【CN110194777A】一种离子型聚集诱导发光团及其制备方法和应用【专利】

【CN110194777A】一种离子型聚集诱导发光团及其制备方法和应用【专利】
【CN110194777A】一种离子型聚集诱导发光团及其制备方法和应用【专利】

(19)中华人民共和国国家知识产权局

(12)发明专利申请

(10)申请公布号 (43)申请公布日 (21)申请号 201910125646.5

(22)申请日 2019.02.19

(30)优先权数据

62/710682 2018.02.26 US

(71)申请人 香港科技大学

地址 中国香港九龙清水湾

(72)发明人 唐本忠 陈韵聪 

(74)专利代理机构 深圳市顺天达专利商标代理

有限公司 44217

代理人 郭伟刚

(51)Int.Cl.

C07D 513/04(2006.01)

C09K 11/06(2006.01)

G01N 21/64(2006.01)

(54)发明名称

一种离子型聚集诱导发光团及其制备方法

和应用

(57)摘要

本发明提供一种离子型聚集诱导发光团,包

括如下化学式:其中,每个R独立

地选自H、烷基、不饱和烷基、杂烷基、环烷基、杂

环烷基、芳基和杂芳基;X是反阴离子。本发明提

供的离子型聚集诱导发光团可用于区分具有不

同氢键供给能力的多种溶剂;还可用作生物样品

的无洗涤成像剂和作为具有良好光稳定性的荧

光探针。权利要求书1页 说明书6页 附图6页CN 110194777 A 2019.09.03

C N 110194777

A

1.一种离子型聚集诱导发光团,其特征在于,

包括如下化学式:

其中,每个R独立地选自H、烷基、不饱和烷基、杂烷基、环烷基、杂环烷基、芳基和杂芳基;X是反阴离子。

2.一种离子型聚集诱导发光团,其特征在于,

包括如下化学式:

其中,每个R独立地从C n H 2n+1、C 10H 7、C 12H 9、OC 6H 5、OC 10H 7和OC 12H 9、C n H 2n COOH、C n H 2n NCS、C n H 2n N 3、C n H 2n NH 2、C n H 2n Cl、C n H 2n Br、C n H 2n I和中选取;

R ’独立地从C n H 2n NCS、C n H 2n N 3、C n H 2n NH 2、C n H 2n Cl、C n H 2n Br、C n H 2n I和中选取;X独立地从F -、Cl -、Br -、I -、PF 6-、BF 4-、NO 3-、SO 42-中选取;n=0至20。

3.根据权利要求1-2任一项所述的离子型聚集诱导发光团的用途,其特征在于,所述离子型聚集诱导发光团用于区分具有不同氢键供给能力的多种溶剂。

4.根据权利要求1-2任一项所述的离子型聚集诱导发光团的用途,其特征在于,所述离子型聚集诱导发光团用于生物样品的无洗涤成像。

5.根据权利要求4所述的离子型聚集诱导发光团的用途,其特征在于,所述生物样品包括活HeLa细胞和鱼幼虫。

6.根据权利要求1-2任一项所述的离子型聚集诱导发光团的用途,其特征在于,所述离子型聚集诱导发光团作为具有良好光稳定性的荧光探针。

7.根据权利要求1-2任一项所述的离子型聚集诱导发光团的制备方法,其特征在于,包括以下步骤:

将2-乙腈基苯并噻唑和氢化钠置于干燥的圆底烧瓶中,将干燥的THF加入烧瓶中,并将混合物在室温下在N 2保护下搅拌10分钟;

加入三甲基甲硅烷基氯,将混合物在室温下搅拌过夜;

将20mL水和30mL DCM缓慢加入到反应溶液中并搅拌30分钟;

使用HCl溶液将溶液的pH调节至2,过滤沉淀物并用DCM(20mL)洗涤三次。

权 利 要 求 书1/1页2CN 110194777 A

发光材料

上海理工大学 目录 一、引言 (1) 二、发光现象及其原理 (1) 2.1荧光现象 (1) 2.2 LED现象 (2) 2.3白炽灯现象 (2) 2.4 HID现象 (2) 2.5有机发光原理 (2) 三、发光材料的应用 (3) 3.1光致发光材料 (3) 3.2阴极射线发光材料 (4) 3.3电致发光材料 (4) 3.4辐射发光材料 (4) 3.5光释发光材料 (5) 3.6热释发光材料 (5) 3.7高分子发光材料 (5) 3.8纳米发光材料 (6) 四、结束语 (6) 五、参考文献 (7)

发光材料 一、引言 众所周知[1],材料、能源和信息是21世纪的三大支柱。发光材料作为人类生活中最为重要的材料之一,有着极其重要和特殊的地位。随着科学技术的进一步发展,发光材料广泛运用于化工、医药食品、电力、公用工程、宇航、海洋船舶等各个领域。各种新型高科技在运用于人类日常生活中,势必都需要用到部分不同成分和性质的发光材料。 从20世纪70年代起,科学家们发现将稀土元素掺入发光材料,可以大大提高材料的光效值、流明数和显色性等性能,从此开启了发光材料发展的又一个主要阶段。世界己经离不开人造光源,荧光灯作为最普遍的人造光源之一己在全世界范围内开始应用,据统计全世界60%以上的人工造光是由荧光灯提供的,而大部分荧光灯就是利用稀土三基色荧光粉发光的。 二、发光现象及其原理 不同发光材料的发光原理不尽相同,但是其基本物理机制是一致的:物质原子外的电子一般具有多个能级,电子处于能量最低能级时称为基态,处于能量较高的能级时称为激发态;当有入射光子的能量恰好等于两个能级的能量差时,低能级的电子就会吸收这个光子的能量,并跃迁到高能级,处于激发态;电子在激发态不稳定,会向低能级跃迁,并同时发射光子;电子跃迁到不同的低能级,就会发出不同的光子,但是发出的光子能量肯定不会比吸收的光子能量大。 2.1荧光现象 荧光发光的主要原理:紫外线的光子的能量比可见光的能量大;当荧光物质被紫外线照射时,其基态电子就会吸收紫外线的光子被激发而跃迁至激发态;当它向基态跃迁时,由于激发态与基态间还有其他能级,所以此时释放的光子能量就会低于紫外线的能量,而刚好在可见光的范围内,于是荧光物质就会发出可见光,这种光就叫做荧光。常见的日光灯发 1

