雷达技术发展概述

合集下载

雷达技术发展历程及未来发展趋势

雷达技术发展历程及未来发展趋势

雷达技术发展历程及未来发展趋势一、发展历程雷达技术是一种利用电磁波进行探测和测量的技术,广泛应用于军事、航空、气象等领域。

下面将从早期的雷达技术发展到现代雷达技术的应用进行详细介绍。

1. 早期雷达技术发展早在20世纪初,人们就开始研究电磁波的传播和反射现象。

在第一次世界大战期间,雷达技术首次被用于军事目的,用于探测敌方飞机。

当时的雷达系统主要基于无线电技术,通过发射无线电波并接收其反射信号来实现目标的探测。

然而,由于当时雷达技术的限制,其探测距离和精度都相对较低。

2. 二战期间的雷达技术突破在第二次世界大战期间,雷达技术得到了极大的发展。

通过引入脉冲信号和脉冲压缩技术,使得雷达系统的探测距离和精度得到了显著提高。

此外,还应用了多普勒效应原理,实现了对运动目标的探测和跟踪。

这些技术突破使得雷达在战争中发挥了重要的作用,成为军事领域的重要装备。

3. 后二战时期的雷达技术发展二战后,雷达技术得到了进一步的发展和应用。

在航空领域,雷达技术被广泛应用于飞机导航和空中交通管制。

在气象领域,雷达技术被用于天气预报温和象监测。

此外,雷达技术还被应用于海洋勘探、地质勘探等领域。

随着计算机技术的发展,雷达系统的自动化程度得到了提高,使得雷达技术更加高效和可靠。

二、未来发展趋势随着科技的不断进步,雷达技术也在不断发展演进。

以下是雷达技术未来发展的几个趋势:1. 多波段雷达技术传统的雷达系统主要基于微波频段进行探测,但随着毫米波和太赫兹技术的发展,多波段雷达技术将成为未来的发展方向。

