初中数学-证明圆的切线经典例题
初三数学证明切线的练习题

初三数学证明切线的练习题在初中数学学习中,切线是一个非常重要的概念。
证明切线的性质和问题的解决是数学学习的关键内容之一。
本文将就初三数学中涉及切线证明的一些练习题进行分析和解答。
题目一:已知一条直线l与圆O相交于点A和B,点C是圆O上的一点。
请证明:∠ACB与∠AOB互余。
解析:为了证明∠ACB与∠AOB互余,我们可以分别通过证明∠ACB与∠OAB以及∠AOB与∠AOB的和为180度来得到结论。
首先,连接OA和OB,我们知道OA和OB是圆的半径。
因此,三角形OAB为等边三角形,∠OAB = ∠OBA = ∠AOB。
其次,连接OC,考虑△ACB,根据圆上切线与半径的关系,∠ACB为切线与半径的夹角。
连接OA和OB后,我们已经得到∠OAB = ∠OBA = ∠AOB。
那么,∠ACB与∠OAB互余,即∠ACB+ ∠OAB = 180°。
综上所述,我们证明了∠ACB与∠AOB互余。
题目二:已知一条直线l与圆O相切于点A,过点A作直径为AD,点B是圆O上的一点,连接BC。
请证明:∠ACB = 90度。
解析:为了证明∠ACB = 90度,我们可以通过使用直角三角形的性质来得到结论。
首先,连接OA和OB,OA和OB是圆的半径,因此OA = OB。
那么△OAB为等腰三角形,∠OAB = ∠OBA。
其次,考虑△BCD,D为AB的中点,根据等腰三角形的性质,∠CDB = ∠CAD = ∠OAB。
由于D为AB的中点,所以AD的中垂线BC过点D。
那么,∠ADB = 90度。
根据性质可知CD是∠ADB的中线,那么根据中线定理有 CD = 1/2 * AB。
由于△OAB为等腰三角形,所以AB = 2 * OA。
代入CD = 1/2 * AB,得到CD = OA。
综上所述,我们证明了∠ACB = 90度。
通过以上两个例子的证明,我们可以看到在数学练习中,证明切线的性质需要运用到圆的性质、等腰三角形的性质、中线定理等相关知识。
初中数学知识归纳圆的切线与切线定理的计算方法

初中数学知识归纳圆的切线与切线定理的计算方法圆是初中数学中非常重要的一个几何概念,而切线与切线定理也是与圆密切相关的概念和定理。
在本文中,我们将对圆的切线和切线定理进行归纳并介绍计算方法。
一、圆的切线圆的切线是指与圆只有一个公共点的直线。
切线的特点是与圆相切于切点,并且切点在切线上。
根据切线的定义,我们可以得出切线具有以下性质:1. 切线与半径垂直在圆的任意切点处,切线与通过该点的半径垂直相交。
这是切线与圆的一个重要性质,在计算切线时会用到。
2. 切线的切点切线与圆相切于切点,而切点位于切线上。
这也是切线的定义之一,切点的坐标可以通过计算得出。
二、切线定理的计算方法切线定理是描述切线与半径之间的关系的一组定理。
我们将介绍几个常用的切线定理及其计算方法。
1. 切线长定理切线长定理描述了切线和半径之间的关系。
对于与圆相切的切线来说,切线上的两个切点到圆心的距离乘积等于这两个切点分别到圆心的距离的平方。
具体计算方法如下:假设切线与圆相切于点A和点B,圆的半径为r,圆的圆心为O。
则有以下关系成立:AO × BO = AC² = BC²其中,AO和BO分别表示点A和点B到圆心O的距离,AC和BC分别表示点A和点B到圆心O的距离。
2. 外切线定理外切线定理指出,如果一条直线同时与两个相交圆的外切,那么它们的切点与连接圆心的直线构成一个等边三角形。
具体计算方法如下:对于与两个圆相切的外切线来说,它的两个切点与两个圆心之间形成的三角形是等边三角形。
设两个圆的半径分别为r₁和r₂,切点之间的距离为d,则有以下关系成立:d = r₁ + r₂其中,d表示切点之间的距离,r₁和r₂表示两个圆的半径。
三、圆的切线与切线定理的应用举例为了更好地理解切线和切线定理的计算方法,我们举例说明。
例题1:已知一个圆的半径为3 cm,点A是这个圆上的一个切点,连接点A和圆心O的线段OA与圆相交于一点B。
【初中数学】圆的相交弦定理、切割线定理和割线定理补充知识点

【初中数学】圆的相交弦定理、切割线定理和割线定理补充知识点一、相交弦定理1、相交弦在圆的内部相交的两条弦,称为相交弦.2、相交弦定理圆内的两条相交弦,被交点分成的两条线段的积相等。
几何语言:弦AB和CD相交于⊙O内一点P,那么PA·PB=PC·PD. 3、相交弦定理的证明证明:连接AC、BD由圆周角定理推论得:∠C=∠B,∠A=∠D∴△ACP∽△DBP∴ PA:PD=PC:PB二、切割线定理1、切割线定理从圆外一点引圆的切线和割线,切线长是这点到割线与圆交点的两条线段长的比例中项。