发光材料的合成及发光材料制备技术(精)

1 02121289.9 一种有机电致发光材料及其应用 2 02134788. 3 稀土高分子光致发光材料及其合成方法 3 01124165.9 一种纳米级超长余辉硅铝复合盐类发光材料及其制备方法 4 01133301.4 电致发光材料包膜 5 02130973. 6 一种电致发光磷光材料及其应用 6 01136619.2 一种非放射性环保蓄能发光材料及其制备方法 7 02134210.5 含硒杂环化合物的聚合物及其在制备发光材料中的应用 8 02125386.2 一种合成长余辉发光材料的新方法 9 02155860.4 允许由给体转移有机材料以便在有机发光二极管器件内形成层的设备 10 02124569.X 亚甲基吡咯金属络合物、使用该络合物的发光元件材料以及发光元件 11 02132760.2 含有高可见发光效率的CdTe纳米晶透明聚合物体相材料的制备方法 12 01804068.3 发光元件材料和使用该材料的发光元件 13 99816847.5 光致发光的半导体材料 14 02124757.9 脂环式环氧化合物、其制造方法和组成物及发光二极管用密封材料 15 02135615.7 有机电致发光材料8-羟基喹啉铝的制备方法 16 01138882.X 超长余辉高亮度蓝紫色发光材料的制备方法 17 01138883.8 铝酸盐高亮度长余辉发光材料及其制备方法 18 02157031.0 用于转移有机材料以形成有机发光装置中的结构层的方法 19 03112784.3 纳米发光复合材料及其制备方法 20 03113677.X 含镉氧化物长余辉发光材料及其制备方法 21 02103614.4 基于纳米材料的发光气敏传感器及纳米材料的成膜工艺

有机电致发光材料与器件

有机电致发光材料与器件 有机电致发光器件发展及展望综述 有机电致发光器件发展及展望综述 中文摘要 有机电致发光器件(organic light-emitting device, OLED)目前已成为平板信息显示领域的一个研究热点。OLED具有平板化、自发光、色彩丰富、响应快、视野宽及易于实现超薄轻便等优点,被认为是未来最有可能替代液晶显示器和等离子显示器的一种新技术,同时可以用做照明和背光源。但是,其制作成本高、良品率低等不足有待解决。OLED显示技术与传统的LCD显示方式不同,无需背光灯,采用非常薄的有机材料涂层和玻璃基板,当有电流通过时,这些有机材料就会发光。而且OLED显示屏幕可以做得更轻更薄,可视角度更大,并且能够显著节省电能。 为了形像说明OLED构造,可以将每个OLED单元比做一块汉堡包,发光材料就是夹在中间的蔬菜。每个OLED的显示单元都能受控制地产生三种不同颜色的光。OLED与LCD一样,也有主动式和被动式之分。被动方式下由行列地址选中的单元被点亮。主动方式下,OLED单元后有一个薄膜晶体管(TFT),发光单元在TFT驱动下点亮。主动式的OLED比较省电,但被动式的OLED显示性能更佳。 关键词有机电致发光器件器件性能结构优化空穴阻挡 - I -

Organic Light-Emitting Devices Performance Overview tianjia (Class0413 Grade2006 in College of Information&Technology,Jilin Normal University, Jilin Siping 136000) Directive Teacher: jiang wen long(professor) Abstract Electroluminescent devices (organic light-emitting device, OLED) flat panel information display has become a hot topic in the field. OLED technology has a flat, self-luminous, rich colors, fast response, wide horizons and easy to implement the advantages of ultra-thin light, is considered the next best possible alternative to liquid crystal displays and plasma displays, a new technology while can be used as lighting and backlight. However, its high production cost, low rate of less than good product to be resolved. OLED display technology with the traditional LCD display in different ways, no backlight, with a very thin coating of organic materials and glass substrate, when a current is passed, these organic materials will be light. OLED display screen can be done but lighter and thinner, larger viewing angle, and can significantly save power. To image shows OLED structure, each OLED element can be likened to a hamburger, light-emitting material is sandwiched in between

发光材料制备方法

发光材料的制备方法 随着发光材料基质类型的不断发展,其制备方法也逐渐趋于多样化[7~10]针对各种基质的特点,相应发展出了溶胶-凝胶法、高温固相法、燃烧合成法、微波加热法、水热法、喷雾热解法、化学沉淀法、电弧法等制备技术。这些制备方法的基本原理有着显著的差别,适用性也有所不同,具有较强的针对性。 1、溶胶—凝胶法 溶胶一凝胶法(Sol-Gel)是低温合成材料的一种新工艺,它最早是用来合成玻璃的,但近十多年来,一直是玻璃陶瓷等先进材料合成技术研究的热点,其原理是将组成元素的金属无机或有机化合物作为先驱体,经过水解形成凝胶,这些凝胶经过烘干成为玻璃粉末并进行成型,再在较低温度下进行烧结,形成玻璃陶瓷。溶胶一凝胶法是应用前景非常广泛的合成方法。它是采用特定的材料前驱体在一定条件下水解,形成溶胶,然后经溶剂挥发及加热等处理,使溶胶转变成网状结构的凝胶,再经过适当的后处理工艺形成纳米材料的一种方法。 利用溶胶一凝胶法(Sol-Gel)制备发光材料时,把选好的基质材料制成溶液,配以激活剂、助溶剂等的有机化合物溶液或化合物的水溶液,混合均匀,溶液静化数小时后形成凝胶,经干燥、灼烧除去有机物后,再在一定气氛下烧结成产品,得到发光材料粉体。范恩荣[11]用溶胶一凝胶新工艺制备出硅酸锌、硅酸钙发光材料。 此方法制备发光材料具有均匀性好,烧结温度低,反应容易控制,材料的发光带窄,发光效率高等优点。但存在着要使用金属有机溶剂,成本高、操作繁琐、生产周期长,凝胶在烧结过程中收缩较大,制品易变形,对发光性能有一定影响等缺点。 溶胶-凝胶技术作为一种先进的工艺方法,具有反应温度低、对基材的尺寸与形状没有过高要求、仪器费用低、操作简单、材料性能调节余地大等特点,可以很方便地通过改变参与反应的有机与无机组分的含量来实现纳米涂层性能的调节。 溶胶是分散介质中基本单元尺寸为1~100 nm的固体粒子而形成的分散体系。在Sol-Gel涂层制备中,溶胶的制备可分为有机途径和无机途径两种。有机途径是通过有机醇盐的水解与缩聚而形成溶胶;无机途径则是通过某种方法制得

