CAESAR_II_膨胀节输入
caesar ii 数据输入及建模要点

Caesar II 数据输入及建模要点1. 数据输入的重要性数据输入是进行管道分析的第一步,其准确性和完整性对分析结果有着至关重要的影响。
在进行数据输入时,需要特别注意以下几个要点:2. 材料属性在进行管道分析时,需要准确输入管道所用材料的属性,包括材料的屈服强度、弹性模量、泊松比等参数。
这些参数将直接影响到分析结果的准确性,因此需要确保输入的材料属性准确无误。
3. 几何结构管道的几何结构也是进行分析时需要输入的重要参数,包括管道的直径、壁厚、长度等。
这些参数将影响到管道的应力分布、挠曲情况等,因此需要确保输入的几何结构准确无误。
4. 荷载情况在进行分析时,需要考虑管道所受到的各种荷载,包括内压力、外载荷、温度等。
这些荷载将影响到管道的应力情况,因此需要准确输入各种荷载的大小和作用方向。
5. 建模要点在进行管道建模时,需要特别注意以下几个要点:6. 管道支撑管道支撑是管道建模中的重要部分,不仅可以支撑管道本身,还可以影响到管道的应力分布和挠曲情况。
在进行建模时,需要准确设置管道支撑的类型、位置、刚度等参数。
7. 管道约束管道的约束也是建模中的重要部分,它可以限制管道的运动,影响到管道的应力情况。
在进行建模时,需要准确设置管道的约束情况,包括固定约束、弹簧约束、铰链约束等。
8. 单元类型在进行建模时,需要选择合适的单元类型来进行分析。
不同的单元类型适用于不同的分析情况,因此需要根据实际情况选择合适的单元类型。
9. 网格密度在进行建模时,需要确保网格的密度足够细致,以准确反映管道的几何结构和材料特性。
过于稀疏的网格将导致分析结果的不准确性,因此需要注意在进行建模时适当增加网格密度。
数据输入和建模是进行管道分析的重要环节,需要特别注意以上要点,以确保分析结果的准确性和可靠性。
在实际应用中,还需要根据具体情况进行进一步的优化和调整,以获得更为准确的分析结果。
数据输入的准确性和建模的合理性对于管道分析的结果影响深远。
CAESARⅡ在烟风管道应力计算中的应用

f2 轴=f2 轴 1+f2 轴 2=5.3+19.65=24.95kN
2 号膨胀节径向反力:
f2 径=15×cos45°×2=21.2kN
按坐标进行受力分解:
f2 轴 x=17.64kN;f2 轴 z=17.64kN
f2 径 x=15kN;f2 径 z=15kN
3.2 理论公式计算
(1)管道冷态受力分析简化模型见图 3。
工程技术
2018 年第 6 期
CAESARⅡ在烟风管道 应力计算中的应用
Application of CAESARⅡ in Stress Calculation of Tobacco Pipeline
汪佳杰
摘 要:CAESAR Ⅱ管道应力计算软件的大薄壁管道应力计算与余热锅炉烟风管道十分相近。通过 三维坐标的设计,可以模拟三维烟风管道,利用有限元分析原理,可以使支架受力分析适应更加有利 的工况。能够模拟各种支架限制方式,可以添加外保温及内部浇注料,使管道重量更加精确。可以添 加端点热态位移,提高热态工况的受力的准确性。可以输入膨胀节的轴径向刚度,增加热态计算工况 膨胀节反力的准确性。可以设定安装温度及管道工作介质温度计算冷热态工况。通过合理简化管道 模型,使最终的管道支架受力与实际运行工况更加接近。利用 CAESARⅡ软件进行烟风管道支架受 力计算具备可行性与高效性,可广泛应用于今后的工程设计中。 关键词:CAESARⅡ软件;烟风管道;受力计算;精准可靠 中图分类号:TQ172.622.29 文献标识码:A 文章编号:1001-6171(2018)06-0077-08 DOI:10.19698/ki.1001-6171.20186077
