人教中考数学培优易错试卷(含解析)之反比例函数含答案

人教中考数学培优易错试卷(含解析)之反比例函数含答案
人教中考数学培优易错试卷(含解析)之反比例函数含答案

一、反比例函数真题与模拟题分类汇编(难题易错题)

1.已知点A,B分别是x轴、y轴上的动点,点C,D是某个函数图象上的点,当四边形ABCD(A,B,C,D各点依次排列)为正方形时,称这个正方形为此函数图象的伴侣正方形.例如:如图,正方形ABCD是一次函数y=x+1图象的其中一个伴侣正方形.

(1)若某函数是一次函数y=x+1,求它的图象的所有伴侣正方形的边长;

(2)若某函数是反比例函数y= (k>0),他的图象的伴侣正方形为ABCD,点D(2,m)(m<2)在反比例函数图象上,求m的值及反比例函数解析式;

(3)若某函数是二次函数y=ax2+c(a≠0),它的图象的伴侣正方形为ABCD,C、D中的一个点坐标为(3,4).写出伴侣正方形在抛物线上的另一个顶点坐标________,写出符合题意的其中一条抛物线解析式________,并判断你写出的抛物线的伴侣正方形的个数是奇数还是偶数________.

【答案】(1)解:如图1,

当点A在x轴正半轴,点B在y轴负半轴上时,

∵OC=0D=1,

∴正方形ABCD的边长CD= ;∠OCD=∠ODC=45°,

当点A在x轴负半轴、点B在y轴正半轴上时,

设小正方形的边长为a,

易得CL=小正方形的边长=DK=LK,故3a=CD= .

解得a= ,所以小正方形边长为,

∴一次函数y=x+1图象的伴侣正方形的边长为或

(2)解:如图2,作DE,CF分别垂直于x、y轴,

易知△ADE≌△BAO≌△CBF

此时,m<2,DE=OA=BF=m,OB=CF=AE=2﹣m,

∴OF=BF+OB=2,

∴C点坐标为(2﹣m,2),

∴2m=2(2﹣m),解得m=1.

反比例函数的解析式为y= .

(3)(3,4);y=﹣ x2+ ;偶数

【解析】【解答】解:(3)实际情况是抛物线开口向上的两种情况中,另一个点都在(3,4)的左侧,而开口向下时,另一点都在(3,4)的右侧,与上述解析明显不符合

①当点A在x轴正半轴上,点B在y轴正半轴上,点C坐标为(3,4)时:另外一个顶点

为(4,1),对应的函数解析式是y=﹣ x2+ ;

②当点A在x 轴正半轴上,点 B在 y轴正半轴上,点D 坐标为(3,4)时:不存在,

③当点A 在 x 轴正半轴上,点 B在 y轴负半轴上,点C 坐标为(3,4)时:不存在

④当点A在x 轴正半轴上,点B在y轴负半轴上,点D坐标为(3,4)时:另外一个顶点

C为(﹣1,3),对应的函数的解析式是y= x2+ ;

⑤当点A在x轴负半轴上,点B在y轴负半轴上,点D坐标为(3,4)时,另一个顶点C

的坐标是(7,﹣3)时,对应的函数解析式是y=﹣;

⑥当点A在x轴负半轴上,点B在y轴负半轴上,点C坐标为(3,4)时,另一个顶点D

的坐标是(﹣4,7)时,对应的抛物线为y= x2+ ;

∵由抛物线的伴侣正方形的定义知,一条抛物线有两个伴侣正方形,是成对出现的,

∴所求出的任何抛物线的伴侣正方形个数为偶数.