几何语言:BC是⊙O的一条割线,PA是⊙O的一条切线,切点为A,则:PA²=PB·PC。
2、切割线定理的证明证明:如图,连接AB,AC∵ PA是圆O的切线,由弦切角定理可得∴∠PAC=∠B∵∠APB=∠CPA∴△APC∽△BPA∴ PA:BP=PC:PA三、割线定理1、割线定理从圆外一点引圆的两条割线,这一点到每条割线与圆的交点的两条线段长的积相等。
几何语言:从⊙O一点P引圆的两条割线AB、CD,则:PA·PB=PC·PD.2、割线定理证明证明:如图,连接AD、BC,由圆周角定理推论,得:∠D=∠B∵∠BPC=∠DPA∴△BPC∽△DPA∴ PB:PD=PC:PA∴ PA·PB=PC·PD四、例题例1、如图,在⊙O中,弦AB=CD,AB⊥CD于点E,已知CE·ED=3,BE =1,求⊙O的直径。
解:作OH⊥AB于H,OG⊥CD于G,连接OA由相交弦定理得:CE·ED=AE·EB∴ 3=AE×1∴ AE=3∴ AB=AE+EB=3+1=4∴ AB=CD=4∴ AH=HB=2∴ HE=HB-EB=2-1=1∵ AB=CD,AB⊥CD∴ OH=OG∴四边形OGEH为正方形∴ OH=HE=1由勾股定理得,OA=,∴⊙O的直径为,例2、如题图,⊙O的弦AB,CD相交于点E,过点A作圆O的切线与DC的延长线交于点P,若PA=6,AE=9,PC=3, CE:ED=2:1 ,求BE的值。
初中数学:用切线长定理解题

初中数学:用切线长定理解题切线长定理:从圆外一点引圆的两条切线,它们的切线长相等。
一、求角度例1、如图1所示,CA和CB都是⊙O的切线,切点分别是A、B,如果⊙O的半径为,且AB=6,求∠ACB的度数。
图1解:连接OC交AB于点D∵CA、CB分别是⊙O的切线∴CA=CB,OC平分∠ACB故OC⊥AB由AB=6,可知BD=3在Rt△OBD中,故所以∠BOD=60°又因B是切点,故OB⊥BC,所以∠OCB=30°,则∠ACB =60°。
二、求线段长例2、如图2,在△ABC中,∠ABC=90°,O是AB上的一点,以O为圆心,OB为半径的圆与AB交于点E,与AC 切于点D,连接DB、DE、OC,若AD=2,AE=1。
求CD 的长。
解:∵∠ABC=90°,OB是半径∴CB切⊙O于点B∵AC切⊙O于点D∴CB=CD由AC切⊙O于点D,可得而AD=2,AE=1,故AB=4设,在Rt△ABC中,有,解得即DC=3。
三、证线段相等例3、如图3,在Rt△ABC中,∠ACB=90°,以BC为直径的圆交AB于点D,过点D作⊙O的切线EF交AC于点E。
求证:AE=DE。
图3证明:连接CD。
由BC是⊙O的直径,可得∠CDB=90°又因∠ACB=90°,故CE切⊙O于点C。
因DE切⊙O于点D,故CE=DE所以∠EDC=∠ECD则∠EDC+∠ADE=90°,∠ECD+∠A=90°∴∠ADE=∠A。
所以DE=AE。
四、证明线段成比例例4、如图4,AB是半圆O的直径,C是半圆O上一点,CD⊥AB于点D,从C、B两点分别作半圆O的切线,它们相交于点E,连接AE交CD于点P。
求证:PD:CE=AD:AB。
图4证明:显然∠PDA=90°∵EB为半圆O的切线,AB是半圆O的直径,∴EB⊥AB,即∠EBA=90°又因∠PAD=∠EAB,所以△APD∽△AEB∴PD:BE=AD:AB由EC、EB都是半圆O的切线,可知CE=BE∴PD:CE=AD:AB。
初中数学人教九年级上册第二十四章圆-切线长定理

(1)写出图中所有的垂直关系;
B
OA⊥PA,OB ⊥PB,AB ⊥OP.
(2)写出图中与∠OAC相等的角;
∠OAC=∠OBC=∠APC=∠BPC. (3)写出图中所有的全等三角形;
△AOP≌ △BOP, △AOC≌ △BOC, △ACP≌ △BCP.
(4)写出图中所有的等腰三角形.△ABP △AOB
条切线,它们的切线长相
O
P
等,圆心和这一点的连线
平分两条切线的夹角. 几何语言:
PA、PB分别切⊙O于A、B
B PA = PB ∠OPA=∠OPB
注意 切线长定理为证明线段相等、角相等提供了新的方法.
拓展结论 A
PA、PB是⊙O的两条切线,A、
B为切点,直线OP交⊙O于点D
E OCD
P
、E,交AB于C.
A
P O
B
课堂小结
切线长
切线长 定理
原理 作用
辅助线
图形的轴对称性
提供了证线段和 角相等的新方法
① 分别连接圆心和切点; ② 连接两切点; ③ 连接圆心和圆外一点.
课后作业
1、《课后作业》 2、练习册
思考:PA为⊙O的一条切线,沿着直线PO对折,设圆上与点
A重合的点为B.
➢ OB是⊙O的一条半径吗?
A
➢ PB是⊙O的切线吗?
