立体几何中的向量方法(系统)

合集下载

立体几何中的向量方法-距离的向量计算方法

立体几何中的向量方法-距离的向量计算方法

向量的叉乘
总结词
叉乘是向量的另一种重要运算,表示垂直于原向量的新向量。
详细描述
叉乘是将两个向量a和b相乘,得到一个新的向量c。叉乘的定义为c=a×b,其 中c的大小为|a||b|sinθ,方向垂直于原平面,右手定则确定其方向。叉乘的结果 是一个向量,满足反交换律,即a×b=-b×a。
03
距离的向量计算方法
详细描述
数乘是将一个数k与一个向量a相乘,得到一个新的向量ka。数乘满足结合律和分配律,即k(a+b)=ka+kb, (k+l)a=ka+la。
向量的点乘
总结词
点乘是向量的另一种重要运算,表示两个向量的夹角和大小 关系。
详细描述
点乘是将两个向量a和b相乘,得到一个标量。点乘的定义为 a·b=|a||b|cosθ,其中|a|和|b|分别表示向量a和b的大小,θ表示 向量a和b的夹角。点乘的结果是一个标量,满足交换律和分配 律。
路径。
空间定位问题
要点一
总结词
利用向量的线性组合和向量模长的性质,确定空间中点的 位置。
要点二
详细描述
空间定位问题需要确定空间中某点的位置。通过向量的线 性组合和向量模长的性质,可以构建方程组,求解出点的 坐标。这种方法在解决空间几何问题时非常有效。
空间关系判断问题
总结词
利用向量的数量积、向量积和混合积等性质,判断点、 线、面之间的位置关系。
利用向量计算点到直线的最短距离
• 点到直线的最短距离可以通过向量投影的方法计算,将点投影到直线上,然后求投影点到直线上任一点的距离。
利用向Байду номын сангаас计算点到平面的最短距离
• 点到平面的最短距离可以通过向量投影的方法计算,将点 投影到平面上,然后求投影点到平面上任一点的距离。

立体几何中的向量方法

立体几何中的向量方法

立体几何中的向量方法一、知识点1.点的位置向量:在空间中,取一定点O 作为基点,那么空间中任意一点P 的位置就可以用向量OP 来表示,我们把向量OP称为点P 的位置向量.2.直线的方向向量:空间中任意一条直线l的位置可以由l上一个定点A 以及一个定方向确定.★直线的方向向量就是指和这条直线平行(或共线)的向量,显然一条直线的方向向量可以有无数个.3.平面的法向量:若直线l⊥α,取直线l的方向向量a ,则向量a叫做平面α的法向量.4. 平面的法向量的求解步骤:首先要建立空间直角坐标系,然后设平面的法向量为()n x,y,z =(1)找出(求出)平面内的两个不共线的向量的坐标()()111222a a ,b ,c ,b a ,b ,c== ; (2)根据法向量的定义建立关于x,y,z 的方程组n a 0n b 0⎧⋅=⎪⎨⋅=⎪⎩(3)解方程组,取其中的一组解,即得法向量.5.利用空间向量解决立体几何问题(1)建立立体图形与空间向量的联系,用空间向量表示问题中涉及的点、直线、平面,把立体几何问题转化为向量问题;(2)通过向量运算,研究点、直线、平面之间的位置关系以及它们之间的距离和夹角等问题;(3)把向量的运算结果“翻译”成相应的几何意义.题型一:用向量方法解决平行问题例1、已知111ABC A B C -是正三棱柱,D 是AC 的中点,求证:1AB ∥平面1DBC .例2、已知正方体1AC 的棱长为1,E F G ,,分别为1AB AD AA ,,的中点,求证:平面EFG ∥平面11B CD .题型二:用向量方法解决垂直问题例3、如图,正三棱柱ABC -A 1B 1C 1的所有棱长都为2,D 为CC 1中点.求证:AB 1⊥面A 1BD.例4、如图,在六面体ABCD -A 1B 1C 1D 1中,四边形ABCD 是边长为2的正方形,四边形A 1B 1C 1D 1是边长为1的正方形,DD 1⊥平面A 1B 1C 1D 1,DD 1⊥平面ABCD ,DD 1=2.(Ⅰ)求证:11C A 与AC 共面,11D B 与BD 共面; (Ⅱ)求证:.1111BDD B ACC A 平面平面⊥∴.B 1C 1D 1 A 1 A BC D题型三:用向量方法求空间中的角例5、正四面体A BCD -边长均为1,E 、F 分别为AD 和BC 中点,求异面直线AF 和CE 所成角的余弦值.例6、求正方体ABCD-A 1B 1C 1D 1中,A 1B 与平面BB 1D 1D 所成的角的大小.例7、如图,四边形PCBM 是直角梯形,∠PCB =90°,PM ∥BC ,PM =1,BC =2,又AC =1,∠A C B =120°,AB ⊥PC ,直线AM 与直线PC 所成的角为60°.(Ⅰ)求证:平面PAC ⊥平面ABC ; (Ⅱ)求二面角B AC M --的余弦值.B C A DF E题型四:用向量方法求距离例8、如图,已知正三棱柱ABC-A 1B 1C 1的侧棱长和底面边长均为1,M 是底面BC 边上的中点,N 是侧棱CC 1上的点,且CN =2C 1N . (Ⅰ)求二面角B 1-AM -N 的平面角的余弦值; (Ⅱ)求点B 1到平面AMN 的距离。

立体几何中的向量方法

立体几何中的向量方法

讨论: 设A是空间任一点, n为空间任一非零向
α//β(或重合) n 1//n2 α⊥β ⊥n2 · 2=0 n1 n1 n
量,适合条件AM· n=0. 的点M 构成什么样的图形? AM· n=0. 我们用上式表述通过空间一点并且与一个向量 垂直的平面.通常称为一个平面的向量表示. 设n1,n2分别是平面α,β的法向量,则容易得到
Байду номын сангаас 5.练习:
已知二面角 -A B - 为1200,AC ,BD , 且AC AB,BD AB,A B =A C =B D =1.
(1)求CD的长.
(2)CD与AB
所成的角.
5.练习:
正方体ABCD-A1B1C1D1中,P 为DD1的中 点,O1,O2,O3分别是平面A1B1C1D1,平面 BB1C1C,平面ABCD的中心. z (1)求证:B1O3⊥PA. D1 O1 C1 A1 B1 P O2 D Cy O3 A B x
1.利用向量判断位置关系
利用向量可证明四点共面、线线平行、 线面平行、线线垂直、线面垂直等问题,
其方法是通过向量的运算来判断,这是数
形结合的典型问题.
例1 在正方体AC1中,E,F分别是BB1,CD 的中点,求证:平面AED⊥平面A1FD1.
D1 A1 D A x F z C1 B1
E
C y
B
评述:
n
M1
M
M2
A
例3 已知点A(a,0,0),B(0,b,0),C(0,0,c), 求平面ABC的一个法向量. 解: 由已知得AB=OB-OA=(-a,b,0) AC=OC-OA=(-a,0,c) z 设平面ABC的一个法向量为 C n n=(x,y,z),则

3.2立体几何中的向量方法(位置关系)

3.2立体几何中的向量方法(位置关系)
3.2立体几何中的向量方法
一、直线的方向向量
把直线 l 上的向量 e 以及与 e 共线的 向量叫做直线 l 的方向向量
二、平面的法向量:
如果表示向量 n 的线段所在直线垂直于平面 则称这个向量垂直于平面
,记作 n

.
如果 n ,那么向量 n 叫平面 的法向量. 一个平面有无数个法向量,它们都是共线向量
练习:如图 ABCD是直角梯形 ABC 90, 1 SA AB BC 1,AD . 2 求平面 SCD与平面 ABA的法向量.
z
S
y
1 B 则D( , 0, 0)C( 1, 1, 0), S( 0, 0, 1) 21 CD ( , 1, 0), SC ( 1, 1, 1) 2 A
1. 已知正三棱柱 ABC A1 B1C 1 D1的各棱长都为 1,M 是底面上 1 BC 边的中点, N 是侧棱 CC 1 上的点,且 CN CC 1 . 4 求证: AB1 MN .
A1 B1 A B M C1
N C
2. 如图,已知正方体 ABCD A1 B1C 1 D1中, P 为底面 对角线 BD 上一点,且 BP 3 PD ,Q 为棱 DD1 的中点, 求证: PQ 平面 A1QC 1 .
练习:如图 ABCD是直角梯形 ABC 90, 1 SA AB BC 1,AD . 2 求平面 SCD与平面 ABA的法向量.
解: AD、AB、AS是三条两两垂直的线段 以A为原点, AD、 AB、 AS的方向为 x、y、z轴的正方向建立坐标系 A xyz. 设平面 SCD的法向量为 n (x,y,z)
三、法向量的求法
例. 已知平面 经过三点A( 1, 2, 3),B( 2, 0, 1) , C( 3, 2, 0) ,求平面 的一个法向量.

