人教中考数学培优易错试卷(含解析)之反比例函数含答案

合集下载

备战中考数学备考之反比例函数压轴突破训练∶培优 易错 难题篇含答案

备战中考数学备考之反比例函数压轴突破训练∶培优 易错 难题篇含答案

一、反比例函数真题与模拟题分类汇编(难题易错题)1.如图,在平面直角坐标系中,菱形ABCD的顶点C与原点O重合,点B在y轴的正半轴上,点A在反比例函数y= (k>0,x>0)的图象上,点D的坐标为(,2).(1)求k的值;(2)若将菱形ABCD沿x轴正方向平移,当菱形的一个顶点恰好落在函数y= (k>0,x >0)的图象上时,求菱形ABCD平移的距离.【答案】(1)解:作DE⊥BO,DF⊥x轴于点F,∵点D的坐标为(,2),∴DO=AD=3,∴A点坐标为:(,5),∴k=5 ;(2)解:∵将菱形ABCD向右平移,使点D落在反比例函数y= (x>0)的图象上D′,∴DF=D′F′=2,∴D′点的纵坐标为2,设点D′(x,2)∴2= ,解得x= ,∴FF′=OF′﹣OF= ﹣ = ,∴菱形ABCD平移的距离为,同理,将菱形ABCD向右平移,使点B落在反比例函数y= (x>0)的图象上,菱形ABCD平移的距离为,综上,当菱形ABCD平移的距离为或时,菱形的一个顶点恰好落在函数图象上.【解析】【分析】(1)根据菱形的性质和D的坐标即可求出A的坐标,代入求出即可;(2)B和D可能落在反比例函数的图象上,根据平移求出即可.2.如图,在平面直角坐标系中,一次函数y1=ax+b(a≠0)的图象与y轴相交于点A,与反比例函数y2= (c≠0)的图象相交于点B(3,2)、C(﹣1,n).(1)求一次函数和反比例函数的解析式;(2)根据图象,直接写出y1>y2时x的取值范围;(3)在y轴上是否存在点P,使△PAB为直角三角形?如果存在,请求点P的坐标;若不存在,请说明理由.【答案】(1)解:把B(3,2)代入得:k=6∴反比例函数解析式为:把C(﹣1,n)代入,得:n=﹣6∴C(﹣1,﹣6)把B(3,2)、C(﹣1,﹣6)分别代入y1=ax+b,得:,解得:所以一次函数解析式为y1=2x﹣4(2)解:由图可知,当写出y1>y2时x的取值范围是﹣1<x<0或者x>3.(3)解:y轴上存在点P,使△PAB为直角三角形如图,过B作BP1⊥y轴于P1,∠B P1 A=0,△P1AB为直角三角形此时,P1(0,2)过B作BP2⊥AB交y轴于P2∠P2BA=90,△P2AB为直角三角形在Rt△P1AB中,在Rt△P1 AB和Rt△P2 AB∴∴P2(0,)综上所述,P1(0,2)、P2(0,).【解析】【分析】(1)利用待定系数法求出反比例函数解析式,进而求出点C坐标,最后用再用待定系数法求出一次函数解析式;(2)利用图象直接得出结论;(3)分三种情况,利用勾股定理或锐角三角函数的定义建立方程求解即可得出结论.3.一次函数y=ax+b(a≠0)的图象与反比例函数y= (k≠0)的图象相交于A,B两点,与y轴交于点C,与x轴交于点D,点D的坐标为(﹣1,0),点A的横坐标是1,tan∠CDO=2.过点B作BH⊥y轴交y轴于H,连接AH.(1)求一次函数和反比例函数的解析式;(2)求△ABH面积.【答案】(1)解:∵点D的坐标为(﹣1,0),tan∠CDO=2,∴CO=2,即C(0,2),把C(0,2),D(﹣1,0)代入y=ax+b可得,,解得,∴一次函数解析式为y=2x+2,∵点A的横坐标是1,∴当x=1时,y=4,即A(1,4),把A(1,4)代入反比例函数y= ,可得k=4,∴反比例函数解析式为y=(2)解:解方程组,可得或,∴B(﹣2,﹣2),又∵A(1,4),BH⊥y轴,∴△ABH面积= ×2×(4+2)=6.【解析】【分析】(1)先由tan∠CDO=2可求出C坐标,再把D点坐标代入直线解析式,可求出一次函数解析式,再由直线解析式求出A坐标,代入双曲线解析式,可求出双曲线解析式;(2)△ABH面积可以BH为底,高=y A-y B=4-(-2)=6.4.已知:如图,正比例函数y=ax的图象与反比例函数y= 的图象交于点C(3,1)(1)试确定上述比例函数和反比例函数的表达式;(2)根据图象回答,在第一象限内,当x取何值时,反比例函数的值大于正比例函数的值?(3)点D(m,n)是反比例函数图象上的一动点,其中0<m<3,过点C作直线AC⊥x 轴于点A,交OD的延长线于点B;若点D是OB的中点,DE⊥x轴于点E,交OC于点F,试求四边形DFCB的面积.【答案】(1)解:将点C(3,1)分别代入y= 和y=ax,得:k=3,a= ,∴反比例函数解析式为y= ,正比例函数解析式为y= x;(2)解:观察图象可知,在第二象限内,当0<x<3时,反比例函数值大于正比例函数值;(3)解:∵点D(m,n)是OB的中点,又在反比例函数y= 上,∴OE= OA= ,点D(,2),∴点B(3,4),又∵点F在正比例函数y= x图象上,∴F(,),∴DF= 、BC=3、EA= ,∴四边形DFCB的面积为 ×( +3)× = .【解析】【分析】(1)利用待定系数法把C坐标代入解析式即可;(2)须数形结合,先找出交点,在交点的左侧与y轴之间,反比例函数值大于正比例函数值.(3)求出DF、BC、EA,代入梯形面积公式即可.5.如图,在平面直角坐标系中,平行四边形的边,顶点坐标为,点坐标为 .(1)点的坐标是________,点的坐标是________(用表示);(2)若双曲线过平行四边形的顶点和,求该双曲线的表达式;(3)若平行四边形与双曲线总有公共点,求的取值范围.【答案】(1);(2)解:∵双曲线过点和点,∴,解得,∴点的坐标为,点的坐标为,把点的坐标代入,解得,∴双曲线表达式为(3)解:∵平行四边形与双曲线总有公共点,∴当点在双曲线,得到,当点在双曲线,得到,∴的取值范围 .【解析】【分析】(1)由四边形ABCD为平行四边形,得到A与B纵坐标相同,C与D纵坐标相同,横坐标相差2,得出B、C坐标即可;(2)根据B与D在反比例图象上,得到C与D横纵坐标乘积相等,求出b的值确定出B坐标,进而求出k的值,确定出双曲线解析式;(3)抓住两个关键点,将A坐标代入双曲线解析式求出b的值;将C坐标代入双曲线解析式求出b的值,即可确定出平行四边形与双曲线总有公共点时b的范围.6.在平面直角坐标系中,我们不妨把横坐标与纵坐标相等的点称为梦之点,例如,点(1,1),(﹣ 2,﹣ 2),(,),…,都是梦之点,显然梦之点有无数个.(1)若点P(2,b)是反比例函数 (n为常数,n≠0)的图象上的梦之点,求这个反比例函数解析式;(2)⊙O的半径是,①求出⊙O上的所有梦之点的坐标;②已知点M(m,3),点Q是(1)中反比例函数图象上异于点P的梦之点,过点Q的直线l与y轴交于点A,∠OAQ=45°.若在⊙O上存在一点N,使得直线MN∥l或MN⊥l,求出m的取值范围.【答案】(1)解:∵P(2,b)是梦之点,∴b=2∴P(2,2)将P(2,2)代入中得n=4∴反比例函数解析式是(2)解:①设⊙O上梦之点坐标是(,)∴∴=1或 =-1∴⊙O上所有梦之点坐标是(1,1)或(-1,-1)②由(1)知,异于点P的梦之点Q的坐标为(-2,-2)由已知MN∥l或MN⊥l∴直线MN为y=-x+b或y=x+b当MN为y=-x+b时,m=b-3由图可知,当直线MN平移至与⊙O相切时,且切点在第四象限时,b取得最小值,此时MN记为,其中为切点,为直线与y轴的交点∵△O 为等要直角三角形,∴O =∴O =2∴b的最小值是-2,∴m的最小值是-5当直线MN平移至与⊙O相切时,且切点在第二象限时,b取得最大值,此时MN记为,其中为切点,为直线与y轴的交点。