(完整word版)重金属检测方法汇总

重金属检测方法汇总 重金属检测方法及应用 一、重金属的危害特性 从环境污染方面所说的重金属,实际上主要是指汞、镉、铅、铬、砷等金属或类金属,也指具有一定毒性的一般重金属,如铜、锌、镍、钴、锡等。我们从自然性、毒性、活性和持久性、生物可分解性、生物累积性,对生物体作用的加和性等几个方面对重金属的危害稍作论述。 (一)自然性: 长期生活在自然环境中的人类,对于自然物质有较强的适应能力。有人分析了人体中60多种常见元素的分布规律,发现其中绝大多数元素在人体血液中的百分含量与它们在地壳中的百分含量极为相似。但是,人类对人工合成的化学物质,其耐受力则要小得多。所以区别污染物的自然或人工属性,有助于估计它们对人类的危害程度。铅、镉、汞、砷等重金属,是由于工业活动的发展,引起在人类周围环境中的富集,通过大气、水、食品等进入人体,在人体某些器官内积累,造成慢性中毒,危害人体健康。 (二)毒性: 决定污染物毒性强弱的主要因素是其物质性质、含量和存在形态。例如铬有二价、三价和六价三种形式,其中六价铬的毒性很强,而三价铬是人体新陈代谢的重要元素之一。在天然水体中一般重金属产生毒性的范围大约在1~10mg/L之间,而汞,镉等产生毒性的范围在0.01~0.001mg/L之间。 (三)时空分布性: 污染物进入环境后,随着水和空气的流动,被稀释扩散,可能造成点源到面源更大范围的污染,而且在不同空间的位置上,污染物的浓度和强度分布随着时间的变化而不同。(四)活性和持久性: 活性和持久性表明污染物在环境中的稳定程度。活性高的污染物质,在环境中或在处理过程中易发生化学反应,毒性降低,但也可能生成比原来毒性更强的污染物,构成二次污染。如汞可转化成甲基汞,毒性很强。与活性相反,持久性则表示有些污染物质能长期地保持其危害性,如重金属铅、镉等都具有毒性且在自然界难以降解,并可产生生物蓄积,长期威胁人类的健康和生存。 (五)生物可分解性: 有些污染物能被生物所吸收、利用并分解,最后生成无害的稳定物质。大多数有机物都有被生物分解的可能性,而大多数重金属都不易被生物分解,因此重金属污染一但发生,治理更难,危害更大。 (六)生物累积性: 生物累积性包括两个方面:一是污染物在环境中通过食物链和化学物理作用而累积。二是污染物在人体某些器官组织中由于长期摄入的累积。如镉可在人体的肝、肾等器官组织中蓄积,造成各器官组织的损伤。又如1953年至1961年,发生在日本的水俣病事件,无机汞在海水中转化成甲基汞,被鱼类、贝类摄入累积,经过食物链的生物放大作用,当地居民食用后中毒。 (七)对生物体作用的加和性: 多种污染物质同时存在,对生物体相互作用。污染物对生物体的作用加和性有两类:一类是协同作用,混合污染物使其对环境的危害比污染物质的简单相加更为严重;另一类是拮抗作用,污染物共存时使危害互相削弱。 二、重金属的定量检测技术

有机电致发光材料的新进展

有机电致发光材料的新进展 唐杰 (湖南工程学院化学化工学院,湘潭,411101) 摘要:介绍了有机电致发光材料的最新进展,对有机电致发光材料进行分类和评述,重点介绍载流子传输材料和发光材料(小分子发光材料,金属配合物发光材料和聚合物发光材料)的国内外研究现状,并对有机电致发光材料的应用前景进行评述。 关键词:有机电致发光;发光材料;有机小分子;金属配合物;聚合物 Abstract:The recent progress of organic electroluminescent materials was introduced. Various kinds of organic molecular materials and polymer materials used for organic electroluminescence at present were mainly described. The future application of the materials was described. Key words:organic electroluminescence;luminescent material;small organic molecule;organometallic complex;polymer 前言 有机电致发光(organic electro-luminescence ),也叫有机发光二极管(organic light-emitting diode),简称为OLED[1],是指有机物在电场作用下,受到电流电压的激发而发光的现象,是一种直接将电能转化光能的过程。该类材料具有低成本、制作简单、驱动电压低、体积小、响应时间短、重量轻、高导电性、良好的成膜性、视角宽、可大面积使用、柔韧性及可塑性好、自身可发光等显著优点,能够满足照明和显示技术高的需求,已经吸引了科学界和商业界的高度关注。目前国内外对OLED的研究主要集中在发光材料的研究,器件的制作和产品研发上。 在20世纪30年代的时候,人类就开始对有机电致发光材料进行研究了。最初的是1936年Destriau发现的,他将化合物不集中在聚合物中制备了薄膜。1963年,Pope、Lohmann、Helfrich和Willams等人都接连研究了稠环芳香族的蒽、萘等化合物,但大都由于诸多因素而使其发展受到限制。1982年,美国柯达集团的Vincett[2]等人,用真空沉积有机薄膜的这样方法得到有机电致发光材料。从此,对有机发光材料研究的帷幕拉开了。1987年,C.W.Tang[2,3]利用超薄薄膜技术,得到了有机电致发光的材料这一进展对有机发光材料研究的影响很大,全世界都

