二元函数极限证明
用极限证明二元函数可微

用极限证明二元函数可微在微积分的学习中,大家或许经常听到“可微”这个词,但是对于“可微”的判定方法,却不是那么容易掌握。
本文将从极限的角度来深入解析二元函数可微的证明方法,详细阐述极限证明二元函数可微的方法,帮助读者更好地掌握这种判定方法。
首先,我们需要了解一下什么是二元函数可微。
在高等数学中,我们可以将二元函数看做是一个自变量有两个分量,因变量是一个实数的数学表达式。
那么一个二元函数在某个点处可微,表示它在该点处的微分存在。
如果一个函数在某点处可微,那么该函数在该点处一定连续。
接下来我们就要深入到证明二元函数可微的极限方法中来。
假设二元函数是 $f(x,y)$,点 $(x_0, y_0)$ 是定义域的一个点,那么函数在这个点处可微的条件是:$$ \lim_{\Delta x \rightarrow 0} (f(x_0 +\Delta x, y_0) - f(x_0, y_0)) = A \Delta x $$ $$ \lim_{\Delta y \rightarrow 0} (f(x_0, y_0 + \Delta y) - f(x_0, y_0)) = B \Delta y $$其中 $A$ 和 $B$ 都是常数。
上面的定义可以表示为:$$ f(x_0 + \Delta x, y_0 + \Delta y) = f(x_0,y_0) + A\Delta x + B\Delta y + \alpha \Delta x +\beta \Delta y $$其中 $\alpha \rightarrow 0$,$\beta \rightarrow 0$。
这个式子里,前三项是用定义式推导而来的,它们表示 $f(x_0 + \Delta x, y_0 + \Delta y)$ 在 $(x_0,y_0)$ 处的值。
而后面的两项分别是 $\Delta x$ 和$\Delta y$ 乘以接近 0 的无穷小量,表示一阶偏导数对像 $(x_0, y_0)$ 那样的点斜率计算的误差。
二元函数极限证明

二元函数极限证明题目:二元函数极限的证明引言:在微积分中,函数极限是一个重要的概念。
在实际问题中,许多函数都是多元函数,即变量的个数大于一。
而二元函数是一种常见的多元函数形式,它包含两个自变量和一个因变量。
本文将对二元函数极限进行详细的讨论和证明。
一、二元函数极限的定义设函数 f(x, y) 在点 P(x0, y0) 的某邻域内有定义,若对于任意给定的正数ε,总存在正数δ,使得当点 P(x, y) 满足不等式 0 < \sqrt {(x-x_0 )^2 + (y-y_0 )^2} < δ时,有 |f(x,y)-A|<ε 成立,则称函数 f(x, y) 在点 P(x0, y0) 处的极限为 A,记作lim_(x,y)→(x0,y0) f(x,y)=A二、二元函数极限的性质与一元函数极限类似,二元函数极限也具有以下性质:1. 二元函数极限的唯一性:若极限存在,则极限唯一;2. 夹逼准则:若函数 f(x,y) 在点 P(x0, y0) 的某邻域内有定义,并且存在函数 h(x,y) 和 g(x,y),满足h(x,y)≤f(x,y)≤g(x,y) 在点P(x0, y0) 的某邻域内成立,并且lim_(x,y)→(x0,y0)h(x,y)=lim_(x,y)→(x0,y0) g(x,y)=A,则必有lim_(x,y)→(x0,y0) f(x,y)=A;3. 四则运算法则:若函数 f(x,y) 和 g(x,y) 分别在点 P(x0, y0) 的某邻域内有定义,并且lim_(x,y)→(x0,y0) f(x,y)=A、lim_(x,y)→(x0,y0) g(x,y)=B,则有lim_(x,y)→(x0,y0) (f(x,y)+g(x,y))=A+B,lim_(x,y)→(x0,y0) (f(x,y)-g(x,y))=A-B,lim_(x,y)→(x0,y0) f(x,y)g(x,y)=AB 和lim_(x,y)→(x0,y0) f(x,y)/g(x,y)=A/B (B≠0);4. 复合函数极限:若函数 f(x,y) 在点 P(x0, y0) 的某邻域内有定义,并且lim_(u,v)→(x0,y0) g(u,v)=P(x0, y0),lim_(x,y)→(u,v)f(x,y)=L,则lim_(x,y)→(x0,y0) f(g(x,y))=L。
证明二元函数极限不存在的方法与技巧