人教中考数学反比例函数(大题培优 易错 难题)及详细答案

人教中考数学反比例函数(大题培优 易错 难题)及详细答案

一、反比例函数真题与模拟题分类汇编(难题易错题)1.如图,已知A(﹣4,),B(﹣1,2)是一次函数y=kx+b与反比例函数(m≠0,m<0)图象的两个交点,AC⊥x轴于C,BD⊥y轴于D.(1)根据图象直接回答:在第二象限内,当x取何值时,一次函数大于反比例函数的值?(2)求一次函数解析式及m的值;(3)P是线段AB上的一点,连接PC,PD,若△PCA和△PDB面积相等,求点P坐标.【答案】(1)解:当﹣4<x<﹣1时,一次函数大于反比例函数的值;(2)把A(﹣4,),B(﹣1,2)代入y=kx+b得,解得,所以一次函数解析式为y= x+ ,把B(﹣1,2)代入y= 得m=﹣1×2=﹣2;(3)解:如下图所示:设P点坐标为(t,t+ ),∵△PCA和△PDB面积相等,∴• •(t+4)= •1•(2﹣t﹣),即得t=﹣,∴P点坐标为(﹣,).【解析】【分析】(1)观察函数图象得到当﹣4<x<﹣1时,一次函数图象都在反比例函数图象上方;(2)先利用待定系数法求一次函数解析式,然后把B点坐标代入y= 可计算出m的值;(3)设P点坐标为(t, t+ ),利用三角形面积公式可得到• •(t+4)= •1•(2﹣ t﹣),解方程得到t=﹣,从而可确定P点坐标.2.如图,平行于y轴的直尺(一部分)与双曲线y= (k≠0)(x>0)相交于点A、C,与x轴相交于点B、D,连接AC.已知点A、B的刻度分别为5,2(单位:cm),直尺的宽度为2cm,OB=2cm.(1)求k的值;(2)求经过A、C两点的直线的解析式;(3)连接OA、OC,求△OAC的面积.【答案】(1)解:∵AB=5﹣2=3cm,OB=2cm,∴A的坐标是(2,3),代入y= 得3= ,解得:k=6(2)解:OD=2+2=4,在y= 中令x=4,解得y= .则C的坐标是(4,).设AC的解析式是y=mx+n,根据题意得:,解得:,则直线AC的解析式是y=﹣ x+(3)解:直角△AOB中,OB=2,AB=3,则S△AOB= OB•AB= ×2×3=3;直角△ODC中,OD=4,CD= ,则S△OCD= OD•CD= ×4× =3.在直角梯形ABDC中,BD=2,AB=3,CD= ,则S梯形ABDC= (AB+DC)•BD= (3+ )×2= .则S△OAC=S△AOB+S梯形ABDC﹣S△OCD=3+ ﹣3=【解析】【分析】(1)首先求得A的坐标,然后利用待定系数法求得函数的解析式;(2)首先求得C的坐标,然后利用待定系数法求得直线的解析式;(3)根据S△OAC=S△AOB+S梯形ABDC﹣S△OCD利用直角三角形和梯形的面积公式求解.3.如图1,经过原点的抛物线y=ax2+bx+c与x轴的另一个交点为点C;与双曲线y= 相交于点A,B;直线AB与分别与x轴、y轴交于点D,E.已知点A的坐标为(﹣1,4),点B在第四象限内且到x轴、y轴的距离相等.(1)求双曲线和抛物线的解析式;(2)计算△ABC的面积;(3)如图2,将抛物线平移至顶点在原点上时,直线AB随之平移,试判断:在y轴的负半轴上是否存在点P,使△PAB的内切圆的圆心在y轴上?若存在,求出点P的坐标;若不存在,请说明理由.【答案】(1)解:把点A的坐标代入双曲线的解析式得:k=﹣1×4=﹣4.所以双曲线的解析式为y=﹣.设点B的坐标为(m,﹣m).∵点B在双曲线上,∴﹣m2=﹣4,解得m=2或m=﹣2.∵点B在第四象限,∴m=2.∴B(2,﹣2).将点A、B、C的坐标代入得:,解得:.∴抛物线的解析式为y=x2﹣3x.(2)解:如图1,连接AC、BC.令y=0,则x2﹣3x=0,∴x=0或x=3,∴C(3,0),∵A(﹣1,4),B(2,﹣2),∴直线AB的解析式为y=﹣2x+2,∵点D是直线AB与x轴的交点,∴D(1,0),∴S△ABC=S△ADC+S△BDC= ×2×4+ ×2×2=6;(3)解:存在,理由:如图2,由原抛物线的解析式为y=x2﹣3x=(x﹣)2﹣,∴原抛物线的顶点坐标为(,﹣),∴抛物线向左平移个单位,再向上平移个单位,而平移前A(﹣1,4),B(2,﹣2),∴平移后点A(﹣,),B(,),∴点A关于y轴的对称点A'(,),连接A'B并延长交y轴于点P,连接AP,由对称性知,∠APE=∠BPE,∴△APB的内切圆的圆心在y轴上,∵B(,),A'(,),∴直线A'B的解析式为y=3x﹣,∴P(0,﹣).【解析】【分析】(1)首先将点A的坐标代入反比例函数的解析式求得k的值,然后再求得B的值,最后根据点A的坐标求出双曲线的解析式,进而得出点B的坐标,最后,将点A、B、O三点的坐标代入抛物线的解析式,求得a、b、c的值即可;(2)由点A和点B的坐标可求得直线AB的解析式,然后将y=0可求得点D的横坐标,最后用三角形的面积和求解即可;(3)先确定出平移后点A,B的坐标,进而求出点A关于y轴的对称点的坐标,求出直线BA'的解析式即可得出点P的坐标.4.如图,在平面直角坐标系中,平行四边形的边,顶点坐标为,点坐标为 .(1)点的坐标是________,点的坐标是________(用表示);(2)若双曲线过平行四边形的顶点和,求该双曲线的表达式;(3)若平行四边形与双曲线总有公共点,求的取值范围.【答案】(1);(2)解:∵双曲线过点和点,∴,解得,∴点的坐标为,点的坐标为,把点的坐标代入,解得,∴双曲线表达式为(3)解:∵平行四边形与双曲线总有公共点,∴当点在双曲线,得到,当点在双曲线,得到,∴的取值范围 .【解析】【分析】(1)由四边形ABCD为平行四边形,得到A与B纵坐标相同,C与D纵坐标相同,横坐标相差2,得出B、C坐标即可;(2)根据B与D在反比例图象上,得到C与D横纵坐标乘积相等,求出b的值确定出B坐标,进而求出k的值,确定出双曲线解析式;(3)抓住两个关键点,将A坐标代入双曲线解析式求出b的值;将C坐标代入双曲线解析式求出b的值,即可确定出平行四边形与双曲线总有公共点时b的范围.5.如图,直线y=2x+6与反比例函数y= (k>0)的图象交于点A(1,m),与x轴交于点B,平行于x轴的直线y=n(0<n<6)交反比例函数的图象于点M,交AB于点N,连接BM.(1)求m的值和反比例函数的表达式;(2)观察图象,直接写出当x>0时不等式2x+6﹣<0的解集;(3)直线y=n沿y轴方向平移,当n为何值时,△BMN的面积最大?最大值是多少?【答案】(1)解:∵直线y=2x+6经过点A(1,m),∴m=2×1+6=8,∴A(1,8),∵反比例函数经过点A(1,8),∴k=8,∴反比例函数的解析式为y= .(2)解:不等式2x+6﹣<0的解集为0<x<1.(3)解:由题意,点M,N的坐标为M(,n),N(,n),∵0<n<6,∴<0,∴﹣>0∴S△BMN= |MN|×|y M|= ×(﹣)×n=﹣(n﹣3)2+ ,∴n=3时,△BMN的面积最大,最大值为.【解析】【分析】(1)求出点A的坐标,利用待定系数法即可解决问题;(2)由图象直接求得;(3)构建二次函数,利用二次函数的最值即可解决问题.6.如图,在平面直角坐标系中,直线与双曲线相交于点A(,6)和点B(-3,),直线AB与轴交于点C.(1)求直线AB的表达式;(2)求的值.【答案】(1)解:∵点A(,6)和点B(-3,)在双曲线,∴m=1,n=-2,∴点A(1,6),点B(-3,-2),将点A、B代入直线,得,解得,∴直线AB的表达式为:(2)解:分别过点A、B作AM⊥y轴,BN⊥y轴,垂足分别为点M、N,则∠AMO=∠BNO=90°,AM=1,BN=3,∴AM//BN,∴△ACM∽△BCN,∴【解析】【分析】根据反比例函数的解析式可得m和n的值,利用待定系数法求一次函数的表达式;作辅助线,构建平行线,根据平行线分线段成比例定理可得结论.7.如图,点A是反比例函数y1= (x>0)图象上的任意一点,过点A作AB∥x轴,交另一个比例函数y2= (k<0,x<0)的图象于点B.(1)若S△AOB的面积等于3,则k是=________;(2)当k=﹣8时,若点A的横坐标是1,求∠AOB的度数;(3)若不论点A在何处,反比例函数y2= (k<0,x<0)图象上总存在一点D,使得四边形AOBD为平行四边形,求k的值.【答案】(1)﹣4(2)解:∵点A的横坐标是1,∴y= =2,∴点A(1,2),∵AB∥x轴,∴点B的纵坐标为2,∴2=﹣,解得:x=﹣4,∴点B(﹣4,2),∴AB=AC+BC=1+4=5,OA= = ,OB= =2 ,∴OA2+OB2=AB2,∴∠AOB=90°;(3)解:假设y2= 上有一点D,使四边形AOBD为平行四边形,过D作DE⊥AB,过A作AC⊥x轴,∵四边形AOBD为平行四边形,∴BD=OA,BD∥OA,∴∠DBA=∠OAB=∠AOC,在△AOC和△DBE中,,∴△AOC≌△DBE(AAS),设A(a,)(a>0),即OC=a,AC= ,∴BE=OC=a,DE=AC= ,∴D纵坐标为,B纵坐标为,∴D横坐标为,B横坐标为,∴BE=| ﹣ |=a,即﹣ =a,∴k=﹣4.【解析】【解答】解:如图1,设AB交y轴于点C,∵点A是反比例函数y1= (x>0)图象上的任意一点,且AB∥x轴,∴AB⊥y轴,∴S△AOC= ×2=1,∵S△AOB=3,∴S△BOC=2,∴k=﹣4;故答案为:﹣4;【分析】(1)首先设AB交y轴于点C,由点A是反比例函数y1图象上的任意一点,AB∥x轴,可求得△AOC的面积,又由△AOB的面积等于3,即可求得△BOC的面积,继而求得k的值;(2)由点A的横坐标是1,可求得点A的坐标,继而求得点B的纵坐标,则可求得点B的坐标,则可求得AB,OA,OB的长,然后由勾股定理的逆定理,求得∠AOB的度数;(3)假设y2上有一点D,使四边形AOBD为平行四边形,过D作DE⊥AB,过A作AC⊥x 轴,由四边形AOBD为平行四边形,利用平行四边形的对边平行且相等,利用AAS得到△AOC与△DBE全等,利用全等三角形对应边相等得到BE=OC,DE=AC,设出A点的坐标,表示出OC,AC的长,得出D与B纵坐标,进而表示出D与B横坐标,两横坐标之差的绝对值即为BE的长,利用等式,即可求出k的值.8.如图,在平面直角坐标系xOy中,直线y= x与反比例函数y= 在第一象限内的图象相交于点A(m,3).(1)求该反比例函数的关系式;(2)将直线y= x沿y轴向上平移8个单位后与反比例函数在第一象限内的图象相交于点B,连接AB,这时恰好AB⊥OA,求tan∠AOB的值;(3)在(2)的条件下,在射线OA上存在一点P,使△PAB∽△BAO,求点P的坐标.【答案】(1)解:∵点A(m,3)在直线y= x上∴3= m,∴m=3 ,∴点A(3 ,3),∵点A(3 ,3)在反比例函数y= 上,∴k=3 ×3=9 ,∴y=(2)解:直线向上平移8个单位后表达式为:y= x+8∵AB⊥OA,直线AB过点A(3 ,3)∴直线AB解析式:y=﹣ x+12,∴ x+8=﹣ x+12,∴x= .∴B(,9),∴AB=4在Rt△AOB中,OA=6,∴tan∠AOB=(3)解:∵△APB∽△ABO,∴,由(2)知,AB=4 ,OA=6即∴AP=8,∵OA=6,∴OP=14,过点A作AH⊥x轴于H∵A(3 ,3),∴OH=3 ,AH=3,在Rt△AOH中,∴tan∠AOH= = = ,∴∠AOH=30°过点P作PG⊥x轴于G,在Rt△APG中,∠POG=30°,OP=14,∴PG=7,OG=7∴P(7 ,7).【解析】【分析】(1)先确定出点A坐标,再用待定系数法求出反比例函数解析式;(2)先求出直线AB解析式,进而得出点B坐标秒即可得出结论;(3)利用相似三角形的性质得出AP,进而求出OP,再求出∠AOH=30°,最后用含30°的直角三角形的性质即可得出结论.9.如图,一次函数y=﹣x+3的图象与反比例y= (k为常数,且k≠0)的图象交于A(1,a),B两点.(1)求反比例函数的表达式及点B的坐标;(2)在x轴上找一点P,使PA+PB的值最小,求满足条件的点P的坐标.【答案】(1)解:∵点A(1,a)在一次函数y=﹣x+3的图象上,∴a=﹣1+3=2,∴点A(1,2).∵点A(1,2)在反比例y= (k为常数,且k≠0)的图象上,∴k=1×2=2,∴反比例函数的表达式为y= .联立一次函数与反比例函数关系式成方程组,得:,解得:,,∴点B(2,1)(2)解:作B点关于x轴的对称点B′(2,﹣1),连接AB’,交x轴于点P,连接PB,如图所示.∵点B、B′关于x轴对称,∴PB=PB′.∵点A、P、B′三点共线,∴此时PA+PB取最小值.设直线AB′的函数表达式为y=mx+n(m≠0),将A(1,2)、B(2,﹣1)代入y=mx+n,,解得:,∴直线AB′的函数表达式为y=﹣3x+5.当y=﹣3x+5=0时,x= ,∴满足条件的点P的坐标为(,0).【解析】【分析】(1)将x=1代入直线AB的函数表达式中即可求出点A的坐标,由点A 的坐标利用反比例函数图象上点的坐标特征即可求出反比例函数的表达式,联立两函数表达式成方程组,通过解方程组即可求出点B的坐标;(2)作B点关于x轴的对称点B′(2,﹣1),连接AB’,交x轴于点P,连接PB,由两点之间线段最短可得出此时PA+PB 取最小值,根据点A、B′的坐标利用待定系数法可求出直线AB′的函数表达式,再利用一次函数图象上点的坐标特征即可求出点P的坐标.10.在平面直角坐标系中,抛物线经过点,、,,其中、是方程的两根,且,过点的直线与抛物线只有一个公共点(1)求、两点的坐标;(2)求直线的解析式;(3)如图2,点是线段上的动点,若过点作轴的平行线与直线相交于点,与抛物线相交于点,过点作的平行线与直线相交于点,求的长. 【答案】(1)解:∵x1、x2是方程x2-2x-8=0的两根,且x1<x2,∴x1=-2,x2=4,∴A(-2,2),C(4,8)(2)解:①设直线l的解析式为y=kx+b(k≠0),∵A(-2,2)在直线l上,∴2=-2k+b,∴b=2k+2,∴直线l的解析式为y=kx+2k+2①,∵抛物线y= x2②,联立①②化简得,x2-2kx-4k-4=0,∵直线l与抛物线只有一个公共点,∴△=(2k)2-4(-4k-4)=4k2+16k+16=4(k2+4k+4)=4(k+2)2=0,∴k=-2,∴b=2k+2=-2,∴直线l的解析式为y=-2x-2;②平行于y轴的直线和抛物线y= x2只有一个交点,∵直线l过点A(-2,2),∴直线l:x=-2(3)解:由(1)知,A(-2,2),C(4,8),∴直线AC的解析式为y=x+4,设点B(m,m+4),∵C(4.8),∴BC= |m-4|= (4-m)∵过点B作y轴的平行线BE与直线l相交于点E,与抛物线相交于点D,∴D(m, m2),E(m,-2m-2),∴BD=m+4- m2, BE=m+4-(-2m-2)=3m+6,∵DC∥EF,∴△BDC∽△BEF,∴,∴,∴BF=6 .【解析】【分析】(1)解一元二次方程即可得出点A,C坐标;(2)先设出直线l的解析式,再联立抛物线解析式,用△=0,求出k的值,即可得出直线l的解析式;(3)设出点B的坐标,进而求出BC,再表示出点D,E的坐标,进而得出BD,BE,再判断出△BDC∽△BEF得出比例式建立方程即可求出BF.11.如图,抛物线与轴交于两点( 在的左侧),与轴交于点,点与点关于抛物线的对称轴对称.(1)求抛物线的解析式及点的坐标:(2)点是抛物线对称轴上的一动点,当的周长最小时,求出点的坐标;(3)点在轴上,且,请直接写出点的坐标.【答案】(1)解:根据题意得,解得抛物线的解析式为抛物线的对称轴为直线点与点关于抛物线的对称轴对称点的坐标为(2)解:连接点与点关于抛物线的对称轴对称.为定值,当的值最小即三点在同一直线上时的周长最小由解得,在的左侧,由两点坐标可求得直线的解析式为当时,当的周长最小时,点的坐标为(3)解:点坐标为或【解析】【分析】(1)利用待定系数法即可求出n,利用对称性C、D关于对称轴对称即可求出点D坐标.(2)A,P,D三点在同一直线上时△PAC的周长最小,求出直线AD的解析式即可解决问题.(3)分两种情形①作DQ∥AC交x轴于点Q,此时∠DQA=∠DAC,满足条件.②设线段AD的垂直平分线交AC于E,直线DE与x的交点为Q′,此时∠Q′DA=′CAD,满足条件,分别求解即可.12.如图1,在矩形ABCD中,AB=6cm,BC=12cm,点P从点A开始以1cm/s的速度沿AB 边向点B运动,点Q从点B以2cm/s的速度沿BC边向点C运动,如果P、Q同时出发,设运动时间为ts,(1)当t=2时,求△PBQ的面积;(2)当t= 时,试说明△DPQ是直角三角形;(3)当运动3s时,P点停止运动,Q点以原速立即向B点返回,在返回的过程中,DP是否能平分∠ADQ?若能,求出点Q运动的时间;若不能,请说明理由.【答案】(1)解:当t=2时,AP=t=2,BQ=2t=4,∴BP=AB-AP=4,∴△PBQ的面积= ×4×4=8;(2)解:当t= 时,AP=1.5,PB=4.5,BQ=3,CQ=9,∴DP2=AD2+AP2=2.25+144=146.25,PQ2=PB2+BQ2=29.25,DQ2=CD2+CQ2=117,∵PQ2+DQ2=DP2,∴∠DQP=90°,∴△DPQ是直角三角形.(3)解:设存在点Q在BC上,延长DQ与AB延长线交于点O.设QB的长度为x,则QC的长度为(12-x),∵DC∥BO,∴∠C=∠QBO,∠CDQ=∠O,∴△CDQ∽△BOQ,又CD=6,QB=x,QC=12-x,∴,即,解得:BO= ,∴AO=AB+BO=6+ ,∵∠ADP=∠ODP,∴12:DO=AP:PO,代入解得x=0.75,∴DP能平分∠ADQ,∵点Q的速度为2cm/s,∴P停止后Q往B走的路程为(6-0.75)=5.25cm.∴时间为2.625s,加上刚开始的3s,Q点的运动时间为5.625s.【解析】【分析】(1)根据路程等于速度乘以时间得出AP=t=2,BQ=2t=4,所以BP=4,进而根据三角形的面积计算方法即可算出答案;(2)当t= 时,根据路程等于速度乘以时间得出AP=1.5,BQ=3,故PB=4.5,CQ=9,根据勾股定理表示出DP2,PQ2,DQ2,从而根据勾股定理的逆定理判断出∠DQP=90°,△DPQ是直角三角形;(3)设存在点Q在BC上,延长DQ与AB延长线交于点O ,设QB的长度为x,则QC 的长度为(12-x),判断出△CDQ∽△BOQ,根据全等三角形的对应边成比例得出,根据比例式可以用含x的式子表示出BO的长,根据角平分线的性质定理得出12:DO=AP:PO,根据比例式求出x的值,从而即可解决问题.13.如图1,平面直角坐标系中,B、C两点的坐标分别为B(0,3)和C(0,﹣),点A在x轴正半轴上,且满足∠BAO=30°.(1)过点C作CE⊥AB于点E,交AO于点F,点G为线段OC上一动点,连接GF,将△OFG沿FG翻折使点O落在平面内的点O′处,连接O′C,求线段OF的长以及线段O′C的最小值;(2)如图2,点D的坐标为D(﹣1,0),将△BDC绕点B顺时针旋转,使得BC⊥AB于点B,将旋转后的△BDC沿直线AB平移,平移中的△BDC记为△B′D′C′,设直线B′C′与x轴交于点M,N为平面内任意一点,当以B′、D′、M、N为顶点的四边形是菱形时,求点M 的坐标.【答案】(1)解:如图1中,∵∠AOB=90°,∠OAB=30°,∴∠CBE=60°,∵CE⊥AB,∴∠CEB=90°,∠BCE=30°,∵C(0,- ),∴OC= ,OF=OC•tan30°= ,CF=2OF=3 ,由翻折可知:F O′=FO= ,∴CO′≥CF-O′F,∴CO′≥ ,∴线段O′C的最小值为(2)解:①如图2中,当B′D′=B′M=BD= 时,可得菱形MND′B′.在Rt△AMB′中,AM=2B′M=2 ,∴OM=AM-OA=2 -3 ,∴M(3 -2 ,0).②如图3中,当B′M是菱形的对角线时,由题意B′M=2OB=6,此时AM=12,OM=12-3,可得M(3 -12,0).③如图4中,当B′D′是菱形的对角线时,由∠D′B′M=∠DBO可得,所以B′M=则在RT△AM B′中,AM=2B′M= ,所以OM=OA-AM=3 - ,所以M(3 - ,0).④如图5中,当MD′是菱形的对角线时,MB′=B′D′= ,可得AM=2 ,OM=OA+AM=3 +2 ,所以M(3 +2 ,0).综上所述,满足条件的点M的坐标为(3 +2 ,0)或(3 -12,0)或(3 -,0)或(3 +2 ,0)【解析】【分析】(1)根据直角三角形的两锐角互余求出∠CBE的度数,由垂直的定义可求出∠BCE的度数,由点C的坐标求出OC的长,再在Rt△OCF中,利用解直角三角形求出OF的长;然后利用折叠的性质,可得到FO′的长,然后根据CO′≥CF-O′F,可求出线段O′C的最小值。