发光材料的制备

实验三微波法制备蓝色荧光粉Ca1-x Sr x F2:Eu 一、实验目的 1. 掌握共沉淀-微波法制备荧光粉的方法 2. 熟悉微波反应装置以及具体的实验操作 3. 制备纳米复合荧光粉 二、主要仪器与药品 1、仪器 烧杯,胶头滴管,瓷坩埚(100ml、20ml)各一个,分析天平,离心机,烘箱,微波炉,紫外灯 2、药品 硝酸钙,硝酸锶,三氧化二铕(Eu2O3),氟化铵,硝酸,活性炭(炭粒) 三实验原理与技术 共沉淀法是将沉淀剂加入到混合金属盐溶液中,促使各组分均匀混合沉淀,然后加热分解以获得产物的方法。化学共沉淀法的优势在于它不仅可以将原料提纯与细化,而且可以在制备过程中完成反应及掺杂过程。这种方法具有工艺简单、经济,反应物混合均匀,焙烧温度较低、时间较短、产品性能良好等优点。但制备过程中仍有不少问题有待解决,例如过程中易引入杂质,形成的沉淀呈胶体状态导致洗涤和过滤方面的问题,如何选择适宜的沉淀剂和控制制备条件等。 微波合成法是近年来迅速发展起来的一种新合成方法,应用于光致发光材料的制备,已获得了多种粒度细小、分布均匀、色泽纯正、发光效率高的荧光粉。这种方法是将原料按比例混合后研磨,装入特定的反应器,在微波炉中加热反应20—40min,取出后进行简单的后处理即得成品。微波热合成法的显著优点是反应彻底、快速、高效、节能、洁净、经济,使用方法和设备简单,只需家用微波炉即可。用此法合成的产品疏松.粒度小。分布均匀,色泽纯正,发光效率高,有较好的应用价值; 氟化物性能稳定,不易潮解,透光率好,而且生产成本低,有着有机物和硫化物无法比拟的优点。通过对其进行稀土掺杂,可以制备出与植物光合作用所吸收光谱相匹配的新型高效转光剂。但是目前文献报道的大都是通过高温固相法

应用化学毕业论文开题报告-新型铜离子荧光探针的合成及性质研究

毕业设计(论文) 开题报告 题目新型铜离子荧光探针的合成及性质研究 学院化学与化工学院 专业及班级应用化学1101班 姓名王彩花 学号1115020104 指导教师李侃社、李锦、闫兰英、牛红梅、康洁、朱雪丹、陈创前、章结兵日期2015年03月27日

西安科技大学毕业设计(论文)开题报告

1.3 铜离子荧光探针 1.3.1发展背景及研究意义 随社会科技的发展铜元素作为生物体内所必需的一种微量重金属元素和必需的营养素在各个领域受到了广泛的关注,其在细胞中的含量仅次于锌和铁,在各种有机体的基本生理过程中发挥着重要作用,铜离子在生物体内的含量很小,但铜缺乏可导致生长和代谢的紊乱,铜离子的含量过多同样也会对生物体产生巨大的毒害作用。体内的铜离子代谢平衡受到破坏会导致神经退行性疾病的发生,例如缅克斯综合症、威尔森氏综合症、家族性肌萎缩症和阿尔茨海默氏症等疾病。因此,寻求一种快速灵敏简便的铜离子检测方法在生物研究和医学诊断中具有重要的意义。金属离子与生命科学、环境科学、医学等领域有着密不可分的联系,对其识别和检测是化学、生物学、临床生物学及环境学众多研究领域的热点课题。目前,检测Cu2+已知的主要方法有原子吸收光谱法、原子发射光谱法、电化学法、荧光光谱法等。其中荧光法因检出限低、操作简单和高选择性,已得到了广泛的关注。 它是一类能特异性识别目标分子并适合直接检测或带有可检测标记物的高效探测试剂,随着21世纪生命科学的迅猛发展,在揭示和了解生命的奥秘、疾病的诊断与治疗、环境监测等重要科学研究领域,对光学探针技术提出了大量崭新的课题,目前主要集中在蛋白质、核酸和多肤等生物大分子分析,生物药物分析,超痕量和超微量生物活性物质分析等。由于二价铜离子是d轨道结构顺磁性离子,对荧光具有较强的猝灭性,大多数报道的铜离子荧光分子探针都是猝灭型的,在探针识别客体时荧光猝灭不利于高通量信号输出,所以开发高灵敏、高选择性的荧光增强型铜离子荧光分子探针具有重要意义。在近几年中,文献报道了多种基于不同检测机理的铜离子荧光探针,基于化学反应机理的铜离子荧光探针引起了人们的极大关注。和其他方法相比,荧光探针具有高选择性、灵敏度、实时监控、方法简便、取量少等优点,现已被广泛应用于环境监测、水质和土壤分析、临床化验、海洋考察、工业流程控制以及地质、冶金、农业、食品和药物分析等领域。所以努力研究设计并合成出具有更高选择性和检测灵敏度的新型铜离子荧光探针对社会的发展有着极其重要的意义。 1.3.2国内外的研究现状 1997年,Czafinik等首次利用该机理设计合成了罗丹明B酰肼探针(图1),该探针可以选择性识别铜离子,其原理是基于铜离子催化罗丹明B酰肼水解生成强荧光的罗丹明B分子。 图1 2006年,Zeng等报道了一种高度选择性的Cu2+荧光探针,该探针采用硫冠醚结构作为探针的识别基团而荧光基。团则为BODIPY染料。由于PET作用,探针本身的荧光强度十分微弱,