【分析】解答此题时,要特别注意认真读题,分析题意,注意已知条件点A,B分别是x 轴、y轴上的动点,点C,D是某个函数图象上的点。

(1)一次函数y=x+1的图像与两坐标轴围成的图形是等腰直角三角形,正确画出图形,再利用正方形的性质确定相关点的坐标,从而计算出正方形的边长;

(2)由于ABCD是正方形,添加辅助线,作DE,CF分别垂直于x、y轴,得到的等腰直角三角形都是全等的,再利用点D(2,m)的坐标表示出点C的坐标,从而可以求解;

(3)抛物线的开口可能向上,也可能向下,当抛物线的开口向上时,正方形的另一个顶点也在抛物线上,这个点可能在(3,4)的左侧,也可能在(3,4)的右侧,因此过点(3,4)作x轴的垂线,利用全等三角形确定线段的长,即可求出抛物线上另一个点的坐标;当抛物线开口向下时也一样分两种情况来讨论;由抛物线的伴侣正方形的定义知一条抛物线有两个伴侣正方形,是成对出现的,因此所求出的任何抛物线的伴侣正方形个数为偶数。

2.如图,反比例函数y= 的图象与一次函数y=kx+b的图象交于A、B两点,点A的坐标为(2,3n),点B的坐标为(5n+2,1).

(1)求反比例函数与一次函数的表达式;

(2)将一次函数y=kx+b的图象沿y轴向下平移a个单位,使平移后的图象与反比例函数

y= 的图象有且只有一个交点,求a的值;

(3)点E为y轴上一个动点,若S△AEB=5,则点E的坐标为________.

【答案】(1)解:∵A、B在反比例函数的图象上,

∴2×3n=(5n+2)×1=m,

∴n=2,m=12,

∴A(2,6),B(12,1),

∵一次函数y=kx+b的图象经过A、B两点,

∴,

解得,

∴反比例函数与一次函数的表达式分别为y= ,y=﹣ x+7.

(2)解:设平移后的一次函数的解析式为y=﹣ x+7﹣a,

由,消去y得到x2+(2a﹣14)x+24=0,

由题意,△=0,(21a﹣14)2﹣4×24=0,

解得a=7±2 .

(3)(0,6)或(0,8)

【解析】【解答】(3)设直线AB交y轴于K,则K(0,7),设E(0,m),

由题意,PE=|m﹣7|.

∵S△AEB=S△BEP﹣S△AEP=5,

∴ ×|m﹣7|×(12﹣2)=5.

∴|m﹣7|=1.

∴m1=6,m2=8.

∴点E的坐标为(0,6)或(0,8).

故答案为(0,6)或(0,8).

【分析】(1)由A、B在反比例函数的图象上,得到n,m的值和A、B的坐标,用待定系数法求出反比例函数与一次函数的表达式;(2)由将一次函数y=kx+b的图象沿y轴向下平移a个单位,得到平移后的一次函数的解析式,由平移后的图象与反比例函数的图象有且只有一个交点,得到方程组求出a的值;(3)由点E为y轴上一个动点和S△AEB=5,求出点E的坐标.

3.在平面直角坐标系中,我们不妨把横坐标与纵坐标相等的点称为梦之点,例如,点(1,1),(﹣ 2,﹣ 2),(,),…,都是梦之点,显然梦之点有无数个.

(1)若点P(2,b)是反比例函数 (n为常数,n≠0)的图象上的梦之点,求这个反比例函数解析式;

(2)⊙O的半径是,

①求出⊙O上的所有梦之点的坐标;

②已知点M(m,3),点Q是(1)中反比例函数图象上异于点P的梦之点,过点Q的直线l与y轴交于点A,∠OAQ=45°.若在⊙O上存在一点N,使得直线MN∥l或MN⊥l,求出m的取值范围.

【答案】(1)解:∵P(2,b)是梦之点,∴b=2

∴P(2,2)

将P(2,2)代入中得n=4

∴反比例函数解析式是

(2)解:①设⊙O上梦之点坐标是(,)∴∴

=1或 =-1

∴⊙O上所有梦之点坐标是(1,1)或(-1,-1)

②由(1)知,异于点P的梦之点Q的坐标为(-2,-2)

由已知MN∥l或MN⊥l

∴直线MN为y=-x+b或y=x+b

当MN为y=-x+b时,m=b-3

由图可知,当直线MN平移至与⊙O相切时,

且切点在第四象限时,b取得最小值,

此时MN记为,

其中为切点,为直线与y轴的交点

∵△O 为等要直角三角形,

∴O =

∴O =2

∴b的最小值是-2,

∴m的最小值是-5

当直线MN平移至与⊙O相切时,且切点在第二象限时,

b取得最大值,此时MN记为,

其中为切点,为直线与y轴的交点。

同理可得,b的最大值为2,m的最大值为-1.