多波段雷达技术能够在不同频段下进行探测,提高目标的探测精度和分辨率。

2. 雷达成像技术雷达成像技术是近年来的研究热点之一。

传统的雷达系统只能提供目标的距离和速度等信息,而雷达成像技术可以提供目标的形状和结构等更详细的信息。

这将使得雷达技术在目标识别和目标跟踪方面有更广泛的应用。

3. 主动阵列雷达技术传统的雷达系统通常采用机械转向天线进行目标探测,但机械转向天线存在转向速度慢和目标跟踪难点等问题。

雷达技术发展历程及未来发展趋势

雷达技术发展历程及未来发展趋势

雷达技术发展历程及未来发展趋势概述:雷达技术是一种利用电磁波进行探测和测量的技术,广泛应用于军事、航空、气象、导航、交通等领域。

本文将详细介绍雷达技术的发展历程,并探讨未来的发展趋势。

一、雷达技术的发展历程1. 早期雷达技术早期雷达技术起源于20世纪初,最初用于军事领域。

第一次世界大战期间,雷达技术被用于探测敌方飞机。

当时的雷达系统主要基于电波的反射原理,通过发射电磁波并接收反射回来的信号来确定目标的位置和速度。

2. 雷达技术的发展和应用随着科学技术的进步,雷达技术得到了快速发展。

在第二次世界大战期间,雷达技术在军事领域的应用进一步扩展,成为战争中的重要武器。

此后,雷达技术逐渐应用于民用领域,如航空、气象、导航和交通等。

3. 雷达技术的进步和创新随着计算机技术和信号处理技术的进步,雷达技术得到了进一步的提升和创新。

现代雷达系统不仅能够实现更高精度的目标探测和跟踪,还能够提供更多的功能,如地形测绘、气象预测和隐身目标探测等。

二、雷达技术的未来发展趋势1. 高精度和高分辨率未来雷达技术的发展趋势之一是实现更高精度和更高分辨率的目标探测。

通过引入新的信号处理算法和更先进的硬件设备,雷达系统能够实现对小型目标的精确探测和跟踪,提高雷达系统的目标识别能力。

2. 多功能集成未来雷达系统将趋向于多功能集成,实现多种功能的融合。

例如,将雷达系统与其他传感器和系统集成,如红外传感器、光学传感器和卫星导航系统等,可以提高雷达系统的综合性能和适应性。

3. 自适应和智能化未来雷达技术的发展趋势之一是实现自适应和智能化。

通过引入人工智能和机器学习算法,雷达系统可以根据环境变化和任务需求进行自主调整和优化,提高系统的性能和效率。

4. 高效能源和环境友好未来雷达系统将注重能源的高效利用和环境的友好性。

通过采用新型的能源供应和管理技术,如太阳能和储能技术,以及降低功耗和减少对环境的影响,雷达系统可以实现更高的能源利用效率和更低的碳排放。

雷达技术发展历程及未来发展趋势

雷达技术发展历程及未来发展趋势

雷达技术发展历程及未来发展趋势一、引言雷达技术是一种利用电磁波进行目标探测和跟踪的技术。

它在军事、航空、航天、气象、海洋等领域发挥着重要作用。

本文将介绍雷达技术的发展历程,并展望未来发展趋势。

二、雷达技术的发展历程1. 早期雷达技术早在20世纪初,人们就开始探索无线电波的应用。

在第一次世界大战期间,雷达技术开始发展起来,用于探测敌方飞机。

当时的雷达系统主要基于连续波和脉冲波技术,但受限于技术水平,探测距离和精度较低。

2. 二战时期的雷达技术突破第二次世界大战期间,雷达技术得到了重要突破。

通过引入脉冲压缩、频率多普勒效应等技术,雷达系统的探测距离和精度大幅提升。

同时,雷达技术在军事领域的应用也得到了广泛推广,成为战争中的重要武器。

3. 后二战时期的雷达技术发展二战后,雷达技术进一步发展。

微波雷达的浮现使得雷达系统的工作频率更高,探测精度更高。

同时,雷达信号处理技术也得到了改进,使得雷达系统对目标的识别和跟踪能力得到了提升。

此外,雷达系统的体积和功耗也得到了缩小,使得雷达技术可以应用于更多领域。

4. 现代雷达技术的发展现代雷达技术在波形设计、信号处理、天线技术、目标识别等方面取得了许多重要发展。