O.
P
➢ PA、PB有何关系? B
➢ ∠APO和∠BPO有何关系?
(利用图形轴对称性解释)
二 切线长定理
你能写出上述结论的证
明过程吗?
A
O.
P
B
切线长定理:
A
从圆外一点引圆的两
学习目标
1.掌握切线长定理,初步学会运用切线长定理进行计算 与证明.(重点)
初中数学-切线长定理典型例题

例 如图,△ABC 内接于大⊙O ,∠B =∠C ,小⊙O 与AB 相切于点D .求证:AC 是小圆的切线.分析 AC 与小⊙O 的公共点没有确定,故应过O 作AC 的垂线段OE .再证明OE 等于小圆半径,用“到圆心的距离等于半径的直线是圆的切线”来判定AC 是小圆的切线. 证明 连结OD ,作OE ⊥AC 于E . ∵∠B =∠C ,∴AB=AC .又AB 与⊙O 小相切于D ,∴OD ⊥AB . ∵OE ⊥AC ,∴OD=OE .即小⊙O 的圆心O 到AC 的距离等于半径,所以AC 是小圆的切线. 说明:(1)本题为证明切线的两个常见方法(①连半径证垂直;②作垂直证半径.)之一;(2)本题为基本题型,但应用到切线的性质和判定;(3)本题为教材110页例4的变形题.例 (大连市,l 999)阅读:“如图△ABC 内接于⊙O ,∠CAE=∠B . 求证:AE 与⊙O 相切于点A . 证明:作直径AF ,连结FC ,则∠ACF =90°.∴ ∠AFC+∠CAF =90°. ∵∠B =∠AFC . ∴ ∠B+∠CAF =90°. 又∵ ∠CAE=∠B ,∴ ∠CAE+∠CAF =90°. 即AE 与⊙O 相切于点A .问题:通过阅读所得到的启示证明下题(阅读题中的结论可以直接应用).问题:通过阅读所得到的启示证明下题(阅读题中的结论可以直接应用).如图,已知△ABC 内接于⊙O .P 是CB 延长线上一点,连结AP .且PA 2=PB ·PC . 求证:PA 是⊙O 的切线. 证明:∵PA 2=PB ·PC ,∴PAPB PC PA .又∵ ∠P=∠P ,∴△PAB ∽△PCA . ∠PAB=∠C . 由阅读题的结论可知,PA 是⊙O 的切线. 说明:(1)此题的阅读材料来源于教材第117页B 组第1题;(2)应用“连半径证垂直”证明切线.例 (西宁,1999)已知:如图,Rt △ABC 中,∠C=90°,以AB 为直径的⊙O 交斜边AB 于E ,OD ∥AB . 求证:(1)ED 是⊙O 的切线;(2)2 DE 2=BE ·OD证明:(1)连结OE 、CE ,则CE ⊥AB . 在Rt △ABC 中,∵OA=OC ,OD ∥AB ,∴D 为BC 的中点,∴DE=CD , 又∵OC=OE ,OD=OD ,∴△COD ≌△EOD ,∴∠OED=∠OCD=90°,∴ED 是⊙O 的切线.(2)在Rt △ABC 中,CE ⊥AB ,∴△CBE ∽△ABC ,∴CB 2=BE ·AB , ∵OD 为△ABC 的中位线,∴AB=2OD ,BC=2ED ,∴(2ED )2=BE ·2OD 即2 DE 2=BE ·OD 说明:此题为综合题,主要应用切线的性质定理、判定定理、射影定理、中位线定理等知识.C典型例题四例 (北京市西城区试题,2002)已知:AB 为⊙O 的直径,P 为AB 延长线上的一个动点,过点P 作⊙O 的切线,设切点为C.(1)当点P 在AB 延长线上的位置如图1所示时,连结AC ,作APC 的平分线,交AC 于点D ,请你测量出CDP 的度数;(2)当点P 在AB 延长线上的位置如图2和图3所示时,连结AC ,请你分别在这两个图中用尺规作APC 的平分线(不写做法,保留作图痕迹),设此角平分线交AC 于点D ,然后在这两个图中分别测量出CDP 的度数;猜想:CDP 的度数是否随点P 在AB 延长线上的位置的变化而变化?请对你的猜想加以证明.解:(1)测量结果: 45CDP . (2)作图略.图2中的测量结果: 45CDP . 图3中的测量结果: 45CDP .猜想: 45CDP 为确定的值,CDP 的度数不随点P 在AB 延长线上的位置的变化而变化.证法一:连结BC .∵ AB 是⊙O 的直径, ∴ 90ACB .∵ PC 切⊙O 于点C , ∴ A 1.∵ PD 平分APC ,.454,3,21432 CDP A CDP∴ 猜想正确. 证法二:连结OC .∵ PC 切⊙O 于点C ,.901. CPO OC PC∵ PD 平分APC ,.45)1(212.121,31.3,.212CPO A CDP A A A OC OA CPO∴ 猜想正确.典型例题五例 (北京市崇文区,2002)已知:ABC ≌C B A ,3,5,90 AC AB B C A ACB ,对应边AC 与C A 重合,如图(1).若将C B A沿CB 边按箭头所示方向平移,如图(2),使边AB 、B A 相交于点D ,边C A 交AB 于点E ,边AC 交B A 于点F ,以C C 为直径在五边形CF C DE 内作半圆O ,设C B 的长为x ,半圆O 的面积为y .1.求y 与x 的函数关系式及自变量x 的取值范围; 2.