有机电致发光材料与技术试题

选择 1、有机电致发光材料应具备哪些性质(ABCD) A 在固态或溶液中,在可见光区要有较高效率的光发射现象 B 具有较高的导电率,呈现良好的半导体特性 C 具有良好的成膜特性,在几纳米甚至几十纳米的薄膜内基本无针孔 D 稳定性强,一般具有良好的机械加工性能 2、1963年Pope等人报道了哪种材料的电致发光现象(D) A 苯 B 菲 C Alq3 D 蒽 3、下面哪些发光现象是OLED中经常出现的(ABD) A 磷光 B 荧光 C 上转换发光 D 激基复合物发光 4、1987年C.W.Tang等人利用Alq3成功制备出(B)OLED器件 A 单层 B 双层 C 三层 D 四层 5、高分子材料可以利用以下哪种方式制备薄膜(BC) A 热蒸镀法 B 溶液旋涂法 C 喷墨打印法 D 真空升华法 填空 6、OLED内量子效率是指器件中产生的所有(光子)的总数与注入(电子空穴对)数量之比 7、可以利用LiF等无机绝缘材料作为OLED的()层,是利用了电子的()效应 8、在有机电致发光材料中,噁二唑基团有(电子传输)性质,而咔唑基团具有(空穴)传输性质 9、如何实施()的有效注入,降低器件()是实现高效聚合物电致发光的关键 10、配合物发光材料主要有()发光()发光和电荷转移跃迁发光三种发光机制 判断 11、(错)发光是电子从高能态向低能态产生跃迁释放能量的过程 12、()有光辐射必然有热辐射 13、()一个发光物质有几种发光中心,他们的激发光谱都一致 14、(错)红光的发光波长比蓝光的发光波长长,所以红光光的辐射能量高 15、()有机电致发光器件必须具有多层结构或者是掺杂结构 简答 16、OLED用ITO基片最常用的清洗方法 先用普通或专用清洁剂和中等硬度的刷子或百洁布刷洗,并用清水冲洗干净;将ITO基片置于丙酮中超声清洗,再换用清洁的丙酮,反复超声多次,再把丙酮换成乙醇.也反复超声清洗多次.再用去离子水反复超声清洗多次:然后用高速喷出的N2吹干基片上的去离子水。 17、还有一个或者多个乙稀基或者乙炔基不饱和基团的可交联硅氧烷作为刚性封装材料有哪些优点? (1) 允许封装剂覆盖发光部分,聚硅氧烷及硅氧烷衍生物对OLED的寿命和行为没有损害作用; (2)封装剂直接接触器件,可以阻隔性.隔绝水、溶剂、灰尘等外部污染; (3)封装剂不与OLED在高热条件下反应,有很好的强度; (4) 直接接触OLED,没有空气、溶剂和水封在器件中。 18、理想的小分子空穴传输材料应当具有哪些性质 (1)具有高的热稳定性; (2)与阳极形成小的势垒; (3)能真空蒸镀形成无针孔的薄膜

水中重金属离子的测定

一、实验目的与要求 1、掌握水的前处理和消解技术。 2、了解水中重金属的测定方法,掌握原子吸收分光光度计的测定技术。 3、了解利用AAS测定水的硬度和测定废水中SO42+。 4、了解水中重金属的种类、危害及有关知识,掌握水中重金属污染分析与评价的方法。 5、掌握水样的处理方法技术,并小结以前的处理方法。通过测定水中Cr、Pb 的含量分析所取水样的污染程度 二、实验方案 1、原理 (1)火焰原子吸收光度法是根据某元素的基态原子对该元素的特征谱线产生选择性吸收来进行测定的分析方法。将试样溶液喷入空气乙炔火焰中,被测的元素化合物在火焰中离解形成原子蒸汽,由锐线光源(元素灯)发射的某元素的特征普线光辐射通过原子蒸汽层的时候,该元素的基态原子对特征普线产生选择性吸收。在一定的条件下,特征普线与被测元素的浓度成正比。通过测定基态原子对选定吸收线的吸光度,确定试样中元素的浓度。 原子吸收法具有很高的灵敏度。每种元素都具有自己为数不多的特征吸收普线,不同元素的测定采用相应的元素灯,因此普线干扰在原子吸收光度法中是少见的。影响原子吸收光度法准确度的主要是基体的化学干扰。由于试样和标准溶液的基体不一样,试样中存在的某种基体常常影响被测元素的原子化效率,如在火焰中形成难离解的化合物,这时就会发生干扰作用。一般说来Cu,Zn,Pb,Cd的基体干扰不是很严重。 (2)干扰及消除。共存元素的干扰受火焰状态和观测高度的影响很大,在实验的时候应该特别注意。因为铬的化合物在火焰中易生成难以熔融和原子化的氧化物,因此一般在试液中加入适量的助熔剂和干扰元素的抑制剂,如NH4Cl(K2S2O7,NH4F,NH4ClO2)。加入NH4Cl可以增加火焰中的氯离子,使铬生成易于挥发和原子化的氯化物,而且NH4Cl还可以抑制Fe,Co,Ni,V,Al,Pb,Mg的干扰。(3)适用范围。本方法可以适用于地表水和废水中总铬的测定,用空气-乙炔火焰的最佳定量分析范围是0.1-5mg/L。最低检测限是0.03mg/L。

上转换发光机理与发光材料整理

上转换发光机理与发光材料 一、背景 早在1959年就出现了上转换发光的报道,Bloemberge在Physical Review Letter上发表的一篇文章提出,用960nm的红外光激发多晶ZnS,观察到了525nm绿色发光。1966年,Auzel在研究钨酸镱钠玻璃时,意外发现,当基质材料中掺入Yb3+离子时,Er3+、H03+和Tm3+离子在红外光激发时,可见发光几乎提高了两个数量级,由此正式提出了“上转换发光”的观点。 二、上转换发光机理 上转换材料的发光机理是基于双光子或者多光子过程。发光中心相继吸收两个或多个光子,再经过无辐射弛豫达到发光能级,由此跃迁到基态放出一可见光子。为了有效实现双光子或者多光子效应,发光中心的亚稳态需要有较长的能及寿命。稀土离子能级之间的跃迁属于禁戒的f-f 跃迁,因此有长的寿命,符合此条件。迄今为止,所有上转换材料只限于稀土化合物。 三、上转换材料 上转换材料是一种红外光激发下能发出可见光的发光材料,即将红外光转换为可见光的材料。其特点是所吸收的光子能量低于发射的光子能量。这种现象违背了Stokes定律,因此又称反Stokes定律发光材料。 1、掺杂Yb3+和Er3+的材料Yb3+(2F7/2→2F5/2)吸收近红外辐射,并将其传