∴m的取值范围为-5≤m≤-1.

当直线MN为y=x+b时,

同理可得,m的取值范围为1≤m≤5,

综上所述,m的取值范围为-5≤m≤-1或1≤m≤5

【解析】【分析】(1)由“ 梦之点”的定义可得出b的值,就可得出点P的坐标,再将点P的坐标代入函数解析式,求出n的值,即可得出反比例函数的解析式。

(2)①设⊙O上梦之点坐标是(a,a )根据已知圆的半径,利用勾股定理建立关于a的方程,求出方程的解,就可得出⊙O上的所有梦之点的坐标;② 由(1)知,异于点P 的梦之点Q的坐标为(-2,-2),由已知直线MN∥l或MN⊥l,就可得出直线MN的解析式为y=-x+b或y=x+b。分两种情况讨论:当MN为y=-x+b时,m=b-3,当直线MN平移至与⊙O相切时,且切点在第四象限时,b取得最小值,当直线MN平移至与⊙O相切时,且切点在第二象限时,b的最大值为2,m的最大值为-1,就可得出m的取值范围,当直线MN为y=x+b时,同理可得出m的取值范围。

4.如图,在平面直角坐标系中,矩形OADB的顶点A,B的坐标分别为A(﹣6,0),B (0,4).过点C(﹣6,1)的双曲线y= (k≠0)与矩形OADB的边BD交于点E.

(1)填空:OA=________,k=________,点E的坐标为________;

(2)当1≤t≤6时,经过点M(t﹣1,﹣ t2+5t﹣)与点N(﹣t﹣3,﹣ t2+3t﹣)的直线交y轴于点F,点P是过M,N两点的抛物线y=﹣ x2+bx+c的顶点.

①当点P在双曲线y= 上时,求证:直线MN与双曲线y= 没有公共点;

②当抛物线y=﹣ x2+bx+c与矩形OADB有且只有三个公共点,求t的值;

③当点F和点P随着t的变化同时向上运动时,求t的取值范围,并求在运动过程中直线MN在四边形OAEB中扫过的面积.

【答案】(1)6;-6;(﹣,4)

(2)解:①设直线MN解析式为:y1=k1x+b1

由题意得:

解得

∵抛物线y=﹣过点M、N

解得

∴抛物线解析式为:y=﹣ x2﹣x+5t﹣2

∴顶点P坐标为(﹣1,5t﹣)

∵P在双曲线y=﹣上

∴(5t﹣)×(﹣1)=﹣6

∴t=

此时直线MN解析式为:

联立

∴8x2+35x+49=0

∵△=352﹣4×8×48=1225﹣1536<0

∴直线MN与双曲线y=﹣没有公共点.

②当抛物线过点B,此时抛物线y=﹣ x2+bx+c与矩形OADB有且只有三个公共点∴4=5t﹣2,得t=

当抛物线在线段DB上,此时抛物线与矩形OADB有且只有三个公共点

∴,得t=

∴t= 或t=

③∵点P的坐标为(﹣1,5t﹣)

∴y P=5t﹣

当1≤t≤6时,y P随t的增大而增大

此时,点P在直线x=﹣1上向上运动

∵点F的坐标为(0,﹣)

∴y F=﹣

∴当1≤t≤4时,随者y F随t的增大而增大

此时,随着t的增大,点F在y轴上向上运动

∴1≤t≤4

当t=1时,直线MN:y=x+3与x轴交于点G(﹣3,0),与y轴交于点H(0,3)

当t=4﹣时,直线MN过点A.