连结EF ,求EF 与半圆O 相切时的x 的值.解:1.∵ ABC ≌C B A ,3,5,90 AC AB B C A ACB ,,4,.4x C B BC C C x C B BC28)24(2122 x x x y .以C C 为直径在五边形内作半圆,依题意,在运动过程中C A 、AC 与⊙O 始终相切,故只需考虑AB 与⊙O相切的特殊位置,以确定x 的最小值.当C B A 沿CB 边按箭头所示方向平移时, ∵ ABC ≌C B A , ∴ B B , ∴ B DB 是等腰三角形.又∵ ,,C O OC C B BC∴ .O B BO∴ O 是B B 的中点.∴ O 到BD 、D B 的距离相等.∴ AB 与⊙O 相切时,B A 必与⊙O 相切. 设切点分别为G 、H ,连结OG , 则有,,90B B BCA BGO ∴ BOG ∽BAC ..5244324,xx BA BO AC OG解之得.1 x当1 x 或4 x 时,不合题意,∴ 自变量x 的取值范围是41 x . 2.在C BE 和FC B 中,,90,,CF B E C B C B C B B B ∴ C BE ≌FC B .,90,//.C FC FC C E FC C E∴ 四边形CF C E 为矩形. 当EF 与⊙O 相切时,C C C E21. ).4(2143,43,43tan x x x C E BC AC C B C E B解之得.58 x典型例题六例 已知如图,在ABC 中,AC AB ,以AB 为直径的⊙O 交BC 于D ,过D 作⊙O 的切线交AC 于E ,求证:AC DE .分析:因为DE 是⊙O 的切线,D 是切点,所以连OD ,得DE OD ,因此本题的关键在于证明OD AC //. 证明 连结AD 、OD AB 为⊙O 的直径,AC AB , BC AD .D 是BC 中点,O 是AB 的中点, OD 为BAC 的中位线, AC OD // DE 是切线,D 为切点,OD 是⊙O 的半径 DE OD AC DE说明:连结OD 构成了“切线的性质定理”的基本图形,连结AD 构成了圆周角推论的基本图形.典型例题七例 如图,已知⊙O 中,AB 为直径,过B 点作⊙O 的切线,连线CO ,若OC AD //交⊙O 于D .求证:CD 是⊙O 的切线.分析:要证AD 是⊙O 的切线,只须证AD 垂直于过切点D 的半径,由此应想到连结OD .证明 连结OD OC AD // ,A COB 及ODA COD OD OA ,OAD ODA COD COBCO 为公共边,OB ODCOB ≌COD .即ODC B BC 是切线,AB 是直径, 90B , 90ODC , CD 是⊙C 的切线.说明:辅助线OD 构造于“切线的判定定理”与“全等三角形”两个基本图形,先用切线的性质定理,后用判定定理.典型例题八例 如图,以ABC Rt 的一条直角边AB 为直径作圆斜边BC 于E ,F 是AC 的中点,求证:EF 是圆的切线.分析:连OE ,因为EF 过半径OE 的外端,要证EF 是切线,只需证 90OEF . 思路1 连OF ,证OAF ≌OEF ,则有 90OAF OEF思路2 连AE ,则 90AEC ,证 90OAE FAE OEA FEA 证明1 如图,连OF 、OE ,的中位线是中点为中点为ABC OF AB O AC FB BC OF 1//,32 又B OE OB 3,即21 ,OE OA ,OF OF 所以OAF ≌OEF有 90OAF OEF 即EF OE , EF 过半径OE 的外端, 所以EF 是⊙O 的切线.证明2 如图,连结AE 、OE AB 是⊙O 直径 90AEBFA FE AC F AEC中点为9042314321OE OAEF OE 90 FE 过半径OE 的外端 所以EF 是⊙O 的切线说明:这里的辅助线OE ,仍然想着构造“切线判定定理”的基本图形的作用.典型例题九例 如图,已知弦AB 等于半径,连结OB 并延长使.(1)求证AC 是⊙O 的切线;(2)请你在⊙O 上选取一点D ,使得 (自己完成作图,并给出证明过程)证明:(1)即是⊙O 的切线.(2)①作BO 延长线交⊙O 于D ,连接AD ,,所以D 点为所求.②如图,在圆上取一点使得,连结,所以点也为所求.说明:证明一条直线是圆的切线,通常选择:(1)到圆心的距离等于圆的半径的直线是圆的切线;(2)经过半径的外端并且垂直于这条半径的直线是圆的切线.而涉及切线问题时,应灵活运用切线的性质,通常连结切点和圆心.题目的第(2)问是分类讨论问题,当题目中的图形未给定时,作图时,应将所有符合条件的图形作出,再分别解答.典型例题十例 已知:直线AB 经过⊙O 上的点C ,并且CB CA OB OA ,.求证:直线AB 是⊙O 的切线.证明 连结OC .∵CB CA OB OA ,,∴OC 是等腰三角形OAB 底边AB 上的中线. ∴.OC AB ∴AB 是⊙O 的切线.说明:本题考查切线的判定,解题关键是作出辅助线,易错点是把求证的结论“AB 是⊙O 的切线”.