例如,通过采用多普勒处理技术,雷达系统可以对目标的速度进行测量和跟踪。

此外,通过引入自适应波形设计和多通道信号处理技术,雷达系统的抗干扰能力得到了提升。

同时,雷达系统的天线技术也在不断改进,如相控阵天线技术、多波束技术等,使得雷达系统的探测范围和角度分辨率得到了提升。

三、雷达技术的未来发展趋势1. 高频段雷达技术的发展随着微波雷达技术的发展,人们开始研究和应用毫米波和太赫兹波段的雷达技术。

这些高频段的雷达系统具有更高的分辨率和抗干扰能力,可以应用于更复杂的环境和目标探测。

未来,高频段雷达技术将得到更广泛的应用。

2. 多波束雷达技术的发展多波束雷达技术可以同时对多个目标进行探测和跟踪,具有更高的效率和灵便性。

未来,多波束雷达技术将得到进一步发展,使得雷达系统能够实现更高的目标数量和密度探测。

雷达技术发展历程及未来发展趋势

雷达技术发展历程及未来发展趋势

雷达技术发展历程及未来发展趋势引言概述:雷达技术是一种利用电磁波进行探测和测量的技术,广泛应用于军事、航空、天气预报等领域。

本文将从雷达技术的起源开始,介绍雷达技术的发展历程,并展望未来雷达技术的发展趋势。

一、雷达技术的起源与初期发展1.1 早期雷达技术的诞生雷达技术最早起源于20世纪初,当时人们开始意识到电磁波可以用于远距离探测。

在第一次世界大战期间,人们开始利用无线电波进行目标探测和测距,这可以看作是雷达技术的初步应用。

1.2 二战期间雷达技术的飞速发展二战期间,雷达技术得到了迅猛发展。

人们发明了更加先进的雷达系统,可以实现对空中、地面和水面目标的探测和跟踪。

雷达技术在战争中发挥了重要作用,并为后来的民用应用奠定了基础。

1.3 战后雷达技术的应用拓展战后,雷达技术逐渐应用于民用领域。

航空雷达、天气雷达等系统相继问世,为航空安全和天气预报提供了强大支持。

雷达技术的应用范围不断扩大,成为现代社会不可或缺的一部分。

二、雷达技术的发展进展2.1 雷达技术的数字化与自动化随着计算机技术的发展,雷达系统逐渐实现了数字化和自动化。

数字信号处理技术的应用使得雷达系统的性能得到了提升,可以更加准确地识别和跟踪目标。

自动化技术的发展使得雷达系统的操作更加简便,提高了工作效率。

2.2 多功能雷达系统的出现为了满足多样化的需求,多功能雷达系统逐渐得到了广泛应用。

这些系统具备多种工作模式,可以实现空中目标探测、地面目标跟踪、天气监测等多种功能。

多功能雷达系统的出现使得雷达技术的应用领域更加广泛。

2.3 雷达技术与其他技术的融合雷达技术与其他技术的融合也是当前的发展趋势之一。

例如,雷达技术与无人机技术的结合,可以实现更加灵活、高效的目标探测和监测。

雷达技术还可以与人工智能等领域进行深度融合,提高雷达系统的智能化水平。

三、雷达技术的未来发展趋势3.1 高分辨率与高精度未来雷达技术的发展将趋向于高分辨率和高精度。

通过采用更高频率的电磁波和更先进的信号处理算法,雷达系统可以实现对目标的更精细探测和跟踪,提高探测的分辨率和测量的精度。

雷达技术发展历程及未来发展趋势

雷达技术发展历程及未来发展趋势

雷达技术发展历程及未来发展趋势概述:雷达(Radar)是一种利用电磁波进行探测和测量的技术。

它在军事、航空、气象、导航等领域发挥着重要作用。

本文将介绍雷达技术的发展历程,并探讨未来雷达技术的发展趋势。

一、雷达技术发展历程:1. 早期雷达技术:雷达技术起源于20世纪初期,最早用于军事领域。

早期雷达系统主要采用机械扫描方式,通过发送脉冲信号并接收回波来实现目标探测。

这些早期雷达系统在第二次世界大战期间发挥了重要作用,匡助军队进行目标侦测和导航。

2. 脉冲雷达技术:随着科技的进步,雷达技术逐渐发展为脉冲雷达技术。

脉冲雷达系统通过发送短脉冲信号并测量回波的时间来确定目标的距离。