其他设置要点为:
(1)钢板卷制的焊接管道,选择有焊缝;填写焊 接接头系数:WI=0.8;
CAESARii数据输入及其建模要点

第一部分支架形式模拟 (2)1.0 普通支架的模拟 (2)1.1 U-band (2)1.2 承重支架 (3)1.3 导向支架 (3)1.4 限位支架 (7)1.5 固定支架 (7)1.6 吊架 (8)1.7 水平拉杆 (8)1.8 弹簧支架模拟 (9)2.0 附塔管道支架的模拟 (11)3.0弯头上支架 (13)4.0 液压阻尼器 (14)5.0 CAESARII可模拟虾米弯,但变径虾米弯不能模拟 (15)第二部分管件的模拟 (15)1.0 法兰和阀门的模拟 (15)2.0 大小头模拟 (17)3.0 安全阀的模拟 (18)4.0 弯头的模拟 (19)5.0 支管连接形式 (20)6.0 膨胀节的模拟 (21)6.1 大拉杆横向型膨胀节 (22)6.2 铰链型膨胀节 (34)第三部分设备模拟 (42)1.0 塔 (42)1.1 板式塔的模拟 (42)1.2 填料塔的模拟 (44)1.3 除了模拟塔体的温度,还需模拟塔裙座的温度 (47)2.0 换热器,再沸器 (48)2.1 换热器模拟也分两种情况 (48)3.0 板式换热器 (51)4.0 空冷器 (52)4.1 空冷器进口管道和出口管道不在同一侧 (52)4.2 空冷器进口管道和出口管道在同一侧 (54)5.0 泵 (56)6.0 压缩机,透平 (58)第四部分管口校核 (59)1.0 WRC107 (59)2.0 Nema 23 (62)3.0 API617 (64)4.0 API610 (65)第五部分工况组合 (68)1.0 地震 (69)2.0 风载 (70)3.0 安全阀起跳工况 (72)4.0 沉降 (74)第一部分支架形式模拟1.0 普通支架的模拟1.1 U-band在CAESAII的输入界面找到restraints选项,并双击打勾,在type项填入支架的约束形式,U-band只需在type项中输入X,y用户还需输入支架的摩擦系数Mu,通常规定:钢与钢接触的承重支架摩擦系数输入0.3不锈钢与PTFE板接触的承重支架摩擦系数输入为0.1支架选项中,stif代表支架生根部份的刚度,不输代表无穷大,用户可以把生根部件的刚度输入其中,单位为N/cm1.2 承重支架+Y1.3.1 水平管道若导向支架的挡块与管托之间有间隙,可在图中(Gap:)中输入间隙,不输表示导向的间隙为01.3.2 垂直管道 1.3.2.1 四向导向+YX1.3.2.2 单边导向*-1.4 限位支架1.5 固定支架+YZ StopperANC1.6 吊架双击restrains选项,承重吊架为+Yrod,并在len中输入吊杆的摆动的长度1.7 水平拉杆1.8 弹簧支架模拟双击Hangers出现如下图框Node输入支架的节点号Hanger Talbe:选择弹簧的型号,国内项目选择13-Sinopec(China)Avalable Space(neg for can)若该点由弹簧支撑,可以输入一个负的距离,该距离为支称点与弹簧底板之间的距离Allowable