人教中考数学培优易错试卷(含解析)之反比例函数及详细答案

人教中考数学培优易错试卷(含解析)之反比例函数及详细答案

一、反比例函数真题与模拟题分类汇编(难题易错题)1.如图,反比例函数y= 的图象与一次函数y= x的图象交于点A、B,点B的横坐标是4.点P是第一象限内反比例函数图象上的动点,且在直线AB的上方.(1)若点P的坐标是(1,4),直接写出k的值和△PAB的面积;(2)设直线PA、PB与x轴分别交于点M、N,求证:△PMN是等腰三角形;(3)设点Q是反比例函数图象上位于P、B之间的动点(与点P、B不重合),连接AQ、BQ,比较∠PAQ与∠PBQ的大小,并说明理由.【答案】(1)解:k=4,S△PAB=15.提示:过点A作AR⊥y轴于R,过点P作PS⊥y轴于S,连接PO,设AP与y轴交于点C,如图1,把x=4代入y= x,得到点B的坐标为(4,1),把点B(4,1)代入y= ,得k=4.解方程组,得到点A的坐标为(﹣4,﹣1),则点A与点B关于原点对称,∴OA=OB,∴S△AOP=S△BOP,∴S△PAB=2S△AOP.设直线AP的解析式为y=mx+n,把点A(﹣4,﹣1)、P(1,4)代入y=mx+n,求得直线AP的解析式为y=x+3,则点C的坐标(0,3),OC=3,∴S△AOP=S△AOC+S△POC= OC•AR+ OC•PS= ×3×4+ ×3×1= ,∴S△PAB=2S△AOP=15;(2)解:过点P作PH⊥x轴于H,如图2.B(4,1),则反比例函数解析式为y= ,设P(m,),直线PA的方程为y=ax+b,直线PB的方程为y=px+q,联立,解得直线PA的方程为y= x+ ﹣1,联立,解得直线PB的方程为y=﹣ x+ +1,∴M(m﹣4,0),N(m+4,0),∴H(m,0),∴MH=m﹣(m﹣4)=4,NH=m+4﹣m=4,∴MH=NH,∴PH垂直平分MN,∴PM=PN,∴△PMN是等腰三角形;(3)解:∠PAQ=∠PBQ.理由如下:过点Q作QT⊥x轴于T,设AQ交x轴于D,QB的延长线交x轴于E,如图3.可设点Q为(c,),直线AQ的解析式为y=px+q,则有,解得:,∴直线AQ的解析式为y= x+ ﹣1.当y=0时, x+ ﹣1=0,解得:x=c﹣4,∴D(c﹣4,0).同理可得E(c+4,0),∴DT=c﹣(c﹣4)=4,ET=c+4﹣c=4,∴DT=ET,∴QT垂直平分DE,∴QD=QE,∴∠QDE=∠QED.∵∠MDA=∠QDE,∴∠MDA=∠QED.∵PM=PN,∴∠PMN=∠PNM.∵∠PAQ=∠PMN﹣∠MDA,∠PBQ=∠NBE=∠PNM﹣∠QED,∴∠PAQ=∠PBQ.【解析】【分析】(1)过点A作AR⊥y轴于R,过点P作PS⊥y轴于S,连接PO,设AP 与y轴交于点C,如图1,可根据条件先求出点B的坐标,然后把点B的坐标代入反比例函数的解析式,即可求出k,然后求出直线AB与反比例函数的交点A的坐标,从而得到OA=OB,由此可得S△PAB=2S△AOP,要求△PAB的面积,只需求△PAO的面积,只需用割补法就可解决问题;(2)过点P作PH⊥x轴于H,如图2.可用待定系数法求出直线PB的解析式,从而得到点N的坐标,同理可得到点M的坐标,进而得到MH=NH,根据垂直平分线的性质可得PM=PN,即△PMN是等腰三角形;(3)过点Q作QT⊥x轴于T,设AQ交x轴于D,QB的延长线交x轴于E,如图3.可设点Q为(c,),运用待定系数法求出直线AQ的解析式,即可得到点D的坐标为(c﹣4,0),同理可得E(c+4,0),从而得到DT=ET,根据垂直平分线的性质可得QD=QE,则有∠QDE=∠QED.然后根据对顶角相等及三角形外角的性质,就可得到∠PAQ=∠PBQ.2.如图,四边形OP1A1B1、A1P2A2B2、A2P3A3B3、…、A n﹣1P n A n B n都是正方形,对角线OA1、A1A2、A2A3、…、A n﹣1A n都在y轴上(n≥1的整数),点P1(x1,y1),点P2(x2,y2),…,P n(x n, y n)在反比例函数y= (x>0)的图象上,并已知B1(﹣1,1).(1)求反比例函数y= 的解析式;(2)求点P2和点P3的坐标;(3)由(1)、(2)的结果或规律试猜想并直接写出:△P n B n O的面积为 ________ ,点P n的坐标为________ (用含n的式子表示).【答案】(1)解:在正方形OP1A1B1中,OA1是对角线,则B1与P1关于y轴对称,∵B1(﹣1,1),∴P1(1,1).则k=1×1=1,即反比例函数解析式为y=(2)解:连接P2B2、P3B3,分别交y轴于点E、F,又点P1的坐标为(1,1),∴OA1=2,设点P2的坐标为(a,a+2),代入y=得a=-1,故点P2的坐标为(-1,+1),则A1E=A2E=2-2,OA2=OA1+A1A2=2,设点P3的坐标为(b,b+2),代入y=(>0)可得b=-,故点P3的坐标为(-,+)(3)1;(-,+)【解析】【解答】解:(3)∵=2=2×=1,=2=2×=1,…∴△P n B n O的面积为1,由P1(1,1)、P2(﹣1, +1)、P3(﹣,+ )知点P n的坐标为(﹣,+ ),故答案为:1、(﹣, +).【分析】(1)由四边形OP1A1B1为正方形且OA1是对角线知B1与P1关于y轴对称,得出点P1(1,1),然后利用待定系数法求解即可;(2)连接P2B2、P3B3,分别交y轴于点E、F,由点P1坐标及正方形的性质知OA1=2,设P2的坐标为(a,a+2),代入解析式求得a的值即可,同理可得点P3的坐标;(3)先分别求得S△P1B1O、S△P2B2O的值,然后找出其中的规律,最后依据规律进行计算即可.3.已知点P在一次函数y=kx+b(k,b为常数,且k<0,b>0)的图象上,将点P向左平移1个单位,再向上平移2个单位得到点Q,点Q也在该函数y=kx+b的图象上.(1)k的值是________;(2)如图,该一次函数的图象分别与x轴、y轴交于A,B两点,且与反比例函数y=图象交于C,D两点(点C在第二象限内),过点C作CE⊥x轴于点E,记S1为四边形CEOB的面积,S2为△OAB的面积,若 = ,则b的值是________.【答案】(1)﹣2(2)3【解析】【解答】解:(1)设点P的坐标为(m,n),则点Q的坐标为(m﹣1,n+2),依题意得:,解得:k=﹣2.故答案为:﹣2.(2)∵BO⊥x轴,CE⊥x轴,∴BO∥CE,∴△AOB∽△AEC.又∵ = ,∴ = = .令一次函数y=﹣2x+b中x=0,则y=b,∴BO=b;令一次函数y=﹣2x+b中y=0,则0=﹣2x+b,解得:x= ,即AO= .∵△AOB∽△AEC,且 = ,∴.∴AE= AO= b,CE= BO= b,OE=AE﹣AO= b.∵OE•CE=|﹣4|=4,即 b2=4,解得:b=3 ,或b=﹣3 (舍去).故答案为:3 .【分析】(1)设出点P的坐标,根据平移的特性写出Q点的坐标,由点P,Q均在一次函数y=kx+b(k,b为常数,且k<0,b>0)的图象上,即可得出关于k,m,n,b的四元次一方程组,两式作差即可求出k的值;(2)由BO⊥x轴,CE⊥x轴,找出△AOB∽△AEC.再由给定图形的面积比即可求出==,根据一次函数的解析式可以用含b的式子表示出OA,OB,由此即可得出线段CE,AE 的长,利用OE=AE﹣AO求出OE的长,再借助反比例函数K的几何意义得出关于b的一元二次方程,解方程即可得出结论。

人教版九年级数学中考反比例函数专项练习及参考答案

人教版九年级数学中考反比例函数专项练习及参考答案

人教版九年级数学中考反比例函数专项练习命题点1 图象与性质1.一台印刷机每年可印刷的书本数量 y(万册)与它的使用时间x(年)成反比例关系,当x =2时,y =20.则y 与x 的函数图象大致是(C)A B C D2.反比例函数y =mx 的图象如图所示,以下结论:①常数m <-1;②在每个象限内,y 随x的增大而增大;③若A(-1,h),B(2,k)在图象上,则h <k ;④若P(x ,y)在图象上,则P ′(-x ,-y)也在图象上.其中正确的是(C)A .①②B .②③C .③④D .①④3.如图,函数y =⎩⎪⎨⎪⎧1x (x >0),-1x (x <0)的图象所在坐标系的原点是(A)A .点MB .点NC .点PD .点Q4.定义新运算:a ⊕b =⎩⎪⎨⎪⎧ab(b >0),-ab(b <0). 例如:4⊕5=45,4⊕(-5)=45.则函数y =2⊕x(x≠0)的图象大致是(D)A B C D5.如图,若抛物线y =-x2+3与x 轴围成的封闭区域(边界除外)内整点(点的横、纵坐标都是整数)的个数为k ,则反比例函数y =kx(x >0)的图象是(D)A B CD命题点2 反比例函数、一次函数与几何图形综合6.如图,四边形ABCD 是平行四边形,点A(1,0),B(3,1),C(3,3).反比例函数y =mx (x>0)的图象经过点D ,点P 是一次函数y =kx +3-3k(k ≠0)的图象与该反比例函数图象的一个公共点.(1)求反比例函数的解析式;(2)通过计算说明一次函数y =kx +3-3k(k ≠0)的图象一定经过点C ;(3)对于一次函数y =kx +3-3k(k ≠0),当y 随x 的增大而增大时,确定点P 横坐标的取值范围.(不必写出过程)解:(1)∵B(3,1),C(3,3),四边形ABCD 是平行四边形, ∴AD =BC =2,AD ∥BC ,BC ⊥x 轴.∴AD ⊥x 轴. 又∵A(1,0),∴D(1,2).∵点D 在反比例函数y =mx 的图象上,∴m =1×2=2.∴反比例函数的解析式为y =2x .(2)当x =3时,y =kx +3-3k =3,∴一次函数y =kx +3-3k(k ≠0)的图象一定过点C. (3)设点P 的横坐标为a ,则23<a <3.命题点3 反比例函数的实际应用(8年2考)7.(2019·杭州)方方驾驶小汽车匀速地从A 地行驶到B 地,行驶里程为480千米,设小汽车的行驶时间为t(单位:小时),行驶速度为v(单位:千米/小时),且全程速度限定为不超过120千米/小时.(1)求v 关于t 的函数解析式;(2)方方上午8点驾驶小汽车从A 地出发.①方方需在当天12点48分至14点(含12点48分和14点)间到达B 地,求小汽车行驶速度v 的范围;②方方能否在当天11点30分前到达B 地?说明理由.解:(1)∵vt =480,且全程速度限定为不超过120千米/小时,∴v 关于t 的函数解析式为v =480t(t ≥4).(2)①8点至12点48分时间长为245小时,8点至14点时间长为6小时.将t =6代入v =480t ,得v =80;将t =245代入v =480t,得v =100.∴小汽车行驶速度v 的范围为80≤v ≤100.②方方不能在当天11点30分前到达B 地.理由如下:8点至11点30分时间长为72小时,将t =72代入v =480t ,得v =9607.∵9607>120,超速了. 故方方不能在当天11点30分前到达B 地.基础训练1.(2019·柳州)反比例函数y =2x的图象位于(A)A .第一、三象限B .第二、三象限C .第一、二象限D .第二、四象限2.(2019·哈尔滨)点(-1,4)在反比例函数y =kx 的图象上,则下列各点在此函数图象上的是(A)A .(4,-1)B .(-14,1)C .(-4,-1)D .(14,2)3.(2019·邢台模拟)已知甲圆柱型容器的底面积为30 cm 2,高为8 cm ,乙圆柱型容器底面积为x cm 2.若将甲容器装满水,全部倒入乙容器中(乙容器没有水溢出),则乙容器水面高度y(cm)与x(cm 2)之间的大致图象是(C)A B C D4.(2019·唐山乐亭县模拟)若点(x 1,y 1),(x 2,y 2)都是反比例函数y =-6x 图象上的点,并且y 1<0<y 2,则下列结论中正确的是(A)A .x 1>x 2B .x 1<x 2C .y 随x 的增大而减小D .两点有可能在同一象限5.(2019·唐山滦南县一模)如图,正比例函数y =x 与反比例函数y =4x 的图象交于A ,B 两点,其中A(2,2),当y =x 的函数值大于y =4x的函数值时,x 的取值范围为(D)A .x >2B .x <-2C .-2<x <0或0<x <2D .-2<x <0或x >26.(2019·石家庄模拟)已知反比例函数y =kx 的图象过第二、四象限,则一次函数y =kx +k的图象大致是(B)A B C D7.(2019·唐山路北区模拟)已知点P(m ,n)是反比例函数y =-3x 图象上一点,当-3≤n <-1时,m 的取值范围是(A)A .1≤m <3B .-3≤m <-1C .1<m ≤3D .-3<m ≤-18.(原创)(2017·河北T15变式)将九年级某班40名学生的数学测试成绩分为5组,第1~4组的频率分别为0.3,0.25,0.15,0.2,第5组的频数记为k ,则反比例y =kx (x >0)的图象是(D)A B C D9.(原创)(2019·河北T12变式)如图,函数y =⎩⎪⎨⎪⎧m x (x >0),-m x (x<0)的图象如图所示,以下结论:①常数m >0;②在每个象限内,y 随x 增大而减小;③若点A(-2,a),B(3,b)在图象上,则a <b ;④若P(x ,y)在图象上,则P ′(-x ,y)也在图象上,其中正确的是(D)A .①②B .②③C .③④D .①④10.(2019·兰州)如图,矩形OABC 的顶点B 在反比例函数y =kx (x >0)的图象上,S矩形OABC=6,则k =6.11.(2019·北京)在平面直角坐标系xOy 中,点A(a ,b)(a >0,b >0)在双曲线y =k 1x 上,点A 关于x 轴的对称点B 在双曲线y =k 2x,则k 1+k 2的值为0.12.(2019·盐城)如图,一次函数y =x +1的图象交y 轴于点A ,与反比例函数y =kx (x >0)的图象交于点B(m ,2).(1)求反比例函数的解析式; (2)求△AOB 的面积.解:(1)∵点B(m ,2)在直线y =x +1上, ∴2=m +1,解得m =1. ∴点B 的坐标为(1,2).∵点B(1,2)在反比例函数y =kx (x >0)的图象上,∴2=k1,解得k =2.∴反比例函数的解析式是y =2x.(2)将x =0代入y =x +1,得y =1,则点A 的坐标为(0,1). ∵点B 的坐标为(1,2), ∴△AOB 的面积为12×1×1=12.能力提升13.(2019·石家庄新华区模拟)如图,在平面直角坐标系中,点A(0,2),点P 是双曲线y =kx (x >0)上的一个动点,作PB ⊥x 轴于点B ,当点P 的横坐标逐渐减小时,四边形OAPB 的面积将会(C)A .逐渐增大B .不变C .逐渐减小D .先减小后增大14.(2019·陕西)如图,D 是矩形AOBC 的对称中心,A(0,4),B(6,0).若一个反比例函数的图象经过点D ,交AC 于点M ,则点M 的坐标为(32,4).16.(2019·秦皇岛海港区模拟)如图,在平面直角坐标系中,▱ABCD 的顶点A(1,b),B(3,b),D(2,b +1).(1)点C 的坐标是(4,b +1)(用b 表示);(2)双曲线y =kx 过▱ABCD 的顶点B 和D ,求该双曲线的解析式;(3)如果▱ABCD 与双曲线y =4x(x >0)总有公共点,求b 的取值范围.解:(2)∵双曲线y =kx 过▱ABCD 的顶点B(3,b)和D(2,b +1),∴3b =2(b +1),解得b =2,即B(3,2),D(2,3). 则该双曲线解析式为y =6x .(3)将A(1,b)代入y =4x,得b =4;将C(4,b +1)代入y =4x,得b +1=1,即b =0.则▱ABCD 与双曲线y =4x(x >0)总有公共点时,b 的取值范围为0≤b ≤4.17.如图为某公园“水上滑梯”的侧面图,其中BC 段可看成是一段双曲线,建立如图的直角坐标系后,其中,矩形AOEB 为向上攀爬的梯子,OA =5米,进口AB ∥OD ,且AB =2米,出口C 点距水面的距离CD 为1米,则B ,C 之间的水平距离DE 的长度为(D)A .5米B .6米C .7米D .8米18.(1)探究新知:如图1,已知△ABC 与△ABD 的面积相等,试判断AB 与CD 的位置关系,并说明理由.(2)结论应用:①如图2,点M ,N 在反比例函数y =kx (x >0)的图象上,过点M 作ME ⊥y 轴,过点N 作NF ⊥x 轴,垂足分别为E ,F ,试证明:MN ∥EF ;②若①中的其他条件不变,只改变点M ,N 的位置,如图3所示,请判断MN 与EF 是否平行?解:(1)AB ∥CD.理由:过点C 作CG ⊥AB 于点G ,过点D 作DH ⊥AB 于点H , ∴∠CGA =∠DHB =90°.∴CG ∥DH. ∵△ABC 和△ABD 的面积相等, ∴CG =DH.∴四边形CGHD 是矩形.∴AB ∥CD.(2)①证明:连接MF ,NE ,设M(x 1,y 1),N(x 2,y 2),∵点M ,N 在反比例函数y =kx (x >0)的图象上,∴x 1y 1=k ,x 2y 2=k. ∵ME ⊥y 轴,NF ⊥x 轴,∴EM =x 1,OE =y 1,OF =x 2,NF =y 2. ∴S △EFM =12x 1·y 1=12k ,S △EFN =12x 2y 2=12k.∴S △EFM =S △EFN ,由(1)中的结论可知,MN ∥EF.②MN ∥EF ,理由:连接MF ,NE ,设M(x 1,y 1),N(x 2,y 2). ∵M ,N 在反比例函数y =kx (k >0)的图象上,∴x 1y 1=k ,x 2y 2=k.∵ME ⊥y 轴,NF ⊥x 轴,∴EM =x 1,OE =y 1,OF =-x 2,NF =-y 2. ∴S △EFM =12x 1·y 1=12k ,S △EFN =12(-x 2)(-y 2)=12k.∴S △EFM =S △EFN .由(1)中的结论可知,MN ∥EF.反比例函数中的面积问题1.(2019·枣庄)如图,在平面直角坐标系中,等腰Rt △ABC 的顶点A ,B 分别在x 轴、y 轴的正半轴上,∠ABC =90°,CA ⊥x 轴,点C 在函数y =kx (x >0)的图象上.若AB =1,则k的值为(A)A .1 B.22C. 2 D .22.如图,A ,B 两点在双曲线y =4x(x >0)上,分别经过A ,B 两点向x 轴作垂线段,已知S阴影=1,则S 1+S 2=(D)A .3B .4C .5D .63.(2019·黄冈)如图,一直线经过原点O ,且与反比例函数y =kx (k>0)相交于点A ,B ,过点A 作AC ⊥y 轴,垂足为C ,连接BC.若△ABC 面积为8,则k =8.4.如图,A ,B 是反比例函数y =2x 的图象上关于原点对称的任意两点,BC ∥x 轴,AC ∥y 轴,△ABC 的面积记为S ,则(B)A .S =2B .S =4C .2<S <4D .S >45.(2019·郴州)如图,点A ,C 分别是正比例函数y =x 与反比例函数y =4x 的图象的交点,过A 点作AD ⊥x 轴于点D ,过C 点作CB ⊥x 轴于点B ,则四边形ABCD 的面积为8.6.如图,AB 是反比例函数y =3x 在第一象限内的图象上的两点,且A ,B 两点的横坐标分别是1和3,则S △AOB =4.7.(2019·鸡西)如图,在平面直角坐标系中,点O 为坐标原点,▱OABC 的顶点A 在反比例函数y =1x (x >0)的图象上,顶点B 在反比例函数y =5x (x >0)的图象上,点C 在x 轴的正半轴上,则▱OABC 的面积是(C)A.32B.52C .4D .68.如图,在平面直角坐标系中,点A 是x 轴上任意一点,BC 平行于x 轴,分别交反比例函数y =3x (x >0),y =kx(x <0)的图象于B ,C 两点.若△ABC 的面积为2,则k 的值为-1.9.(2019·株洲)如图所示,在平面直角坐标系xOy 中,点A ,B ,C 为反比例函数y =k x (k >0)图象上不同的三点,连接OA ,OB ,OC ,过点A 作AD ⊥y 轴于点D ,过点B ,C 分别作BE ,CF 垂直x 轴于点E ,F ,OC 与BE 相交于点M ,记△AOD ,△BOM ,四边形CMEF 的面积分别为S 1,S 2,S 3,则(B)A .S 1=S 2+S 3B .S 2=S 3C .S 3>S 2>S 1D .S 1S 2<S 2310.(2019·本溪)如图,在平面直角坐标系中,等边△OAB 的边OA 和菱形OCDE 的边OE 都在x 轴上,点C 在OB 边上,S △ABD =3,反比例函数y =kx (x >0)的图象经过点B ,则k 的值为3.。