这种技术具有高分辨率和较长探测距离的优势,被广泛应用于航空、气象和导航领域。

3. 连续波雷达技术:连续波雷达技术是雷达技术的又一重要发展阶段。

连续波雷达系统通过发送连续的电磁波信号,并测量回波的频率变化来确定目标的速度。

这种技术在航空领域中被广泛使用,用于飞行器的导航和着陆。

4. 相控阵雷达技术:相控阵雷达技术是近年来的重要突破。

相控阵雷达系统通过利用多个发射和接收单元的组合,实现对目标进行快速扫描和定位。

相控阵雷达技术具有高分辨率、快速探测和抗干扰能力强的特点,广泛应用于军事和航空领域。

二、雷达技术的未来发展趋势:1. 多波束雷达:多波束雷达技术是未来雷达技术的重要发展方向。

通过利用多个波束同时进行探测和测量,可以提高雷达系统的探测效率和准确性。

多波束雷达技术可以应用于军事侦察、航空导航和天气预测等领域。

2. 超高频雷达:超高频雷达技术是未来雷达技术的另一个重要方向。

超高频雷达系统可以利用较高频率的电磁波进行探测,具有更高的分辨率和探测距离。

这种技术可以应用于目标识别、隐身飞行器探测和地质勘探等领域。

3. 弹性波雷达:弹性波雷达技术是未来雷达技术的新兴方向。

弹性波雷达系统可以利用地球表面的弹性波传播进行探测,具有对地壳结构进行高精度探测的能力。

雷达技术发展历程及未来发展趋势

雷达技术发展历程及未来发展趋势

雷达技术发展历程及未来发展趋势一、发展历程雷达技术是一种利用电磁波进行探测和测量的技术,它具有广泛的应用领域,包括军事、航空、航天、气象等。

以下是雷达技术的发展历程:1. 早期雷达技术(20世纪初至1945年)早期的雷达技术主要用于军事目的,用于探测敌方飞机和舰船。

最早的雷达系统是通过发射无线电波并接收其反射信号来实现目标探测。

这些系统的性能有限,探测距离和分辨率较低。

2. 雷达技术的发展(1945年至20世纪末)二战后,雷达技术得到了迅速发展。

在这一时期,雷达系统的探测距离和分辨率得到了显著提高。

采用了脉冲雷达技术,能够在较长距离上探测到目标,并且能够区分不同目标之间的距离和速度。

3. 雷达技术的数字化和高性能化(20世纪末至今)随着计算机技术的发展,雷达系统逐渐实现了数字化和高性能化。

数字化雷达系统能够更准确地处理和分析雷达信号,提高探测和跟踪目标的能力。

高性能雷达系统具有更高的探测距离、分辨率和抗干扰能力。

二、未来发展趋势雷达技术在未来将继续发展,并在各个领域发挥更重要的作用。

以下是雷达技术未来的发展趋势:1. 多功能雷达系统未来的雷达系统将具备多种功能,能够同时实现目标探测、跟踪、成像和通信等多种任务。

这些系统将能够在复杂的环境中进行目标探测,并实现高精度的目标跟踪和成像。

2. 雷达网络化未来的雷达系统将实现网络化,多个雷达系统之间能够进行数据共享和协同工作。

通过网络化,可以实现更广泛的目标探测和跟踪,提高雷达系统的整体性能。

3. 超高频雷达超高频雷达是一种新型雷达技术,能够实现更高的分辨率和探测精度。

未来的雷达系统将采用超高频技术,能够更准确地探测和识别目标,适合于更多的应用场景。

4. 雷达与人工智能的结合人工智能技术在近年来得到了快速发展,未来的雷达系统将与人工智能技术结合,实现更智能化的目标识别和跟踪。

通过机器学习和深度学习算法,雷达系统能够更准确地判断目标的特征和行为。

5. 小型化和便携化随着科技的进步,未来的雷达系统将越来越小型化和便携化。

雷达技术发展历程及未来发展趋势

雷达技术发展历程及未来发展趋势

雷达技术发展历程及未来发展趋势概述:雷达技术是一种利用电磁波进行探测和测量的技术,广泛应用于军事、航空航天、气象、地质勘探、交通管理等领域。

本文将介绍雷达技术的发展历程,并展望未来雷达技术的发展趋势。

一、雷达技术的发展历程1. 早期雷达技术早期雷达技术起源于20世纪初,最早应用于军事领域。