13—立体几何中的向量方法

13—立体几何中的向量方法

13—立体几何中的向量方法向量是几何学中非常重要的概念之一,它可以用来描述空间中的方向和大小。

在立体几何中,向量方法被广泛应用于解决各种问题,例如计算向量的模、方向角、点到直线的距离等等。

本文将详细介绍立体几何中的向量方法,包括向量的基本概念、加减乘除、数量积、向量积等内容。

一、向量的基本概念在立体几何中,我们通常用箭头表示一个向量,表示向量的长度表示向量的大小,箭头的方向表示向量的方向。

两个向量相等意味着它们的大小和方向都相同。

向量的模表示向量的大小,一般用,AB,表示,表示点A到点B的距离,也表示向量的大小。

二、向量的加减乘除1.向量的加法:向量的加法按照平行四边形法则进行,即将一个向量的起点与另一个向量的终点相连,新向量的起点为第一个向量的起点,终点为第二个向量的终点。

用数学表示为A+B=C,C的起点为A的起点,终点为B的终点。

2.向量的减法:向量的减法等价于将减去的向量取反再进行加法,即A-B=A+(-B)。

其中,-B表示B的方向相反,大小相同的向量。

3. 向量的数量积:两个向量的数量积等于向量的模的乘积与两个向量之间的夹角的余弦值的乘积,即A·B=,A,B,cosθ。

其中,θ为两个向量之间的夹角。

4. 向量的向量积:两个向量的向量积等于一个新的向量,其方向垂直于原来两个向量所在的平面,大小等于两个向量的模的乘积与夹角的正弦值的乘积,即A×B=,A,B,sinθn。

其中,n为右手定则确定的垂直于平面的方向。

三、应用实例1.计算向量的模:给定一个向量A=(-3,4,5),可以计算其模为,A,=√((-3)^2+4^2+5^2)=√50。

2. 计算向量的方向角:给定一个向量A=(-3,4,5),可以计算其方向角为α=arccos(-3/√50),β=arccos(4/√50),γ=arccos(5/√50)。

3.计算点到直线的距离:给定一点P(x,y,z)和一直线l,可以通过向量的方法计算点P到直线l的距离。

专题07 立体几何中的向量方法(解析版)

专题07 立体几何中的向量方法(解析版)

