3D打印机设计
基于FDM技术的彩色3D打印机设计

性能评测
为了评测基于FDM技术的彩色3D打印机的性能,我们从打印速度、精度、效 率、成本等方面进行了对比分析。结果显示,该打印机在提高打印速度和精度方 面具有明显优势,同时保持了较高的打印效率和经济性。与同类产品相比,该设 计方案在各方面均具有一定的竞争力。
结论与展望
基于FDM技术的彩色3D打印机设计方案在提高打印速度、精度和效率方面取 得了显著成果。然而,该方案仍存在一定的局限性,例如对数字模型文件的格式 和分辨率要求较高,打印过程中需要持续供应冷却等。未来研究可针对这些问题 进行优化和完善,进一步拓展FDM技术在彩色3D打印机领域的应用范围。
参考内容
引言
随着科技的不断发展,3D打印技术已经广泛应用于各个领域。其中,熔融沉 积成型(FDM)技术是一种常见的3D打印技术,具有设备成本较低、操作简单、 材料利用率高等优点。然而,FDM技术也存在一定的局限性,如打印速度较慢、 打印精度较低等。为了克服这些局限性,本次演示将重点介绍一种FDM彩色3D打 印机挤出装置的结构设计,旨在提高打印精度和速度,同时降低成本。
然而,FDM彩色3D打印机挤出装置的设计仍然存在一定的不足之处,例如在 高速运转时的稳定性、材料适用范围等方面还需要进一步研究和改进。未来的研 究方向可以包括探究更优的材料流动特性、设计更高效的传动系统以及拓展装置 的功能模块等。
引言
随着科技的不断发展,3D打印技术逐渐成为当今研究的热点之一。其中,熔 融沉积成型(FDM)型3D打印机作为一种重要的技术分支,具有其独特的优势。 FDM型3D打印机通过将熔融的塑料丝逐层堆积来制造物体,因其材料利用率高、 设备成本较低、操作简便等优点而广受欢迎。然而,目前市场上的FDM型3D打印 机多为单色或者双色,无法满足人们对多样化颜色的需求。
3D打印机设计毕业设计

3D打印机设计毕业设计介绍本文档旨在探讨一种创新的3D打印机设计方案作为毕业设计的内容。
该方案旨在提供一种高效、精确且可靠的3D打印机,以满足不同领域的需求。
设计目标1. 实现高精度的打印效果,能够制造出复杂的立体模型。
2. 提高打印效率,缩短打印时间,满足大批量、快速生产的需求。
3. 提供多材料打印功能,支持不同材质的打印,如塑料、金属等。
4. 系统可靠性和稳定性高,能够长时间工作且避免出现故障。
设计方案1. 结构设计:采用坚固稳定的机身设计,以确保打印过程中的精确性和稳定性。
同时,考虑易于维护和组装的设计,提高机器的可靠性和可操作性。
2. 打印技术:选择适合多种材料打印的技术,如FDM、SLA或SLS等。
根据需求选择最适合毕业设计的技术,并结合实际场景进行调整。
3. 控制系统:采用先进的控制系统,确保打印过程中的均匀性、精确性和稳定性。
同时,增加对多材料打印的支持,提供更多选择。
4. 软件支持:提供易于操作的用户界面和功能丰富的软件支持,方便用户进行模型设计和打印控制。
5. 安全性:设计安全可靠的电路和自动故障检测系统,可及时发现和避免潜在的问题,确保操作过程中的安全性。
预期成果1. 设计并制造出一台优秀的3D打印机原型,实现高精度、高效率的打印。
2. 验证设计方案的可行性和实用性,通过实验数据和用户反馈进行评估。
3. 提出改进方案和优化建议,为未来3D打印机的进一步研发提供参考。