load Variation(%):为弹簧的荷载变化率=(热态载荷-冷态载荷)/热态载荷的绝对值乘以100%,一般弹簧的荷载变化率控制在25%内,但是在一些敏感设备附近,如压缩机,透平管口附近,弹簧的荷载变化率需控制在10%内,这时用户需在此选项中输入10Rigid Support Displacement Criteria:在应力计算中,有时软件自选的弹簧热位移很小,例如1mm左右,在不是敏感设备附近,工程上常用刚性支架来代替弹簧支架,用户可以人为输入刚性支架代替弹簧支架热位移标准,如输入1mm,则若软件算出弹簧的热位移小于1mm,软件就自动将该弹簧代替为刚性支架Max.Allowed Travel Limit:该项定义了可变弹簧最大位移量,若软件算出的热位移量超过该输入值,则软件将自动把可变弹簧替换为恒力弹簧No。
caesar2-膨胀节输入解析

复式大拉杆波纹管膨胀节的应用
Tied Bellows—单式拉杆型膨胀节
简单模型 近来吸收横向位移,无轴向位移,弯曲和 转角吸收功能 拉杆螺栓在外侧,允许拉杆承受拉力条件 下,或拉杆螺栓在内外两侧,拉杆可以收 押的条件下。 复杂模型 失效分析时采用 管直径大,波数多时采用
拉杆螺栓在外侧,仅允许拉杆承受拉力条 件下 均匀的将荷载分配到拉杆上 单拉杆用一个零重量刚性件模拟轴向刚度。 刚性件的直径等于拉杆直径,刚性件的壁 厚等于杆的直径 考虑拉杆的端部摩擦作用,及其它影响恒 向变形的因数,建议将横向刚度值增加 30% 考虑拉杆的端部摩擦作用,及其它影响恒 向变形的因数,建议将横向刚度值增加 30%
Gimbal Joints--万向式膨胀节
Dual Gimbal—复式万向型膨胀节 Pressure-Balanced Tees and Elbows—压力平衡型膨胀节
一、膨胀节的类型及典型管段的补 偿设计
1.单式轴向型膨胀节 • 由一个波纹管和两个可与相邻管道、设备 相接的端管(或法兰)等组成的 挠性装置,主要用于补偿直管段轴向位移, 另外也可以吸收少量的横向位移. 图1 是采用轴向型膨胀节设置实例。
波纹管-膨胀节
主讲人:王大辉、金红伟 2008
膨胀节刚度
• Axial Stiffness—轴向刚度 • Transverse Stiffness—横向刚度(往往输入横向刚度,软件计算弯曲刚度) • Bending Stiffness—弯曲刚度(应用在零长度角式和弯向始终) • Torsional Stiffness—扭转刚度
有效内径
和盲板力相关
Simplified Bellow—波纹管
波纹管长度可为0长度也可为一个定长度。 在定长度的条件下,弯பைடு நூலகம்或横向刚度其一不用输 入。推荐不输弯曲刚度,而输入横向刚度。 如果输入弯曲刚度,刚度计算有一定要求。 波的重量和附件的重量分别加在两侧法兰上。
CAESAR Ⅱ在烟风管道应力计算中的应用

防溺水安全活动计划防溺水安全活动计划(精选6篇)时间的脚步是无声的,它在不经意间流逝,很快就要开展新的工作了,我们要好好计划今后的学习,制定一份计划了。
那么你真正懂得怎么制定计划吗?以下是小编收集整理的防溺水安全活动计划(精选6篇),欢迎大家借鉴与参考,希望对大家有所帮助。
防溺水安全活动计划1幼儿园的小朋友安全意识非常淡薄,预防溺水教育形势非常严峻,为了切实做好我园幼儿防溺水安全教育工作,减少乃至避免溺水事故的发生,我园特制定本计划。