当1≤t≤4时,直线MN在四边形AEBO中扫过的面积为

S=

【解析】【解答】解:(1)∵A点坐标为(﹣6,0)

∴OA=6

∵过点C(﹣6,1)的双曲线y=

∴k=﹣6

y=4时,x=﹣

∴点E的坐标为(﹣,4)

故答案为:6,﹣6,(﹣,4)

【分析】(1)根据A点的坐标即可得出OA的长,将C点的坐标代入双曲线y=,即可求出k的值,得出双曲线的解析式,根据平行于x轴的直线上的点的坐标特点得出点E的纵坐标为4,将y=4代入双曲线的解析式即可算出对应的自变量的值,从而得出E点的坐标;

(2)①用待定系数法求出直线MN解析式,将M,N两点的坐标代入抛物线y=

﹣x2+bx+c,得出关于b,c的方程组,求解得出b,c的值,根据顶点坐标公式表示出P点的坐标,再将P点的坐标代入双曲线即可求出t的值,从而得出直线MN解析式,解联立直线MN解析式与双曲线的解析式组成的方程组,根据根的判别式的值小于0,得出直线MN

与双曲线没有公共点;②当抛物线过点B,此时抛物线y=﹣x2+bx+c与矩形OADB有且只有三个公共点,故4=5t﹣2,求解得出t的值,当抛物线在线段DB上,此时抛物线与矩

形OADB有且只有三个公共点,故,求解得出t的值,综上所述得出答案;③根据P点的坐标判断出当1≤t≤6时,y P随t的增大而增大,此时,点P在直线x=﹣1上向上运动进而表示出F点的坐标,将F点的纵坐标配成顶点式,得出当1≤t≤4时,随者y F随t的增大而增大,此时,随着t的增大,点F在y轴上向上运动,故1≤t≤4,当t=1时,直线MN:y=x+3与x轴交于点G(﹣3,0),与y轴交于点H(0,3),当t=4﹣时,直线MN过点A.根据割补法算出当1≤t≤4时,直线MN在四边形AEBO中扫过的面积。

5.如图,反比例函数的图象与一次函数y=kx+5(k为常数,且k≠0)的图象交于A (﹣2,b),B两点.

(1)求一次函数的表达式;

(2)若将直线AB向下平移m(m>0)个单位长度后与反比例函数的图象有且只有一个公共点,求m的值.

【答案】(1)解:把A(﹣2,b)代入,

得b=﹣ =4,

所以A点坐标为(﹣2,4),

把A(﹣2,4)代入y=kx+5,

得﹣2k+5=4,解得k= ,

所以一次函数解析式为y= x+5;

(2)解:将直线AB向下平移m(m>0)个单位长度得直线解析式为y= x+5﹣m,

根据题意方程组只有一组解,

消去y得﹣ = x+5﹣m,

整理得 x2﹣(m﹣5)x+8=0,

△=(m﹣5)2﹣4× ×8=0,

解得m=9或m=1,

即m的值为1或9.

【解析】【分析】(1)先利用反比例函数解析式求出b=4,得到A点坐标为(-2,4),然后把A点坐标代入y=kx+5中求出k,从而得到一次函数解析式;

(2)由于将直线AB向下平移m(m>0)个单位长度得直线解析式为y=,又与反比例函数有且只有一个公共点,可组成方程组,且只有一组解,然后消去y得到关于x的一元二次方程,再根据判别式=0得到关于m的方程,最后解方程求出m的值.

6.如图1,已知双曲线y= (k>0)与直线y=k′x交于A、B两点,点A在第一象限,试回答下列问题:

(1)若点A的坐标为(3,1),则点B的坐标为________;当x满足:________时,≤k′x;

(2)如图2,过原点O作另一条直线l,交双曲线y= (k>0)于P,Q两点,点P在第

一象限.

四边形APBQ一定是________;

(3)若点A的坐标为(3,1),点P的横坐标为1,求四边形APBQ的面积.

(4)设点A,P的横坐标分别为m,n,四边形APBQ可能是矩形吗?可能是正方形吗?若可能,直接写出m,n应满足的条件;若不可能,请说明理由.