时间进度安排1. 设计方案讨论和确定:1周2. 设计和制造原型:4周3. 实验验证和数据分析:2周4. 编写毕业设计报告: 2周预期成果评估1. 毕业设计报告评分: 占总分的50%2. 设计原型的可行性和实用性评估: 占总分的30%3. 实验数据分析和优化建议: 占总分的20%参考文献- 3D Printing Technology and Its Applications: A Review of the Literature- Advances in 3D Printing Technology: Applications, Environmental Impacts, and Future- Design and Optimization of 3D Printed Structures for Additive Manufacturing请注意,以上内容旨在提供一个简单的3D打印机设计毕业设计的框架和思路,具体设计方案需要进一步详细研究和调整。
3D打印机系统设计

Harbin Institute of Technology课程设计说明书课程名称:自动控制元件及线路设计题目:3D打印机的研究与设计方案院系: 航天学院自动化班级: 1104104设计者:学号:指导教师:设计时间:10.15—-12。
22哈尔滨工业大学摘要本次课程设计通过对2D打印机的了解和对电机传感器的认识,通过类比和分析来初步设计3D打印机。
本文主要内容为电机类型,型号选择及参数的测算,并且应用了PWM控制等数字信号在电机控制中进行驱动。
比较了不同种类传感器的优劣,选出了对比优化方案及元件。
利用控制理论实现了3维定位和实现打印功能,给出初步设计方案。
关键词:步进电机、传感器、3D、定位控制系统、数字信号处理器一、国内外在该方面的研究现状分析及研究的目的意义1、现状及研究意义:3D打印快速成型技术实质是“快速成型技术",也被称为“增量技术"、“增材技术”,是传统制造技术与新材料的完美结合,并且将带动工业设计、新材料、精益制造等多个领域颠覆性的改变。
3D打印技术作为目前最具有生命力的快速成型技术之一,适用于家用电器、办公室用品、建筑模型、医学模型等领域的新产品开发,已经广泛应用到航空航天等军事领域和大型复杂构件的一次成型制造,在国外,3D打印机已经商品化。
作为一种经济型快速成型技术,综合应用了CAD/CAM技术、激光技术,光化学以及材料科学等绪多方面的技术和知识,让产品设计、建筑设计、工业设计、医疗用品设计等领域的设计者,第一时间方便轻松的获得全彩色实物模型,便于重新修定CAD设计模型,从而节省了为错误设计制造工艺装备的费用,并节省了研制时间.它具有成本低、系统可靠性高,设备体积小、噪声小、成型速度快、产品材料与颜色可多样化等优点,与传统技术相比,三维打印技术还拥有如下优势:通过摒弃生产线而降低了成本;大幅减少了材料浪费。
具有巨大的应用潜能和广阔的市场前景。
当下,我国的3D打印技术还处于起步阶段,3D打印技术基本由大学和一些小企业在做研究,尚未有成品出现,在软件和材料方面相对落后,但是,就在2012年10月17日,中国3D打印技术产业联盟已经成立,这就意味着中国开始越来越重视该技术。
3D打印机毕业设计

3D打印机毕业设计1000字随着科技的不断发展,3D打印技术已成为制造业领域的重要发展方向。
毕业设计作为一个重要的学习成果,选择3D打印机作为毕业设计是一个很好的选择。
本文将介绍一个基于3D打印技术的毕业设计,包括设计背景、准备工作、设计流程和成果展示。
一、设计背景3D打印技术在现代制造业领域中已经有了很好的应用。
为了探索3D打印技术的发展和应用,设计了一款基于3D打印技术的毕业设计。
该设计旨在研究3D打印技术的原理与技巧、3D打印机的结构与设计、3D打印机的应用领域,以及在设计与制造领域中的实际应用。
该设计具有很高的创新性和实用性,旨在为学生提供一个适当的练习场所,让他们在设计和制造方面发挥创新精神,获取更多的知识和技能。
二、准备工作在进行3D打印机毕业设计之前,需要进行一些准备工作。
首先,需要对3D打印技术进行全面的了解,阅读相关材料和文献。
同时,还需要了解3D打印机的功能、特点、结构和工作原理,并掌握3D打印机软件的使用方法。
其次,还需具备一定的机械设计知识和电路设计知识,以便于更好的设计3D打印机。
