<<+∞--∑ (6分) 所以是函数的本性奇点。

………… (8分)《 复变函数与积分变换 》课程试卷B 参考答案及评分标准 第 1 页 共 3 页111Re (3)cos ;332s z C z -⎡⎤-==-⎢⎥-⎣⎦ ………… (10分) 六、 计算题1、解:当1||0<<z 时,由∑∞==-011n n z z 得 ……………(4分) 21(1)z +=20(1)n n n z ∞=-∑, )1||0(<<z ………………(8分) 221(1)z z +=2201(1)n n n z z ∞=⋅-∑=220(1)n n n z ∞-=-∑, )1||0(<<z ………………(10分) 2、解: 21111()1211z z z =---+ ,。

复变函数及积分变换试题及答案

复变函数及积分变换试题及答案

第一套第一套一、选择题(每小题3分,共21分)1. 若( ),则复函数()(,)(,)f z u x y iv x y =+是区域D 内的连续函数。

A. (,)u x y 、(,)v x y 在区域D 内连续; B. (,)u x y 在区域D 内连续; C. (,)u x y 、(,)v x y 至少有一个在区域D 内连续; D. 以上都不对。

2. 解析函数()f z 的实部为sin x u e y =,根据柯西-黎曼方程求出其虚部为( )。

A.cos x e y C -+; B cos x e y C -+; C sin x e y C -+; D cos x e y C +3.2|2|1(2)z dzz -==-⎰( )。

A. i π2; B. 0; C. i π4; D. 以上都不对. 4. 函数()f z 以0z 为中心的洛朗展开系数公式为( )。

A. 101()2()n n f d c iz ξξπξ+=-⎰ B. 0()!n n f z c n =C. 201()2n k f d c iz ξξπξ=-⎰D. 210!()2()n n k n f d c iz ξξπξ+=-⎰5. z=0是函数zz sin 2的( )。

A.本性奇点B.极点C. 连续点D.可去奇点6. 将点∞,0,1分别映射成点0,1,∞的分式线性映射是( )。

A.1z zw -=B. z 1z w -=C. zz 1w -= D. z11w -=7. sin kt =()L ( ),(()Re 0s >)。

A.22k s k +; B.22k s s +; C. k s -1; D. ks 1.二、填空题(每小题3分,共18分)1.23(1)i += [1] ;----------------------------------------装--------------------------------------订-------------------------------------线----------------------------------------------------2. 幂级数∑∞=1n nn z !收敛于 [2] ;3. 设0Z 为复函数)(z f 的可去奇点,则)(z f 在该点处的留数为 [3] . ;4. 通过分式线性映射z kz λωλ-=-(k 为待定复常数)可将 [4] 映射成单位圆内部1ω<;5. 一个一般形式的分式线性映射可由z b ω=+、az ω=、1zω=三种特殊形式的映射复合而成,分别将ω平面看成z 平面的平移映射、旋转与伸缩映射、 [5] ; 6. 求积分()i x e x dx ωδ∞--∞=⎰[6] ;三、判断题 (每小题2分,共10分)1. 平面点集D 称为一个区域,如果D 中任何两点都可以用完全属于D 的一条折线连接起来,这样的集合称为连通集。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

海南大学2015-2016学年度第1学期试卷
科目:《复变函数与积分变换》试题(B 卷)
学院: 专业班级: 姓名: 学 号:
成绩登记表(由阅卷教师用红色笔填写)
阅卷教师: 年 月 日
考试说明:本课程为闭卷考试。

一、 判断题(每题1分,共5分)
(说明:对的,打上“√”号;错的,打上“×”号。


( )1、扩充复平面与复球面上的点一一对应。

( )2、如果()f z 在0z 处解析,则()f z 在0z 处必可导。

( )3、如果 ,则z =0。

( )4、z =0是 的一级极点。

( )5、如果 在区域D
内处处为零,则()f z 在D 内为一常数。

二、 填空题(每题3分,共15分)
1、 。

2、设f(z)=z cos z ,则 。

)('z f =)0()2016(f 0=z e =⎰dz z z 2
0sin )1
sin()(z z f =
3、 的收敛半径= 。

4、如果0z 是函数f(z)在有限复平面内的可去奇点,则Res [f(z), 0z ]= 。

5、 。

三、 计算题(共20分) (注意:要有运算步骤。


1、将下列复数化为三角表示式和指数表示式:
2、求
3、求).31(i Ln -
4、求函数⎪⎩⎪⎨⎧≥<≤<≤=.3,
0,31,
2,10,1)(t t t t f 的Laplace 变换. 四、解答题(共60分)
1、计算积分 dz z z z z C ⎰++-)
4(2)1(sin )(,其中C 为正向圆周:|z|=3. (10分) 2、 利用留数定理计算
其中C 为正向圆周:|z|=2. (10分)
3、解微分方程 其中,f (t )为已知函数。

(10分)
4、设函数 (1)把函数 f(z) 在
内展开成洛朗级数。

(10分) (2)求积分 (5分) 5、如果函数f(z)=u+iv 在区域D 内解析,且arg f (z )在D 内是一个常数,
=⎰+∞∞
dt )(-t δn
n n z i ∑∞
=+0)43(.522
i i i -+.
)33(31i ++∞<<||1z .
)(3||dz z f z ⎰=,1
)/1sin()(-=z z z z f ).()()(4
4
t f t y t y dt d =+⎰+-C dz z z z ,)
1()1(34
(1)写出f 满足的柯西-黎曼方程。

(5分)
(2)证明f(z) 是常数。

(10分)
判断题
(说明:对的,打上“√”号;错的,打上“×”号。


( )1、扩充复平面与复球面上的点一一对应。

( )2、如果()f z 在0z 处解析,则()f z 在0z 处必可导。

( )3、如果 ,则z =0。

( )4、z =0是 的一级极点。

( )5、如果
在区域D 内处处为零,则()f z 在D 内为一常数。

填空题
1、 。

2、设f(z)=z cos z ,则 。

3、 的收敛半径= 。

4、如果0z 是函数f(z)在有限复平面内的可去奇点,则Res [f(z), 0z ]= 。

5、 。

计算题
1、将下列复数化为三角表示式和指数表示式:
2、若i w 333+=,求.w
3、若i e w 31-=,求.w
4、求函数252)(z
z z f +=无穷远点的留数. 5、计算积分 232||5sin (1)(3)
z z dz z z =+-⎰. )('z f =)0()2016(f =⎰+∞∞
dt )(-t δn n n z i ∑∞=+0)43(0=z e =⎰dz z z 2
0sin .5
22i i i -+)1sin()(z
z f =
6、求函数⎪⎩⎪⎨⎧≥<≤<≤=.
3,0,
31,2,
10,
1)(t t t t f 的Laplace 变换.
解答题
1、 利用留数定理计算 其中C 为正向圆周:|z|=2.
(10分) 2、解微分方程⎰∞-=-'t
t dt t x t x )(2)()(δ. (10分)
3、设函数 (1)把函数 f(z) 在 内展开成洛朗级数。

(10分)
(2)求积分 (5分)
4、如果函数f(z)=u+iv 在区域D 内解析,且|f (z )|是一个常数,
(1)写出f 满足的柯西-黎曼方程。

(5分)
(2)证明f(z) 是常数。

(10分)
+∞<<||1z .)(3||dz z f z ⎰=,
1)
/1sin()(-=z z z z f ⎰+-C dz z z z
,)1()1(34。

相关文档
最新文档