专题07 立体几何中的向量方法【要点提炼】1.直线与平面、平面与平面的平行与垂直的向量方法设直线l 的方向向量为a =(a 1,b 1,c 1),平面α,β的法向量分别为μ=(a 2,b 2,c 2),v =(a 3,b 3,c 3),则 (1)线面平行l ∥α⇔a ⊥μ⇔a ·μ=0⇔a 1a 2+b 1b 2+c 1c 2=0. (2)线面垂直l ⊥α⇔a ∥μ⇔a =k μ⇔a 1=ka 2,b 1=kb 2,c 1=kc 2. (3)面面平行α∥β⇔μ∥v ⇔μ=λv ⇔a 2=λa 3,b 2=λb 3,c 2=λc 3. (4)面面垂直α⊥β⇔μ⊥v ⇔μ·v =0⇔a 2a 3+b 2b 3+c 2c 3=0. 2.直线与直线、直线与平面、平面与平面的夹角计算设直线l ,m 的方向向量分别为a =(a 1,b 1,c 1),b =(a 2,b 2,c 2),平面α,β的法向量分别为μ=(a 3,b 3,c 3),v =(a 4,b 4,c 4)(以下相同). (1)线线夹角设l ,m 的夹角为θ⎝ ⎛⎭⎪⎫0≤θ≤π2,则cos θ=|a ·b ||a ||b |=|a 1a 2+b 1b 2+c 1c 2|a 21+b 21+c 21a 22+b 22+c 22. (2)线面夹角设直线l 与平面α的夹角为θ⎝ ⎛⎭⎪⎫0≤θ≤π2,则sin θ=|cos a ,μ|=|a ·μ||a ||μ|.(3)面面夹角设平面α,β的夹角为θ(0≤θ<π), 则|cos θ|=|cosμ,v|=|μ·v ||μ||v |.考点考向一 利用空间向量证明平行、垂直【典例1】 如图,在四棱锥P -ABCD 中,P A ⊥底面ABCD ,AD ⊥AB ,AB ∥DC ,AD =DC =AP =2,AB =1,点E 为棱PC 的中点.证明:(1)BE ⊥DC ; (2)BE ∥平面P AD ; (3)平面PCD ⊥平面P AD .证明 依题意,以点A 为原点建立空间直角坐标系(如图),可得B (1,0,0),C (2,2,0),D (0,2,0),P (0,0,2).由E 为棱PC 的中点,得E (1,1,1).(1)向量BE →=(0,1,1),DC →=(2,0,0),故BE →·DC →=0. 所以BE ⊥DC .(2)因为AB ⊥AD ,又P A ⊥平面ABCD ,AB ⊂平面ABCD , 所以AB ⊥P A ,P A ∩AD =A ,P A ,AD ⊂平面P AD , 所以AB ⊥平面P AD ,所以向量AB→=(1,0,0)为平面P AD 的一个法向量, 而BE →·AB →=(0,1,1)·(1,0,0)=0,所以BE ⊥AB , 又BE ⊄平面P AD , 所以BE ∥平面P AD .(3)由(2)知平面P AD 的法向量AB →=(1,0,0),向量PD →=(0,2,-2),DC →=(2,0,0),设平面PCD 的法向量为n =(x ,y ,z ),则⎩⎪⎨⎪⎧n ·PD →=0,n ·DC →=0,即⎩⎨⎧2y -2z =0,2x =0,不妨令y =1,可得n =(0,1,1)为平面PCD 的一个法向量. 且n ·AB →=(0,1,1)·(1,0,0)=0,所以n ⊥AB →. 所以平面P AD ⊥平面PCD .探究提高 1.利用向量法证明平行、垂直,关键是建立恰当的坐标系(尽可能利用垂直条件,准确写出相关点的坐标,进而用向量表示涉及到直线、平面的要素). 2.向量证明的核心是利用向量的数量积或数乘向量,但向量证明仍然离不开立体几何的定理,如在(2)中忽略BE ⊄平面P AD 而致误.【拓展练习1】 如图,在直三棱柱ADE -BCF 中,平面ABFE 和平面ABCD 都是正方形且互相垂直,点M 为AB 的中点,点O 为DF 的中点.证明:(1)OM ∥平面BCF ; (2)平面MDF ⊥平面EFCD .证明 (1)由题意,得AB ,AD ,AE 两两垂直,以点A 为原点建立如图所示的空间直角坐标系A -xyz .设正方形边长为1,则A (0,0,0),B (1,0,0),C (1,1,0),D (0,1,0),F (1,0,1),M ⎝ ⎛⎭⎪⎫12,0,0,O ⎝ ⎛⎭⎪⎫12,12,12.OM →=⎝ ⎛⎭⎪⎫0,-12,-12,BA →=(-1,0,0), ∴OM →·BA →=0,∴OM →⊥BA →. ∵棱柱ADE -BCF 是直三棱柱,∴AB ⊥平面BCF ,∴BA →是平面BCF 的一个法向量, 且OM ⊄平面BCF ,∴OM ∥平面BCF .(2)在第(1)问的空间直角坐标系中,设平面MDF 与平面EFCD 的法向量分别为 n 1=(x 1,y 1,z 1),n 2=(x 2,y 2,z 2).∵DF →=(1,-1,1),DM →=⎝ ⎛⎭⎪⎫12,-1,0,DC →=(1,0,0),CF →=(0,-1,1), 由⎩⎪⎨⎪⎧n 1·DF→=0,n 1·DM →=0,得⎩⎪⎨⎪⎧x 1-y 1+z 1=0,12x 1-y 1=0,令x 1=1,则n 1=⎝ ⎛⎭⎪⎫1,12,-12.同理可得n 2=(0,1,1).∵n 1·n 2=0,∴平面MDF ⊥平面EFCD . 考向二 线线角、线面角的求解【典例2】 (2020·浙江卷)如图,在三棱台ABC -DEF 中,平面ACFD ⊥平面ABC ,∠ACB =∠ACD =45°,DC =2BC .(1)证明:EF ⊥DB ;(2)求直线DF 与平面DBC 所成角的正弦值.(1)证明 如图(1),过点D 作DO ⊥AC ,交直线AC 于点O ,连接OB .图(1)由∠ACD =45°,DO ⊥AC ,得 CD =2CO .由平面ACFD ⊥平面ABC ,得DO ⊥平面ABC , 所以DO ⊥BC .由∠ACB =45°,BC =12CD =22CO ,得BO ⊥BC . 所以BC ⊥平面BDO ,故BC ⊥DB .由ABC -DEF 为三棱台,得BC ∥EF ,所以EF ⊥DB .(2)解 法一 如图(1),过点O 作OH ⊥BD ,交直线BD 于点H ,连接CH .由ABC -DEF 为三棱台,得DF ∥CO ,所以直线DF 与平面DBC 所成角等于直线CO 与平面DBC 所成角.由BC ⊥平面BDO ,得OH ⊥BC ,故OH ⊥平面DBC , 所以∠OCH 为直线CO 与平面DBC 所成角. 设CD =22,则DO =OC =2,BO =BC =2,得BD =6,OH =233,所以sin ∠OCH =OH OC =33.因此,直线DF 与平面DBC 所成角的正弦值为33.法二 由ABC -DEF 为三棱台,得DF ∥CO ,所以直线DF 与平面DBC 所成角等于直线CO 与平面DBC 所成角,记为θ.如图(2),以O 为原点,分别以射线OC ,OD 为y ,z 轴的正半轴,建立空间直角坐标系O -xyz .图(2)设CD =22,由题意知各点坐标如下:O (0,0,0),B (1,1,0),C (0,2,0),D (0,0,2). 因此OC→=(0,2,0),BC →=(-1,1,0),CD →=(0,-2,2). 设平面DBC 的一个法向量为n =(x ,y ,z ),由⎩⎪⎨⎪⎧n ·BC →=0,n ·CD →=0,即⎩⎨⎧-x +y =0,-2y +2z =0,可取n =(1,1,1),所以sin θ=|cos 〈OC →,n 〉|=|OC →·n ||OC →|·|n |=33.因此,直线DF 与平面DBC 所成角的正弦值为33.探究提高 1.异面直线所成的角θ,可以通过两直线的方向向量的夹角φ求得,即cos θ=|cos φ|.2.直线与平面所成的角θ主要通过直线的方向向量与平面的法向量的夹角φ求得,即sin θ=|cos φ|,有时也可分别求出斜线与它在平面内的射影直线的方向向量,转化为求两个方向向量的夹角(或其补角).【拓展练习2】 (2020·全国Ⅱ卷)如图,已知三棱柱ABC -A 1B 1C 1的底面是正三角形,侧面BB 1C 1C 是矩形,M ,N 分别为BC ,B 1C 1的中点,P 为AM 上一点,过B 1C 1和P 的平面交AB 于E ,交AC 于F .(1)证明:AA 1∥MN ,且平面A 1AMN ⊥平面EB 1C 1F ;(2)设O 为△A 1B 1C 1的中心.若AO ∥平面EB 1C 1F ,且AO =AB ,求直线B 1E 与平面A 1AMN 所成角的正弦值.(1)证明 因为侧面BB 1C 1C 是矩形且M ,N 分别为BC ,B 1C 1的中点,所以MN ∥CC 1.又由已知得AA 1∥CC 1,故AA 1∥MN . 因为△A 1B 1C 1是正三角形,所以B 1C 1⊥A 1N . 又侧面BB 1C 1C 是矩形,所以B 1C 1⊥MN . 又A 1N ∩MN =N ,A 1N ,MN ⊂平面A 1AMN , 所以B 1C 1⊥平面A 1AMN .又B 1C 1⊂平面EB 1C 1F , 所以平面A 1AMN ⊥平面EB 1C 1F .(2)解 由已知及(1)得AM ⊥BC ,MN ⊥BC ,AM ⊥MN .以M 为坐标原点,MA →的方向为x 轴正方向,|MB →|为单位长,建立如图所示的空间直角坐标系M -xyz ,则AB =2,AM = 3.连接NP ,AO ∥平面EB 1C 1F ,AO ⊂平面A 1AMN , 平面A 1AMN ∩平面EB 1C 1F =PN ,故AO ∥PN . 又AP ∥ON ,则四边形AONP 为平行四边形,故PM =233,E ⎝ ⎛⎭⎪⎫233,13,0.由(1)知平面A 1AMN ⊥平面ABC .作NQ ⊥AM ,垂足为Q ,则NQ ⊥平面ABC . 设Q (a ,0,0),则 NQ =4-⎝ ⎛⎭⎪⎫233-a2, B 1⎝⎛⎭⎪⎫a ,1,4-⎝ ⎛⎭⎪⎫233-a2. 故B 1E →=⎝ ⎛⎭⎪⎫233-a ,-23,-4-⎝ ⎛⎭⎪⎫233-a 2, |B 1E →|=2103.又n =(0,-1,0)是平面A 1AMN 的一个法向量, 故sin ⎝ ⎛⎭⎪⎫π2-〈n ,B 1E →〉=cos 〈n ,B 1E →〉=n ·B 1E →|n |·|B 1E →|=1010.所以直线B 1E 与平面A 1AMN 所成角的正弦值为1010. 考向三 利用向量求二面角【典例3】 (2020·全国Ⅲ卷)如图,在长方体ABCD -A 1B 1C 1D 1中,点E ,F 分别在棱DD 1,BB 1上,且2DE =ED 1,BF =2FB 1.(1)证明:点C 1在平面AEF 内;(2)若AB =2,AD =1,AA 1=3,求二面角A -EF -A 1的正弦值.解 设AB =a ,AD =b ,AA 1=c .如图,以C 1为坐标原点,C 1D 1→的方向为x 轴正方向, 建立空间直角坐标系C 1-xyz .(1)证明 连接C 1F ,C 1(0,0,0),A (a ,b ,c ),E ⎝ ⎛⎭⎪⎫a ,0,23c ,F ⎝ ⎛⎭⎪⎫0,b ,13c ,EA→=⎝ ⎛⎭⎪⎫0,b ,13c ,C 1F →=⎝ ⎛⎭⎪⎫0,b ,13c ,得EA →=C 1F →, 因此EA ∥C 1F ,即A ,E ,F ,C 1四点共面, 所以点C 1在平面AEF 内.(2)由已知得A (2,1,3),E (2,0,2),F (0,1,1),A 1(2,1,0),AE →=(0,-1,-1),AF →=(-2,0,-2),A 1E →=(0,-1,2),A 1F →=(-2,0,1). 