作为条件使用,造成推理过程中的逻辑混乱.典型例题十一例 如图,AB 是⊙O 直径,弦AB CD //,连AD ,并延长交⊙O 过点B 的切线于E ,作AC EG 于G .求证:.CG AC证明 连结BC 交AE 于F 点...21,32.31,//BF AF CD ABBE 为⊙O 切线,...54,21.9051,9042.EF AF EF BF BE ABAB 为直径,∴.AC BC..//,CG AC BC EG AC EG说明: 本题主要考查切线的性质,解题关键是作辅助线.典型例题十二例 如图,AB 是⊙O 的直径,CD 是⊙O 的切线,C 为切点,AD 交⊙O 于点E ,AC AB AD ,5,4 平分BDA .(1)求证:CD AD .(2)求AC .证明 (1)连OC .CD 切⊙O 于C ,∴.CD OC..//.32,21.31,CD AD AD OC OC OA解 (2)连BC .AB 是⊙O 的直径,∴ 90ACB .ABC ADC ,21,90 ∽.ACD∴.AD AC AC AB 即.52.45 AC ACAC 说明:在题目条件中若有切线,常常要作出过切点的半径.利用三角形相似的知识求出线段的长.典型例题十三例 (北京朝阳区试题,2002)已知:在内角不确定的ABC 中,AC AB ,点E 、F 分别在AB 、AC 上,BC EF //,平行移动EF ,如果梯形EBCF 有内切圆, 当21 AB AE 时,322sin B ; 当31 AB AE 时,23sin B (提示:43223 ); 当41 AB AE ,54sin B . (1)请你根据以上所反映的规律,填空:当51AB AE 时,B sin 的值等于_________; (2)当nAB AE 1时(n 是大于1的自然数),请用含n 的代数式表示 B sin ___________,并画出图形、写出已知、求证和证明过程。
初中数学重点梳理:切线和割线

切线和割线知识定位切割线定理是初中平面几何中的重要定理,它应用广泛,各地的中考题有相当多的题目都用到它,竞赛题也不例外.且题目新颖,灵活多变,学生往往甚感困难。
因此有计划、有目的、有步骤地对切割线定理进行补充、演化无疑是十分有益的。
知识梳理知识梳理1:切割线定理切割线定理:从圆外一点引圆的切线和割线,切线长是这点到割线与圆交点的两条线段长的比例中项。
是圆幂定理的之一。
几何语言:∵PT切⊙O于点T,PDC是⊙O的割线∴PT²=PD·PC(切割线定理)知识梳理2:割线定理从圆外一点引圆的两条割线,这一点到每条割线与圆的交点的两条线段长的积相等几何语言:∵PT是⊙O切线,PBA、PDC是⊙O的割线∴PD·PC=PA·PB(切割线定理推论)(割线定理)由上可知:PT²=PA·PB=PC·PD例题精讲【试题来源】【题目】如图,等边三角形ABC中,边AB与⊙O相切于点H,边BC,CA与⊙O交于点D,E,F,G。
已知AG=2,GF=6,FC=1.则DE=_______.【答案】21【解析】2由切割线定理可知16:4又AH AG AF,AHAC AG=•=∴==2又99故5则25又7,9,AC AG GF FCAB ACBHBD BE BHCE CD CF CG BC AC=++=∴===•==•=•===【知识点】切线和割线【适用场合】当堂例题【难度系数】3【试题来源】【题目】如图,⊙O和⊙O′都经过点A和B,PQ切⊙O于P,交⊙O′于Q,M,交AB的延长线于N.求证:2PN MN NQ=⋅.【答案】【解析】【知识点】切线和割线【适用场合】当堂例题【难度系数】3【试题来源】【题目】如图,已知点P是O外一点,PS,PT是O的两条切线,过点P作O的割线PAB,交O于A.B两点,并交ST于点C,求证:1111()2PC PA PB=+.【答案】【解析】【知识点】切线和割线【适用场合】当堂例题【难度系数】3【试题来源】【题目】如图,设△ABC是直角三角形,点D在斜边BC上,BD=4DC。
证明圆的切线经典例题

证明圆的切线方法及例题证明圆的切线常用的方法有:、若直线l过O O上某一点A,证明I是O O的切线,只需连0A,证明OA丄l就行了,简称“连半径,证垂直”,难点在于如何证明两线垂直例1 如图,在△ ABC中,AB=AC,以AB为直径的O O交BC于D,交AC于E, B为切点的切线交0D延长线于F.求证:EF与O 0相切.证明:连结OE, AD.•/ AB是O 0的直径,••• AD 丄BC.n 又••• AB=BC ,•••/ 3= / 4.——• BD=DE,/ 1 = / 2.又••• OB=OE , OF=OF ,•••△ BOF ◎△ EOF ( SAS) •••/OBF= / OEF.••• BF与O O相切,• OB 丄BF.•••/ OEF=9O°.• EF与O O相切.说明:此题是通过证明三角形全等证明垂直的例2 如图,AD 是/ BAC 的平分线,P 为BC 延长线上一点,且 PA=PD.求证:PA 与O O 相切.