最后,准备必要的材料和工具,比如3D打印机零件、3D打印机的电子元件,等等。
三、设计流程1. 研究3D打印机的结构与设计,确定设计方向。
2. 设计3D打印机的整体结构和外观,绘制草图。
3. 确定3D打印机的材料和元件,制定采购计划。
4. 编写3D打印机的控制程序,确定控制方式,设计电路。
5. 制造3D打印机零件,进行组装和调试。
6. 调试测试,改进和完善3D打印机的性能。
7. 展示3D打印机的制造过程和性能测试结果。
四、成果展示设计的3D打印机是一款基于FDM(熔丝沉积成型)技术的桌面型3D打印机。
该打印机具有结构紧凑、体积小、简易易用等特点。
主要材料采用工程塑料,打印机使用系统为Arduino。
该打印机可支持常见的3D打印软件,可以打印出不同材料和不同尺寸的3D模型。
经过测试,该打印机打印的质量稳定,精度高,能满足不同领域的应用需求。
3D打印机设计技巧指导安装调试步骤

3D打印机设计技巧指导安装调试步骤在当今快速发展的科技领域,三维打印技术成为一项备受关注的创新技术。
3D打印机的设计与安装调试是实现高质量打印的关键步骤。
本文将为您介绍一些3D打印机设计的技巧以及详细的安装和调试步骤。
一、3D打印机设计技巧1.选择合适的打印机模型在选择3D打印机模型时,需考虑所需打印对象的大小和材料。
不同的打印机模型适用于不同的打印需求,例如个人家用的桌面型打印机适合打印小型模型,而工业型的打印机则适用于打印较大的零部件。
2.优化打印机结构设计在设计打印机结构时,需确保打印平台和打印头的连接稳固,避免打印时产生震动或位移。
另外,保证打印头的平稳移动和精确定位也是关键。
合理设计底座结构,并考虑增加稳定性的支撑。
3.选择合适的材料根据打印需求选择合适的打印材料,常见的材料包括ABS、PLA等。
确保打印机配备了适当的喷嘴和材料供给系统,以确保材料的顺畅供给和打印质量。
二、3D打印机安装步骤1.准备工作在开始安装前,先确保拥有所有必要的工具和零件,如螺丝刀、扳手、螺丝和电缆等。
阅读并理解安装手册和说明书,熟悉各个部件的名称及其功能。
2.组装打印机框架根据说明书,按照正确的顺序,将打印机框架的各个部分组装起来。
确保每个连接点都固定稳固,以防止松动或晃动。
3.安装电气部件将主控板、电机以及其他所需的电气部件安装到预定的位置。
连接电缆时要小心,确保正确连接且稳固。
4.安装打印头和喷嘴根据指示,将打印头和喷嘴装配到打印机上。
务必确保打印头可以平稳移动,并且与打印平台的距离适当。
5.安装打印平台根据打印机型号,将打印平台安装到打印机上。
确保打印平台可以在三个方向上平稳移动,并且能够准确定位。
6.连接电源和调试将打印机连接到电源,并按照说明书的指引进行必要的设置。
调试打印机的过程可能包括调整打印平台的水平、校准打印头位置以及测试打印功能等。
三、3D打印机调试步骤1.打印底层测试模型在开始打印复杂模型之前,建议首先打印一些简单的测试模型。
《2024年FDM彩色3D打印机系统设计与仿真》范文

《FDM彩色3D打印机系统设计与仿真》篇一一、引言随着科技的发展和数字化的趋势,3D打印技术越来越受到关注,特别是基于熔融沉积造型(FDM)的彩色3D打印机在许多领域具有广泛的应用。
本文旨在介绍FDM彩色3D打印机的系统设计、工作原理和仿真结果。
我们详细地讨论了打印机的关键部分设计、系统架构以及仿真结果,为读者提供一个全面而深入的理解。
二、系统设计1. 总体设计FDM彩色3D打印机的设计主要基于熔融沉积造型(FDM)技术。
该系统主要由四个主要部分组成:挤出机系统、运动系统、控制系统和热源系统。
挤出机系统负责将塑料加热至熔融状态并送至喷头;运动系统控制喷头的移动路径;控制系统则负责整个系统的协调和控制;热源系统则提供必要的热量以维持塑料的熔融状态。
2. 挤出机系统设计挤出机系统是FDM彩色3D打印机的核心部分之一。