2020年中考数学一轮复习培优训练:《反比例函数》及答案

2020年中考数学一轮复习培优训练:《反比例函数》及答案

2020年中考数学一轮复习培优训练:《反比例函数》1.(2019•滦南县二模)已知:一次函数y=mx+10(m<0)的图象与反比例函数y=的图象相交于A、B两点(A在B的右侧).(1)当A(8,2)时,求这个一次函数和反比例函数的解析式,以及B点的坐标;(2)在(1)的条件下,反比例函数图象的另一支上是否存在一点P,使△P AB是以AB 为直角边的直角三角形?若存在,请直接写出所有符合条件的点P的坐标;若不存在,请说明理由.(3)当m=﹣2时,设A(a,﹣2a+10),B(b,﹣2b+10)时,直线OA与此反比例函数图象的另一支交于另一点C,连接BC交y轴于点D.若,求△ABC的面积.2.(2019秋•市中区期末)如图,一次函数y=﹣x+5的图象与坐标轴交于A,B两点,与反比例函数y=的图象交于M,N两点,过点M作MC⊥y轴于点C,且CM=1,过点N 作ND⊥x轴于点D,且DN=1.已知点P是x轴(除原点O外)上一点.(1)直接写出M、N的坐标及k的值;(2)将线段CP绕点P按顺时针或逆时针旋转90°得到线段PQ,当点P滑动时,点Q 能否在反比例函数的图象上?如果能,求出所有的点Q的坐标;如果不能,请说明理由;(3)当点P滑动时,是否存在反比例函数图象(第一象限的一支)上的点S,使得以P、S、M、N四个点为顶点的四边形是平行四边形?若存在,请直接写出符合题意的点S的坐标;若不存在,请说明理由.3.(2019•永春县校级自主招生)如图,一次函数y=kx+b(k≠0)与反比例函数y=(a≠0)的图象在第一象限交于A、B两点,A点的坐标为(m,4),B点的坐标为(3,2),连接OA、OB,过B作BD⊥y轴,垂足为D,交OA于C.若OC=CA,(1)求一次函数和反比例函数的表达式;(2)求△AOB的面积;(3)在直线BD上是否存在一点E,使得△AOE是直角三角形,求出所有可能的E点坐标.4.(2019•滨州模拟)已知点A在x轴负半轴上,点B在y轴正半轴上,线段OB的长是方程x2﹣2x﹣8=0的解,tan∠BAO=.(1)求点A的坐标;(2)点E在y轴负半轴上,直线EC⊥AB,交线段AB于点C,交x轴于点D,S△DOE =16.若反比例函数y=的图象经过点C,求k的值;(3)在(2)条件下,点M是DO中点,点N,P,Q在直线BD或y轴上,是否存在点P,使四边形MNPQ是矩形?若存在,请直接写出点P的坐标;若不存在,请说明理由.5.(2019春•南召县期中)如图,一次函数y=ax+b的图象与反比例函数y=的图象交于A,B两点,与x轴交于点C,与y轴交于点D,已知点A坐标为(3,1),点B的坐标为(﹣2,m)(1)求反比例函数的解析式和一次函数的解析式;(2)连接OA、OB,求△AOB的面积;(3)观察图象直接写出ax+b>时x的取值范围是;(4)直接写出:P为x轴上一动点,当三角形OAP为等腰三角形时点P的坐标.6.(2019春•常熟市期中)如图,平面直角坐标系中,一次函数y=﹣x+b的图象与反比例函数y=﹣在第二象限内的图象相交于点A,与x轴的负半轴交于点B,与y轴的负半轴交于点C.(1)求∠BCO的度数;(2)若y轴上一点M的纵坐标是4,且AM=BM,求点A的坐标;(3)在(2)的条件下,若点P在y轴上,点Q是平面直角坐标系中的一点,当以点A、M、P、Q为顶点的四边形是菱形时,请直接写出点Q的坐标.7.(2019•无锡模拟)已知:如图1,在平面直角坐标系中点A(2,0).B(0,1),以AB 为顶点在第一象限内作正方形ABCD.反比例函数y1=(x>0)、y2=(x>0)分别经过C、D两点.(1)求点C的坐标并直接写出k1、k2的值;(2)如图2,过C、D两点分别作x、y轴的平行线得矩形CEDF,现将点D沿y2=(x >0)的图象向右运动,矩形CEDF随之平移;①试求当点E落在y1=(x>0)的图象上时点D的坐标;②设平移后点D的横坐标为a,矩形的边CE与y1=(x>0),y2=(x>0)的图象均无公共点,请直接写出a的取值范围.8.(2019•高新区校级三模)如图,矩形ABCD的顶点A、B分别在x轴、y轴上,AD=2AB,直线AB的解析式为y=﹣2x+4,双曲线y=(x>0)经过点D,与BC边相交于点E.(1)填空:k=;(2)连接AE、DE,试求△ADE的面积;(3)在x轴上有两点P、Q,其中点P可以使PC+PD的值最小,而点Q可以使|QC﹣QD|的值最大,请直接写出P、Q两点的坐标以及线段PQ的长.9.(2019春•宜宾期末)如图1,直线l 1:y =kx +b 与双曲线y =(x >0)交于A 、B 两点,与x 轴交于点C ,与y 轴交于点E ,已知点A (1,3)、点C (4,0). (1)求直线l 1和双曲线的解析式;(2)将△OCE 沿直线l 1翻折,点O 落在第一象限内的点H 处,直接写出点H 的坐标; (3)如图2,过点E 作直线l 2交x 轴的负半轴于点F ,连接AF 交y 轴于点G ,且△AEG 的面积与△OFG 的面积相等. ①求直线l 2的解析式;②在直线l 2上是否存在点P ,使得S △PBC =S △OBC ?若存在,请直接写出所有符合条件的点P 的坐标;如果不存在,请说明理由..10.(2019•广东二模)如图,在平面直角坐标系中,直线AB:y=kx+b(b为常数)与反比例函数y=(x>0)交于点B,与x轴交于点A,与y轴交于点C,且OB=AB.(1)如图①,若点A的坐标为(6,0)时,求点B的坐标及直线AB的解析式;(2)如图①,若∠OBA=90°,求点A的坐标;(3)在(2)的条件下中,如图②,△P A1A是等腰直角三角形,点P在反比例函数y=(x>0)的图象上,斜边A1A都在x轴上,求点A1的坐标.11.(2019•历下区二模)如图,已知点D在反比例函数y=的图象上,过点D作x轴的平行线交y轴于点B(0,2),过点A的直线y=kx+b与y轴于点C,且BD=2OC,tan∠OAC=.(1)求反比例函数y=的解析式;(2)连接CD,试判断线段AC与线段CD的关系,并说明理由;(3)点E为x轴上点A左侧的一点,且AE=BD,连接BE交直线CA于点M,求tan∠BMC 的值.12.(2019•雨花区校级三模)如图,∠APB与y轴正半轴交于点A,与x轴正半轴交于点B,已知O为坐标原点,P(﹣1,﹣1),且∠P AO+∠PBO=45°.(1)求∠APB的度数;(2)判断OA•OB是否为定值,如果是,求出该定值,如果不是,请说明理由;(3)射线P A、PB分别与反比例函数的图象交于M(x1,y1)、N(x2,y2)两点,设A(0,m),令T=(x1﹣x2)(y1﹣y2﹣1),当m≤4时,求T的取值范围.13.(2019春•锡山区校级期末)(1)如图,已知点A、B在双曲线y=(x>0)上,AC⊥x 轴与C,BD⊥y轴于点D,AC与BD交于点P,P是AC的中点,点B的横坐标为b.A 与B的坐标分别为、.(用b与k表示),由此可以猜想DP与BP的数量关系是.(2)四边形ABCD的四个顶点分别在反比例函数y=与y=(x>0,0<m<n)的图象上,对角线BD∥y轴,且BD⊥AC于点P,P是AC的中点,点B的横坐标为4.①当m=4,n=20时,判断四边形ABCD的形状并说明理由.②四边形ABCD能否成为正方形?若能,直接写出此时m,n之间的数量关系;若不能,试说明理由.14.(2019春•鼓楼区期末)如图①,在平面直角坐标系中,A(1,a)是函数y=的图象上一点,B(0,b)是y轴上一动点,四边形ABPQ是正方形(点A、B、P、Q按顺时针方向排列).(1)求a的值;(2)如图②,当b=0时,求点P的坐标;(3)若点P也在函数y=的图象上,求b的值;(4)设正方形ABPQ的中心为M,点N是函数y=的图象上一点,判断以点P、Q、M、N为顶点的四边形能否是正方形?如果能,请直接写出b的值;如果不能,请说明理由.15.(2019春•乳山市期末)如图,边长为3正方形OACD的顶点O与原点重合,点D,A 在x轴,y轴上.反比例函数y=(x≠0)的图象交AC,CD于点B,E,连按OB,OE,BE,S=4.△OBE(1)求反比例函数的解析式;(2)过点B作y轴的平行线m,点P在直线m上运动,点Q在x轴上运动;①若△CPQ是以P为直角顶点的等腰直角三角形,求△CPQ的面积;②将“①”中的“以P为直角顶点的”去掉,将问题改为“若△CPQ是等腰直角三角形”,△CPQ的面积除了“①”中求得的结果外,还可以是.(直接写答案,不用写步骤)参考答案1.解:(1)把A(8,2)代入y=,得k=8×2=16.∴反比例函数的解析式为y=,把A(8,2)代入y=mx+10,得到m=﹣1,∴一次函数的解析式为y=﹣x+10,解方程组,得或,∴点B的坐标为(2,8);(2)①若∠BAP=90°,过点A作AH⊥OE于H,设AP与x轴的交点为M,如图1,对于y=﹣x+10,当y=0时,﹣x+10=0,解得x=10,∴点E(10,0),OE=10.∵A(8,2),∴OH=8,AH=2,∴HE=10﹣8=2,∵AH⊥OE,∴∠AHM=∠AHE=90°,又∵∠BAP=90°,∴∠AME+∠AEM=90°,∠AME+∠MAH=90°,∴∠MAH=∠AEM,∴△AHM∽△EHA,∴=,∴=,∴MH=2,∴M(6,0),可设直线AP的解析式为y=k′x+b,则有,解得,∴直线AP的解析式为y=x﹣6,解方程组,得或,∴点P的坐标为(﹣2,﹣8).②若∠ABP=90°,同理可得:点P的坐标为(﹣8,﹣2),综上所述:符合条件的点P的坐标为(﹣2,﹣8)、(﹣8,﹣2);(3)过点B作BS⊥y轴于S,过点C作CT⊥y轴于T,连接OB,如图2,则有BS∥CT,∴△CTD∽△BSD,∴=,∵=,∴==,∵A(a,﹣2a+10),B(b,﹣2b+10),∴C(﹣a,2a﹣10),CT=a,BS=b,∴=,即b=a.∵A(a,﹣2a+10),B(b,﹣2b+10)都在反比例函数y=的图象上,∴a(﹣2a+10)=b(﹣2b+10),∴a(﹣2a+10)=a(﹣2×a+10).∵a≠0,∴﹣2a+10=(﹣2×a+10),解得:a=3.∴A(3,4),B(2,6),C(﹣3,﹣4).设直线BC的解析式为y=px+q,则有, 解得:, ∴直线BC 的解析式为y =2x +2.当x =0时,y =2,则点D (0,2),OD =2,∴S △COB =S △ODC +S △ODB =OD •CT +OD •BS =×2×3+×2×2=5. ∵OA =OC ,∴S △AOB =S △COB ,∴S △ABC =2S △COB =10.2.解:(1)由题意M (1,4),n (4,1),∵点M 在y =上,∴k =4;(2)当点P 滑动时,点Q 能在反比例函数的图象上;如图1,CP =PQ ,∠CPQ =90°,过Q作QH⊥x轴于H,易得:△COP≌△PHQ,∴CO=PH,OP=QH,由(2)知:反比例函数的解析式:y=;当x=1时,y=4,∴M(1,4),∴OC=PH=4设P(x,0),∴Q(x+4,x),当点Q落在反比例函数的图象上时,x(x+4)=4,x2+4x+4=8,x=﹣2±2,当x=﹣2+2时,x+4=2+2,如图1,Q(2+2,﹣2+2);当x=﹣2﹣2时,x+4=2﹣2,如图2,Q(2﹣2,﹣2﹣2);如图3,CP=PQ,∠CPQ=90°,设P(x,0)过P作GH∥y轴,过C作CG⊥GH,过Q作QH⊥GH,易得:△CPG≌△PQH,∴PG=QH=4,CG=PH=x,∴Q(x﹣4,﹣x),同理得:﹣x(x﹣4)=4,解得:x1=x2=2,∴Q(﹣2,﹣2),综上所述,点Q的坐标为(2+2,﹣2+2)或(2﹣2,﹣2﹣2)或(﹣2,﹣2).(3)当MN为平行四边形的对角线时,根据MN的中点的纵坐标为,可得点S的纵坐标为5,即S(,5);当MN 为平行四边形的边时,易知点S 的纵坐标为3,即S (,3);综上所述,满足条件的点S 的坐标为(,5)或(,3).3.解:(1)∵点B (3,2)在反比例函数y =的图象上,∴a =3×2=6, ∴反比例函数的表达式为y =,∵点A 的纵坐标为4,∵点A 在反比例函数y =图象上,∴A (,4), ∴, ∴,∴一次函数的表达式为y =﹣x +6;(2)如图1,过点A 作AF ⊥x 轴于F 交OB 于G ,∵B (3,2),∴直线OB 的解析式为y =x ,∴G (,1),A (,4),∴AG =4﹣1=3,∴S △AOB =S △AOG +S △ABG =×3×3=.(3)如图2中,①当∠AOE 1=90°时,∵直线AC 的解析式为y =x ,∴直线OE 1的小时为y =﹣x ,当y =2时,x =﹣,∴E1(﹣,2).②当∠OAE2=90°时,可得直线AE2的解析式为y=﹣x+,当y=2时,x=,∴E2(,2).③当∠OEA=90°时,易知AC=OC=CE=,∵C(,2),∴可得E3(,2),E4(,2),综上所述,满足条件的点E坐标为(﹣,2)或(,2)或(,2)或(,2).4.解:(1)∵线段OB的长是方程x2﹣2x﹣8=0的解,∴OB=4,在Rt△AOB中,tan∠BAO==,∴OA=8,∴A(﹣8,0).