递给Er3+,因为Er3+的4I11/2能级上的离子被积累,在4I11/2能级的寿命为内,又一个光子被Yb3+吸收,并将其能量传递给Er3+,使Er3+离子从4I11/2能级跃迁到4F7/2能级。快速衰减,无辐射跃迁到4S3/2,然后由 4S 3/2能级产生绿色发射( 4S 3/2 → 4I 15/2 ) ,实现以近红外光激发得到绿 色发射。 2、掺杂Yb3+和Tm3+的材料 通过三光子上转换过程,可以将红外辐射转换为蓝光发射。第一步传递之后,Tm3+的3H5能级上的粒子数被积累,他又迅速衰减到3F4能级。在第二部传递过程中,Tm3+从3F4能级跃迁到3F2能级,并又快速衰减到3H4。紧接着,在第三步传递中,Tm3+从3H4能几月前到1G4能级,并最终由此产生蓝色发射。 3、掺杂Er3+或Tm3+的材料 仅掺杂有一种离子的材料,是通过两步或者更多不的光子吸收实现上转换过程。单掺Er3+的材料,吸收800nm的辐射,跃迁至可产生绿色发射的4S3/2能级。单掺Tm3+的材料吸收650nm的辐射,被激发到可产生蓝色发射的1D2能级和1G4能级。 四、优点 上转换发光具有如下优点:①可以有效降低光致电离作用引起基质材料的衰退;②不需要严格的相位匹配,对激发波长的稳定性要求不高;③输出波长具有一定的可调谐性。 五、稀土上转换材料的应用 随着频率上转换材料研究的深入和激光技术的发展,人们在考虑

有机电致发光材料研究现状

<有机化学进展>结课论文 题目:有机电致发光材料的研究现状 院系: 专业: 班级: 学号: 姓名:

有机电致发光材料的研究现状 摘要:本文对有机电致发光显示器件的发展历史,器件结构、工作特征、发光器件(OLED)的优点、发展现状和趋势等都做了简要的概括。详细介绍了有机发光材料的研究状况,包括小分子发光材料、高分子(聚合物)发光材料,以及新材料的开发。最后总结了国内外OLED 技术的发展状况。 关键词:小分子有机电致发光有机高分子聚合物电致发光 Research and development of organic electroluminescent materials Abstract Organic light-emitting diodes (OLEDs), having excellent properties of low driving voltage and brightemission, have been extensively studied due to their possible applications for flat panel color displays.At the same time, or-ganic electroluminescent materials have been made with an outstanding progress.And thestatus of organic electrolumi-nescent materials(including evaporated molecules and polymers)were reported in this paper. Key words OLED, organic luminescent materials, evaporated molecules and polymers 有机电致发光显示(organic electroluminesence Display)技术被誉为具有梦幻般显示特征的平面显示技术,因其发光机理与发光二极管(LED)相似,所以又称之为OLED(organic light emitting diode)。2000年以来,OLED受到了业界的极大关注,开始步入产业化阶段。 一、发展历史 1936年,Destriau将有机荧光化合物分散在聚合物中制成薄膜,得到最早的电致发光器件。20 世纪50年代人们就开始用有机材料制作电致发光器件的探索,A. Bernanose等人在蒽单晶片的两侧加上400V的直流电压观测到发光现象,单晶厚10mm~20mm,所以驱动电压较高。1963年M. Pope等人也获得了蒽单晶的电致发光。70年代宾夕法尼亚大学的Heeger探索了合成金属[1]。1987年Kodak 公司的邓青云首次研制出具有实用价值的低驱动电压(<10V,>1000cd/m2)OLED 器件(Alq作为发光层)[2]。1990年,Burroughes及其合作者研究成功第一个

发光材料的制备方法及制备的发光材料的制作流程

本技术涉及发光材料技术领域,提供一种发光材料的制备方法及制备的发光材料,所述方法包括:(1)按照化学计量比称取原材料La2O3、4MgCO3·Mg(OH)2·5H2O、H3BO3、Er2O3在研钵中充分研磨,使材料混合均匀;其中,Er3+掺杂的含量为330%;(2)放入坩埚中,在马弗炉中400600℃预烧结1.53h;(3)取出研磨2060min;(4)放入坩埚,置于马弗炉中9001000℃烧结610小时;(5)冷却后,取出烧结体,充分研磨,得到Er3+掺杂的 LaMgB5O10荧光材料。本技术方法简单、成本低廉,所制备的发光材料粒径小、稳定性好,而且发光效率得到了很大提高。 技术要求 1.一种发光材料的制备方法,其特征在于,包括: (1)按照化学计量比称取原材料La2O3、4MgCO3·Mg(OH)2·5H2O、H3BO3、Er2O3在研钵中充分研磨,使材料混合均匀;其中,不同化学计量使Er3+掺杂的含量为3-30%; (2)放入坩埚中,在马弗炉中400-600℃预烧结1.5-3h; (3)取出研磨20-60min; (4)放入坩埚,置于马弗炉中900-1000℃烧结6-10小时; (5)冷却后,取出烧结体,充分研磨,得到Er3+掺杂的LaMgB5O10荧光材料。 2.根据权利要求1所述的发光材料的制备方法,其特征在于,研磨时间为40-90min。 3.根据权利要求1所述的发光材料的制备方法,其特征在于,所述坩埚为氧化铝坩埚。 4.根据权利要求1所述的发光材料的制备方法,其特征在于,预烧结的温度为500℃。 5.根据权利要求1或4所述的发光材料的制备方法,其特征在于,预烧结的时间为2小时。 6.根据权利要求1所述的发光材料的制备方法,其特征在于,烧结的温度为900℃。 7.根据权利要求1或6所述的发光材料的制备方法,其特征在于,烧结时间为8小时。