我们设计了一种新型的挤出机,该挤出机使用步进电机驱动螺杆,通过精确控制螺杆的旋转速度和力度,实现塑料的均匀送出和熔融。
此外,我们还设计了一种多色塑料储存和混合系统,使得打印机能够同时使用多种颜色的塑料进行打印。
3. 运动系统设计运动系统由三个轴组成:X轴、Y轴和Z轴。
每个轴都由步进电机驱动,通过精确控制电机的旋转角度和速度,实现喷头的精确移动。
我们采用高精度的导轨和轴承,保证打印过程中的稳定性和精度。
4. 控制系统设计控制系统是整个打印机的“大脑”,我们使用高性能的单片机作为主控制器,通过编程实现对整个系统的控制和协调。
此外,我们还设计了友好的人机交互界面,使得用户可以方便地设置和控制打印机的各项参数。
5. 热源系统设计热源系统主要用于提供足够的热量使塑料达到熔融状态。
我们采用高效加热元件配合智能温度控制系统,保证温度的稳定性和精确性。
此外,我们还设计了热隔离系统,防止热量对其他部分的影响。
三、仿真结果我们使用专业的仿真软件对FDM彩色3D打印机的关键部分进行了仿真分析。
仿真结果表明,我们的设计在结构上具有较高的稳定性和精度,能够满足3D打印的需求。
《2024年FDM彩色3D打印机系统设计与仿真》范文

《FDM彩色3D打印机系统设计与仿真》篇一一、引言随着科技的发展和数字化的趋势,3D打印技术越来越受到广泛关注。
其中,FDM(熔融沉积建模)技术以其简单、低成本和易于维护的特点,成为目前最常用的3D打印技术之一。
本文将详细介绍FDM彩色3D打印机系统的设计与仿真过程,旨在为相关领域的研究和应用提供参考。
二、系统设计1. 硬件设计FDM彩色3D打印机的硬件设计主要包括打印机的机械结构、喷头、加热系统、控制系统等部分。
(1)机械结构:采用稳定可靠的XYZ轴运动结构,确保打印过程的稳定性和精度。
同时,为了方便操作和维护,设计有易于拆卸的打印平台和可调节的喷头高度。
(2)喷头:采用高质量的喷头材料,具备高温耐腐蚀性能。
喷头设计为多色喷头,以实现彩色打印功能。
(3)加热系统:包括喷头加热和平台加热两部分。
喷头加热系统用于将塑料材料熔化,平台加热系统则用于提高打印平台的温度,以防止打印件在打印过程中脱落。
(4)控制系统:采用高性能的主控芯片和稳定的驱动电路,实现精确的XYZ轴运动控制和喷头加热控制。
同时,配备友好的人机交互界面,方便用户进行操作和设置。
2. 软件设计软件设计主要包括控制系统的编程和仿真软件的开发。
(1)控制系统编程:采用易于编程和调试的编程语言,实现喷头运动、加热、送料等功能的控制。
同时,具备错误检测和报警功能,确保打印过程的稳定性和安全性。
(2)仿真软件的开发:用于对FDM彩色3D打印机的运动过程、温度控制、材料熔化等过程进行仿真。
通过仿真,可以预测打印过程中可能出现的问题,提前进行优化和调整,提高打印质量和效率。
三、仿真分析通过仿真软件对FDM彩色3D打印机的运动过程、温度控制、材料熔化等过程进行仿真分析。
1. 运动过程仿真:通过模拟XYZ轴的运动过程,验证机械结构的稳定性和精度。
同时,通过仿真分析喷头的运动轨迹和速度,优化喷头的运动规划,提高打印速度和精度。
2. 温度控制仿真:通过模拟加热系统和温度传感器的工作过程,验证温度控制的稳定性和准确性。
3d打印机毕业设计

3d打印机毕业设计
3D打印机毕业设计
毕业设计题目:基于3D打印技术的植物形态参数测量系统设
计
设计背景和目的:
随着科技的不断进步,3D打印技术逐渐应用于各个领域。
植
物形态参数的测量是植物学研究中的重要内容之一,传统的植物形态参数测量方法费时费力,测量结果准确性有限。
因此,本课题旨在研究基于3D打印技术的植物形态参数测量系统,
提高测量准确性和效率。
主要内容和方法:
1. 设计一个基于3D打印技术的植物形态参数测量系统,包括
硬件和软件系统。