设n 1=(x ,y ,z )为平面AEF 的法向量,则⎩⎪⎨⎪⎧n 1·AE →=0,n 1·AF →=0,即⎩⎨⎧-y -z =0,-2x -2z =0,可取n 1=(-1,-1,1).设n 2为平面A 1EF 的法向量,则⎩⎪⎨⎪⎧n 2·A 1E →=0,n 2·A 1F →=0,同理可取n 2=⎝ ⎛⎭⎪⎫12,2,1.设二面角A -EF -A 1的平面角为α,所以cos α=cos 〈n 1,n 2〉=n 1·n 2|n 1|·|n 2|=-77,则sin α=1-cos2α=42 7,所以二面角A-EF-A1的正弦值为42 7.探究提高 1.二面角的大小可以利用分别在两个半平面内与棱垂直的直线的方向向量的夹角(或其补角)或通过二面角的两个面的法向量的夹角求得,它等于两个法向量的夹角或其补角.2.利用向量法求二面角,必须能判定“所求二面角的平面角是锐角或钝角”,否则解法是不严谨的.【拓展练习3】(2020·沈阳一监)如图,已知△ABC为等边三角形,△ABD为等腰直角三角形,AB⊥BD.平面ABC⊥平面ABD,点E与点D在平面ABC的同侧,且CE∥BD,BD=2CE.点F为AD的中点,连接EF.(1)求证:EF∥平面ABC;(2)求二面角C-AE-D的余弦值.(1)证明取AB的中点为O,连接OC,OF,如图.∵O,F分别为AB,AD的中点,∴OF∥BD且BD=2OF.又CE∥BD且BD=2CE,∴CE∥OF且CE=OF,∴OF綊EC,则四边形OCEF为平行四边形,∴EF∥OC.又OC⊂平面ABC,EF⊄平面ABC,∴EF∥平面ABC.(2)解∵△ABC为等边三角形,O为AB的中点,∴OC⊥AB.∵平面ABC ⊥平面ABD ,平面ABC ∩平面ABD =AB ,BD ⊥AB ,BD ⊂平面ABD ,∴BD ⊥平面ABC .又OF ∥BD ,∴OF ⊥平面ABC .以O 为坐标原点,分别以OA ,OC ,OF 所在的直线为x 轴,y 轴,z 轴,建立如图所示的空间直角坐标系.不妨令正三角形ABC 的边长为2,则O (0,0,0),A (1,0,0),C (0,3,0),E (0,3,1),D (-1,0,2),∴AC→=(-1,3,0),AE →=(-1,3,1),AD →=(-2,0,2). 设平面AEC 的法向量为m =(x 1,y 1,z 1),则 ⎩⎪⎨⎪⎧AC →·m =-x 1+3y 1=0,AE →·m =-x 1+3y 1+z 1=0. 不妨令y 1=3,则m =(3,3,0). 设平面AED 的法向量为n =(x 2,y 2,z 2),则 ⎩⎪⎨⎪⎧AD →·n =-2x 2+2z 2=0,AE →·n =-x 2+3y 2+z 2=0. 令z 2=1,得n =(1,0,1). ∴cos 〈m ,n 〉=323×2=64.由图易知二面角C -AE -D 为钝角, ∴二面角C -AE -D 的余弦值为-64. 考向四 利用空间向量求解探索性问题【典例4】 (2020·武汉调研)如图所示,在正方体ABCD -A 1B 1C 1D 1中,点O 是AC 与BD 的交点,点E 是线段OD 1上的一点.(1)若点E 为OD 1的中点,求直线OD 1与平面CDE 所成角的正弦值;(2)是否存在点E ,使得平面CDE ⊥平面CD 1O ?若存在,请指出点E 的位置,并加以证明;若不存在,请说明理由. 解 (1)不妨设正方体的棱长为2.以D 为坐标原点,分别以DA ,DC ,DD 1所在直线分别为x 轴,y 轴,z 轴,建立如图所示的空间直角坐标系D -xyz ,则D (0,0,0),D 1(0,0,2),C (0,2,0),O (1,1,0). 因为E 为OD 1的中点, 所以E ⎝ ⎛⎭⎪⎫12,12,1.则OD 1→=(-1,-1,2),DE →=⎝ ⎛⎭⎪⎫12,12,1,DC →=(0,2,0).设p =(x 0,y 0,z 0)是平面CDE 的法向量, 则⎩⎪⎨⎪⎧p ·DE→=0,p ·DC →=0,即⎩⎪⎨⎪⎧12x 0+12y 0+z 0=0,2y 0=0,取x 0=2,则y 0=0,z 0=-1,所以p =(2,0,-1)为平面CDE 的一个法向量. 设直线OD 1与平面CDE 所成角为θ, 所以sin θ=|cos 〈OD 1→,p 〉|=|OD 1→·p ||OD 1→||p |=|-1×2+(-1)×0+2×(-1)|(-1)2+(-1)2+22×22+(-1)2=23015, 即直线OD 1与平面CDE 所成角的正弦值为23015.(2)存在,且点E 为线段OD 1上靠近点O 的三等分点.理由如下. 假设存在点E ,使得平面CDE ⊥平面CD 1O .同第(1)问建立空间直角坐标系,易知点E 不与点O 重合,设D 1E →=λEO →,λ∈[0,+∞),OC →=(-1,1,0),OD 1→=(-1,-1,2). 设m =(x 1,y 1,z 1)是平面CD 1O 的法向量, 则⎩⎪⎨⎪⎧m ·OC →=0,m ·OD 1→=0,即⎩⎨⎧-x 1+y 1=0,-x 1-y 1+2z 1=0,取x 1=1,则y 1=1,z 1=1,所以m =(1,1,1)为平面CD 1O 的一个法向量.因为D 1E →=λEO →,所以点E 的坐标为⎝⎛⎭⎪⎫λ1+λ,λ1+λ,21+λ, 所以DE →=⎝ ⎛⎭⎪⎫λ1+λ,λ1+λ,21+λ. 设n =(x 2,y 2,z 2)是平面CDE 的法向量, 则⎩⎪⎨⎪⎧n ·DE→=0,n ·DC →=0,即⎩⎪⎨⎪⎧λ1+λx 2+λ1+λy 2+21+λz 2=0,2y 2=0,取x 2=1,则y 2=0,z 2=-λ2,所以n =⎝ ⎛⎭⎪⎫1,0,-λ2为平面CDE 的一个法向量. 因为平面CDE ⊥平面CD 1O ,所以m ⊥n . 则m ·n =0,所以1-λ2=0,解得λ=2.所以当D 1E →EO →=2,即点E 为线段OD 1上靠近点O 的三等分点时,平面CDE ⊥平面CD 1O .探究提高 1.空间向量最适合于解决立体几何中的探索性问题,它无需进行复杂的作图、论证、推理,只需通过坐标运算进行判断.但注意空间坐标系建立的规范性及计算的准确性,否则容易出现错误.2.空间向量求解探索性问题:(1)假设题中的数学对象存在(或结论成立)或暂且认可其中的一部分结论;(2)在这个前提下进行逻辑推理,把要成立的结论当作条件,据此列方程或方程组,把“是否存在”问题转化为“点的坐标(或参数)是否有解,是否有规定范围内的解”等.若由此推导出矛盾,则否定假设;否则,给出肯定结论.【拓展练习4】 (2019·北京卷)如图,在四棱锥P -ABCD 中,P A ⊥平面ABCD ,AD ⊥CD ,AD ∥BC ,P A =AD =CD =2,BC =3.E 为PD 的中点,点F 在PC 上,且PF PC =13.(1)求证:CD ⊥平面P AD ; (2)求二面角F -AE -P 的余弦值;(3)设点G 在PB 上,且PG PB =23.判断直线AG 是否在平面AEF 内,说明理由. (1)证明 因为P A ⊥平面ABCD ,CD ⊂平面ABCD ,所以P A ⊥CD . 又因为AD ⊥CD ,P A ∩AD =A ,P A ,AD ⊂平面P AD , 所以CD ⊥平面P AD .(2)解 过点A 作AD 的垂线交BC 于点M . 因为P A ⊥平面ABCD ,AM ,AD ⊂平面ABCD , 所以P A ⊥AM ,P A ⊥AD .建立如图所示的空间直角坐标系A -xyz ,则A (0,0,0),B (2,-1,0),C (2,2,0),D (0,2,0),P (0,0,2).因为E 为PD 的中点, 所以E (0,1,1).所以AE→=(0,1,1),PC →=(2,2,-2),AP →=(0,0,2). 所以PF→=13PC →=⎝ ⎛⎭⎪⎫23,23,-23, 所以AF→=AP →+PF →=⎝ ⎛⎭⎪⎫23,23,43. 设平面AEF 的法向量为n =(x ,y ,z ),则⎩⎪⎨⎪⎧n ·AE →=0,n ·AF →=0,即⎩⎪⎨⎪⎧y +z =0,23x +23y +43z =0. 令z =1,则y =-1,x =-1. 于是n =(-1,-1,1).又因为平面P AD 的一个法向量为p =(1,0,0), 所以cos 〈n ,p 〉=n ·p |n ||p |=-33.由题知,二面角F -AE -P 为锐角,所以其余弦值为33. (3)解 直线AG 在平面AEF 内,理由如下: 因为点G 在PB 上,且PG PB =23,PB →=(2,-1,-2), 所以PG→=23PB →=⎝ ⎛⎭⎪⎫43,-23,-43, 所以AG→=AP →+PG →=⎝ ⎛⎭⎪⎫43,-23,23. 由(2)知,平面AEF 的一个法向量n =(-1,-1,1), 所以AG →·n =-43+23+23=0.又点A ∈平面AEF ,所以直线AG 在平面AEF 内.【专题拓展练习】一、单选题1.已知三棱锥O -ABC ,点M ,N 分别为AB ,OC 的中点,且,,OA a OB b OC c ===,用,,a b c 表示MN ,则MN 等于( )A .()12b c a +- B .()12a b c ++ C .()12a b c -+D .()12c a b --【答案】D 【详解】MN MA AO ON =++1122BA OA OC =-+ ()1122OA OB OA OC =--+ 111222OA OB OC =--+()12c a b =--. 故选:D2.在棱长为1的正方体1111ABCD A B C D -中,,M N 分别为111,BD B C 的中点,点P 在正方体的表面上运动,且满足MP CN ⊥,则下列说法正确的是( )A .点P 可以是棱1BB 的中点 B .线段MP 3C .点P 的轨迹是正方形D .点P 轨迹的长度为2+5【答案】D 【详解】在正方体1111ABCD A B C D -中,以点D 为坐标原点,分别以DA 、DC 、1DD 方向为x 轴、y 轴、z 轴正方向,建立空间直角坐标系,因为该正方体的棱长为1,,M N 分别为111,BD B C 的中点, 则()0,0,0D ,111,,222M ⎛⎫ ⎪⎝⎭,1,1,12N ⎛⎫⎪⎝⎭,()0,1,0C , 所以1,0,12CN ⎛⎫=⎪⎝⎭,设(),,P x y z ,则111,,222MP x y z ⎛⎫=--- ⎪⎝⎭,因为MP CN ⊥, 所以1110222x z ⎛⎫-+-= ⎪⎝⎭,2430x z +-=,当1x =时,14z =;当0x =时,34z =; 取11,0,4E ⎛⎫ ⎪⎝⎭,11,1,4F ⎛⎫ ⎪⎝⎭,30,1,4G ⎛⎫ ⎪⎝⎭,30,0,4H ⎛⎫ ⎪⎝⎭,连接EF ,FG ,GH ,HE ,则()0,1,0EF GH ==,11,0,2EH FG ⎛⎫==- ⎪⎝⎭, 所以四边形EFGH 为矩形,则0EF CN ⋅=,0EH CN ⋅=,即EF CN ⊥,EH CN ⊥, 又EFEH E =,且EF ⊂平面EFGH ,EH ⊂平面EFGH ,所以CN ⊥平面EFGH , 又111,,224EM ⎛⎫=-⎪⎝⎭,111,,224MG ⎛⎫=- ⎪⎝⎭,所以M 为EG 中点,则M ∈平面EFGH , 所以,为使MP CN ⊥,必有点P ∈平面EFGH ,又点P 在正方体的表面上运动,所以点P 的轨迹为四边形EFGH , 因此点P 不可能是棱1BB 的中点,即A 错; 又1EF GH ==,52EH FG ==,所以EF EH ≠,则点P 的轨迹不是正方形; 且矩形EFGH 的周长为522252+⨯=+,故C 错,D 正确; 因为点M 为EG 中点,则点M 为矩形EFGH 的对角线交点,所以点M 到点E 和点G 的距离相等,且最大,所以线段MP 的最大值为52,故B 错. 3.