219理论研究证明二元函数极限不存在的方法与技巧杨万娟,杨子艳,木绍良(云南大学旅游文化学院 信息学院,云南 丽江 674100)摘 要:本文主要解决在证明二元函数极限不存在的问题时选择特殊路径的方法和技巧。
关键词:二元函数极限;无穷小量;无穷小量的阶;特殊路径DOI:10.16640/ki.37-1222/t.2019.19.1961 二元函数极限概念分析 二元函数的极限存在,是指点沿任意路径无限接近某一点时,函数总是无限接近某一固定的数A 。
此时称A 为二元函数在时的极限,记作。
定理(1)设函数在内有定义,则;(2)设函数在有定义,且,则。
由定理可知,在求二元函数极限时,通过选择特殊的路径可转化为一元函数极限问题,所以,当沿着不同的路径趋于时(即当时,沿着不同的趋近于)函数趋于不同的值,那么就可以断定此函数的极限不存在。
但是找到特殊路径对学生来说不是一件容易的事,因此很有必要探究该问题。
本文对常见的两种类型作了讨论,其思路为:考虑分母中的最高次幂与分子中的最低次幂保持一致,通过化解可知极限是否与有关,若与有关,则可知极限不存在。
2 证明二元函数极限不存在时找特殊路径的方法2.1 类型一:证明(,)(0,0)lim a bm mx y x y x y →±极限不存在时找特殊路径的方法 (1)当且时,令; (2)当时,令。
例1 证明233(,)(0,0)limx y x yx y →−极限不存在。
证明:,故令, 显然,当k 不同时,31k k −便不同,所以极限233(,)(0,0)lim x y x yx y →−不存在。
例2 证明极限(,)(0,0)lim +x y xyx y→不存在。
证明:,故令,, 显然,当k 不同时,1k−便不同,所以极限(,)(0,0)lim +x y xyx y →不存在。
2.2 类型二:证明(,)(0,0)+lima b x y x y x y→±极限不存在时找特殊路径的方法 (1)当时,令; (2)当时,令。
求二元函数极限的几种方法二元函数极限定理

1 / 151.二元函数极限概念分析定义1 设函数f 在2D R ⊂上有定义,0P 是D 的聚点,A 是一个确定的实数.如果对于任意给定的正数ε,总存在某正数δ,使得00(;)P U P D δ∈时,都有 ()f P A ε-<,则称f 在D 上当0P P →时,以A 为极限,记0lim ()P P P Df P A →∈=.上述极限又称为二重极限.2.二元函数极限的求法2.1 利用二元函数的连续性命题 若函数(,)f x y 在点00(,)x y 处连续,则0000(,)(,)lim(,)(,)x y x y f x y f x y →=.例1 求2(,)2f x y x xy =+ 在点(1,2)的极限. 解: 因为2(,)2f x y x xy =+在点(1,2)处连续,所以122122lim (,)lim(2)12125.x y x y f x y x xy →→→→=+=+⨯⨯=例2 求极限()()221,1,21limy x y x +→.解: 因函数在()1,1点的邻域内连续,故可直接代入求极限,即()()221,1,21limy x y x +→=31.2 / 152.2 利用恒等变形法将二元函数进行恒等变形,例如分母或分子有理化等. 例3 求00x y →→解: 00x y →→00x y →→=0x y →→=001.4x y →→==-例4 ()()22220,0,321)31)(21(lim yx y x y x +-++→.解:原式()()())()(),0,02211lim231x y xy →=+()(22,0,0limx y →=+11022=+=.2.3 利用等价无穷小代换一元函数中的等价无穷小概念可以推广到二元函数.在二元函数中常见的等价无穷小((,)0)u x y→,有sin(,)(,)u x y u x y;2(,)1cos(,)2u x yu x y-;[]ln1(,)(,)u x y u x y+;tan(,)(,)u x y u x y;arcsin(,)(,)u x y u x y;arctan(,)(,)u x y u x y(,)1u x yn;(,)1(,)u x ye u x y-;同一元函数一样,等价无穷小代换只能在乘法和除法中应用.例5求xy→→解: 当x→,0y→时,有0x y+→11()2x y+,所以1()2lim1.2xyxyx yx y→→→→+=+=这个例子也可以用恒等变形法计算,如:1.2xyxyxy→→→→→→===3 / 154 / 152.4 利用两个重要极限(,)0sin (,)lim 1(,)u x y u x y u x y →=,[]1(,)(,)0lim 1(,)u x y u x y u x y e →+= 它们分别是一元函数中两个重要极限的推广.例6 求极限 21lim(1)x x yx y axy+→∞→+.解: 先把已知极限化为22()11lim(1)lim (1)x x xy x y xy x yx x y ay a xy xy ++→∞→∞→→⎡⎤+=+⎢⎥⎣⎦,而 211limlim ,()(1)x x y a y a x y xy x y ay x→∞→∞→→==++ 当 ,x y a →∞→时1,0xy xy →∞→,所以 1lim(1).xy x y ae xy →∞→+=故原式=2()11lim (1).x xy x y xy xy a axy e +→∞→⎡⎤+⎢⎥⎣⎦=例7 求 0sin()limx y axy x →→极限.解: 因为sin()sin().xy xy y x xy=,当0,x y a →→时,0xy →,所以 sin()1xy xy→,再利用极限四则运算可得: 000sin()sin()sin()limlim .lim .lim .x x y a xy y a y axy xy xy y y a x xy xy →→→→→→===·1=a .这个例子也可以用等价无穷小代换计算,如: 当 0x →,y a →时,0xy → ,sin()xy xy .5 / 15所以, 00sin()limlim lim .x x y a y a y axy xyy a x x →→→→→===2.5 利用无穷小量与有界量的乘积仍为无穷小量的结论例8 求0011)sin cos x y y x y →→解: 因为00)0x y y →→= 是无穷小量, 11sin cos 1x y ≤ 是有界量 ,故可知,0011)sin cos 0.x y y x y →→=例9 求 22232(3)(2)lim (3)(2)x y x y x y →→---+-解 原式=2232(3)(2)lim(3)(3)(2)x y x y x x y →→--⋅--+-因为 222222(3)(2)(3)(2)1(3)(2)22(3)(2)x y x y x y x y ---+-≤=-+-⎡⎤-+-⎣⎦ 是有界量,又 32lim(3)0x y x →→-= 是无穷小量,所以 , 22232(3)(2)lim0(3)(2)x y x y x y →→--=-+- . 虽然这个方法计算实际问题上不那么多用,但计算对无穷小量与有界量的乘积形式的极限的最简单方法之一 .2.6利用变量替换法通过变量替换可以将某些二元函数的极限转化为一元函数的极限来计算,6 / 15从而使二元函数的极限变得简单.但利用时一定要满足下面的定理。
二元函数极限的求法和极限不存在的判断