2. 硬件系统:利用3D打印技术制作植物形态测量装置,包括
植物夹持装置、摄像头和激光测距仪等。
3. 软件系统:开发植物形态参数测量软件,包括图像处理、数据分析和结果展示等功能。
4. 验证系统的有效性和准确性,通过与传统方法进行对比实验,评估系统的测量准确性和效率。
预期成果和影响:
1. 设计出一个基于3D打印技术的植物形态参数测量系统,能
够准确且高效地测量植物形态参数。
2. 提高植物形态参数测量的准确性和效率,节约人力和时间成
本。
3. 推动3D打印技术在植物学研究中的应用,促进植物学研究的发展。
总结:
本设计以3D打印技术为基础,研究了基于3D打印技术的植物形态参数测量系统。
通过该系统的设计和实现,可以提高植物形态参数测量的准确性和效率,为植物学研究提供更可靠的数据支持。
通过本设计的完成,也推动了3D打印技术在植物学等领域的应用,具有一定的实际意义和应用价值。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
北京科技大学天津学院本科生毕业设计(论文)选题报告题目:金属液滴成型与铣销复合3D打印机床身结构设计系:机械工程系班级:机械1203班姓名:魏浩然学号:12413336指导教师1:黄明吉指导教师2:20 年月日目录1文献综述 (3)1.1本课题国外研究进展 (3)1.2本课题国内研究进展 (3)2课题背景及开展研究的意义 (4)2.1课题背景 (4)2.2开展研究的意义 (4)3研究内容、方法及预期目的 (5)3.1研究内容 (5)3.2研究方法 (5)3.3预期目的 (6)4 进度安排 (8)参考文献 (9)指导教师意见 (10)1文献综述1.1本课题国外研究进展日前,欧洲空间局(ESA)的“以实现高技术金属产品的高效生产与零浪费为目标的增材制造项目”(AMAZE)提出,将首次实现3D打印金属件的大规模生产。
这些3D 打印的金属零部件可用于喷气式飞机、航天器以及核聚变等项目。
波音公司已经利用三维打印技术制造了大约300种不同的飞机零部件,包括将冷空气导入电子设备的形状复杂导管。
波音公司和霍尼韦尔正在研究利用3D打印技术打印出机翼等更大型的产品。
空客在A380客舱里使用3D打印的行李架,在“台风”战斗机中也使用了3D打印的空调系统。
空客公司最近提出?“透明飞机概念”计划,制定了一张“路线图”,从打印飞机的小部件开始,一步一步发展,最终在2050年左右用3D打印机打印出整架飞机。
“概念飞机”本身有许多令人眼花缭乱的复杂系统,比如仿生的弯曲机身,能让乘客看到周围蓝天白云的透明机壳等,采用传统制造手段难以实现,3D 打印或许是一条捷径。
1.2本课题国内研究进展中国航天科技集团公司六院7103厂自行研制的某型号软管顺利通过2万次疲劳试验考核,各项指标均达到设计要求。
这意味着长期困扰一线职工的软管工艺攻关项目获得成功。
这是该厂继去年年底突破大直径高温合金筒体缝焊技术之后,再次突破小直径大壁厚异件缝焊工艺,进一步提升了发动机制造工艺能力。
北京航空航天大学同我国主要飞机设计研究所等单位通过“产学研”紧密合作,瞄准大型飞机、航空发动机等国家重大战略需求,历经17年研究在国际上首次全面突破了钛合金、超高强度钢等难加工大型复杂整体关键构件激光成形工艺、成套装备和应用关键技术,并已在飞机大型构件生产中研发出五代、10余型装备系统,已经受近十年的工程实际应用考验,使我国成为迄今为止唯一掌握大型整体钛合金关键构件激光成形技术并成功实现装机工程应用的国家。
2课题背景及开展研究的意义2.1背景3D打印听起来新鲜,其实这项技术并不是什么新的技术,而是已经发展了大约30年了的快速成型技术(Rapid prototyping)的一种,简单地说,即设计人员通过计算机绘成的三维模型,或是以三维扫描仪对实物进行三维建模,将这些数据输入3D打印机形成指令,使用堆叠的方法使材料一层一层堆积起来并形成最终的成品。