在空间四边形ABCD 中,AB CD AC DB AD BC ⋅+⋅+⋅=( ) A .-1 B .0 C .1 D .不确定【答案】B 【详解】 如图,令,,AB a AC b AD c ===, 则AB CD AC DB AD BC ⋅+⋅+⋅,()()()a cb b ac c b a =⋅-+⋅-+⋅-,0a c a b b a b c c b c a =⋅-⋅+⋅-⋅+⋅-⋅=.故选:B4.如图,在四棱锥P ABCD -中,底面ABCD 为矩形.PA ⊥底面,2,4ABCD PA AB AD ===.E 为PC 的中点,则异面直线PD 与BE 所成角的余弦值为( )A .35B .3010C .1010D .31010【答案】B 【详解】以A 点为坐标原点,AB 为x 轴,AD 为y 轴,AP 为z 轴建立空间直角坐标系如下图所示:则()2,0,0B ,()1,2,1E ,()002P ,,,()0,4,0D , ()1,2,1BE =-∴,()0,4,2PD =-,设异面直线PD 与BE 所成角为θ,则630cos 10625PD BE PD BEθ⋅===⨯⋅. 5.已知四棱锥,-P ABCD 底面是边长为2的正方形,PAD △是以AD 为斜边的等腰直角三角形,AB ⊥平面PAD ,点E 是线段PD 上的动点(不含端点),若线 AB 段上存在点F (不含端点),使得异面直线PA 与 EF 成30的角,则线段PE 长的取值范围是( )A .202⎛⎫ ⎪ ⎪⎝⎭, B .603⎛⎫⎪ ⎪⎝⎭, C .222⎛⎫⎪ ⎪⎝⎭, D .623,⎛⎫⎪⎝⎭【答案】B 【详解】由PAD △是以AD 为斜边的等腰直角三角形,AB ⊥平面PAD ,取AD 中点G ,建立如图空间直角坐标系,依题意(0,0,0),(1,0,0),(1,0,0),(1,2,0),(0,0,1)G A D B P -,设(1,,0)F y ,,设()()1,0,1,0,DE xDP x x x ===,01x <<,故()1,0,E x x -,()2,,EF x y x =--又()1,0,1PA =-,异面直线PA 与 EF 成30的角,故cos30PA EF PA EF ⋅=⋅︒,即()2223222x y x =-++即()222213y x =--+,01x <<,故220,3y ⎡⎫∈⎪⎢⎣⎭,又02y <<,故60y ⎛∈ ⎝⎭,. 故选:B.6.已知二面角l αβ--,其中平面的一个法向量()1,0,1m =-,平面β的一个法向量()0,1,1n =-,则二面角l αβ--的大小可能为( )A .60︒B .120︒C .60︒或120︒D .30【答案】C 【详解】11cos ,222m n m n m n ⋅-<>===-⨯,所以,120m n <>=,又因为二面角的大小与法向量夹角相等或互补, 所以二面角的大小可能是60或120. 故选:C7.已知向量(,,)x y z a a a a =,(,,)x y z b b b b =,{},,i j k 是空间中的一个单位正交基底.规定向量积的行列式计算:()()(),,yz xy xz y z z y z x x z x y y x xy z yz xyxz xyz ij ka a a a a a ab a b a b i a b a b j a b a b k a a a b b b b b b b b b ⎛⎫⨯=-+-+-==-⎪ ⎪⎝⎭其中行列式计算表示为a b ad bc c d=-,若向量(2,1,4),(3,1,2),AB AC ==则AB AC ⨯=( )A .(4,8,1)---B .(1,4,8)--C .(2,8,1)--D .(1,4,8)---【答案】C 【详解】由题意得()()()()1241+4322+21132,8,1AB AC i j k ⨯=⨯-⨯⨯-⨯⨯-⨯=--, 故选:C.8.长方体1111ABCD A B C D -,110AB AA ==,25AD =,P 在左侧面11ADD A 上,已知P 到11A D 、1AA 的距离均为5,则过点P 且与1A C 垂直的长方体截面的形状为( )A .六边形B .五边形C .四边形D .三角形【答案】B 【详解】以D 为坐标原点建立如图所示的空间直角坐标系,则()()()120,0,5,25,0,10,0,10,0P A C ,()125,10,10AC ∴=--, 设截面与11A D 交于(),0,10Q Q x ,则()20,0,5Q PQ x =-,()12520500Q AC PQ x ∴⋅=---=,解得18Qx =,即()18,0,10Q , 设截面与AD 交于(),0,0M M x ,则()20,0,5M PM x =--,()12520500M AC PM x ∴⋅=--+=,解得22Mx =,即()22,0,0M , 设截面与AB 交于()25,,0N N y ,则()3,,0N MN y =,1253100N AC MN y ∴⋅=-⨯+=,解得7.5Ny =,即()25,7.5,0N , 过Q 作//QF MN ,交11B C 于F ,设(),10,10F F x ,则()18,10,0F QF x =-, 则存在λ使得QF MN λ=,即()()18,10,03,7.5,0F x λ-=,解得22F x =,故F 在线段11B C 上,过F 作//EF QM ,交1BB 于E ,设()25,10,E E z ,则()3,0,10E EF z =--,则存在μ使得EF QM μ=,即()()3,0,104,0,10E z μ--=-,解得 2.5E z =,故E 在线段1BB 上,综上,可得过点P 且与1A C 垂直的长方体截面为五边形QMNEF . 故选:B.9.在四面体ABCD 中,6AB =,3BC =,4BD =,若ABD ∠与ABC ∠互余,则()BA BC BD ⋅+的最大值为( )A .20B .30C .40D .50【答案】B 【详解】设ABD α∠=,可得2ABC πα∠=-,则α为锐角,在四面体ABCD 中,6AB =,3BC =,4BD =, 则()cos cos 2BA BC BD BA BC BA BD BA BC BA BD παα⎛⎫⋅+=⋅+⋅=⋅-+⋅ ⎪⎝⎭()18sin 24cos 30sin αααϕ=+=+,其中ϕ为锐角,且4tan 3ϕ=. 02πα<<,则2πϕαϕϕ<+<+,所以,当2παϕ+=时,()BA BC BD ⋅+取得最大值30.10.已知正方体1111ABCD A B C D -的棱长为1,点E 是底面ABCD 上的动点,则()111CE CA D B -⋅的最大值为( )A .22B .1C .2D .6【答案】B 【详解】以点D 为原点,1,,DA DC DD 为,,x y z 轴建立空间直角坐标系,则111(0,0,1),(1,1,1),(1,0,1),D B A设(,,0)E x y ,其中[],0,1x y ∈,则()()11111,,1,1,1,0CE CA A E x y D B -==--=, 所以111()11CE CA D B x y -⋅=+-≤,等号成立的条件是(1,1,0)E ,故其最大值为1, 故选:B .11.如图,在底面为正方形的四棱锥P-ABCD 中,已知PA ⊥平面ABCD ,且PA =AB .若点M 为PD 中点,则直线CM 与PB 所成角的大小为( )A .60°B .45°C .30°D .90°【答案】C 【详解】如图所示:以A 为坐标原点,以AB ,AD ,AP 为单位向量建立空间直角坐标系A xyz -,设1PA =,则()0,0,0A ,()1,1,0C ,110,,22M ⎛⎫⎪⎝⎭,()0,0,1P ,()1,0,0B , 故()1,0,1PB =-,111,,22MC ⎛⎫=- ⎪⎝⎭,故1132cos ,21111144PB MC PB MC PB MC+⋅===⋅+⋅++, 由异面直线夹角的范围是(]0,90︒︒,故直线CM 与PB 所成角的大小为30. 故选:C.12.如图,在正四面体ABCD 中,,,2BE EC CF FD DG GA ===,记平面EFG 与平面BCD 、平面ACD 、平面ABD ,所成的锐二面角分别为α、β、γ,则( )A .αβγ>>B .αγβ>>C .βαγ>>D .γαβ>>【答案】A【详解】 解:(空间向量法)因为,,2BE EC CF FD DG GA ===,所以E 、F 分别为BC 、CD 的中点,G 为AD 上靠近A 的三等分点,取BD 的中点M ,连接CM ,过A 作AO ⊥平面BCD ,交CM 于点O ,在平面BCD 中过O 作//ON BD ,交CD 于N ,设正四面体ABCD 的棱长为2,则33OM =,233CO =,22222326233OA AC OC ⎛⎫=-=-= ⎪ ⎪⎝⎭, 以O 为原点,OC 为x 轴,ON 为y 轴,OA 为z 轴,建立空间直角坐标系,26A ⎛ ⎝⎭,31,0B ⎛⎫- ⎪ ⎪⎝⎭,23C ⎫⎪⎝⎭,3D ⎛⎫ ⎪⎝⎭,31,02E ⎫-⎪⎝⎭,31,062F ⎛⎫ ⎪⎝⎭,3146,939G ⎛- ⎝⎭,(0,1,0)EF =,53546,8691EG ⎛⎫=- ⎪ ⎪⎝⎭,232633AC ⎛=- ⎝⎭,32633AD ⎛=-- ⎝⎭,3261,33AB ⎛⎫=--- ⎪⎝⎭,设平面EFG 的一个法向量为()1,,n x y z =,则110n EF n EG ⎧⋅=⎪⎨⋅=⎪⎩,即05354606y x y z =⎧⎪⎨+=⎪⎩,不妨令1z =,则18,0,125n ⎛⎫= ⎪ ⎪⎝⎭,同理可计算出平面BCD 、平面ACD 、平面ABD 的一个法向量分别为2(0,0,1)n =,()32,6,1n =,4(22,0,1)n =-,则可得1212517co 1s 5n n n n α⋅==⋅,1313717co 1s 5n n n n β⋅==⋅,14149cos 1751n n n n γ⋅==⋅,所以cos cos cos αβγ<<,又cos y x =在()0.x π∈上递减,所以αβγ>>, 故选:A.13.在正四棱锥P ABCD -中,1PA PB PC PD AB =====,点Q ,R 分别在棱AB ,PC 上运动,当||QR 达到最小值时,||||PQ CQ 的值为( ) A .7010B .355C .3510D .705【答案】A 【详解】以P 在底面的投影O 为坐标原点,建立如图所示的坐标系,设1(,,0)2Q a ,(,,)R m n q因为211(0(,0),22P C -,,112(,22PC =-, 又因为R 在PC 上,PR PC λ=所以(,m m q -=,11(,),22λλ-, 所以R 11(,2222λλ=--+,所以2222111222QR a λλ⎛⎛⎫⎛⎫=--+-+ ⎪ ⎪ ⎝⎭⎝⎭⎝⎭221324a a λλλ=+-++ 因为[]11,,0,122a λ⎡⎤∈-∈⎢⎥⎣⎦设2213()24f a a a λλλ=+-++,2213()24g a a λλλλ=+-++ 对其求导()2f a a λ'=-,1()22g a λλ'=-+当二个导数同时为0时,取最小值,即20a λ-=,1202a λ-+=所以11,36a λ==时取最小值,所以1121,,,1,,02623PQ CQ ⎛⎫⎛⎫=-=- ⎪ ⎪ ⎪⎝⎭⎝⎭ 所以PQCQ==10,所以当||QR 达到最小值时,||||PQ CQ 的值为10. 