一、指导思想坚持“以人为本”、“生命至上”的原则,充分发挥幼儿园的教育和管理职能,减少乃至避免溺水事故的发生,为创建平安幼儿园,构建和谐社会作出应有的努力。
二、活动目标通过预防溺水教育宣传,进一步增强幼儿及家长的安全意识,进一步完善幼儿园预防溺水教育的各项制度,提高幼儿园安全管理水平,减少乃至避免溺水事故的发生,保证幼儿园的教育教学工作健康有序的开展。
三、组织建设领导小组:组长:副组长:成员:各班班主任四、具体措施1、利用宣传栏和张贴标语的形式,营造防溺水宣传的氛围。
2、利用每天5分钟安全教育的机会,宣传防溺水教育。
用附近、身边的例子告诉幼儿:生命只有一次,如果死了,就见不到妈妈,不能和小朋友玩了。
3、每班召开一次主题班会,在班主任的引导下,了解附近的危险地带、池塘、小河,掉下去是非常危险的。
讨论如何能避免溺水现象的发生:没有父母的陪同下,不能到河边去玩。
有人落水,不能去拉,要大声呼救。
4、召开家长会,以及利用家长接送幼儿时间,向家长宣传防溺水知识,让家长配合幼儿园做好防溺水安全管理工作。
5、让家长和幼儿都参与到防溺水活动中来,互相提醒,互相监督发现有幼儿到河边玩水,马上制止并通知监护人或幼儿园。
安全工作是幼儿园的头等大事,希望全体教职工以“防溺水安全宣传日”为契机,积极行动起来,高度重视对幼儿的安全教育,认真开展好“珍爱生命,预防溺水”教育活动。
在广泛宣传教育的基础上,班主任要积极做好幼儿离园时与家长的交接工作,避免出现幼儿管理上的空档。
CAESAR ii 数据输入及建模要点

第一部分支架形式模拟 (2)1.0 普通支架的模拟 (2)1.1 U-band (2)1.2 承重支架 (3)1.3 导向支架 (3)1.4 限位支架 (7)1.5 固定支架 (7)1.6 吊架 (8)1.7 水平拉杆 (8)1.8 弹簧支架模拟 (9)2.0 附塔管道支架的模拟 (11)3.0弯头上支架 (13)4.0 液压阻尼器 (14)5.0 CAESARII可模拟虾米弯,但变径虾米弯不能模拟 (15)第二部分管件的模拟 (15)1.0 法兰和阀门的模拟 (15)2.0 大小头模拟 (17)3.0 安全阀的模拟 (18)4.0 弯头的模拟 (19)5.0 支管连接形式 (20)6.0 膨胀节的模拟 (21)6.1 大拉杆横向型膨胀节 (22)6.2 铰链型膨胀节 (34)第三部分设备模拟 (42)1.0 塔 (42)1.1 板式塔的模拟 (43)1.2 填料塔的模拟 (44)1.3 除了模拟塔体的温度,还需模拟塔裙座的温度 (47)2.0 换热器,再沸器 (48)2.1 换热器模拟也分两种情况 (48)3.0 板式换热器 (51)4.0 空冷器 (52)4.1 空冷器进口管道和出口管道不在同一侧 (52)4.2 空冷器进口管道和出口管道在同一侧 (54)5.0 泵 (56)6.0 压缩机,透平 (58)第四部分管口校核 (59)1.0 WRC107 (59)2.0 Nema 23 (62)3.0 API617 (64)4.0 API610 (65)第五部分工况组合 (68)1.0 地震 (69)2.0 风载 (70)3.0 安全阀起跳工况 (72)4.0 沉降 (74)第一部分支架形式模拟1.0 普通支架的模拟1.1 U-bandY