【答案】(1)(﹣3,﹣1)

;﹣3≤x<0或x≥3

(2)平行四边形

(3)∵点A的坐标为(3,1),

∴k=3×1=3,∴反比例函数的解析式为y= ,∵点P的横坐标为1,∴点P的纵坐标为3,∴点P的坐标为(1,3),

由双曲线关于原点对称可知,点Q的坐标为(﹣1,﹣3),点B的坐标为(﹣3,﹣1),如图2,过点A、B分别作y轴的平行线,过点P、Q分别作x轴的平行线,分别交于C、D、E、F,

则四边形CDEF是矩形,

CD=6,DE=6,DB=DP=4,CP=CA=2,

则四边形APBQ的面积=矩形CDEF的面积﹣△ACP的面积﹣△PDB的面积﹣△BEQ的面积﹣△AFQ的面积

=36﹣2﹣8﹣2﹣8=16.

(4)解:mn=k时,四边形APBQ是矩形,不可能是正方形,理由:当AB⊥PQ时四边形APBQ是正方形,此时点A、P在坐标轴上,由于点A,P可能达到坐标轴故不可能是正方形,即∠POA≠90°.因为mn=k,易知P、A关于直线y=x对称,所以PO=OA=OB=OQ,所以四边形APBQ是矩形.

【解析】【解答】解:(1)∵A、B关于原点对称,A(3,1),

∴点B的坐标为(﹣3,﹣1).由图象可知,当﹣3≤x<0或x≥3时,≤k′x.

故答案为(﹣3,﹣1),﹣3≤x<0或x≥3;(2)∵A、B关于原点对称,P、Q关于原点对称,

∴OA=OB,OP=OQ,∴四边形APBQ是平行四边形.故答案为:平行四边形;

=36﹣2﹣8﹣2﹣8=16.

【分析】(1)根据正比例函数与反比例函数的图象的交点关于原点对称,即可解决问题,利用图象根据正比例函数的图象在反比例函数的图象的上方,即可确定自变量x的范围.(2)利用对角线互相平分的四边形是平行四边形证明即可.(3)利用分割法求面积即可.(3)根据矩形的性质、正方形的性质即可判定.

7.如图,已知矩形OABC中,OA=3,AB=4,双曲线y= (k>0)与矩形两边AB、BC分别交于D、E,且BD=2AD

(1)求k的值和点E的坐标;

(2)点P是线段OC上的一个动点,是否存在点P,使∠APE=90°?若存在,求出此时点P 的坐标,若不存在,请说明理由.

【答案】(1)解:∵AB=4,BD=2AD,

∴AB=AD+BD=AD+2AD=3AD=4,

∴AD= ,

又∵OA=3,

∴D(,3),

∵点D在双曲线y= 上,

∴k= ×3=4;

∵四边形OABC为矩形,

∴AB=OC=4,

∴点E的横坐标为4.

把x=4代入y= 中,得y=1,

∴E(4,1);

(2)解:(2)假设存在要求的点P坐标为(m,0),OP=m,CP=4﹣m.

∵∠APE=90°,

∴∠APO+∠EPC=90°,

又∵∠APO+∠OAP=90°,

∴∠EPC=∠OAP,

又∵∠AOP=∠PCE=90°,

∴△AOP∽△PCE,

∴,

∴,

解得:m=1或m=3,

∴存在要求的点P,坐标为(1,0)或(3,0).

【解析】【分析】(1)由矩形OABC中,AB=4,BD=2AD,可得3AD=4,即可求得AD的长,然后求得点D的坐标,即可求得k的值,继而求得点E的坐标;(2)首先假设存在要求的点P坐标为(m,0),OP=m,CP=4﹣m,由∠APE=90°,易证得△AOP∽△PCE,然后由相似三角形的对应边成比例,求得m的值,继而求得此时点P的坐标.

8.如图,已知,A(0,4),B(﹣3,0),C(2,0),D为B点关于AC的对称点,反比例函数y= 的图象经过D点.

(1)证明四边形ABCD为菱形;

(2)求此反比例函数的解析式;

(3)已知在y= 的图象(x>0)上一点N,y轴正半轴上一点M,且四边形ABMN是平行四边形,求M点的坐标.