14.如图所示,正方体1111ABCD A B C D -的棱长为1,E 、F 、G 分别为BC 、1CC 、1BB 的中点,则( )A .直线1D D 与直线AF 垂直B .直线1A G 与平面AEF 平行C .平面AEF 截正方体所得的截面面积为1D .点C 和点G 到平面AEF 的距离相等 【答案】B 【详解】以D 点为坐标原点,DA 、DC 、1DD 为x ,y ,z 轴建系,则(000)D ,,、(100)A ,,、()010C ,,、1(101)A ,,、1(001)D ,,、 1(10)2E ,,、1(01)2F ,,,1(11)2G ,,, 则()1001DD =,,、1112AF ⎛⎫=- ⎪⎝⎭,,,则112DD AF ⋅=, ∴直线1D D 与直线AF 不垂直,A 错误;则11012A G ⎛⎫=- ⎪⎝⎭,,,1102AE ⎛⎫=- ⎪⎝⎭,,,1112AF ⎛⎫=- ⎪⎝⎭,,, 设平面AEF 的法向量为()n x y z =,,,则10021002x y AE n AF n x y z ⎧-+=⎪⎧⋅=⎪⎪⇒⎨⎨⋅=⎪⎪⎩-++=⎪⎩,令2x =,则1y =,2z =,则(212)n =,,,10AG n ⋅=,∴直线1A G 与平面AEF 平行,B 正确; 易知四边形1AEFD 为平面AEF 截正方体所得的截面,且1D F 、DC 、AE 共点于H ,15D H AH ==,12AD =,∴121232(5)()222AD H S ∆=⨯⨯-=,则113948AD HAEFD S S =⋅=四边形,C 错误; (110)AC =-,,,点C 到平面AEF 的距离113AC n d n⋅==, 1012AG ⎛⎫= ⎪⎝⎭,,,点G 到平面AEF 的距离223AG n d n ⋅==,则12d d ≠,D 错误;故选:B .15.如图所示,1111ABCD A B C D -是棱长为6的正方体,E 、F 分别是棱AB 、BC 上的动点,且AE BF =.当1A 、E 、F 、1C 共面时,平面1A DE 与平面1C DF 所成锐二面角的余弦值为( )A .15B .12C .32D .65【答案】B 【详解】以点D 为原点建立如图所示的空间直角坐标系,则1(606)A ,,、(000)D ,,、1(066)C ,,,由题意知:当(630)E ,,、(360)F ,,时,1A 、E 、F 、1C 共面, 设平面1A DE 的法向量为1111()n x y z =,,,1(606)DA =,,,(630)DE =,,, 则1111111660{630n DA x z n DE x y ⋅=+=⋅=+=,取11x =,解得1(121)n =--,,,设平面1C DF 的法向量为2222()n x y z =,,,1(066)DC =,,,(360)DF =,,, 则2122222660{360n DC y z n DF x y ⋅=+=⋅=+=,取22x =,解得2(211)n =-,,,设平面1A DE 与平面1C DF 所成锐二面角为θ,则1212121cos cos 266n n n n n n θ⋅====⋅⋅,, ∴平面1A DE 与平面1C DF 所成锐二面角的余弦值为12, 故选:B.二、解答题16.在三棱柱111ABC A B C -中,1AB AC ==,13AA =AB AC ⊥,1B C ⊥平面ABC ,E 是1B C 的中点.(1)求证:平面1AB C ⊥平面11ABB A ; (2)求直线AE 与平面11AAC C 所成角的正弦值. 【详解】(1)由1B C ⊥平面ABC ,AB 平面ABC ,得1AB B C ⊥,又AB AC ⊥,1CB AC C =,故AB ⊥平面1AB C ,AB 平面11ABB A ,故平面11ABB A ⊥平面1AB C .(2)以C 为原点,CA 为x 轴,1CB 为z 轴,建立如图所示空间直角坐标系, 则()0,0,0C ,()1,0,0A ,()1,1,0B 又2BC =113BB AA ==故11CB =,()10,0,1B ,10,0,2E ⎛⎫⎪⎝⎭,()1,0,0CA = ()111,1,1AA BB ==--,11,0,2AE ⎛⎫=- ⎪⎝⎭设平面11AAC C 的一个法向量为(),,n x y z =,则100n CA n AA ⎧⋅=⎪⎨⋅=⎪⎩,即00x x y z =⎧⎨--+=⎩,令1y =,则1z =, ()0,1,1n =, 设直线AE 与平面11AAC C 所成的角为θ,故1102sin 1214n AE n AEθ⋅===⨯+,即直线AE 与平面11AAC C 所成角的正弦值为1010.17.如图1,矩形ABCD 中,3AB BC =,将矩形ABCD 折起,使点A 与点C 重合,折痕为EF ,连接AF 、CE ,以AF 和EF 为折痕,将四边形ABFE 折起,使点B 落在线段FC 上,将CDE △向上折起,使平面DEC ⊥平面FEC ,如图2.(1)证明:平面ABE ⊥平面EFC ;(2)连接BE 、BD ,求锐二面角A BE D --的正弦值. 【详解】(1)证明:在平面ABCD 中,AF =FC ,BF +FC 3AB , 设3AB a =,则3BC a =,设BF =x ,在BAF △中,()22233x a a x +=-,解得x a =,则2AF FC a ==, 因为点B 落在线段FC 上,所以BC DE a ==,所以BE FC ⊥, 又AB BF ⊥即AB CF ⊥,AB BE B =,,AB BE ⊂平面ABE ,所以CF ⊥平面ABE ,由CF ⊂平面EFC 可得平面ABE ⊥平面EFC ;(2)以F 为原点,FC 为x 轴,过点F 平行BE 的方向作为作y 轴,过点F 垂直于平面EFC 的方向作为z 轴,建立如图所示空间直角坐标系,则()()()()2,0,0,0,0,0,3,0,,0,0C a F E a a B a ,()0,3,0BE a =, 易得平面ABE 的一个法向量为()2,0,0FC a =,作DG EC ⊥于G , 因为平面DEC ⊥平面FEC ,所以DG ⊥平面EFC ,则5334a G a ⎛⎫ ⎪ ⎪⎝⎭,53334a a D a ⎛ ⎝⎭,13334a a BD a ⎛= ⎝⎭,设平面DBE 的一个法向量为(),,n x y z =,则3013330442n BE ay a an BD ax y z ⎧⋅==⎪⎨⋅=++=⎪⎩,令3z =(3n =-, 因为12239cos ,13239n FC n FC a n FC⋅--===⋅⋅,所以锐二面角A -BE -D 223913113⎛⎫--= ⎪ ⎪⎝⎭. 18.如图,在三梭柱111ABC A B C -中,侧面11AA B B ,11AAC C 均为菱形,12AA =,1160ABB ACC ∠=∠=︒,D 为AB 的中点.(Ⅰ)求证:1//AC 平面1CDB ;(Ⅱ)若60BAC ∠=︒,求直线1AC 与平面11BB C C 所成角的正弦值. 【详解】解:(Ⅰ)连结1BC ,与1B C 交于点O ,连结OD , 四边形11BB C C 是平行四边形,O 为1B C 中点,D 为AB 中点,得1//AC OD ,又OD ⊂平面1CDB ,故1//AC 平面1CDB ;(Ⅱ)方法一:由12AB AC ==,12AC AB ==,且O 为1B C ,1BC 的中点, 得1AO BC ⊥,1AO B C ⊥,11B C BC =, 又1BC ,1CB 为平面11BB C C 内两条相交直线,得AO ⊥平面11BB C C ,故1AC B ∠即为直线1AC 与平面11BB C C 所成的角; 由60BAC ∠=︒,2AB AC ==,2BC =,得四边形11BB C C 为菱形,又11B C BC =,故四边形11BB C C 为正方形,122BC =则1ABC 为等腰直角三角形,且12BAC π∠=,故14AC B π∠=,12sin 2AC B ∠=, 因此,直线1AC 与平面11BB C C 所成角的正弦值为22.方法二:以D 为原点,分别以射线DB ,1DB ,CD 为x 轴,y 轴,z 轴的正半轴,建立空间直角坐标系O xyz -,则()0,0,0D ,()1,0,0A -,()1,0,0B ,()13,0A -,()13,0B , 由60BAC ∠=︒,2AB AC ==,ABC 为正三角形, 故CD AB ⊥,又1B D AB ⊥,所以AB ⊥平面1CDB , 设()0,,C y z ,由2CA =,123CA =,得(22223,38,y z y z ⎧+=⎪⎨+=⎪⎩即36,3y z ⎧=⎪⎪⎨⎪=⎪⎩,故3260,33C ⎛- ⎝⎭, 由11B C BC ,得12326C ⎛- ⎝⎭,所以12326AC ⎛= ⎝⎭,()11,3,0BB =-,3261,,33BC ⎛⎫=-- ⎪ ⎪⎝⎭; 设平面11BB C C 的一个法向量为()111,,n x y z =,由10,0,n BB n BC ⎧⋅=⎨⋅=⎩得1111130,33260,x y x y z ⎧-=⎪⎨+-=⎪⎩可取()3,1,2n =,设直线1AC 与平面11BB C C 所成角为θ, 则1112sin cos ,2AC n AC n AC nθ⋅===, 因此,直线1AC 与平面11BB C C 所成角的正弦值为22. 19.如图,在三棱柱111ABC A B C -中,侧面11ABB A 和11BCC B 都是正方形,平面11ABB A ⊥平面11BCC B ,,D E 分别为1BB ,AC 的中点.(1)求证://BE 平面1A CD .(2)求直线1B E 与平面1A CD 所成角的正弦值. 【详解】(1)证明:取1A C 中点F ,连接DF ,EF , ∵,E F 分别为1,AC A C 的中点,∴1//EF AA ,且112EF AA =,又四边形11ABB A 是正方形,∴11//BB AA 且11BB AA =, 即1//EF BB 且112EF BB =,又∵D 为1BB 中点,∴//EF BD 且EF BD =,所以四边形EFDB 为平行四边形,所以//BE DF ,又BE ⊄平面1A CD ,DF ⊂平面1A CD ,所以//BE 平面1A CD .(2)由题意,1,,BA BC BB 两两垂直,所以以B 为原点建立如图所示的空间直角坐标系,设12BA BC BB ===,则11(0,2,0),(1,0,1),(2,0,0),(0,1,0),(0,2,2)B E C D A . ,11(1,2,1),(2,1,0),(2,2,2)B E CD AC =-=-=-,设平面 1A CD 的法向量为(),,m x y z =, 则100AC m CD m ⎧⋅=⎨⋅=⎩,即222020x y z x y -++=⎧⎨-+=⎩,得()1,2,1m =- 设直线1B E 与平面1A CD 所成角为θ,1111412sin cos ,366B E m B E mB E mθ, 所以直线1B E 与平面1A CD 所成角的正弦值为23.。