XStrap在CAESAII的输入界面找到restraints选项,并双击打勾,在Node项目,输入该支架位置的节点,在type项填入支架的约束形式,U-band只需在type项中输入X,y用户还需输入支架的摩擦系数Mu,通常规定:钢与钢接触的承重支架摩擦系数输入0.3不锈钢与PTFE板接触的承重支架摩擦系数输入为0.1支架选项中,stif代表支架生根部份的刚度,不输代表无穷大,用户可以把生根部件的刚度输入其中,单位为N/cm1.2 承重支架+Y1.3 导向支架1.3.1 水平管道若导向支架的挡块与管托之间有间隙,可在图中(Gap:)中输入间隙,不输表示导向的间隙为1.3.2 垂直管道 1.3.2.1 四向导向+YX1.3.2.2 单边导向1.4 限位支架1.5 固定支架+YZ StopperANC1.6 吊架双击restrains选项,承重吊架为+Yrod,并在len中输入吊杆的摆动的长度1.7 水平拉杆1.8 弹簧支架模拟双击Hangers出现如下图框Node输入支架的节点号Hanger Talbe:选择弹簧的型号,国内项目选择13-Sinopec(China)Avalable Space(neg for can)若该点由弹簧支撑,可以输入一个负的距离,该距离为支称点与弹簧底板之间的距离Allowable load Variation(%):为弹簧的荷载变化率=(热态载荷-冷态载荷)/热态载荷的绝对值乘以100%,一般弹簧的荷载变化率控制在25%内,但是在一些敏感设备附近,如压缩机,透平管口附近,弹簧的荷载变化率需控制在10%内,这时用户需在此选项中输入10Rigid Support Displacement Criteria:在应力计算中,有时软件自选的弹簧热位移很小,例如1mm左右,在不是敏感设备附近,工程上常用刚性支架来代替弹簧支架,用户可以人为输入刚性支架代替弹簧支架热位移标准,如输入1mm,则若软件算出弹簧的热位移小于1mm,软件就自动将该弹簧代替为刚性支架Max.Allowed Travel Limit:该项定义了可变弹簧最大位移量,若软件算出的热位移量超过该输入值,则软件将自动把可变弹簧替换为恒力弹簧No。
CAESARII高级培训讲义- 膨胀节高级应用 - 王大辉

CAESAR II
CAESAR II 膨胀节高级应用
王大辉
北京艾思弗计算机软件技术有限责任公司
2010
膨胀节高级应用
z复杂形式的膨胀节
z压力平衡式
z自平衡式
z实际管型的配置
z误差分析
复杂形式的膨胀节-压力平衡式
复杂形式的膨胀节-压力平衡式
复杂形式的膨胀节-压力平衡式
z压力平衡式的膨胀
节可按照右图所示
结构模拟
复杂形式的膨胀节-自平衡式
复杂形式的膨胀节-自平衡式
复杂形式的膨胀节-自平衡式
膨胀节高级应用——误差及优化z大转角误差
z相对刚度误差
z内压推力(盲板力)误差
膨胀节选用建议
对于需要采用膨胀节的管系
z,针对每种膨胀节补偿工作的具体管型,我们采用固定架隔绝系统为不同的子系统,以便满足不同形式膨胀节补偿管型的需要.
膨胀节选用建议(L型BCD段)
BC段短于CD段BC段和CD段长度
时选用该形式接近时选用该形式
CD段短,可选用复
式拉杆形式膨胀节
空间型管型-膨胀节选用配置方案
门型-膨胀节选用配置方案
z门型管系可以采取上述方案进行补偿设计
膨胀节的错误使用
应采用滑动支架
弯头支托采用固定架,限制了管道的热胀,热胀导致膨
胀节受压,拉杆松懈,不再承受盲板力,盲板力作用到汽
轮机上,导致汽轮机振动.
膨胀节的错误使用
拉杆不能拆除
该膨胀节的安装目的是方便安装,及考虑沉降补偿.