【答案】(1)解:∵A(0,4),B(﹣3,0),C(2,0),

∴OA=4,OB=3,OC=2,

∴AB= =5,BC=5,

∴AB=BC,

∵D为B点关于AC的对称点,

∴AB=AD,CB=CD,

∴AB=AD=CD=CB,

∴四边形ABCD为菱形

(2)解:∵四边形ABCD为菱形,

∴D点的坐标为(5,4),反比例函数y= 的图象经过D点,

∴4= ,

∴k=20,

∴反比例函数的解析式为:y=

(3)解:∵四边形ABMN是平行四边形,

∴AN∥BM,AN=BM,

∴AN是BM经过平移得到的,

∴首先BM向右平移了3个单位长度,

∴N点的横坐标为3,

代入y= ,

得y= ,

∴M点的纵坐标为:﹣4= ,

∴M点的坐标为:(0,)

【解析】【分析】(1)由A(0,4),B(﹣3,0),C(2,0),利用勾股定理可求得AB=5=BC,又由D为B点关于AC的对称点,可得AB=AD,BC=DC,即可证得AB=AD=CD=CB,继而证得四边形ABCD为菱形;(2)由四边形ABCD为菱形,可求得点D 的坐标,然后利用待定系数法,即可求得此反比例函数的解析式;(3)由四边形ABMN 是平行四边形,根据平移的性质,可求得点N的横坐标,代入反比例函数解析式,即可求得点N的坐标,继而求得M点的坐标.

9.已知二次函数的图象经过三点(1,0),(-3,0),(0,).

(1)求该二次函数的解析式;

(2)若反比例函数图像与二次函数的图像在第一象限内交于点 , 落在两个相邻的正整数之间,请写出这两个相邻的正整数;

(3)若反比例函数的图像与二次函数

的图像在第一象限内的交点为A,点A的横坐标为满足,试求实数的取值范围。

【答案】(1)解:抛物线解析式为y=a(x-1)(x+3)

将(0,—)代入,解得a= .

∴抛物线解析式为y=

(2)解:得,,,

∵点A在第一象限,故点A的坐标为(),∴交点的横坐标x0落在1和2之间 .(3)解:由函数图像或函数性质可知:当2<x<3时,

对y1= ,y1随着x增大而增大,对y2= (k>0),

y2随着X的增大而减小。因为A(X0,Y0)为二次函数图像与反比例函数图像的交点,所以当X0=2时,由反比例函数图象在二次函数上方得y2>y1 ,

同理,当X0=3时,由二次函数数图象在反比例上方得y1>y2,

得K<12。

所以K的取值范围为:.

【解析】【分析】(1)利用待定系数法即可求出抛物线的解析式;

(2)解联立反比例函数的解析式与抛物线的解析式组成的方程组求出其在第一象限内的交点的坐标,即可得出答案;

(3)根据抛物线的性质得出当2<x<3时,y1随着x增大而增大,对y2= (k>0),y2随着X的增大而减小。因为A(X0, Y0)为二次函数图像与反比例函数图像的交点,所以当X0=2时,由反比例函数图象在二次函数上方得y2>y1,当X0=3时,由二次函数数图象在反比例上方得y1>y2,从而列出不等式组,求解即可.

10.已知抛物线y=ax2+bx+c(a≠0)过点A(1,0),B(3,0)两点,与y轴交于点C,OC=3.

(1)求抛物线的解析式及顶点D的坐标;

(2)点P为抛物线在直线BC下方图形上的一动点,当△PBC面积最大时,求点P的坐标;

(3)若点Q为线段OC上的一动点,问:AQ+ QC是否存在最小值?若存在,求岀这个最小值;若不存在,请说明理由.