3.2立体几何中的向量方法1

3.2立体几何中的向量方法1

AB=AC=1, 则AC1与截面 1CC1所成 与截面BB
3 1 0 角的余弦值为_________ 角的余弦值为 1 0
.
0
3正方体中 正方体中ABCD-A1B1C1D1中E为A1D1的 正方体中 为
45 中点, 则二面角E-BC-A的大小是 的大小是__________ 中点 则二面角 的大小是
θ = π m, n
m
n
θ
L
注意法向量的方向: 注意法向量的方向:同进 同出, 同出,二面角等于法向量 夹角的补角;一进一出, 夹角的补角;一进一出, 二面角等于法向量夹角
) 若二面角α l β 的大小为 θ (0 ≤ θ ≤ π , 则 cos θ =
uv u v
.
3. 线面角
设n为平面 α的法向量,直线 与平面α所 为平面 的法向量,直线AB与平面 成的角为 θ 1 ,向量 AB 与n所成的角为θ 2 , 所成的角为 则
cosθ = cos AB, CD =
B A C L D
AB AB CD AB CD
2,二面角 ,
将二面角转化为二面角的两个面的法向量的夹角. ②法向量法 将二面角转化为二面角的两个面的法向量的夹角 . 如图, 如图,向量 n ⊥α,m ⊥ β , 则二面角α l β 的大小 θ =〈m, n 〉
z P
A B E D x C y
为原点, 解:以A为原点,AD,AB,AP所在的直线分 为原点 所在的直线分 别为X轴 别为 轴,Y轴,Z轴,建立空间直角坐标系, 轴 轴 建立空间直角坐标系, 设BE=m,则 A(0, 0, 0), P (0, 0,1), D ( 3, 0, 0), E (m,1, 0), , ∴ AP = (0, 0,1), DP = ( 3, 0,1), DE = (m 3,1, 0)