操作人员误认为膨胀节拉杆是运输保护用的,故卸掉拉杆,
导致盲板力,作用到泵上面,导致泵轴断裂.。
CAESAR_II简易操作手册

(2)选择主菜单Input中的Piping,Piping-Input表格式输入菜单—Spreadsheet形式如4—1所示。
图4—1Piping Input Spreadsheet
注意:在选择Input之前应留意主菜单上的Current jobname是否是所要编辑的文件,执行jobname选择项可更换当前文件。
CAESARII-管道应力分析软件
(系列培训教材)
CAESARII管道应力分析软件简易操作手册
北京市艾思弗计算机软件技术有限责任公司
2003年1月15日
第一章程序功能及性能简介…………………………………1
第二章程序安装………………………………………………2
第三章调用程序………………………………………………6
其中栏内提示符含义:
From
当前单元起始节点
To
当前单元终止节点
DX
当前单元在X方向上的投影
DY
当前单元在Y方向上的投影
DZ
当前单元在Z方向上的投影
Offsets
当前单元是否有偏差值,有则双击,然后输入有关数据
Diameter
当前单元管子直径
Wt/Sch
当前单元管子壁厚
Corrosion
当前单元管子腐蚀裕量
图3—2New Job Name Specification
注意:选择File菜单中的Open(或都单击Open图标)表明用户用一个对话框来选择已存在的文件。经常使用的文件也可以从File菜单中的“Most Recently Used”中选择。选择一个文件名并不能打开该文件,它仅表示可以对该文件进行输入,分析,结果评价或进行其它的操作,但是用户仍需从菜单中选择这些操作。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
Pressure-Balanced Tees and Elbows—压力平衡型膨胀节
Pressure balanced tees and elbows are used primarily to absorb axial displacements at a change in direction, without any associated pressure thrust. Pressure balanced tees can also be used in universal type configurations to absorb axial and lateral movement.
•
复式拉杆型膨胀节主要吸收单平面“Z”形 弯管的横向位移,中间管臂连杆以内的热位移 用膨胀节的轴向位移来吸收,水平管线的热位 移由膨胀节的横向位移来吸收。 • 由于压力推力是由拉杆来承受的,所以两端均 使用中间固定支架,由于作用于管线上的轴向 力,是膨胀节产生的变形反力,因此只需使用 导向支架。中间管臂上位于连杆以外的部分, 如两端弯管的热膨胀则由水平管道的弯曲来吸 收。
有效内径
和盲板力相关
Simplified Bellow—波纹管
波纹管长度可为0长度也可为一个定长度。 在定长度的条件下,弯曲或横向刚度其一不用输 入。推荐不输弯曲刚度,而输入横向刚度。 如果输入弯曲刚度,刚度计算有一定要求。 波的重量和附件的重量分别加在两侧法兰上。
Pressure Thrust盲板力的考虑
压力平衡式波纹膨胀节
适用于需要平衡波纹管压力推力的管线上。 分为 直管式压力平衡型膨胀节、补偿轴向位移直 管旁流式压力平衡型膨胀节、补偿轴向位移弯管 式压力平衡型膨胀节。补偿横向位移和轴向位移; 主要用于设备进、出口处及设备与设备相连 接的管段,如果在一条很长的管线上采用压力平 衡型膨胀节来减少对固定支架的推力,必须整个 管线全部采用压力平衡型膨胀节。
• 3)图8 是弯管角度不等于90°时,使用铰链式 膨胀节的示例。铰链型膨胀节的主要优点是它的 尺寸紧凑,便于安装,而且可以使它的铰链板具 有很大的刚度和强度,使用它们通常可以对构形 不规则的复杂管线的热膨胀进行补偿,在这样的 管线上使用别种膨胀节往往行不通,由于铰链结 构能够传递载荷,铰链型膨胀节的管系施加到固 定支架的作用力很小,这种系统的支撑点可设在 不妨碍系统活动的任何位置上,这给系统的设计 带来了很大的自由。