当时的雷达系统主要采用机械扫描方式,使用长波或短波频段的电磁波进行探测。

这些系统具有较低的分辨率和探测距离有限的缺点,但仍然为军事战略提供了重要的情报支持。

2. 二战时期的雷达技术突破二战期间,雷达技术取得了重大突破。

通过引入脉冲压缩和窄波束技术,雷达系统的分辨率和探测距离得到了显著提高。

此外,雷达系统还开始应用于航空领域,用于飞机导航和目标跟踪。

这一时期的雷达技术进一步巩固了其在军事领域的地位。

3. 后二战时期的雷达技术发展二战后,雷达技术得到了广泛应用和发展。

雷达系统开始采用固态电子器件,提高了系统的可靠性和稳定性。

同时,频率范围也得到了扩展,从长波和短波频段发展到微波和毫米波频段。

这一时期的雷达技术进一步提高了分辨率、探测距离和目标识别能力。

4. 现代雷达技术的发展近年来,雷达技术在多个领域取得了显著进展。

现代雷达系统采用数字信号处理和宽带技术,使得雷达系统具有更高的分辨率、更远的探测距离和更强的抗干扰能力。

此外,雷达系统还开始应用于民用领域,如交通管理、气象预报和地质勘探等。

二、未来雷达技术的发展趋势1. 高分辨率雷达系统未来雷达技术将继续追求更高的分辨率。

通过采用更高频率的电磁波、更精密的天线设计和更先进的信号处理算法,雷达系统将能够实现更精确的目标识别和跟踪。

2. 多功能雷达系统未来雷达系统将朝着多功能化发展。

传统雷达系统通常只能实现单一功能,如目标探测或跟踪。

而未来的雷达系统将集成多种功能,如目标识别、环境感知和通信等,以满足不同领域的需求。

3. 主动阵列雷达技术主动阵列雷达技术是未来雷达技术的一个重要发展方向。

雷达技术发展历程及未来发展趋势

雷达技术发展历程及未来发展趋势

雷达技术发展历程及未来发展趋势一、雷达技术发展历程雷达技术是一种利用电磁波进行目标探测和测量的技术。

自20世纪初问世以来,雷达技术经历了多个阶段的发展,不断取得了重大突破和进展。

1. 早期雷达技术(20世纪初至二战期间)早期的雷达技术主要用于军事领域,用于探测敌方飞机和船只。

最早的雷达系统采用了连续波雷达技术,但由于无法实现距离测量,限制了雷达的应用范围。

随着脉冲雷达的出现,雷达系统的测距和测速能力得到了显著提升。

2. 近代雷达技术(二战后至20世纪70年代)在二战后的几十年里,雷达技术得到了广泛的发展和应用。

发射机和接收机的技术不断改进,使得雷达系统的性能得到了提升。

同时,雷达系统的工作频率也从低频逐渐向高频发展,这使得雷达系统的分辨率和探测能力得到了大幅度提高。

3. 现代雷达技术(20世纪70年代至今)进入20世纪70年代以后,雷达技术开始向着数字化、多功能化和多波束化的方向发展。

数字信号处理技术的引入使得雷达系统的性能进一步提升,同时也降低了系统的成本。

多功能雷达系统的出现使得雷达能够同时进行目标探测、跟踪、识别和导引等多种功能。

此外,雷达系统的天线技术也得到了极大的改进,实现了多波束、相控阵和合成孔径雷达等新的应用。

二、雷达技术未来发展趋势1. 高频段雷达技术的发展随着雷达技术的不断发展,高频段雷达技术将成为未来的发展趋势。

高频段雷达具有更高的分辨率和探测能力,能够更好地应对复杂环境下的目标探测和跟踪需求。

此外,高频段雷达还可以实现更高的数据传输速率,为雷达系统的信息处理提供更多的数据支持。

2. 主动相控阵雷达技术的应用主动相控阵雷达技术是未来雷达技术的重要发展方向之一。

相比传统的机械扫描雷达,主动相控阵雷达具有更高的探测效率和抗干扰能力。

主动相控阵雷达可以实现快速的波束转向和多波束扫描,能够在短时间内对多个目标进行探测和跟踪,适用于复杂多变的作战环境。

3. 雷达与人工智能的结合人工智能技术的快速发展为雷达技术的进一步提升提供了新的机遇。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