OLED-材料的发光原理

掌握未来显示技术:OLED材料的发光原理 2016-11-11OLED新技术 众所周知,OLED显示器不需要背光源,在通电的情况下OLED材料可以主动发出红绿蓝三色光。那OLED发光的原理是什么呢? 首先上一张大家已经看腻的图:OLED器件结构。 OLED器件结构(来源:百度百科) 从图中可以看出,OLED器件自下而上分为: 玻璃基板(TFT)、阳极、空穴注入/传输层、有机发光层、电子注入/传输层和金属阴极(顺便吐槽一下百度百科里各层名字的叫法。。。)

发光的部位在器件中间的有机发光层(再具体点就是发光层中的掺杂材料),发光机理如下图所示: 有机发光层的发光机理(来源:网络) OLED器件是电流驱动型,在通电的情况下,空穴从阳极进入器件,穿过空穴注入/传输层,电子从阴极进入器件,穿过电子注入/传输层,两者最终到达有机发光层。

接下来要讲解的内容可能会比较生涩,为便于不同层次读者的理解,小编用不同的内容分成基础班和进修班,请各位读者对号入座。 基础班: 空穴和电子在发光层中相遇,然后复合,形象一点讲的话,就像久未相见的恋人,一见面便紧紧抱在一起;电子空穴复合时会产生能量,释放出光子,你可以将光子理解为下图中情侣头上的心形;我们能看见的光是由无数的光子组成,就像情侣头上不断冒出的小心心;光的颜色由光子的能量决定,如果能量的高低用情侣的亲密程度比喻的话:特别亲密的发出蓝色(能量高发出蓝光),比较亲密的发出绿色(能量适中的发出绿光),一般亲密的发出红色(能量低的发出红光)。

进修班: 在讲解OLED发光原理之前,我们先学习一个概念:能级; 能级:原子核外电子的状态是不连续的,因此各状态对应的能量也是不连续的,这些能量值就是能级; 能级就像楼梯的台阶,只存在1阶、2阶这样的整数,不会出现诸如1.5阶、2.1阶这样的情况,能级的示意图如下; 能级(来源:百度百科) 在正常状态下,原子处于最低能级,即电子在离核最近的轨道上运动,这种状态称为基态;

有机光电材料综述

有机小分子电致发光材料在OLED的发展与应用的综述电致发光(electroluminescence,EL),指发光材料在电场的作用下,受到电流或电场激发而发光的现象,它是一个将电能直接转化为光能的一种发光过程。能够产生这种电致发光的物质有很多种,但目前研究较多而且已经达到实际应用水平的,主要还是无机半导体材料,无机 EL 器件的制作成本较高,制作工艺困难,发光效率低,发光颜色不易实现全色显示,而且由于很难实现大面积的平板显示,使得这种材料的进一步发展具有很严峻的局限性。由于现有的显示技术无法满足我们生产生活的需要,因此促使人们不断地寻求制备工艺成本更低、性能更好的发光材料。有机电致发光材料(organic light-emitting device,OLED)逐渐的进入了人们的视野,人们发现它是一种很有前途的、新型的发光器件。有机电致发光就是指有机材料在电流或电场的激发作用下发光的现象。根据所使用的有机材料的不同,我们将有机小分子发光材料制成的器件称为有机电致发光材料,即 OLED;而将高分子作为电致发光材料制成的器件称为高分子电致发光材料,即 PLED。不过,通常人们将两者笼统的简称为有机电致发光材料 OLED。 一.原理部分 与无机发光材料相比,有机电致发光材料具有很多优点:光程范围大、易得到蓝光、亮度大、效率高、驱动电压低、耗能少、制作工艺简单以及成本低。综上所述,有机电致发光材料在薄膜晶体管、

太阳能电池、非线性发光材料、聚合物发光二极管等方面存在巨大的需求,显示出广泛的应用前景,因而成为目前科学界和产业界十分热门的科研课题之一。虽然,世界上众多国家投入巨资致力于有机平板显示器件的研究与开发,但其产业化进程还远远低于人们的期望,主要原因是器件寿命短、效率低等。目前有很多关键问题没有解决:1. 光电材料分子结构、电子结构和电子能级与发光行为之间的关系,这是解决材料合成的可能性、调控材料发光颜色、色纯度、载流子平衡及能级匹配等关键问题的理论和实验依据; 2. 光电材料和器件的退化机制、器件结构与性能之间的关系、器件中的界面物理和界面工程等,这是提高器件稳定性和使用寿命的理论和实验基础,也是实现产业化、工业化的根本依据。 1.基态与激发态 “基态”在光物理和光化学中指的是分子的稳定态,即能量最低的状态。如果一个分子受到光或电的辐射使其能量达到一个更高的数值后,分子中的电子排布不完全遵从构造原理,这时这个分子即处于“激发态”,它的能量要高于基态。基态和激发态的不同并不仅仅在于能量的高低上,而是表现在多方多面,例如分子的构型、构象、极性、酸碱性等。在构型上主要表现在键长和二面角方面,与基态相比,激发态的一个电子从成键轨道或非成键轨道跃迁到反键轨道上,使得键长增长、键能级降低;同时,由于激发后共轭性也发生了变化,所以二面角即分子的平面性也发生了明显的改变。 2.吸收和发射

led灯的结构及发光原理(精)

led灯的结构及发光原理 50年前人们已经了解半导体材料可产生光线的基本知识,第一个商用二极管产生于1960年。LED是英文light emitting diode(发光二极管)的缩写,它的基本结构是一块电致发光的半导体材料,置于一个有引线的架子上,然后四周用环氧树脂密封,起到保护内部芯线的作用,所以LED的抗震性能好。 led灯结构图如下图所示 发光二极管的核心部分是由p型半导体和n型半导体组成的晶片,在p型半导体和n型半导体之间有一个过渡层,称为p-n结。在某些半导体材料的PN 结中,注入的少数载流子与多数载流子复合时会把多余的能量以光的形式释放出来,从而把电能直接转换为光能。PN结加反向电压,少数载流子难以注入,故不发光。这种利用注入式电致发光原理制作的二极管叫发光二极管,通称LED。当它处于正向工作状态时(即两端加上正向电压),电流从LED阳极流向阴极时,半导体晶体就发出从紫外到红外不同颜色的光线,光的强弱与电流有关。 二、什么是led光源,led光源的特点 1. 电压:LED使用低压电源,供电电压在6-24V之间,根据产品不同而异,所以它是一个比使用高压电源更安全的电源,特别适用于公共场所。 2. 效能:消耗能量较同光效的白炽灯减少80% 3. 适用性:很小,每个单元LED小片是3-5mm的正方形,所以可以制备成各种形状的器件,并且适合于易变的环境 4. 稳定性:10万小时,光衰为初始的50%