立体几何中的向量方法

立体几何中的向量方法

3.2立体几何中的向量方法1.直线的方向向量:我们把直线l 上的向量a 以及与a 共线的向量叫做直线l 的方向向量.2.平面的法向量:如果表示向量a 的有向线段所在直线垂直于平面α,则称这个向量垂直于平面α,记作α⊥a ,如果α⊥a ,那么向量a 叫做平面α的法向量.给定一个点,以向量为法向量的平面是完全确定的.3.空间向量解决立体几何问题的“三步曲”:(1)建立立体图形与空间向量的联系,用空间向量表示问题中涉及到的点、直线、平面,把立体几何问题转化为向量问题;(2)通过向量运算,研究点、直线、平面之间的位置关系以及它们之间距离和夹角等问题; (3)把向量的运算结果“翻译”成相应的几何意义.4.用向量研究空间线面关系,设空间两条直线21,l l 的方向向量分别为21,e e ,两个平面21,αα的法向量分别为21,n n ,则有如下结论5.用向量法求线线角:A B 与C D 的夹角和AB与CD 的夹角相等或互补.公式为cos ,||||AB C DAB C D AB C D ⋅<>=. 6.法向量求线面角:设平面β的斜线l 与平面β所成的角为α1,斜线l 与平面β的法向量所成角α2,则α1与α2互余或与α2的补角互余.求出斜线与平面的法向量所成的角后,即可求出斜线与平面所成的角的大小.公式为cos ,||||AB nAB n AB n ⋅<>=. 7.法向量求面面角:一个二面角的平面角α1与这个二面角的两个半平面的法向量所成的角α2相等或互补.求出两平面的法向量所成的角后,即可求出二面角的大小.公式为121212cos ,||||n n n n n n ⋅<>=.8.向量法求异面直线间的距离:设分别以这两异面直线上任意两点为起点和终点的向量为a ,与这两条异面直线都垂直的向量为n ,则两异面直线间的距离是a 在n 方向上的正射影向量的模.公式为d =9.向量法求点到平面的距离:设分别以平面外一点P 与平面内一点M 为起点和终点的向量为a ,平面的法向量为n ,则P 到平面的距离d 等于a 在n 方向上正射影向量的模.公式为d =.(19)(本小题满分12分)如图,直三棱柱111ABC A B C -中,112A CBC A A ==,D 是棱1A A 的中点,1D C BD ⊥。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

的中点, 求平面EDB的一个法向量.
解:如图所示建立空间直角坐标系.
Z
依题意得D(0, 0, 0), P(0, 0,1),
P
E(0, 1 , 1 ) B(1,1,0)
22
DE (0, 1 , 1) DB =(1,1,0)
22
设平面EDB的法向量为 n (x, y,1)
D
则n DE, n DB
(1)求证:PA//平面EDB.
Z
P
解1 立体几何法
E
D
C Y
A
G
B
X
解2:如图所示建立空间直角坐标系,点D为坐标原点,设DC=1 (1)证明:连结AC,AC交BD于点G,连结EG
依题意得A(1, 0, 0), P(0, 0,1),
E(0, 1 , 1 ) 22
G( 1 ,1,0) 22
PA (1, 0, 1), EG (1 , 0, 1)
C Y
B
解4:如图所示建立空间直角坐标系,点D为坐标原点,设DC=1
(1)证明:依题意得A(1, 0, 0), P(0, 0,1), E(0, 1 , 1), B(1,1,0) 22
PA (1, 0, 1), DE (0, 1 , 1) 22
Z DB =(1,1,0)
设PA xDE yDB
A
于是
1 2
y
1 2
0
n
1,
x y 0
1,
1 X
E
C Y
B
用向量方法解决几何问题
因为方向向量与法向量可以确定 直线和平面的位置,所以我们可以利 用直线的方向向量与平面的法向量表 示空间直线、平面间的平行、垂直、 夹角、距离等位置关系.
设直线 m 的方向向量分别为 a, b ,
平面, 的法向量分别为 u, v ,则
一、方向向量与法向量 1.直线的方向向量
如图, l 为经过已知点 A 且平行于非零向量 a 的直线,那么非零向量 a 叫做直线 l 的方向向量。
换句话说,直线上的非零向量叫做直线的 方向向量
•l
A•
P
a
直线l的向量式方程 AP t a
2、平面的法向量
换句话说,与平面垂直的非零向量叫做平面
的法向量
⑵找出(求出)平面内的两个不共线的向量的 坐标 a (a1,b1,c1),b (a2,b2,c2 ) ⑶根据法向量的定义建立关于 x, y, z 的方程

n
a
0
n b 0
⑷解方程组,取其中的一个解,即得法向量.
练习 如图,在四棱锥P-ABCD中,底面ABCD是
正方形,侧棱PD⊥底面ABCD,PD=DC=1 ,E是PC
平面, 的法向量分别为 u, v ,则
(2) l a // u a u
l
a
A
u
C B
设直线 l,m 的方向向量分别为 a, b ,
平面, 的法向量分别为 u, v ,则 (3) u v u v 0
平面, 的法向量分别为 u, v ,则
(3) / / ① u / /v u v.
u
α
v
β
例1 四棱锥P-ABCD中,底面ABCD是正方形, PD⊥底面ABCD,PD=DC=6, E是PB的中点, DF:FB=CG:GP=1:2 . 求证:AE//FG.
证 :如图所示, 建立 Z
空间直角坐标系. A(6,0,0), P
E(3,3,3),
F(2,2,0), G(0,4,2),
几何法呢?
AE =(-3,3,3),FG =(-2,2,2)
AE = 3 FG AE // FG 2
AE与FG不共线
A
AE//FG
EG
D
C
F
Y
B
X
例2 四棱锥P-ABCD中,底面ABCD是正方形, PD⊥底面ABCD,PD=DC, E是PC的中点,
l
平面 α的向量式方程
a
a AP 0
P
A
例1. 如图所示, 正方体的棱长为1
(1)直线OA的一个方向向量坐标为___(_1_,0__,0_)___
(2)平面OABC 的一个法向量坐标为__(_0_,0__,1_)____ (3)平面AB1C 的一个法向量坐标为__(_-_1_,-_1_,_1_)__
P
解得 x=-2,y=1
E
即PA 2DE DB
于是PA、 DE、 DB共面
而PA 平面EDB 所以,PA//平面EDB A
X
D
C Y
B
设直线 l,m 的方向向量分别为 a, b ,
平面, 的法向量分别为 u, v ,则
二、垂直关系:
(1) l m a b a b 0
l
a
b
m
设直线 l,m 的方向向量分别为 a, b ,
Z
P
22
E
所以PA 2EG,即PA // EG
而EG 平面EDB, 且PA 平面EDB
所以,PA// 平面EDBA
X
D
G
B
C Y
解3:如图所示建立空间直角坐标系,点D为坐标原点,设DC=1
(1)证明:依题意得A(1, 0, 0), P(0, 0,1), E(0, 1 , 1), B(1,1,0) 22
z
O1
C1
A1
B1
o
A
x
C
y
B
例例22.在空间直角坐标系中,已知 A(3,0,0), B(0,4,0) ,
C(0,0, 2) ,试求平面 ABC 的一个法向量. n (4, 3, 6)
解:设平面 ABC 的一个法向量为 n ( x, y, z)
则 n AB ,n AC .∵ AB (3, 4, 0) , AC (3, 0, 2)
一. 平行关系:
(1) l / /m a / /b a b ;
a
l
b
m
设直线 l,m 的方向向量分别为 a, b ,
平面, 的法向量分别为 u, v ,则
(2) l / / ① a u a u 0 ;
u
a
α
② a∥AC ③ a x AB y AD
设直线 l,m 的方向向量分别为 a, b ,
PA (1, 0, 1), DE (0, 1 , 1) 22
Z DB =(1,1,0)
设平面EDB的法向量为 n (x, y,1) P
则n DE, n DB
于是
1 2
y
1 2
0
n
1,
1,
1
x y 0
PA n 0 PA n
而PA 平面EDB
A
D
所以,PA// 平面EDB
X
E

( (
x, x,
y, y,
z) z)
(3, (3,
4, 0,
0) 2)
0 0

3 x 3 x
4y 2z
0 0
取 x 4,则 n (4, 3, 6)

y z
3 4 3 2
x x
∴ n (4, 3, 6) 是平面 ABC 的一个法向量.
总结:如何求平面的法向量
⑴设平面的法向量为 n ( x, y, z)
相关文档
最新文档