目前国内有一些3D打印的概念股,如中航重机,苏大维格,南风股票等,股价一直在飙升,这也多少与3D打印的炒作和关注度提升有关。
国内3D打印技术的应用上至航空航天,下至个人爱好都有所应用。
北京航空航天大学的王华明教授因为运用3D打印技术打印飞机钛合金部件并实际运用而获得国家科技发明一等奖,几千块的桌面级3D打印机也在淘宝上有售,只是所使用的材料为ABS工程塑料或PLA食物降解高分子材料,所成型的成品一般精度和粗糙度较差,成型体积有限,只能制作一些初级样件。
国外的3D打印技术和市场较国内成熟很多,主要技术来自美国、德国、日本和以色列等国家,其中以美国的3D Systems、Stratasys和Makerbot等为代表的企业,引领着全球3D打印行业的方向。
2.2研究意义3D打印技术相对传统制造技术来讲的确是一次重大的技术革命,用“颠覆”传统制造技术来形容也不过分,能够解决传统制造所不能解决的技术难题,能够为传统制造业的创新发展注入新鲜动力。
但是,传统制造业经过了数千年的积累和发展,已经在生产工艺、生产技术、材料等方面非常成熟,并形成了配套完善、功能齐全、社会各界广泛认可的产业基础。
从3D打印的技术原理来看,传统制造方式不能生产的产品,利用3D打印技术都可以轻松地打印出来。
但是,传统制造业所擅长的批量化规模化生产、精益化生产,恰恰是3D打印技术的短腿。
比较来看,3D打印技术擅长的解决个性化、复杂化、高难度的生产技术,而传统制造业则擅长的是批量化和规模化。
彼此之间优劣态势正好形成互补关系,而不是谁替代谁的问题。
因此,3D打印技术本身不是要取代传统制造业,也不能取代传统制造业。
3研究内容、方法及预期目的3.1研究内容3D打印技术是指由计算机辅助设计模型(CAD)直接驱动的,运用金属、塑料、陶瓷、树脂、蜡、纸、砂等材料,在快速成形设备里分层制造任何复杂形状的物理买体的技术。
基本流程是,先用计算机软件设计三维模型,然后把三维数字模型离散为面、线和点,再通过3D打印设备分层堆积,最后变成一个三维的买物。
传统制造技术是“减材制造技术”,3D打印则是“增材制造技术”,具有制造成本低、生产周期短等明显优势,被誉为“第三次工业革命最具标志性的生产工具”。
3D打印将多维制造变成简单的由下而上的二维叠加,从而大大降低了设计与制造的复杂度。
同时,3D打印还可以制造传统方式无法加工的奇异结构,尤其适合动力设备、航空航天、汽车等高端产品上的关键零部件的制造。
3.2研究方法选区激光熔化技术(Selective Laser Melting,SLM): SLM 技术成型原理与选区激光烧结(SLS)基本相同,作为金属零件3D打印技术的重要组成部分,两者都可以直接进行金属零件直接制造,不需要后处理。
SLM成型材料多为单一组分金属粉末,包括奥氏体不锈钢、镍基合金、钛基合金、钴-铬合金和贵重金属等。
激光束快速熔化金属粉末并获得连续的熔道,可以直接获得几乎任意形状、具有完全冶金结合、高精度的近乎致密金属零件,是极具发展前景的金属零件3D打印技术。
其应用范围已经扩展到航空航天、微电子、医疗、珠宝首饰等行业。
激光净成形技术(Laser Engineered Net Shaping,LENS) : LENS技术是在激光熔覆技术的基础上发展起来的一种金属零件3D打印技术。
采用中、大功率激光熔化同步供给的金属粉末,按照预设轨迹逐层沉积在基板上,最终形成金属零件。
1999年,LENS工艺获得了美国工业界中“最富创造力的25项技术”之一的称号。
电子束选区熔化技术(Electron Beam Selective Melting,EBSM):EBSM技术是20世纪90年代发展起来的一种金属零件3D打印技术,其与SLM系统的差别主要是热源不同,在成型原理上基本相似。