规律,并从雷达反隐身技术、相控 阵雷达技术、雷达 目标识别技 平面阵相扫天 线。与相控 阵雷达 雷达有关 的主要 技术包括:收
术、雷达抗干扰技术等方面探讨雷达技术 的宏观发展趋势。
发组件技术 、相控 阵宽带技术、相 控阵极化 技术、相控 阵共形
1 雷达技术 的发展历史及规律
技术、数字波 束形成技术 、相控 阵低 副瓣技术 、相控 阵极低副
技术应用 ·
雷达技术发展概述
刘 赞 薛晓强(陕西黄河集团有限公司24车间,陕西 西安 710043)
摘 要:雷达技术的发展同其他事物一样,也要经历由低级到高级、由简单到复杂、由低纬度探 测到高纬度探测的演变。本文中,笔者将综 述雷达技术的发展 历史及规律,并从雷达反隐身技术、相控阵雷达技术、雷达 目标识别技术、雷达抗干扰技术等方面探讨雷达技术的宏观 发 展 趋 势。 关键词 :雷达技 术;识别 ;隐身
雷达作为一种军 民两用的电子传感器广泛应 用,其首要任 组网技术 ;选取较低 的工作频率,扩大雷达频段 等。
务就是探测 目标 ,要求能够在复杂的环 境下,以一定的数据率,
(2)相控 阵雷达技术。相控 阵体制容易得 到较 大的功率孔径
在一定 的范围 内及时发 现、识别 、稳 定跟踪 目标 。但是 随着环 积,可实现功率的最佳 空间分布,目标驻 留时间可变 ,波束灵活
个世纪8O年代到本世纪初 期,为满足现代空战对雷达高精度、 行识别 、根 据 目标极化特性进行 识别、利用毫 米波 雷达 进行识
多 目标跟踪能力、高抗干扰 能力、高可靠性、高分辨率的要求 , 别、利用 回波信 号的多普勒频 谱进行 识别 。关于雷达 目标 识别
开始发 展大规模 集成 电路、全 固态 。相控 阵技术 ,从而有 效应 技术,国内外一些在研课题包括 :多探测器融合、高速小型化计
雷达诞 生于上个世纪 30年代 ,先后经 历 了二次世界大战 、 瓣 技术等 。随着硅 功率 晶体 管、砷 化镓 的发 展,生产成本 的降
新 军事革命、冷 战军备竞赛 等不 同历史因素 的促 进与考研 ,雷 低 ,有源 相控阵 在工作可靠性 、波束控制灵活性 以及功率 利用
达技 术 的理论、体制 、方 法、应用都 得 到了很 大 的发 展 。总体 率等方面 的优 点 ,预计在今后的一个 时期,有 源相控 阵将是雷
[参考文献]
雷达 :借助 隐身 目标 具有频率局 限性 的缺 陷,采用单 基地雷达 [1]李均阁.雷达技术发展综述及多功能相控 阵雷达未来趋势 [J].甘肃科
技 ,2012,(18).
[2]赵朋亮.舰载雷达技术的发展探讨 [1I].科技信息,2010(17).
作者简介:刘赞 (1975.7-),女,河北省人,单位:陕西黄河集团 [3]陶顺龙.雷达技术发展动态 [J].现代雷达,2006(9).
有 限公司24车 间,学历 :工程 硕士,职称 :助理 工程师 ,研 究方
向:无线 电装联技术 。
2 雷达技术的宏观发展趋势
胁 ,目前 电子战 主要 由电子干 扰 、电子支 援 措施 、电子反干 扰
(1)雷达 反 隐身技 术 。隐身 目标 也 被称 为 “低 可观 测 性 目 三部 分组 成 ,目前常用 的雷 达抗干 扰 技术 为反电子 干扰 技 术
标 ”,主要通过 降低 目标的雷达反射 截面 ,进而降低被探测到的 (CESM),技术 上讲 主要是 低识 别概率 技术 和低 截获 概率 技 概率 。目前常用的降低飞行器 雷达 反射 截面的方法主要包括采 术,主要方法为延误和阻止 电子 干扰截获接收机截 获和 识别信 用蒙皮、非金属框 架等吸波 结构来吸收雷达 波减 少反射;在飞 号,近年来,无源检测反干扰 技术也得到了有效发 展。
年代 ,防空作 战对雷达 的精确 引导技术提 出了更高的要求 ,稳 是何种飞机 ,所 以雷达 目标识别技 术也将是雷达技术 的一个重
定性和可靠性较 高的全相参微波雷达逐渐替代了非相参技术体 要发展趋势。目前常用 的目标识别技术包括:谐波识别法、根据
制 的微波雷达,技术特 征主要是半导体、全相参 ;第三阶段为上 目标 回波进行相参处理 的方法进行 识别、根据 目标频率 响应进
包括提高雷达 对隐身目标的探测灵敏度和使用某些 技术增大 目 体技术 、光 电技术 、自适应数字 波束形成技术 等高新技术 的发
标 的雷达反 射截面 。可能采 用的技术有:改变雷达发射 波的极 展,雷达技术将产生新的飞跃。
化方向,增 大隐身目标的雷达 反射截面;采用宽带、超 宽带雷达
来应对 超低频 段 目标 隐身:采用超视 距雷达、后 向散射超视 距
对复杂 电磁环 境下低 空高速 目标的要求 ;第 四个阶段开始 于本 算机信号处理技术 、人工智能信号处理技术 、识别 系统的恒定
世纪初期 ,雷达技术主要向多功能、自适应、目标识别等方面发 性等 。
展 ,以应对 隐身 目标、高空高速、低空低速 目标 的出现 。
(4)雷 达抗干扰 技 术 。电子干 扰一直 是雷 达面 临的重大 威
行器上 涂覆吸波 材料,减少 雷达 反射;从新 设计飞行器 的外形 3 结束 语
来 改变 入射 波的散射方 向。因此 ,随着 隐身 目标的出现 ,反隐身
综 上所述 ,雷达 技术 的发展也要经 历由低级 到高级、由简
技术成 为雷达技 术的一个宏观发展趋 势,目前 常用的应对措施 单到复杂、由低纬度探测 到高纬度探 测的演变。相 信随着半 导
境 复杂化 、目标多样化、任务 多元化,特别是一 些隐身目标 ,低 无惯性,可 以缩 短系统反应 时间,提高数据率 ,增强抗干扰性 ,
空低速 高空高速 目标的出现 ,促进 了雷达理论、雷达体制、雷达 目前广泛应用 于很 多战术 雷达和 战略预 警雷达 中,例如意大利
技术 的不断涌现 。本文中,笔者将 综述雷达 技术 的发展 历史及 的RAT-31S、法 国的TRS一2230、美 国的w一2000、TPS一70都采用 了
上 来说 ,雷达 技术 的发展可 以分为 四个 阶段 :第一 阶段 为上个 达技术 的一个主要发展雷达典 型技术特点为 电子管、非 相
(3)雷达 目标识 别技术 。探 测到 目标并确定 目标 的方位与速
参 ,探 测 目标 以飞机 为主;第二个 阶段为上个世 纪50年 代N8o 度无 疑是重 要的,但在现 在战场 上有 时还 需要识 别 目标,弄清
相关文档
最新文档