5. 响应时间:其白炽灯的响应时间为毫秒级,LED灯的响应时间为纳秒级 6. 对环境污染:无有害金属汞 7.颜色:改变电流可以变色,发光二极管方便地通过化学修饰方法,调整材料的能带结构和带隙,实现红黄绿兰橙多色发光。如小电流时为红色的LED,随着电流的增加,可以依次变为橙色,黄色,最后为绿色 8. 价格:LED的价格比较昂贵,较之于白炽灯,几只LED的价格就可以与一只白炽灯的价格相当,而通常每组信号灯需由上300~500只二极管构成。 三、单色光led灯的种类及其发展历史 最早应用半导体P-N结发光原理制成的LED光源问世于20世纪60年代初。当时所用的材料是GaAsP,发红光(λp=650nm),在驱动电流为20毫安时,光通量只有千分之几个流明,相应的发光效率约0.1流明/瓦。 70年代中期,引入元素In和N,使LED产生绿光(λp=555nm),黄光(λp=590nm)和橙光(λp=610nm),光效也提高到1流明/瓦。 到了80年代初,出现了GaAlAs的LED光源,使得红色LED的光效达到10流明/瓦。 90年代初,发红光、黄光的GaAlInP和发绿、蓝光的GaInN两种新材料的开发成功,使LED的光效得到大幅度的提高。在2000年,前者做成的LED在红、橙区(λp=615nm)的光效达到100流明/瓦,而后者制成的LED在绿色区域(λp=530nm)的光效可以达到50流明/瓦。 四、单色光LED的应用 最初LED用作仪器仪表的指示光源,后来各种光色的LED在交通信号灯和大面积显示屏中得到了广泛应用,产生了很好的经济效益和社会效益。以12 英寸的红色交通信号灯为例,在美国本来是采用长寿命,低光效的140瓦白炽灯作为光源,它产生2000流明的白光。经红色滤光片后,光损失90%,只剩下200流明的红光。而在新设计的灯中,Lumileds公司采用了18个红色LED光源,包括电路损失在内,共耗电14瓦,即可产生同样的光效。 汽车信号灯也是LED光源应用的重要领域。1987年,我国开始在汽车上安装高位刹车灯,由于LED响应速度快(纳秒级),可以及早让尾随车辆的司机知道行驶状况,减少汽车追尾事故的发生。 另外,LED灯在室外红、绿、蓝全彩显示屏,匙扣式微型电筒等领域都得到了应用。 五、白光led灯的开发 对于一般照明而言,人们更需要白色的光源。1998年发白光的led灯开发成功。这种led灯是将GaN芯片和钇铝石榴石(YAG)封装在一起做成。GaN芯片发蓝光(λp=465nm,Wd=30nm),高温烧结制成的含

水体中重金属离子检测方法现状及研究进展

水体中重金属离子检测方法现状及研究进展 随着我国科学体系以及科学技术水平的不断进步,多种水体功能的检测以及多种仪器的测量技术也在不断地完善促进了对水中金属离子以及其它方面的准确测量,所以文章就以水体中重金属离子的测量为主要的着力点,介绍了现阶段水体测量中对重金属测量的现状,并根据这些现状找到重金属离子测量过程中存在的一系列的问题,根据这些问题进行主要的策略分析,从而更好的促进我国水体的纯净与无污染,保护我国的生态环境。 标签:重金属离子;检测;现状;研究;问题;策略 1 水体中重金属离子检测方法现状分析 所谓重金属,重金属原义是指比重大于5的金属(一般来讲密度大于4.5g/cm3的金属),包括金、银、铜、铁、铅等,重金属在人体中累积达到一定程度,会造成慢性中毒。水资源与人们生活密不可分,优质水源,优质水体对与身体有一定的好处,但是水体中含有一定的重金属,就会对人的身体造成一定的伤害,所以一旦发现水体中含有一定的重金属,就必须要检测其是否超标,从而确保水体的质量。现阶段重金属离子检测的方法在不断的增加,各种方法的适用也较为多变,这也是在实际的问题研究过程中需要充分注重的问题。现阶段水体中重金属离子检测的科学技术水平在不断的完善,但是从检测方法以及检测过程等多个方面来看,仍然存在一定的问题,因此针对这些问题,需要通过多种方式进行完善。 2 水體中重金属离子检测过程中存在的问题 2.1 检测标准不能更好确定 目前,针对水体中的不同的重金属,应该采用一个更加合理化的选择标准,一个合理的检测标准具有重要的作用,但是在现阶段的发展以及整体的完善过程中,必须要通过一个合理的标准进行时时检测,提高整体的检测水平,这也是在实际的问题研究过程中需要注重的一个问题。首先,检测标志呢确定,要根据具体的水质以及水量,来进行衡量与计算,找到一个更加准确的标准,将重金属降到这一标准以下,以求能够更好的将水体充分运用提升整个水体的应用价值。所以针对这一问题,在实际的问题研究过程中也需要更好的重视与完善。 2.2 检测方法单一化 针对不同的重金属选择不同的检测方式,所以针对这一问题的研究上来看,必须要更好的重视整个研究过程的完善,丰富多种水体中重金属的检测方式。但是现阶段,我国许多单位在进行重金属的检测上仍然存在检测方式过于单一化,检测内容不具有针对性的问题,所以通过实际的研究可以知道,水体中的重金属问题已经成为了一种检测方法的依据。所以在这些问题的改善上,必须要高度重

相关文档
最新文档