与以激光为能量源的金属零件3D打印技术相比,EBSM工艺具有能量利用率高、无反射、功率密度高、聚焦方便等许多优点。
在目前3D 打印技术的数十种方法中,EBSM技术因其能够直接成型金属零部件而受到人们的高度关注。
国外对EBM工艺理论研究相对较早,瑞典的Arcam AB公司研发了商品化的EBSM 设备EBM S12系列,而国内对EBSM工艺的研究相对较晚。
光固化立体造型技术(stereo lithography apparatus, SLA)SLA技术是用特定波长与强度的激光聚焦到光固化材料表面,使之由点到线,由线到面顺序凝固,完成一个层面的绘图作业,然后升降台在垂直方向移动一个层片的高度,再固化另一个层面。
这样层层叠加构成一个三维实体。
SLA是最早实用化的快速成形技术,采用液态光固化树脂原料。
SLA技术主要用于制造多种模具、模型等;还可以在原料中通过加入其它成分,用SLA原型模代替熔模精密铸造中的蜡模。
SLA技术成形速度较快,精度较高,但由于树脂固化过程中产生收缩,不可避免地会产生应力或引起形变。
因此开发收缩小、固化快、强度高的光敏材料是其发展趋势。
熔融沉积成型技术(fused deposition modeling, FDM) :FDM技术该方法使用丝状材料(石蜡、金属、塑料、低熔点合金丝)为原料,利用电加热方式将丝材加热至略高于熔化温度(约比熔点高1℃),在计算机的控制下,喷头作x-y平面运动,将熔融的材料涂覆在工作台上,冷却后形成工件的一层截面,一层成形后,喷头上移一层高度,进行下一层涂覆,这样逐层堆积形成三维工件。
该技术污染小,材料可以回收,用于中、小型工件的成形。
成形材料:固体丝状工程塑料;制件性能相当于工程塑料或蜡模;主要用于塑料件、铸造用蜡模、样件或模型。
分层实体制造技术(laminated object manufacturing, LOM)又称层叠法成形技术:LOM技术它以片材(如纸片、塑料薄膜或复合材料)为原材料,其成形原理为激光切割系统按照计算机提取的横截面轮廓线数据,将背面涂有热熔胶的片材用激光切割出工件的内外轮廓。
切割完一层后,送料机构将新的一层片材叠加上去,利用热粘压装置将已切割层粘合在一起,然后再进行切割,这样一层层地切割、粘合,最终成为三维工件。
LOM常用材料是纸、金属箔、塑料膜、陶瓷膜等,此方法除了可以制造模具、模型外,还可以直接制造结构件或功能件。
LOM技术的优点是工作可靠,模型支撑性好,成本低,效率高。
缺点是前、后处理费时费力,且不能制造中空结构件。
成形材料主要是涂敷有热敏胶的纤维纸;制件性能相当于高级木材;主要用途是快速制造新产品样件、模型或铸造用木模。
3.3预期目的在3D打印技术可以打印假肢、汽车、飞机的今天,它还在创造无限的可能。
首先3D打印技术可以加工传统方法难以制造的零件。
过去传统的制造方法就是一个毛坯,把不需要的地方切除掉,是多维加工的,或者采用模具,把金属和塑料融化灌进去得到这样的零件,这样对复杂的零部件来说加工起来非常困难。
立体打印技术对于复杂零部件而言具有极大的优势,立体打印技术可以打印非常复杂的东西。
其次实现了首件的净型成形,这样后期辅助加工量大大减小,避免了委外加工的数据泄密和时间跨度,尤其适合一些高保密性的行业,如军工、核电领域。
再次由于制造准备和数据转换的时间大幅减少,使得单件试制、小批量出产的周期和成本降低,特别适合新产品的开发和单件小批量零件的出产。
这些速度快、高易用性等优势使得3D打印成为一种潮流,并且在很多领域得到了应用。
如今3D打印机已经在建筑设计、医疗辅助、工业模型、复杂结构、零配件、动漫模型等领域都已经有了一定程度的应用。
尤其在飞机、核电和火电等使用重型机械、高端精密机械的行业,3D打印技术“打印”的产品是自然无缝连接的,结构之间的稳固性和连接强度要远远高于传统方法。
事实上,3D打印技术要成为主流的生产制造技术还尚需时日。