作直径AE ,连结EC. •/ AD 是/ BAC 的平分线, •••/ DAB= / DAC. •/ PA=PD , •••/ 2= / 1+ / DAC.•••/ 2= / B+ / DAB , •••/ 1 = / B.又•••/ B= / E , •••/ 1 = / E•/ AE 是O O 的直径,• AC 丄 EC , / E+ / EAC=90 .•••/ 1 + / EAC=90°.即OA 丄PA. • PA 与O O 相切.延长AD 交O O 于E ,连结OA , OE.•/ AD 是/ BAC 的平分线, • BE=C ® ,• OE 丄 BC. •••/ E+/ BDE=90 0. •/ OA=OE , •••/ E=/ 1. •/ PA=PD , • / PAD= / PDA. 又•••/ PDA= / BDE, •••/ 1 + / PAD=90 0证明一:证明二:即OA丄PA.• PA与O O相切说明:此题是通过证明两角互余,证明垂直的,解题中要注意知识的综合运用例3 如图,AB=AC , AB是O O的直径,O O交BC于D, DM丄AC于M求证:DM与O O相切.证明一:连结OD.•/ AB=AC ,•••/ B= / C.•/ OB=OD ,•••/ 仁/ B.•••/ 仁/C.• OD // AC.•/ DM 丄AC ,• DM 丄OD.• DM与O O相切证明二:连结OD , AD.•/ AB是O O的直径,• AD 丄BC.又••• AB=AC,• / 1= / 2.•/ DM 丄AC ,•/ 2+Z 4=90°•/ OA=OD ,•/ 仁/3., , 0•/ 3+Z 4=90 .即OD丄DM.• DM是O O的切线.证明二是通过证两角互余证明垂直的,解题中注意充分说明:证明一是通过证平行来证明垂直的利用已知及图上已知例4 如图,已知:AB 是O O 的直径,点 C 在O O 上,且/ CAB=30°, BD=OB , D 在AB 的延长 线上•••• OB=BC.•/ OB=BD , • OB=BC=BD. • OC 丄 CD. • DC 是O O 的切线.此题是根据圆周角定理的推论3证明垂直的,此题解法颇多,但这种方法较好例5 如图,AB 是O O 的直径,CD 丄AB ,且OA 2=OD • OP.2•/ OA =OD • OP , OA=OC ,2• OC 2=OD • OP ,•/ CD 丄 AB ,• / OCP=90 . • PC 是O O 的切线.求证: DC 是O O 的切线 证明: 连结OC 、BC.•/ OA=OC ,又••• OC=OB ,说明:求证: PC 是O O 的切线. 证明: 连结OCOC OP OD OC说明: 此题是通过证三角形相似证明垂直的 PD例6 如图,ABCD是正方形,G是BC延长线上一点,AG交BD于E,交CD于F.求证:CE与厶CFG的外接圆相切.分析:此题图上没有画出△ CFG的外接圆,但△ CFG是直角三角形,圆心在斜边FG的中点,为此我们取FG的中点0,连结0C,证明CE丄OC即可得解.证明:取FG中点0,连结0C.T ABCD是正方形,••• BC 丄CD , △ CFG 是Rt△•/ 0是FG的中点,• 0是Rt A CFG的外心.•/ 0C=0G ,•••/ 3= / G,•/ AD // BC,•/ G= / 4.•/ AD=CD , DE=DE ,o/ ADE= / CDE=45 ,•△ ADE ◎△ CDE (SAS)•••/ 4= / 1,Z 1 = / 3.•••/ 2+ / 3=90°,•••/ 1 + / 2=90°.即CE丄0C.• CE与厶CFG的外接圆相切、若直线l与O O没有已知的公共点,又要证明I是O O的切线,只需作OA丄I, A为垂足,证明OA是O O的半径就行了,简称:"作垂直;证半径”例7 如图,AB=AC , D为BC中点,O D与AB切于E点.求证:AC与O D相切.证明一:连结DE,作DF丄AC , F是垂足.••• AB是O D的切线,••• DE 丄AB.•/ DF 丄AC ,•••/ DEB= / DFC=90°.•/ AB=AC ,•••/ B= / C.又••• BD=CD ,•••△ BDE ◎△ CDF (AAS )• DF=DE.• F在O D上.• AC是O D的切线证明二:连结DE , AD,作DF丄AC , F是垂足.••• AB与O D相切,• DE 丄AB.•/ AB=AC , BD=CD ,•••/ 仁/2.•/ DE 丄AB , DF 丄AC ,• DE=DF.• F在O D上.• AC与O D相切.的,证明二是利用角平分线的性质证明DF=DE 说明:证明一是通过证明三角形全等证明DF=DE的,这类习题多数与角平分线有关•例8 已知:如图,AC, BD与O O切于A、B,且AC // BD,若/ COD=90°.求证:CD是O O的切线.证明一:连结OA , OB,作OE丄CD , E为垂足.••• AC , BD 与O O 相切,••• AC 丄OA , BD 丄OB.