(2)∵EC⊥AB,∴∠ACD=∠AOB=∠DOE=90°,∴∠OAB+∠ADC=90°,∠DEO+∠ODE=90°,∵∠ADC=∠ODE,∴∠OAB=∠DEO,∴△AOB∽△EOD,∴=,∴OE:OD=OA:OB=2,设OD=m,则OE=2m,∵•m•2m=16,∴m=4或﹣4(舍弃),∴D(﹣4,0),E(0,﹣8),∴直线DE的解析式为y=﹣2x﹣8,∵A(﹣8,0),B(0,4),∴直线AB的解析式为y=x+4,由,解得,∴C(﹣,),∵若反比例函数y=的图象经过点C,∴k=﹣.(3)如图1中,当四边形MNPQ是矩形时,∵OD=OB=4,∴∠OBD=∠ODB=45°,∴∠PNB=∠ONM=45°,∴OM=DM=ON=2,∴BN=2,PB=PN=,∴P(﹣1,3).如图2中,当四边形MNPQ是矩形时(点N与原点重合),易证△DMQ是等腰直角三角形,OP=MQ=DM=2,P(0,2);如图3中,当四边形MNPQ是矩形时,设PM交BD于R,易知R(﹣1,3),可得P(0,6)如图4中,当四边形MNPQ是矩形时,设PM交y轴于R,易知PR=MR,可得P(2,6).综上所述,满足条件的点P 坐标为(﹣1,3)或(0,2)或(0,6)或(2,6); 5.解:(1)∵点A 坐标为(3,1)把点A 的坐标代入y =中得:k =3∴反比例函数的解析式是:y =把点B 的坐标为(﹣2,m )代入y =中,得:﹣2m =3,m =﹣∴B (﹣2,﹣)把A 、B 两点的坐标代入y =ax +b 中得:,解得:∴一次函数的解析式为:y =x ﹣;(2)如图1,当y =0时, x ﹣=0,x =1,∴C (1,0),∴S △AOB =S △AOC +S △BOC ==;(3)由图象得:ax +b >时x 的取值范围是:x >3或﹣2<x <0;故答案为:x>3或﹣2<x<0;(4)当△AOP是等腰三角形时,存在以下三种情况:①当OA=OP时,如图2,∵A(3,1),∴OA=,∴P1(﹣,0)或P2(,0);②当OA=AP时,如图3,∴P(6,0);③当OP=AP时,如图4,过A作AE⊥x轴于E,设OP=x,则AP=x,PE=3﹣x,∴AP2=AE2+PE2,∴12+(3﹣x)2=x2,x=,∴P(,0);综上,P的坐标为(,0)或(﹣,0)或(6,0)或(,0).故答案为:(,0)或(﹣,0)或(6,0)或(,0).6.解:(1)∵一次函数y=﹣x+b的图象交x轴于B,交y轴于C,则B(b,0),C(0,b),∴OB=OC=﹣b,∵∠BOC=90°∴△OBC是等腰直角三角形,∴∠BCO=45°.(2)如图1中,作MN⊥AB于N.∵M(0,4),MN⊥AC,直线AC的解析式为y=﹣x+b,∴直线MN的解析式为y=x+4,由,解得,∴N(,),∵MA=MB,MN⊥AB,∴NA=BN,设A(m,n),则有,解得,∴A(﹣4,b+4),∵点A在y=﹣上,∴﹣4(b+4)=﹣4,∴b=﹣3,∴A(﹣4,1).(3)如图2中,由(2)可知A(﹣4,1),M(0,4),∴AM==5,当菱形以AM为边时,AQ=AQ′=5,AQ∥OM,可得Q(﹣4,﹣4),Q′(﹣4,6),当A,Q关于y轴对称时,也满足条件,此时Q(4,1)当AM为菱形的对角线时,设P″(0,b),则有(4﹣b)2=42+(b﹣1)2,∴b=﹣.∴AQ″=MP″=,∴Q″(﹣4,),综上所述,满足条件的点Q坐标为(﹣4,﹣4)或(﹣4,6)或(﹣4,)或(4,1).7.解:(1)如图1中,作DM⊥x轴于M.∵四边形ABCD是正方形,∴AB=AD,∠BAD=90°,∵∠AOB=∠AMD=90°,∴∠OAB+∠OBA=90°,∠OAB+∠DAM=90°,∴∠ABO=∠DAM,∴△OAB≌△MDA(AAS),∴AM=OB=1,DM=OA=2,∴D(3,2),∵点D在y=上,∴k2=6,同法可得C(1,3),∵点C在y=上,∴k1=3.(2)①设平移后点D坐标为(m,),则E(m﹣2,),由题意:(m﹣2)•=3,解得m=4,∴D(4,).②设平移后点D 坐标为(m ,),则C (m ﹣2, +1),当点C 在y =上时,(m ﹣2)(+1)=6,解得m =1+或1﹣(舍弃),观察图象可知:矩形的边CE 与y 1=(x >0),y 2=(x >0)的图象均无公共点, 则a 的取值范围为:4<a <1+.8.解:(1)如图所示:过点D 作DH ⊥x 轴于点H ,∵直线AB 的解析式为y =﹣2x +4,∴当x =0时,y =4,则OB =4,B 点坐标为:(0,4);当y =0时,x =2,则OA =2,A 点坐标为:(2,0);∵∠OAB +∠DAH =90°,∠ADH +∠DAH =90°,∴∠BAO =∠ADH ,又∵∠BOA =∠AHD ,∴△AOB ∽△DHA , ∴===, ∴==,解得:DH =4,AH =8,∴D (10,4),则k =10×4=40, 故答案为:40;(2)由(1)得:AO =2,OB =4,则AB =2, ∵AD =2AB ,∴AD =4, ∴S 矩形BACD =S △AED =×2×4=20;(3)如图所示:过点C 作CN ⊥y 轴于点N ,作D 点关于x 轴对称点D ′,连接CD ′,交x 轴于点P ,连接DP ,∵∠NBC +∠NCB =90°,∠NBC+∠OBA=90°,∴∠NCB=∠OBA,又∵∠CNB=∠BOA=90°,∴△CNB∽△BOA,∴==2,∴CN=8,BN=4,∴C点坐标为:(8,8),∵D(10,4),∴D′(10,﹣4),设直线CD′的解析式为:y=ax+d则,解得:,故抛物线解析式为:y=﹣6x+56,当y=0则x=,故P点坐标为:(,0),延长CD交x轴于Q,此时|QC﹣QD|的值最大,∵CD∥AB,D(10,4),AB的解析式为y=﹣2x+4,∴直线CD的解析式为y=﹣2x+24,∴Q(12,0),∴PQ=12﹣=.9.解:(1)将A(1,3)、点C(4,0)代入y=kx+b得,解得:∴直线l1的解析式为:y=﹣x+4;将A(1,3)代入y=(x>0)中,得m=3,∴双曲线的解析式为:y=(x>0).(2)如图1中,在y=﹣x+4中,令x=0,得:y=4∴E(0,4)∴△COE是等腰直角三角形,由翻折得:△CEH≌△CEO∴∠COE=∠CHE=∠OCH=90°,OC=OE∴OCHE是正方形.∴H(4,4).(3)如图2,连接AO,①∵A(1,3)、O(0,0).设直线AO解析式为y=k1x,3=k1,∴直线AO 解析式为y =3x ,∵S △AEG =S △OFG∴S △EF A =S △EFO∴EF ∥AO∴直线l 2的解析式为:y =3x +4;②存在,点P 坐标为:P (﹣1,1)或P (1,7). ∵S △PBC =S △OBC ,∴点P 在经过点O 或H 平行于直线l 1:y =﹣x +4的直线上, 易得:y =﹣x 或y =﹣x +8 分别解方程组或得:或 ∴点P 的坐标为P (﹣1,1)或P (1,7). 10.解:(1)如图①,过B 作BC ⊥x 轴于C ,∵OB =AB ,BC ⊥x 轴,∴OC =AC =OA ,∵点A 的坐标为(6,0),∴OA =6,∴OC =AC =3,∵点B 在反比例函数y =(x >0)的图象上,∴y ==4, ∴B (3,4),∵点A (6,0),点B (3,4)在y =kx +b 的图象上, ∴,解得:,∴直线AB的解析式为:y=﹣x+8;(2)如图①,∵∠OBA=90°,OB=AB,∴△AOB是等腰直角三角形,∴BC=OC=OA,设点B(a,a)(a>0),∵顶点B在反比例函数y=(x>0)的图象上,∴a=,解得:a=(负值舍),∴OC=2,∴OA=2OC=4,∴A(4,0);(3)如图②,过P作PD⊥x轴于点D,∵△P A1A是等腰直角三角形,∴PD=AD,设AD=m(m>0),则点P的坐标为(4+m,m),∴m(4+m)=12,解得:x1=2﹣2,m2=﹣2﹣2(负值舍去),∴A1A=2m=4﹣4,∴OA1=OA+AA1=4,∴点A1的坐标是(4,0).11.解:(1)∵A(﹣,0),B(0,2),∴OA=,OB=2,∵tan∠OAC==,∴OC=1,BC=3,∵BD=2OC,∴BD=2,∵BD⊥BC,∴D(2,2),把D(2,2)代入y=中,得到m=4,∴反比例函数的解析式为y=.(2)如图,设CD交x轴于K.∵OK∥BD,∴=,∴=,∴OK=,∵OC=1,OA=,∴OC2=OA•OK,∴=,∵∠AOC=∠COK,∴△AOC∽△COK,∴∠OAC=∠OCK,∵∠OAC+∠OCA=90°,∴∠OCA+∠OCK=90°,∴∠ACK=90°,∴AC⊥CD.(3)如图,作BH⊥CM于H.∵A(﹣,0),C(0,﹣1),∴直线AC的解析式为y=﹣x﹣1,∵AE=BD=2,∴OA=2+=,∴E(﹣,0),∵B(0,2),∴直线BE的解析式为y=x+2,由解得,∴M(﹣,),∴CM=,BM=,∵S=×3×=××BH,△BCM∴BH=,∴MH==,∴tan∠BMC===2.12.解:(1)如图1中,连接PO,延长PO到K.∵∠AOK=∠OP A+∠OAP,∠KOB=∠OPB+∠OBP,∴∠POP A+∠OAP+∠OPB+∠OBP=90°,∵∠P AO+∠PBO=45°,∴∠OP A+∠OPB=45°,∴∠APB=45°.(2)结论:OA•OB=2,理由:∵P(﹣1,﹣1),∴KO平分∠AOB,OP=,∴∠AOK=∠BOK=45°,∵∠AOK=∠OP A+∠OAP=45°,∠OP A+∠OPB=45°,∴∠OAP+∠OPB,∵∠AOP=∠BOP=135°,∴△POA∽△BOP,∴=,∴OA•OB=OP2=2.(3)∵A(0,m),∴OA=m,∵OB•OA=2,∴OB=,∴B(,0),∴直线P A的解析式为y=(m+1)x+m,直线PB的解析式为y=x﹣,由,相切y得到:(m+1)x2+mx﹣1=0,∵x1•(﹣1)=﹣,∴x1=,y1=m+1,同法可得x2=,y2=,∴T=(x1﹣x2)(y1﹣y2﹣1)=(﹣)(m+1﹣﹣1)=﹣,∵0<m≤4,∴T<0,∵T(m+2)=﹣(m2+2m+2),∴m2+(2+T)m+2+2T=0,∵△≥0,∴4+4T+T2﹣4(2+2T)≥0,∴T2﹣4T﹣4≥0,解得T≤2﹣2或T≥2+2,∵T<0,∴T≤2﹣2.13.解:(1)∵AC⊥x轴于C,BD⊥y轴于点D,∴AC⊥BD,由题意B(m,),A(m,),∴PD=m,BD=m,∴BD=2PD,∴DP=BP,故答案为:A(m,),B(m,),DP=BP.(2)①当x=4时,y==1,∴点B的坐标为(4,1);当x=4时,y==5,∴D(4,5),∵点P为线段AC的中点,设A(a,),则C(5a,),∴P A=PC,∴(a+5a)÷2=4,∴a=,∴A(,3),C(,3),∴点P的坐标为(4,3),∴P A=4﹣=,PC=﹣4=,∴P A=PC.∵PB=PD,∴四边形ABCD为平行四边形.又∵BD⊥AC,∴四边形ABCD为菱形.②四边形ABCD能成为正方形.当四边形ABCD为正方形时,设P A=PB=PC=PD=t(t≠0).当x=4时,y==,∴点B的坐标为(4,),∴点A的坐标为(4﹣t,+t).∵点A在反比例函数y=的图象上,∴(4﹣t)(+t)=m,化简得:t=4﹣,∴点D的纵坐标为+2t=+2(4﹣)=8﹣,∴点D的坐标为(4,8﹣),∴4×(8﹣)=n,整理,得:m+n=32.即四边形ABCD能成为正方形,此时m+n=32.14.解:(1)∵A(1,a)是函数y=的图象上一点,∴a=.(2)如图②中,作PE⊥x轴于E,AF⊥x轴于F.∵四边形ABPQ是正方形,∴AB=AP,∠ABP=∠PEC=O=∠AFO=90°,∴∠PBE+∠ABF=90°,∠ABF+∠BAF=90°,∴∠PBE=∠BAF,∴△PBE≌△BAF(AAS),∴PE=BF=1,OE=AF=,∴P(﹣,1).(3)如图③中,作AF⊥OB于F,PE⊥OB于E.同法可证:△PBE≌△BAF,∴BE=AF=1,PE=BF=b﹣,∴P(b﹣,b+1),∵点P在y=上,∴(b﹣)•(b+1)=,解得b=2或﹣,(4)如图④中,当点N在反比例函数图形上时,由题意易知P(b﹣,b+1),M(﹣,+),N(b﹣,+),∵点N在反比例函数图形上,∴(b﹣)(+)=,解得b=﹣或.15.解:(1)∵四边形OACD是正方形,边长为3,∴点B的纵坐标为3,点E的横坐标为3,∵反比例函数y=(x≠0)的图象交AC,CD于点B,E,∴可以假设B(,3),E(3,),=4,∵S△OBE∴9﹣﹣﹣(3﹣)2=4,解得k=3或﹣3(舍弃),∴反比例函数的解析式为y=.(2)①如图1中,设直线m交OD于M.由(1)可知B(1,3),AB=1,BC=2,当PC=PQ,∠CPQ=90°时,∵∠CBP=∠PMQ=∠CPQ=90°,∴∠CPB+∠BCP=90°,∠CPB+∠PQM=90°,∴∠PCB=∠MPQ,∵PC=PQ,∴△CBP≌△PMQ(AAS),∴BC=PM=2,PB=MQ=1,∴PC=PQ==,∴S=.△PCQ如图2中,当PQ=PC,∠CPQ=90°,同法可得△CBP≌△PMQ(AAS),∴PM=BC=2,OM=PB=5,∴PC=PQ==,=.∴S△PCQ=5.②当点Q是等腰三角形的直角顶点时,同法可得CQ=PQ=,此时S△PCQ或CQ′=PQ′==,可得S=17,△P′CQ′不存在点C为等腰三角形的直角顶点,综上所述,△CPQ的面积除了“①”中求得的结果外,还可以是5或17.故答案为5或17.。