【答案】(1)解:函数的表达式为:y=a(x﹣1)(x﹣3)=a(x2﹣4x+3),即:3a=3,解得:a=1,

故抛物线的表达式为:y=x2﹣4x+3,则顶点D(2,﹣1);

(2)解:将点B、C的坐标代入一次函数表达式:y=mx+n并解得:

直线BC的表达式为:y=﹣x+3,过点P作y轴的平行线交BC于点H,

设点P(x,x2﹣4x+3),则点H(x,﹣x+3),

则S△PBC=PH×OB=(﹣x+3﹣x2+4x﹣3)=(﹣x2+3x),

∵﹣<0,故S△PBC有最大值,此时x=,故点P(,﹣);

(3)解:存在,理由:

如上图,过点C作与y轴夹角为30°的直线CH,过点A作AH⊥CH,垂足为H,

则HQ=CQ,Q+ QC最小值=AQ+HQ=AH,

直线HC所在表达式中的k值为,直线HC的表达式为:y=x+3…①

则直线AH所在表达式中的k值为﹣,

则直线AH的表达式为:y=﹣x+s,将点A的坐标代入上式并解得:

则直线AH的表达式为:y=﹣x+ …②,

联立①②并解得:x=,

故点H(,),而点A(1,0),则AH=,即:AQ+ QC的最

小值为 .

【解析】【分析】(1)将坐标(1,0),B(3,0)代入计算即可得出抛物线的解析式,即可计算出D的坐标.

(2)将点B、C的坐标代入一次函数表达式计算,设点P(x,x2﹣4x+3),则点H(x,﹣x+3),求出x的值即可.

(3)存在,过点C作与y轴夹角为30°的直线CH,过点A作AH⊥CH,垂足为H,则

HQ=CQ,Q+ QC最小值=AQ+HQ=AH,求出k值,再将A的坐标代入计算即可解答.

11.如图,抛物线与轴交于、两点,与轴交于点,且.

(1)求抛物线的解析式和顶点的坐标;

(2)判断的形状,证明你的结论;

(3)点是轴上的一个动点,当的周长最小时,求的值.

【答案】(1)解:∵点在抛物线上,

∴,解得,

∴抛物线解析式为,

∵,

∴点坐标为;

(2)解:为直角三角形,证明如下:

在中,令可得,解得或,

∴为,且为,

∴,,,

由勾股定理可求得,,又,

∴,

∴为直角三角形;

(3)解:∵,

∴点关于轴的对称点为,

如图,连接,交轴于点,则即为满足条件的点,

设直线解析式为,

把、坐标代入可得,解得,

∴直线解析式为,令,可得,

∴.

【解析】【分析】(1)把A点坐标代入可求得b的值,可求得抛物线的解析式,再求D 点坐标即可;(2)由解析式可求得A、B、C的坐标,可求得AB、BC、AC的长,由勾股定理的逆定理可判定△ABC为直角三角形;(3)先求得C点关于x轴的对称点E,连接DE,与轴交于点M,则M即为所求,可求得DE的解析式,令其y=0,可求得M点的坐标,可求得m.

12.如图,正方形、等腰的顶点在对角线上(点与、不重合),

与交于,延长线与交于点,连接 .

(1)求证: .

(2)求证:

(3)若,求的值.

【答案】(1)解:∵是正方形,

∴,,

∵是等腰三角形,

∴,,

∴,

∴,

(2)解:∵是正方形,

∴,,

∵是等腰三角形,

∴,

∵,

∵,

∴,

∴,

∴,

∴,

∴,

(3)解:由(1)得,,,

∴,

由(2) ,

∴,

∵,

∴,

在中,

【解析】【分析】(1)证出∠ABP=∠CBQ,由SAS证明△ABP≌△CBQ可得结论;

(2)根据正方形的性质和全等三角形的性质得到,∠APF=∠ABP,可证明△APF∽△ABP,再根据相似三角形的性质即可求解;

(3)根据全等三角形的性质得到∠BCQ=∠BAC=45°,可得∠PCQ=90°,根据三角函数和已

知条件得到,由(2)可得,等量代换可得∠CBQ=∠CPQ即可求解.

13.阅读:我们约定,在平面直角坐标系中,经过某点且平行于坐标轴或平行于两坐标轴夹角平分线的直线,叫该点的“特征线”.例如,点M(1,3)的特征线有:x=1,y=3,y=x+2,y=﹣x+4.

相关主题
相关文档
最新文档