•/ AC // BD ,, , , , 0•••/ 1 + / 2+ / 3+ / 4=180 .•••/ COD=90°,•/ 2+ / 3=90°,/ 1 + / 4=90°. •••/ 4+ / 5=900.•/ 1 = / 5.• Rt△ AOC s Rt△ BDO.•AC OC"OB - OD .•/ OA=OB ,•A C OC"OA - OD.又•••/ CAO= / COD=900,• △ AOC ODC ,•/ 1 = / 2.又••• OA 丄AC , OE 丄CD,• OE=OA.• E点在O O上.• CD是O O的切线.证明二:连结OA , OB,作OE丄CD于E,••• AC , BD 与O O 相切,• AC 丄OA , BD 丄OB.•/ AC // BD ,•/ F=/ BDO.又••• OA=OB ,•△ AOF ◎△ BOD (AAS )• OF=OD.•••/ COD=90 0,• CF=CD,/ 1= / 2.又••• OA 丄AC , OE 丄CD ,••• OE=OA.••• E点在O O上.• CD是O O的切线.证明连结AO并延长,作OE丄CD于E,取CD中点F,连结OF.三:••• AC与O O相切,• AC 丄AO.•/ AC // BD ,• AO 丄BD.••• BD与O O相切于B,• AO的延长线必经过点 B.• AB是O O的直径.•/ AC // BD,OA=OB,CF=DF ,• OF // AC ,•/ 仁/COF.•••/ COD=9O°, CF=DF ,1•OF CD 二CF .2•/ 2=Z COF.•/ 仁/2.•/ OA 丄AC , OE 丄CD,• OE=OA.• E点在O O上.• CD是O O的切线说明:证明一是利用相似三角形证明/ 1 = / 2,证明二是利用等腰三角形三线合一证明/ 1 = 7 2•证明三是利用梯形的性质证明/ 1 = 7 2,这种方法必需先证明A、O、B三点共线.11。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
初中数学-证明圆的切线方法及例题
证明圆的切线常用的方法有:
一、若直线l过⊙O上某一点A,证明l是⊙O的切线,只需连OA,证明OA⊥l 就行了,简称“连半径,证垂直”,难点在于如何证明两线垂直.
例1如图,在△ABC中,AB=AC,以AB为直径的⊙O交BC于D,交AC于E,B为切点的切线交OD延长线于F.
求证:EF与⊙O相切.
证明:连结OE,AD.
∵AB是⊙O的直径,
∴AD⊥BC.
又∵AB=BC,
∴∠3=∠4.
⌒⌒
∴BD=DE,∠1=∠2.
又∵OB=OE,OF=OF,
∴△BOF≌△EOF(SAS).
∴∠OBF=∠OEF.
∵BF与⊙O相切,
∴OB⊥BF.
∴∠OEF=900.
∴EF与⊙O相切.
说明:此题是通过证明三角形全等证明垂直的
例2 如图,AD是∠BAC的平分线,P为BC延长线上一点,且PA=PD. 求证:PA与⊙O相切.
证明一:作直径AE,连结EC.
∵AD是∠BAC的平分线,
∴∠DAB=∠DAC.
∵PA=PD,
∴∠2=∠1+∠DAC.
∵∠2=∠B+∠DAB,
∴∠1=∠B.
又∵∠B=∠E,
∴∠1=∠E
∵AE是⊙O的直径,
∴AC⊥EC,∠E+∠EAC=900.
∴∠1+∠EAC=900.
即OA⊥PA.
∴PA与⊙O相切.
证明二:延长AD交⊙O于E,连结OA,OE.
∵AD是∠BAC的平分线,
⌒⌒
∴BE=CE,
∴OE⊥BC.
∴∠E+∠BDE=900.
∵OA=OE,
∴∠E=∠1.
∵PA=PD,
∴∠PAD=∠PDA.
又∵∠PDA=∠BDE,
∴∠1+∠PAD=900
即OA⊥PA.
∴PA与⊙O相切
说明:此题是通过证明两角互余,证明垂直的,解题中要注意知识的综合运用. 例3 如图,AB=AC,AB是⊙O的直径,⊙O交BC于D,DM⊥AC于M
求证:DM与⊙O相切.
证明一:连结OD.
∵AB=AC,
∴∠B=∠C.
∵OB=OD,
∴∠1=∠B.
∴∠1=∠C.
∴OD∥AC.
∵DM⊥AC,
∴DM⊥OD.
∴DM与⊙O相切
证明二:连结OD,AD.
∵AB是⊙O的直径,
∴AD⊥BC.
又∵AB=AC,
∴∠1=∠2.
∵DM⊥AC,
∴∠2+∠4=900
∵OA=OD,
∴∠1=∠3.
∴∠3+∠4=900. D
C
即OD⊥DM.
∴DM是⊙O的切线
说明:证明一是通过证平行来证明垂直的.证明二是通过证两角互余证明垂直的,
解题中注意充分利用已知及图上已知.
例4 如图,已知:AB是⊙O的直径,点C在⊙O上,且∠CAB=300,BD=OB,
D在AB的延长线上.
求证:DC是⊙O的切线
证明:连结OC、BC.
∵OA=OC,
∴∠A=∠1=∠300.
∴∠BOC=∠A+∠1=600.
D 又∵OC=OB,
∴△OBC是等边三角形.
∴OB=BC.
∵OB=BD,
∴OB=BC=BD.
∴OC⊥CD.
∴DC是⊙O的切线.
说明:此题是根据圆周角定理的推论3证明垂直的,此题解法颇多,但这种方法较好.