九年级数学下册2023年中考专题培优训练 反比例函数(k的几何意义)

九年级数学下册2023年中考专题培优训练 反比例函数(k的几何意义)

九年级数学下册2023年中考专题培优训练 反比例函数(k 的几何意义)一、单选题1.如图所示,点是反比例函数图象上一点,作轴,垂足为点.若A ky x =AB x ⊥B 的面积为3,则的值是( )AOB kA .4B .6C .4或6D .不确定2.如图,在平面直角坐标系中,函数与的图象交于、两点,过作轴y kx =2y x =-A B A y 的垂线,交函数的图象于点,连接,则的面积为( )4y x =C BC ABCA .B .C .D .23563.以正方形两条对角线的交点O 为原点,建立如图所示的平面直角坐标系,反比ABCD 例函数的图象经过点D ,则正方形的面积为( )4y x =ABCDA .12B .16C .18D .204.点P ,Q ,R 在反比例函数图象上的位置如图所示,分别过这三个点作x 轴,y 轴12y x =的平行线.图中所构成的阴影部分面积从左到右依次为,,.若,1S 2S 3S OF FG GA ==则的值为( )123S S S ++A .10B .12C .14D .165.如图,点B 在反比例函数的图象上,点C 在反比例函数的图()60y x x =>()20y x x =->象上,轴,,垂足为点C ,交y 轴于点A ,则的面积为( )∥BC y AC BC ⊥AC ABCA .3B .4C .6D .86.如图,直角三角形的直角顶点在坐标原点,,若点A 在反比例函数30OAB ∠=︒的图象上,则经过点B 的反比例函数解析式为( )()120y x x =>A .B .C .D .6y x=-4y x=-2y x=-2y x=7.如图,在平面直角坐标系中,,点在反比例函数图像的图xOy (4,0),(4,0)A B -C ky x =像上,且,若线段与轴交于点,则的值为( )90ACB ∠=︒AC y (0,2)D kA .B .C .D .19225892458.如图,A 是双曲线上的一点,点C 是的中点,过点C 作y 轴的垂线,垂()0ky x x =>OA 足为D ,交双曲线于点B ,且的面积是4,则( )ABD △k =A .4B .6C .8D .109.反比例函数的图象如图所示,点M 是该函数图象上一点,垂直于x 轴,垂足ky x =MN 是点N ,如果,则k 的值为( )MON S π=△A .B .C .D .2π2π-ππ-10.已知点A 、B 分别在反比例函数,的图像上,且,()20=>y x x ()80y x x -=>OA OB ⊥则的值为( )OAOBA B .C D .31211.如图,点是函数图象上一点,过点作轴,轴,分别与A ()10y x x =>A AB x ⊥AC y ⊥函数的图象相交于点和点,则的面积是( ).2y x =-B C ABCA .4B .C .6D .9213212.如图,平面直角坐标系中,矩形的顶点B 在第一象限,点C 在x 轴上,点A 在OABC y 轴上,D ,E 分别是中点.过点D 的双曲线与交于点AB OA ,()00x kx k y >=>,BC G .连接,F 在上,且,连接.若的面积为4,则k DC DC :2:1DF FC =DE EF ,DEF 的值为( )A .8B .16C .24D .32二、填空题13.如图,在平面直角坐标系中,点在函数的图象上,轴于点xOy A 6(0)y x x =>AC x ⊥,连接,则面积为________.C OA OAC14.点A 是反比例函数在第一象限内图象上的一点,过点A 作轴,垂足为点B ,AB x ⊥的面积是1,则下列结论中,正确的是_______(填序号).OAB ①此反比例函数图象经过点;②此反比例函数的解析式为;③若点在此()1,12y x =(),a b 反比例函数图象上,则点也在此反比例函数图象上;④点在此()--,a b ()()1122,A x y B x y ,,反比例函数的图象上且,则.120x x <<12y y <15.如图,平行四边形的顶点在坐标原点上,在轴上,顶点在上,OABC O B y A 5y x =-顶点在上,则平行四边形的面积是_____.C 7y x =OABC16.如图,已知在中,点在上,,,,反比例ABO C AB 3BC AC =CO CB =16AOB S =△函数的图象经过点,则的值为_____.ky x =C k17.如图,的边在x 轴上,且,反比例函数的图象与边AOB OB 90∠=︒ABO ()0ky x x =>、分别相交于点C 、D ,连接,已知,的面积为12,若,AO AB BC OC BC =BOC 6AD =直线的函数解析式为 _____.OA18.如图,,分别是反比例函数和在第四象限内的图像,点在1l 2l ()2k y k x =<-2y x =-N 上,线段交于点A ,作轴于点C ,交于点B ,延长OB 交于点M ,作1l ON 2l NC x ⊥2l 1l 轴于点F ,下列结论:MF x ⊥①;1OFM S =△②与是位似图形,面积比为;OBC △OMF 2k -③;OA OBON OM =④.AB NM 其中正确的是____________.三、解答题19.如图,一次函数与反比例函数的图像交于,()10y k x b k =+≠()20k y x x =>()1,6A 两点.()3,B m(1)求反比例函数和一次函数的解析式:(2)根据图象直接写出时,x 的取值范围:21k k x b x +<(3)求的面积.AOB 20.如图,在平面直角坐标系中,为坐标原点,点在反比例函数的图象上,O A ()0ky k x =>过点作轴,垂足为,的面积为5.A AB x ⊥B AOB(1)求值;k (2)当时,求函数值的取值范围.<2x -y 21.通过构造适当的图形,可以对线段长度、图形面积大小等进行比较,直观地得到一些不等关系或最值,这是“数形结合”思想的典型应用.(1)【理解】如图①,,垂足分别为是的中点,连接,AC BC CD AB ⊥⊥,C D E 、,AB CE 已知,().AD a BD b ==,0a b <<①已知的代数式表示CE 的长;CD a b ,②比较大小: (填“”“”或“”),并用①中的结论证明该大小关系.CE CD <>=(2)【应用】如图②,在平面直角坐标系中,点在反比例函数()的图像M N 、1y x =0x >上,横坐标分别为.设,,记.m n ,p m n =+11q m n =+14l pq =①当时, ,当时,;13m n ==,l =22m n ==,l =②通过归纳猜想,可得的最小值是 .请利用图②构造恰当的图形,并说明你的猜l 想成立.22.已知,如图点P 是双曲线上的一点,轴于点,轴于点,24y x =PA x ⊥A PB y ⊥B 、分别交双曲线于点、.求的面积.PA PB 11y x =D C PCD23.如图,在x 轴的正半轴上依次截取,过点1122312n n OA A A A A A A -===⋯==分别作x 轴的垂线与反比例函数的图像相交于点得123n A A A A ⋯、、、10y x =123n P P P P ⋯、、、直角三角形并设其面积分别111222333441n n n OP A A P A A P A A P A A P A -⋯、、、、、,为.123nS S S S ⋯、、、(1)求的坐标23P P Pn 、、、(2)求的值;n S 24.如图,直线与轴、轴分别交于点,与反比例函数交于点3y kx =+x y B C 、my x =.过作轴于,连接,若,A D 、D DE x ⊥E ,OA OD ()2,A n -:1:2OAB ODE S S ∆∆=(1)求反比例函数的表达式;(2)求点的坐标;C (3)直接写出关于不等式:的解集为______.x 3mkx x >-25.如图,已知点,过点P 作轴于点M ,轴于点N ,反比例函数()6,3P PM x ⊥PN y ⊥的图象交于点A ,交于点B .若四边形的面积为12.ky x =PM PN OAPB(1)求k 的值;(2)设直线的解析式为,请直接写出不等式的解集.AB y ax b =+kax bx +。

人教数学反比例函数的专项培优易错试卷练习题(含答案)附答案

人教数学反比例函数的专项培优易错试卷练习题(含答案)附答案

一、反比例函数真题与模拟题分类汇编(难题易错题)1.如图,反比例函数y= 的图象与一次函数y=kx+b的图象交于A、B两点,点A的坐标为(2,3n),点B的坐标为(5n+2,1).(1)求反比例函数与一次函数的表达式;(2)将一次函数y=kx+b的图象沿y轴向下平移a个单位,使平移后的图象与反比例函数y= 的图象有且只有一个交点,求a的值;(3)点E为y轴上一个动点,若S△AEB=5,则点E的坐标为________.【答案】(1)解:∵A、B在反比例函数的图象上,∴2×3n=(5n+2)×1=m,∴n=2,m=12,∴A(2,6),B(12,1),∵一次函数y=kx+b的图象经过A、B两点,∴,解得,∴反比例函数与一次函数的表达式分别为y= ,y=﹣ x+7.(2)解:设平移后的一次函数的解析式为y=﹣ x+7﹣a,由,消去y得到x2+(2a﹣14)x+24=0,由题意,△=0,(21a﹣14)2﹣4×24=0,解得a=7±2 .(3)(0,6)或(0,8)【解析】【解答】(3)设直线AB交y轴于K,则K(0,7),设E(0,m),由题意,PE=|m﹣7|.∵S△AEB=S△BEP﹣S△AEP=5,∴ ×|m﹣7|×(12﹣2)=5.∴|m﹣7|=1.∴m1=6,m2=8.∴点E的坐标为(0,6)或(0,8).故答案为(0,6)或(0,8).【分析】(1)由A、B在反比例函数的图象上,得到n,m的值和A、B的坐标,用待定系数法求出反比例函数与一次函数的表达式;(2)由将一次函数y=kx+b的图象沿y轴向下平移a个单位,得到平移后的一次函数的解析式,由平移后的图象与反比例函数的图象有且只有一个交点,得到方程组求出a的值;(3)由点E为y轴上一个动点和S△AEB=5,求出点E的坐标.2.如图,已知直线y=x+k和双曲线y= (k为正整数)交于A,B两点.(1)当k=1时,求A、B两点的坐标;(2)当k=2时,求△AOB的面积;(3)当k=1时,△OAB的面积记为S1,当k=2时,△OAB的面积记为S2,…,依此类推,当k=n时,△OAB的面积记为S n,若S1+S2+…+S n= ,求n的值.【答案】(1)解:当k=1时,直线y=x+k和双曲线y= 化为:y=x+1和y= ,解得,,∴A(1,2),B(﹣2,﹣1)(2)解:当k=2时,直线y=x+k和双曲线y= 化为:y=x+2和y= ,解得,,∴A(1,3),B(﹣3,﹣1)设直线AB的解析式为:y=mx+n,∴∴,∴直线AB的解析式为:y=x+2∴直线AB与y轴的交点(0,2),∴S△AOB= ×2×1+ ×2×3=4;(3)解:当k=1时,S1= ×1×(1+2)= ,当k=2时,S2= ×2×(1+3)=4,…当k=n时,S n= n(1+n+1)= n2+n,∵S1+S2+…+S n= ,∴ ×(…+n2)+(1+2+3+…n)= ,整理得:,解得:n=6.【解析】【分析】(1)两图像的交点就是求联立的方程组的解;(2)斜三角形△AOB的面积可转化为两水平(或竖直)三角形(有一条边为水平边或竖直边的三角形称为水平或竖直三角形)的面积和或差;(3)利用n个数的平方和公式和等差数列的和公式可求出.3.已知:O是坐标原点,P(m,n)(m>0)是函数y= (k>0)上的点,过点P作直线PA⊥OP于P,直线PA与x轴的正半轴交于点A(a,0)(a>m).设△OPA的面积为s,且s=1+ .(1)当n=1时,求点A的坐标;(2)若OP=AP,求k的值;(3)设n是小于20的整数,且k≠ ,求OP2的最小值.【答案】(1)解:过点P作PQ⊥x轴于Q,则PQ=n,OQ=m,当n=1时,s= ,∴a= = .(2)解:解法一:∵OP=AP,PA⊥OP,∴△OPA是等腰直角三角形.∴m=n= .∴1+ = •an.即n4﹣4n2+4=0,∴k2﹣4k+4=0,∴k=2.解法二:∵OP=AP,PA⊥OP,∴△OPA是等腰直角三角形.∴m=n.设△OPQ的面积为s1则:s1= ∴•mn= (1+ ),即:n4﹣4n2+4=0,∴k2﹣4k+4=0,∴k=2.(3)解:解法一:∵PA⊥OP,PQ⊥OA,∴△OPQ∽△OAP.设:△OPQ的面积为s1,则 =即: = 化简得:化简得:2n4+2k2﹣kn4﹣4k=0(k﹣2)(2k﹣n4)=0,∴k=2或k= (舍去),∴当n是小于20的整数时,k=2.∵OP2=n2+m2=n2+ 又m>0,k=2,∴n是大于0且小于20的整数.当n=1时,OP2=5,当n=2时,OP2=5,当n=3时,OP2=32+ =9+ = ,当n是大于3且小于20的整数时,即当n=4、5、6…19时,OP2的值分别是:42+ 、52+ 、62+ …192+ ,∵192+ >182+ >32+ >5,∴OP2的最小值是5.【解析】【分析】(1)利用△OPA面积定义构建关于a的方程,求出A的坐标;(2)由已知OP=AP,PA⊥OP,可得△OPA是等腰直角三角形,由其面积构建关于n的方程,转化为k的方程,求出k;(3)利用相似三角形的面积比等于相似比的平方构建关于k的方程,最值问题的基本解决方法就是函数思想,利用勾股定理用m、n的代数式表达OP2,,在n的范围内求出OP2的最值.4.在平面直角坐标系中,我们不妨把横坐标与纵坐标相等的点称为梦之点,例如,点(1,1),(﹣ 2,﹣ 2),(,),…,都是梦之点,显然梦之点有无数个.(1)若点P(2,b)是反比例函数 (n为常数,n≠0)的图象上的梦之点,求这个反比例函数解析式;(2)⊙O的半径是,①求出⊙O上的所有梦之点的坐标;②已知点M(m,3),点Q是(1)中反比例函数图象上异于点P的梦之点,过点Q的直线l与y轴交于点A,∠OAQ=45°.若在⊙O上存在一点N,使得直线MN∥l或MN⊥l,求出m的取值范围.【答案】(1)解:∵P(2,b)是梦之点,∴b=2∴P(2,2)将P(2,2)代入中得n=4∴反比例函数解析式是(2)解:①设⊙O上梦之点坐标是(,)∴∴=1或 =-1∴⊙O上所有梦之点坐标是(1,1)或(-1,-1)②由(1)知,异于点P的梦之点Q的坐标为(-2,-2)由已知MN∥l或MN⊥l∴直线MN为y=-x+b或y=x+b当MN为y=-x+b时,m=b-3由图可知,当直线MN平移至与⊙O相切时,且切点在第四象限时,b取得最小值,此时MN记为,其中为切点,为直线与y轴的交点∵△O 为等要直角三角形,∴O =∴O =2∴b的最小值是-2,∴m的最小值是-5当直线MN平移至与⊙O相切时,且切点在第二象限时,b取得最大值,此时MN记为,其中为切点,为直线与y轴的交点。