波纹管-膨胀节
ቤተ መጻሕፍቲ ባይዱ
主讲人:王大辉、金红伟 2008
膨胀节刚度
• Axial Stiffness—轴向刚度 • Transverse Stiffness—横向刚度(往往输入横向刚度,软件计算弯曲刚度) • Bending Stiffness—弯曲刚度(应用在零长度角式和弯向始终) • Torsional Stiffness—扭转刚度
单式轴向波纹管膨胀节应用
•
存在横向位移或存在轴向与横向组合位移 的场合,使用单式膨胀节所受到的限制主要是 膨胀节吸收横向位移的能力有限。另外在工作 压力,温度较高,直径较大或无法在结构物上 安设主固定支架或多个导向支架的场合,使用 轴向型膨胀节可能行不通。
2.复式拉杆型波纹管膨胀节
由中间接管连接的两个波纹管及拉杆、端板等 组成的挠性装置,以横向位移方式补偿平面或立 体弯曲管段的热位移,拉杆装置应能承受压力推 力及其附加外力的作用。 • 复式拉杆型膨胀节特别适合吸收横向位移,此外, 这种设计形式也可用于吸收轴向位移,角位移以 及任意由这三种形式合成的位移,一般用法是将 这种带连杆的膨胀节设置在呈90°的“Z”形管系 的中间管臂内,调整连杆以阻止外部的轴向位移, 图2、3 是两个应用实例。
Gimbal Joints--万向式膨胀节
形式一:仅吸收角变形 形式二:即可吸收角变形,也可吸收横向位移
5.弯管压力平衡型膨胀节
• 由两个或一个工作波纹管和一个平衡波 纹管以及端管,端板、弯头、封头、拉杆 等组成的挠性装置,用于补偿管段的轴向 位移,横向位移或二者的合成位移,且不 使固定管架或相连设备承受压力推动的作 用,拉杆装置承受压力推力和其它附加外 力的作用。
Gimbal Joints--万向式膨胀节
Dual Gimbal—复式万向型膨胀节 Pressure-Balanced Tees and Elbows—压力平衡型膨胀节
一、膨胀节的类型及典型管段的补 偿设计
1.单式轴向型膨胀节 • 由一个波纹管和两个可与相邻管道、设备 相接的端管(或法兰)等组成的 挠性装置,主要用于补偿直管段轴向位移, 另外也可以吸收少量的横向位移. 图1 是采用轴向型膨胀节设置实例。
KTR = (3/2) (KAX) (D/L) 2
KBEND =(1/2) (KAX) (D2) (/180)
KAX - is the axial stiffness of the expansion D - is the effective diameter of the expansion L - is the flexible length of the joint.
Universal Expansion Joints—复式拉杆型膨胀节
简单模型 复杂模型
考虑拉杆的端部摩擦作用,建议将横向刚 度值增加10%
简单模型-1
简单模型-2
复杂模型-1
复杂模型-2
3.铰链型膨胀节
• 由一个波纹管、两组与端管相连的铰链板及一对 销轴等组成的挠性装置,铰链式膨胀节一般以两、 三个作为一组使用,用于吸收单平面管系中一个 或多个方向的横向位移。在这种系统中每一个膨 胀节被它的铰链板所制约,产生纯角位移,然而, 被管段分开的每对铰链型膨胀节互相配合可吸收 横向位移。给定单个膨胀节的角位移,每对铰链 式膨胀节所能吸收的横向位移与其铰链销轴之间 的距离成正比,因此,为了便膨胀节充分发挥应 用,应尽量加大这一距离。膨胀节的铰链板通常 用于承受作用于膨胀节上的全部压力推力,另外 也可以用来承受管道和设备的重量、风载
•
推力是由膨胀节上的铰链板来承受的,只 需在管系的两端设置中间固定支架, • 由于膨胀节受铰链制约只能产生纯角位移, 不能伸缩,包含有膨胀节的中间管臂的热膨 胀必须由与它相垂直的管臂发生弯曲来吸收, 两个长管臂的弯曲挠度由正确设计的导向支 架和支架来控制 • 1)图6 是用双铰链系统吸收单平面“Z”形弯 管的主要热膨胀.