例5 如图,AB是⊙O的直径,CD⊥AB,且OA2=OD·OP.
求证:PC是⊙O的切线.
证明:连结OC
∵OA2=OD·OP,OA=OC,
∴OC2=OD·OP,
OC OP OD OC . 又∵∠1=∠1,
∴△OCP ∽△ODC.
∴∠OCP=∠ODC.
∵CD ⊥AB ,
∴∠OCP=900.
∴PC 是⊙O 的切线.
说明:此题是通过证三角形相似证明垂直的
例6 如图,ABCD 是正方形,G 是BC 延长线上一点,AG 交BD 于E ,交CD 于F.
求证:CE 与△CFG 的外接圆相切.
分析:此题图上没有画出△CFG 的外接圆,但△CFG 是直角三角形,圆心在斜边FG 的中点,为此我们取FG 的中点O ,连结OC ,证明CE ⊥OC 即可得解.
证明:取FG 中点O ,连结OC.
∵ABCD 是正方形,
∴BC ⊥CD ,△CFG 是Rt △
∵O 是FG 的中点,
∴O 是Rt △CFG 的外心.
∵OC=OG ,
∴∠3=∠G ,
∵AD ∥BC ,
∴∠G=∠4.
∵AD=CD ,DE=DE ,
∠ADE=∠CDE=450,
∴△ADE ≌△CDE (SAS )
∴∠4=∠1,∠1=∠3.
∵∠2+∠3=900,
∴∠1+∠2=900.
即CE⊥OC.
∴CE与△CFG的外接圆相切
二、若直线l与⊙O没有已知的公共点,又要证明l是⊙O的切线,只需作OA⊥l,A为垂足,证明OA是⊙O的半径就行了,简称:“作垂直;证半径”
例7 如图,AB=AC,D为BC中点,⊙D与AB切于E点.
求证:AC与⊙D相切.
证明一:连结DE,作DF⊥AC,F是垂足.
∵AB是⊙D的切线,
∴DE⊥AB.
∵DF⊥AC,
∴∠DEB=∠DFC=900.
∵AB=AC,
∴∠B=∠C.
又∵BD=CD,
∴△BDE≌△CDF(AAS)
∴DF=DE.
∴F在⊙D上.
∴AC是⊙D的切线
证明二:连结DE,AD,作DF⊥AC,F是垂足.
∵AB与⊙D相切,
∴DE⊥AB.
∵AB=AC,BD=CD,
∴∠1=∠2.
∵DE ⊥AB ,DF ⊥AC ,
∴DE=DF.
∴F 在⊙D 上. ∴AC 与⊙D 相切.
说明:证明一是通过证明三角形全等证明DF=DE 的,证明二是利用角平分线的性质证明DF=DE 的,这类习题多数与角平分线有关.
例8 已知:如图,AC ,BD 与⊙O 切于A 、B ,且AC ∥BD ,若∠COD=900. 求证:CD 是⊙O 的切线.
证明一:连结OA ,OB ,作OE ⊥CD ,E 为垂足.
∵AC ,BD 与⊙O 相切,
∴AC ⊥OA ,BD ⊥OB.
∵AC ∥BD ,
∴∠1+∠2+∠3+∠4=1800.
∵∠COD=900, ∴∠2+∠3=900,∠1+∠4=900.
∵∠4+∠5=900.
∴∠1=∠5.
∴Rt △AOC ∽Rt △BDO.
∴OD OC OB AC =.
∵OA=OB ,
∴OD OC
OA AC
=.
又∵∠CAO=∠COD=900,
∴△AOC ∽△ODC ,
∴∠1=∠2.
又∵OA ⊥AC ,OE ⊥CD,
O
∴OE=OA.
∴E点在⊙O上.
∴CD是⊙O的切线.
证明二:连结OA,OB,作OE⊥CD于E,延长DO交CA延长线于F.
∵AC,BD与⊙O相切,
∴AC⊥OA,BD⊥OB.
∵AC∥BD,
∴∠F=∠BDO.
又∵OA=OB,
∴△AOF≌△BOD(AAS)
∴OF=OD.
∵∠COD=900,
∴CF=CD,∠1=∠2.
又∵OA⊥AC,OE⊥CD,
∴OE=OA.
∴E点在⊙O上.
∴CD是⊙O的切线.
证明三:连结AO并延长,作OE⊥CD于E,取CD中点F,连结OF.
∵AC与⊙O相切,
∴AC⊥AO.
∵AC∥BD,
∴AO⊥BD.
∵BD与⊙O相切于B,
∴AO的延长线必经过点B.
∴AB是⊙O的直径.
∵AC∥BD,OA=OB,CF=DF,
∴OF ∥AC ,
∴∠1=∠COF.
∵∠COD=900,CF=DF ,
∴CF CD OF ==21.
∴∠2=∠COF.
∴∠1=∠2.
∵OA ⊥AC ,OE ⊥CD ,
∴OE=OA.
∴E 点在⊙O 上. ∴CD 是⊙O 的切线
说明:证明一是利用相似三角形证明∠1=∠2,证明二是利用等腰三角形三线合一证明∠1=∠2.证明三是利用梯形的性质证明∠1=∠2,这种方法必需先证明A 、O 、B 三点共线.。