备战中考数学反比例函数(大题培优 易错 难题)及答案解析

备战中考数学反比例函数(大题培优 易错 难题)及答案解析

一、反比例函数真题与模拟题分类汇编(难题易错题)1.如图,反比例函数y= 的图象与一次函数y= x的图象交于点A、B,点B的横坐标是4.点P是第一象限内反比例函数图象上的动点,且在直线AB的上方.(1)若点P的坐标是(1,4),直接写出k的值和△PAB的面积;(2)设直线PA、PB与x轴分别交于点M、N,求证:△PMN是等腰三角形;(3)设点Q是反比例函数图象上位于P、B之间的动点(与点P、B不重合),连接AQ、BQ,比较∠PAQ与∠PBQ的大小,并说明理由.【答案】(1)解:k=4,S△PAB=15.提示:过点A作AR⊥y轴于R,过点P作PS⊥y轴于S,连接PO,设AP与y轴交于点C,如图1,把x=4代入y= x,得到点B的坐标为(4,1),把点B(4,1)代入y= ,得k=4.解方程组,得到点A的坐标为(﹣4,﹣1),则点A与点B关于原点对称,∴OA=OB,∴S△AOP=S△BOP,∴S△PAB=2S△AOP.设直线AP的解析式为y=mx+n,把点A(﹣4,﹣1)、P(1,4)代入y=mx+n,求得直线AP的解析式为y=x+3,则点C的坐标(0,3),OC=3,∴S△AOP=S△AOC+S△POC= OC•AR+ OC•PS= ×3×4+ ×3×1= ,∴S△PAB=2S△AOP=15;(2)解:过点P作PH⊥x轴于H,如图2.B(4,1),则反比例函数解析式为y= ,设P(m,),直线PA的方程为y=ax+b,直线PB的方程为y=px+q,联立,解得直线PA的方程为y= x+ ﹣1,联立,解得直线PB的方程为y=﹣ x+ +1,∴M(m﹣4,0),N(m+4,0),∴H(m,0),∴MH=m﹣(m﹣4)=4,NH=m+4﹣m=4,∴MH=NH,∴PH垂直平分MN,∴PM=PN,∴△PMN是等腰三角形;(3)解:∠PAQ=∠PBQ.理由如下:过点Q作QT⊥x轴于T,设AQ交x轴于D,QB的延长线交x轴于E,如图3.可设点Q为(c,),直线AQ的解析式为y=px+q,则有,解得:,∴直线AQ的解析式为y= x+ ﹣1.当y=0时, x+ ﹣1=0,解得:x=c﹣4,∴D(c﹣4,0).同理可得E(c+4,0),∴DT=c﹣(c﹣4)=4,ET=c+4﹣c=4,∴DT=ET,∴QT垂直平分DE,∴QD=QE,∴∠QDE=∠QED.∵∠MDA=∠QDE,∴∠MDA=∠QED.∵PM=PN,∴∠PMN=∠PNM.∵∠PAQ=∠PMN﹣∠MDA,∠PBQ=∠NBE=∠PNM﹣∠QED,∴∠PAQ=∠PBQ.【解析】【分析】(1)过点A作AR⊥y轴于R,过点P作PS⊥y轴于S,连接PO,设AP 与y轴交于点C,如图1,可根据条件先求出点B的坐标,然后把点B的坐标代入反比例函数的解析式,即可求出k,然后求出直线AB与反比例函数的交点A的坐标,从而得到OA=OB,由此可得S△PAB=2S△AOP,要求△PAB的面积,只需求△PAO的面积,只需用割补法就可解决问题;(2)过点P作PH⊥x轴于H,如图2.可用待定系数法求出直线PB的解析式,从而得到点N的坐标,同理可得到点M的坐标,进而得到MH=NH,根据垂直平分线的性质可得PM=PN,即△PMN是等腰三角形;(3)过点Q作QT⊥x轴于T,设AQ交x轴于D,QB的延长线交x轴于E,如图3.可设点Q为(c,),运用待定系数法求出直线AQ的解析式,即可得到点D的坐标为(c﹣4,0),同理可得E(c+4,0),从而得到DT=ET,根据垂直平分线的性质可得QD=QE,则有∠QDE=∠QED.然后根据对顶角相等及三角形外角的性质,就可得到∠PAQ=∠PBQ.2.如图,已知抛物线y=﹣x2+9的顶点为A,曲线DE是双曲线y= (3≤x≤12)的一部分,记作G1,且D(3,m)、E(12,m﹣3),将抛物线y=﹣x2+9水平向右移动a个单位,得到抛物线G2.(1)求双曲线的解析式;(2)设抛物线y=﹣x2+9与x轴的交点为B、C,且B在C的左侧,则线段BD的长为________;(3)点(6,n)为G1与G2的交点坐标,求a的值.(4)解:在移动过程中,若G1与G2有两个交点,设G2的对称轴分别交线段DE和G1于M、N两点,若MN<,直接写出a的取值范围.【答案】(1)把D(3,m)、E(12,m﹣3)代入y= 得,解得,所以双曲线的解析式为y= ;(2)2(3)解:把(6,n)代入y= 得6n=12,解得n=2,即交点坐标为(6,2),抛物线G2的解析式为y=﹣(x﹣a)2+9,把(6,2)代入y=﹣(x﹣a)2+9得﹣(6﹣a)2+9=2,解得a=6± ,即a的值为6± ;(4)抛物线G2的解析式为y=﹣(x﹣a)2+9,把D(3,4)代入y=﹣(x﹣a)2+9得﹣(3﹣a)2+9=4,解得a=3﹣或a=3+ ;把E(12,1)代入y=﹣(x﹣a)2+9得﹣(12﹣a)2+9=1,解得a=12﹣2 或a=12+2;∵G1与G2有两个交点,∴3+ ≤a≤12﹣2 ,设直线DE的解析式为y=px+q,把D(3,4),E(12,1)代入得,解得,∴直线DE的解析式为y=﹣ x+5,∵G2的对称轴分别交线段DE和G1于M、N两点,∴M(a,﹣ a+5),N(a,),∵MN<,∴﹣ a+5﹣<,整理得a2﹣13a+36>0,即(a﹣4)(a﹣9)>0,∴a<4或a>9,∴a的取值范围为9<a≤12﹣2 .【解析】【解答】解:(2)当y=0时,﹣x2+9=0,解得x1=﹣3,x2=3,则B(﹣3,0),而D(3,4),所以BE= =2 .故答案为2 ;【分析】(1)把D(3,m)、E(12,m﹣3)代入y= 得关于k、m的方程组,然后解方程组求出m、k,即可得到反比例函数解析式和D、E点坐标;(2)先解方程﹣x2+9=0得到B(﹣3,0),而D(3,4),然后利用两点间的距离公式计算DE的长;(3)先利用反比例函数图象上点的坐标特征确定交点坐标为(6,2),然后把(6,2)代入y=﹣(x ﹣a)2+9得a的值;(4)分别把D点和E点坐标代入y=﹣(x﹣a)2+9得a的值,则利用图象和G1与G2有两个交点可得到3+ ≤a≤12﹣2 ,再利用待定系数法求出直线DE的解析式为y=﹣ x+5,则M(a,﹣ a+5),N(a,),于是利用MN<得到﹣ a+5﹣<,然后解此不等式得到a<4或a>9,最后确定满足条件的a的取值范围.3.已知一次函数y=kx+b与反比例函数y= 交于A(﹣1,2),B(2,n),与y轴交于C 点.(1)求反比例函数和一次函数解析式;(2)如图1,若将y=kx+b向下平移,使平移后的直线与y轴交于F点,与双曲线交于D,E两点,若S△ABD=3,求D,E的坐标.(3)如图2,P为直线y=2上的一个动点,过点P作PQ∥y轴交直线AB于Q,交双曲线于R,若QR=2QP,求P点坐标.【答案】(1)解:点A(﹣1,2)在反比例函数y= 的图象上,∴m=(﹣1)×2=﹣2,∴反比例函数的表达式为y=﹣,∵点B(2,n)也在反比例函数的y=﹣图象上,∴n=﹣1,即B(2,﹣1)把点A(﹣1,2),点B(2,﹣1)代入一次函数y=kx+b中,得,解得:k=﹣1,b=1,∴一次函数的表达式为y=﹣x+1,答:反比例函数的表达式是y=﹣,一次函数的表达式是y=﹣x+1;(2)解:如图1,连接AF,BF,∵DE∥AB,∴S△ABF=S△ABD=3(同底等高的两三角形面积相等),∵直线AB的解析式为y=﹣x+1,∴C(0,1),设点F(0,m),∴AF=1﹣m,∴S△ABF=S△ACF+S△BCF= CF×|x A|+ CF×|x B|= (1﹣m)×(1+2)=3,∴m=﹣1,∴F(0,﹣1),∵直线DE的解析式为y=﹣x+1,且DE∥AB,∴直线DE的解析式为y=﹣x﹣1①.∵反比例函数的表达式为y=﹣②,联立①②解得,或∴D(﹣2,1),E(1,﹣2);(3)解:如图2由(1)知,直线AB的解析式为y=﹣x﹣1,双曲线的解析式为y=﹣,设点P(p,2),∴Q(p,﹣p﹣1),R(p,﹣),PQ=|2+p+1|,QR=|﹣p﹣1+ |,∵QR=2QP,∴|﹣p﹣1+ |=2|2+p+1|,解得,p= 或p= ,∴P(,2)或(,2)或(,2)或(,2).【解析】【分析】(1)把A的坐标代入反比例函数的解析式可求得m的值,从而可得到反比例函数的解析式;把点A和点B的坐标代入一次函数的解析式可求得一次函数的解析式;(2)依据同底等高的两个三角形的面积相等可得到S△ABF=S△ABD=3,再利用三角形的面积公式可求得点F的坐标,即可得出直线DE的解析式,即可求出交点坐标;(3)设点P(p,2),则Q(p,﹣p﹣1),R(p,﹣),然后可表示出PQ与QR的长度,最后依据QR=2QP,可得到关于p的方程,从而可求得p的值,从而可得到点P的坐标.4.如图,Rt△ABO的顶点A是双曲线y= 与直线y=﹣x﹣(k+1)在第二象限的交点.AB⊥x轴于B,且S△ABO= .(1)求这两个函数的解析式;(2)求直线与双曲线的两个交点A、C的坐标和△AOC的面积.【答案】(1)解:设A点坐标为(x,y),且x<0,y>0,则S△ABO= •|BO|•|BA|= •(﹣x)•y= ,∴xy=﹣3,又∵y= ,即xy=k,∴k=﹣3.∴所求的两个函数的解析式分别为y=﹣,y=﹣x+2;(2)解:由y=﹣x+2,令x=0,得y=2.∴直线y=﹣x+2与y轴的交点D的坐标为(0,2),A、C两点坐标满足∴交点A为(﹣1,3),C为(3,﹣1),∴S△AOC=S△ODA+S△ODC= OD•(|x1|+|x2|)= ×2×(3+1)=4.【解析】【分析】两解析式的k一样,根据面积计算双曲线中的k较易,由公式=2S△ABO,可求出k;(2)求交点就求两解析式联立的方程组的解,可分割△AOC为S△ODA+S△ODC,即可求出.5.如图,在平面直角坐标系xOy中,一次函数y=kx+b(k≠0)的图象与反比例函数的图象交于二四象限内的A、B 两点,与x轴交于C点,点B的坐标为(6,n),线段OA=5,E为x轴负半轴上一点,且sin∠AOE=.(1)求该反比例函数和一次函数的解析式;(2)求△AOC的面积;(3)直接写出一次函数值大于反比例函数值时自变量x的取值范围.【答案】(1)解:作AD⊥x轴于D,如图,在Rt△OAD中,∵sin∠AOD= = ,∴AD= OA=4,∴OD= =3,∴A(﹣3,4),把A(﹣3,4)代入y= 得m=﹣4×3=﹣12,所以反比例函数解析式为y=﹣;把B(6,n)代入y=﹣得6n=﹣12,解得n=﹣2,把A(﹣3,4)、B(6,﹣2)分别代入y=kx+b得,解得,所以一次函数解析式为y=﹣x+2(2)解:当y=0时,﹣x+2=0,解得x=3,则C(3,0),所以S△AOC= ×4×3=6(3)解:当x<﹣3或0<x<6时,一次函数的值大于反比例函数的值【解析】【分析】(1)作AD⊥x轴于D,如图,先利用解直角三角形确定A(﹣3,4),再把A点坐标代入y= 可求得m=﹣12,则可得到反比例函数解析式;接着把B(6,n)代入反比例函数解析式求出n,然后把A和B点坐标分别代入y=kx+b得到关于a、b的方程组,再解方程组求出a和b的值,从而可确定一次函数解析式;(2)先确定C点坐标,然后根据三角形面积公式求解;(3)观察函数图象,找出一次函数图象在反比例函数图象上方所对应的自变量的范围即可.6.如图,已知矩形OABC中,OA=3,AB=4,双曲线y= (k>0)与矩形两边AB、BC分别交于D、E,且BD=2AD(1)求k的值和点E的坐标;(2)点P是线段OC上的一个动点,是否存在点P,使∠APE=90°?若存在,求出此时点P 的坐标,若不存在,请说明理由.【答案】(1)解:∵AB=4,BD=2AD,∴AB=AD+BD=AD+2AD=3AD=4,∴AD= ,又∵OA=3,∴D(,3),∵点D在双曲线y= 上,∴k= ×3=4;∵四边形OABC为矩形,∴AB=OC=4,∴点E的横坐标为4.把x=4代入y= 中,得y=1,∴E(4,1);(2)解:(2)假设存在要求的点P坐标为(m,0),OP=m,CP=4﹣m.∵∠APE=90°,∴∠APO+∠EPC=90°,又∵∠APO+∠OAP=90°,∴∠EPC=∠OAP,又∵∠AOP=∠PCE=90°,∴△AOP∽△PCE,∴,∴,解得:m=1或m=3,∴存在要求的点P,坐标为(1,0)或(3,0).【解析】【分析】(1)由矩形OABC中,AB=4,BD=2AD,可得3AD=4,即可求得AD的长,然后求得点D的坐标,即可求得k的值,继而求得点E的坐标;(2)首先假设存在要求的点P坐标为(m,0),OP=m,CP=4﹣m,由∠APE=90°,易证得△AOP∽△PCE,然后由相似三角形的对应边成比例,求得m的值,继而求得此时点P的坐标.7.【阅读理解】我们知道,当a>0且b>0时,(﹣)2≥0,所以a﹣2 +≥0,从而a+b≥2 (当a=b时取等号),【获得结论】设函数y=x+ (a>0,x>0),由上述结论可知:当x= 即x= 时,函数y有最小值为2(1)【直接应用】若y1=x(x>0)与y2= (x>0),则当x=________时,y1+y2取得最小值为________.(2)【变形应用】若y1=x+1(x>﹣1)与y2=(x+1)2+4(x>﹣1),则的最小值是________(3)【探索应用】在平面直角坐标系中,点A(﹣3,0),点B(0,﹣2),点P是函数y= 在第一象限内图象上的一个动点,过P点作PC⊥x轴于点C,PD⊥y轴于点D,设点P的横坐标为x,四边形ABCD的面积为S①求S与x之间的函数关系式;②求S的最小值,判断取得最小值时的四边形ABCD的形状,并说明理由.【答案】(1)1;2(2)4(3)解:①设P(x,),则C(x,0),D(0,),∴AC=x+3,BD= +2,∴S= AC•BD= (x+3)( +2)=6+x+ ;②∵x>0,∴x+ ≥2 =6,∴当x= 时,即x=3时,x+ 有最小值6,∴此时S=6+x+ 有最小值12,∵x=3,∴P(3,2),C(3,0),D(0,2),∴A、C关于x轴对称,D、B关于y轴对称,即四边形ABCD的对角线互相垂直平分,∴四边形ABCD为菱形.【解析】【解答】解:(1)∵x>0,∴y1+y2=x+ ≥2 =2,∴当x= 时,即x=1时,y1+y2有最小值2,故答案为:1;2;(2)∵x>﹣1,∴x+1>0,∴ = =(x+1)+ ≥2 =4,∴当x+1= 时,即x=1时,有最小值4,故答案为:4;【分析】(1)直接由结论可求得其取得最小值,及其对应的x的值;(2)可把x+1看成一个整体,再利用结论可求得答案;(3)①可设P(x,),则可表示出C、D的坐标,从而可表示出AC和BD,再利用面积公式可表示出四边形ABCD的面积,从而可得到S 与x的函数关系式;②再利用结论可求得其最得最小值时对应的x的值,则可得到P、C、D的坐标,可判断A、C关于x轴对称,B、D关于y轴对称,可判断四边形ABCD为菱形.8.已知二次函数的图象经过三点(1,0),(-3,0),(0,).(1)求该二次函数的解析式;(2)若反比例函数图像与二次函数的图像在第一象限内交于点 , 落在两个相邻的正整数之间,请写出这两个相邻的正整数;(3)若反比例函数的图像与二次函数的图像在第一象限内的交点为A,点A的横坐标为满足,试求实数的取值范围。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一、反比例函数真题与模拟题分类汇编(难题易错题)1.已知点A,B分别是x轴、y轴上的动点,点C,D是某个函数图象上的点,当四边形ABCD(A,B,C,D各点依次排列)为正方形时,称这个正方形为此函数图象的伴侣正方形.例如:如图,正方形ABCD是一次函数y=x+1图象的其中一个伴侣正方形.(1)若某函数是一次函数y=x+1,求它的图象的所有伴侣正方形的边长;(2)若某函数是反比例函数y= (k>0),他的图象的伴侣正方形为ABCD,点D(2,m)(m<2)在反比例函数图象上,求m的值及反比例函数解析式;(3)若某函数是二次函数y=ax2+c(a≠0),它的图象的伴侣正方形为ABCD,C、D中的一个点坐标为(3,4).写出伴侣正方形在抛物线上的另一个顶点坐标________,写出符合题意的其中一条抛物线解析式________,并判断你写出的抛物线的伴侣正方形的个数是奇数还是偶数________.【答案】(1)解:如图1,当点A在x轴正半轴,点B在y轴负半轴上时,∵OC=0D=1,∴正方形ABCD的边长CD= ;∠OCD=∠ODC=45°,当点A在x轴负半轴、点B在y轴正半轴上时,设小正方形的边长为a,易得CL=小正方形的边长=DK=LK,故3a=CD= .解得a= ,所以小正方形边长为,∴一次函数y=x+1图象的伴侣正方形的边长为或(2)解:如图2,作DE,CF分别垂直于x、y轴,易知△ADE≌△BAO≌△CBF此时,m<2,DE=OA=BF=m,OB=CF=AE=2﹣m,∴OF=BF+OB=2,∴C点坐标为(2﹣m,2),∴2m=2(2﹣m),解得m=1.反比例函数的解析式为y= .(3)(3,4);y=﹣ x2+ ;偶数【解析】【解答】解:(3)实际情况是抛物线开口向上的两种情况中,另一个点都在(3,4)的左侧,而开口向下时,另一点都在(3,4)的右侧,与上述解析明显不符合①当点A在x轴正半轴上,点B在y轴正半轴上,点C坐标为(3,4)时:另外一个顶点为(4,1),对应的函数解析式是y=﹣ x2+ ;②当点A在x 轴正半轴上,点 B在 y轴正半轴上,点D 坐标为(3,4)时:不存在,③当点A 在 x 轴正半轴上,点 B在 y轴负半轴上,点C 坐标为(3,4)时:不存在④当点A在x 轴正半轴上,点B在y轴负半轴上,点D坐标为(3,4)时:另外一个顶点C为(﹣1,3),对应的函数的解析式是y= x2+ ;⑤当点A在x轴负半轴上,点B在y轴负半轴上,点D坐标为(3,4)时,另一个顶点C的坐标是(7,﹣3)时,对应的函数解析式是y=﹣;⑥当点A在x轴负半轴上,点B在y轴负半轴上,点C坐标为(3,4)时,另一个顶点D的坐标是(﹣4,7)时,对应的抛物线为y= x2+ ;∵由抛物线的伴侣正方形的定义知,一条抛物线有两个伴侣正方形,是成对出现的,∴所求出的任何抛物线的伴侣正方形个数为偶数.【分析】解答此题时,要特别注意认真读题,分析题意,注意已知条件点A,B分别是x 轴、y轴上的动点,点C,D是某个函数图象上的点。