• 轴向运动可以模拟为一个活塞和一个弹 簧的关系 • “F” = 有效面积 x 内压 + 弹簧刚度*轴 向位移行程 • 活塞的力(内压盲板力)是作用在管道 固定点或膨胀节的端板和拉杆上面。 • 一般内压盲板力远远大于波纹管弹性力。
波纹管形式
Simplified Bellow —波纹管
Tied Bellows—单式拉杆型膨胀节 •Simple—建单建模 •Comples—复杂建模 Universal Expansion Joints—复式拉杆型膨胀节 •Simple —建单建模 •Comples —复杂建模 Hinged Joint—绞式膨胀节 Slotted Hinge Joint---轴向补偿绞式膨胀节 Slip Joint--轴向补偿套筒型膨胀节
弯管压力平衡型膨胀节
图5 所示为一种常见的非常适于使用弯管压 力平衡型膨胀节的场合。 在工艺操作中,容器和竖向管道的膨胀量可能不 同,按图示安装一压力平衡式膨胀节,竖直方向 的位移差可以由膨胀节的轴向位移吸收,容器中 心线到管线之间的热膨胀可由膨胀节的横向位移 吸收。
• 其他形式还有直通压力平衡式波纹管补偿器。 • 旁流式压力平衡是波纹管补偿器。(振动和 压力损失)
• 2) 如果单平面“Z”形管系的中间管臂较长过,可 采用三个铰链型膨胀节的系统。图7 表示在单平 面弯管中的三铰链型膨胀节系统,竖直管段的热 膨胀将由B 和C 两个膨胀节的动作来吸收,水平 管段的热膨胀由A 和B 两个膨胀节来吸收,很明 显,膨胀节B 的角位移是A 和C 之和。
• 和前面的示例一样,在管系两端只用中间固定支架 来固定,本例中所有的热变形全部被膨胀节所吸收, 因管道的热变形作用于固定支架的载荷非常小,如 果左侧的固定支架与第一个铰链型膨胀节的间距较 大,在靠近膨胀节处应设置导向支架,该支架为以 承受膨胀节转动的力,从而减少膨胀节C 至左侧固 定支架之间部分管道的弯曲,为了保持管系位于平 面内,并消除可能由外载所产生的作用于铰链的弯 曲力,可以增设一个或多个导向支架,管系的支撑 可以采取多种方式,对膨胀节之间的管道进行支撑 而不妨碍其自由移动时,可采取弹簧支吊架。
Hinged Joint—绞式膨胀节
采用零长度膨胀节,横向,周详,扭转刚度均为无 穷大。 绞方向通过约束和关联节点来定义。限制转动方向 永远是转轴的法线方向。
4.万向铰链型膨胀节
• 由一个波纹管,万向铰链环及两对与万向铰链环 和端管相连的铰链板等组成的挠性装置。通常以 两个万向铰链型或以两个万向铰链型与一个单式 铰链型膨胀节一起配套使用,如图9,两个万向铰 链型膨胀节协同动作吸收上、下两个水平管臂的 组合位移,铰链型膨胀节则与上部的万向铰链型 膨胀节互相配合吸收竖直管臂的位移。 • 用万向铰链型膨胀节构成的系统与上节提到的用 铰链型膨胀节构成的系统有类似的优点,但万向 铰链型膨胀节的应用具有更大的灵活性,它不限 于单平面系统。
弯管压力平衡式膨胀节的主要优点,是它在吸收来自外 部的轴向位移时,不会使系统受到内压推力的作用。由 波纹管整体刚度造成的力并未消除,实际上这个力一般 要超过单式膨胀节位移引起的弹力。因为工作波纹管和 平衡波纹管都要受到压缩或拉伸,作用在管道或设备上 的力是两者的轴向合力。 图4 是存在轴向与横向组合位移的时使用弯管压力平 衡式膨胀节的典型实例,在管道的端部和汽轮机上的支 架均为中间固定支架,并且只需要使用导向支架,采用 合理的设计可以使汽轮机上方的导向支架承受使膨胀节 产生轴向位移的作用力,避免该力作用到汽轮机上,作 用在汽轮机上的只有使膨胀节产生横向位移的作用力。