(1)一次函数y=x+1的图像与两坐标轴围成的图形是等腰直角三角形,正确画出图形,再利用正方形的性质确定相关点的坐标,从而计算出正方形的边长;(2)由于ABCD是正方形,添加辅助线,作DE,CF分别垂直于x、y轴,得到的等腰直角三角形都是全等的,再利用点D(2,m)的坐标表示出点C的坐标,从而可以求解;(3)抛物线的开口可能向上,也可能向下,当抛物线的开口向上时,正方形的另一个顶点也在抛物线上,这个点可能在(3,4)的左侧,也可能在(3,4)的右侧,因此过点(3,4)作x轴的垂线,利用全等三角形确定线段的长,即可求出抛物线上另一个点的坐标;当抛物线开口向下时也一样分两种情况来讨论;由抛物线的伴侣正方形的定义知一条抛物线有两个伴侣正方形,是成对出现的,因此所求出的任何抛物线的伴侣正方形个数为偶数。

2.如图,反比例函数y= 的图象与一次函数y=kx+b的图象交于A、B两点,点A的坐标为(2,3n),点B的坐标为(5n+2,1).(1)求反比例函数与一次函数的表达式;(2)将一次函数y=kx+b的图象沿y轴向下平移a个单位,使平移后的图象与反比例函数y= 的图象有且只有一个交点,求a的值;(3)点E为y轴上一个动点,若S△AEB=5,则点E的坐标为________.【答案】(1)解:∵A、B在反比例函数的图象上,∴2×3n=(5n+2)×1=m,∴n=2,m=12,∴A(2,6),B(12,1),∵一次函数y=kx+b的图象经过A、B两点,∴,解得,∴反比例函数与一次函数的表达式分别为y= ,y=﹣ x+7.(2)解:设平移后的一次函数的解析式为y=﹣ x+7﹣a,由,消去y得到x2+(2a﹣14)x+24=0,由题意,△=0,(21a﹣14)2﹣4×24=0,解得a=7±2 .(3)(0,6)或(0,8)【解析】【解答】(3)设直线AB交y轴于K,则K(0,7),设E(0,m),由题意,PE=|m﹣7|.∵S△AEB=S△BEP﹣S△AEP=5,∴ ×|m﹣7|×(12﹣2)=5.∴|m﹣7|=1.∴m1=6,m2=8.∴点E的坐标为(0,6)或(0,8).故答案为(0,6)或(0,8).【分析】(1)由A、B在反比例函数的图象上,得到n,m的值和A、B的坐标,用待定系数法求出反比例函数与一次函数的表达式;(2)由将一次函数y=kx+b的图象沿y轴向下平移a个单位,得到平移后的一次函数的解析式,由平移后的图象与反比例函数的图象有且只有一个交点,得到方程组求出a的值;(3)由点E为y轴上一个动点和S△AEB=5,求出点E的坐标.3.在平面直角坐标系中,我们不妨把横坐标与纵坐标相等的点称为梦之点,例如,点(1,1),(﹣ 2,﹣ 2),(,),…,都是梦之点,显然梦之点有无数个.(1)若点P(2,b)是反比例函数 (n为常数,n≠0)的图象上的梦之点,求这个反比例函数解析式;(2)⊙O的半径是,①求出⊙O上的所有梦之点的坐标;②已知点M(m,3),点Q是(1)中反比例函数图象上异于点P的梦之点,过点Q的直线l与y轴交于点A,∠OAQ=45°.若在⊙O上存在一点N,使得直线MN∥l或MN⊥l,求出m的取值范围.【答案】(1)解:∵P(2,b)是梦之点,∴b=2∴P(2,2)将P(2,2)代入中得n=4∴反比例函数解析式是(2)解:①设⊙O上梦之点坐标是(,)∴∴=1或 =-1∴⊙O上所有梦之点坐标是(1,1)或(-1,-1)②由(1)知,异于点P的梦之点Q的坐标为(-2,-2)由已知MN∥l或MN⊥l∴直线MN为y=-x+b或y=x+b当MN为y=-x+b时,m=b-3由图可知,当直线MN平移至与⊙O相切时,且切点在第四象限时,b取得最小值,此时MN记为,其中为切点,为直线与y轴的交点∵△O 为等要直角三角形,∴O =∴O =2∴b的最小值是-2,∴m的最小值是-5当直线MN平移至与⊙O相切时,且切点在第二象限时,b取得最大值,此时MN记为,其中为切点,为直线与y轴的交点。

同理可得,b的最大值为2,m的最大值为-1.∴m的取值范围为-5≤m≤-1.当直线MN为y=x+b时,同理可得,m的取值范围为1≤m≤5,综上所述,m的取值范围为-5≤m≤-1或1≤m≤5【解析】【分析】(1)由“ 梦之点”的定义可得出b的值,就可得出点P的坐标,再将点P的坐标代入函数解析式,求出n的值,即可得出反比例函数的解析式。

(2)①设⊙O上梦之点坐标是(a,a )根据已知圆的半径,利用勾股定理建立关于a的方程,求出方程的解,就可得出⊙O上的所有梦之点的坐标;② 由(1)知,异于点P 的梦之点Q的坐标为(-2,-2),由已知直线MN∥l或MN⊥l,就可得出直线MN的解析式为y=-x+b或y=x+b。

分两种情况讨论:当MN为y=-x+b时,m=b-3,当直线MN平移至与⊙O相切时,且切点在第四象限时,b取得最小值,当直线MN平移至与⊙O相切时,且切点在第二象限时,b的最大值为2,m的最大值为-1,就可得出m的取值范围,当直线MN为y=x+b时,同理可得出m的取值范围。

4.如图,在平面直角坐标系中,矩形OADB的顶点A,B的坐标分别为A(﹣6,0),B (0,4).过点C(﹣6,1)的双曲线y= (k≠0)与矩形OADB的边BD交于点E.(1)填空:OA=________,k=________,点E的坐标为________;(2)当1≤t≤6时,经过点M(t﹣1,﹣ t2+5t﹣)与点N(﹣t﹣3,﹣ t2+3t﹣)的直线交y轴于点F,点P是过M,N两点的抛物线y=﹣ x2+bx+c的顶点.①当点P在双曲线y= 上时,求证:直线MN与双曲线y= 没有公共点;②当抛物线y=﹣ x2+bx+c与矩形OADB有且只有三个公共点,求t的值;③当点F和点P随着t的变化同时向上运动时,求t的取值范围,并求在运动过程中直线MN在四边形OAEB中扫过的面积.【答案】(1)6;-6;(﹣,4)(2)解:①设直线MN解析式为:y1=k1x+b1由题意得:解得∵抛物线y=﹣过点M、N∴解得∴抛物线解析式为:y=﹣ x2﹣x+5t﹣2∴顶点P坐标为(﹣1,5t﹣)∵P在双曲线y=﹣上∴(5t﹣)×(﹣1)=﹣6∴t=此时直线MN解析式为:联立∴8x2+35x+49=0∵△=352﹣4×8×48=1225﹣1536<0∴直线MN与双曲线y=﹣没有公共点.②当抛物线过点B,此时抛物线y=﹣ x2+bx+c与矩形OADB有且只有三个公共点∴4=5t﹣2,得t=当抛物线在线段DB上,此时抛物线与矩形OADB有且只有三个公共点∴,得t=∴t= 或t=③∵点P的坐标为(﹣1,5t﹣)∴y P=5t﹣当1≤t≤6时,y P随t的增大而增大此时,点P在直线x=﹣1上向上运动∵点F的坐标为(0,﹣)∴y F=﹣∴当1≤t≤4时,随者y F随t的增大而增大此时,随着t的增大,点F在y轴上向上运动∴1≤t≤4当t=1时,直线MN:y=x+3与x轴交于点G(﹣3,0),与y轴交于点H(0,3)当t=4﹣时,直线MN过点A.当1≤t≤4时,直线MN在四边形AEBO中扫过的面积为S=【解析】【解答】解:(1)∵A点坐标为(﹣6,0)∴OA=6∵过点C(﹣6,1)的双曲线y=∴k=﹣6y=4时,x=﹣∴点E的坐标为(﹣,4)故答案为:6,﹣6,(﹣,4)【分析】(1)根据A点的坐标即可得出OA的长,将C点的坐标代入双曲线y=,即可求出k的值,得出双曲线的解析式,根据平行于x轴的直线上的点的坐标特点得出点E的纵坐标为4,将y=4代入双曲线的解析式即可算出对应的自变量的值,从而得出E点的坐标;(2)①用待定系数法求出直线MN解析式,将M,N两点的坐标代入抛物线y=﹣x2+bx+c,得出关于b,c的方程组,求解得出b,c的值,根据顶点坐标公式表示出P点的坐标,再将P点的坐标代入双曲线即可求出t的值,从而得出直线MN解析式,解联立直线MN解析式与双曲线的解析式组成的方程组,根据根的判别式的值小于0,得出直线MN与双曲线没有公共点;②当抛物线过点B,此时抛物线y=﹣x2+bx+c与矩形OADB有且只有三个公共点,故4=5t﹣2,求解得出t的值,当抛物线在线段DB上,此时抛物线与矩形OADB有且只有三个公共点,故,求解得出t的值,综上所述得出答案;③根据P点的坐标判断出当1≤t≤6时,y P随t的增大而增大,此时,点P在直线x=﹣1上向上运动进而表示出F点的坐标,将F点的纵坐标配成顶点式,得出当1≤t≤4时,随者y F随t的增大而增大,此时,随着t的增大,点F在y轴上向上运动,故1≤t≤4,当t=1时,直线MN:y=x+3与x轴交于点G(﹣3,0),与y轴交于点H(0,3),当t=4﹣时,直线MN过点A.根据割补法算出当1≤t≤4时,直线MN在四边形AEBO中扫过的面积。

相关文档
最新文档