x→y0
分析:通过观察极限中的二元函数知分子是分母的高阶无穷小,
故极限应为 0。定义证明:坌ε>0,因为
x4+y4 x2+y2
-0
≤
x4 x2+y2
+
y4 x2+y2
姨 ≤x2+y2, 故 要 使
x4+y4 x2+y2
-0
<ε 只 要 取 δ =
ε 4
,则
x4+y4 x2+y2
-0
≤
x4 x2+y2
x2y2ln(x2+y2)
x2y2 x2+y2
x2+y2ln(x2+y2)
(x,y)→(0,0)
(x,y)→(0,0)
(x,y)→(0,0)
由于
0≤
x2y2 x2+y2
≤
(x2+y2)2 x2+y2
≤x2+y2→0,令 x2+y2=t 则
x2y2
lim (x2+y2)ln(x2+y2)=lim tlnt=0,故 lim (x2+y2) =e0=1。
科技信息
高校理科研究
二元函数极限的求法和极限不存在的判断
山东政法学院 唐新华
[摘 要]极限方法是研究函数最主要的方法之一,函数极限是高等数学中的重点、难点内容。文章通过具体例子给出了求二元函数 极限的几种方法和二重极限不存在的判断方法。 [关键词]二元函数 极限 二重极限
引言
二元函数极限定义[1] 设函数 z=f(x,y)在点 P0(x0,y0)的某空心邻域有
=e
x→∞
x
16.2二元函数的极限

有 : (x2 xy y2) 7 7 14
故 lim (x2 xy y2 ) 7 ( x, y)(2,1)
例
2.用“
”定义验证极限lim x0
xy 2 x2 y2
0.
y0
证明: 0,要使:
xy 2 x2 y2
0
x
2
xy
y
2
y
0
1 2
y0
取 2 0, 当(xx, y)0U ,((y0,00),)(方时),
则称函数 z f (x, y)在点P0 (x0, y0 )存在极限,且
称 A为函数 z f (x, y)当 x x0, y y0 时的极
限(全面极限),记为 lim f (x, y) A x x0 y y0
或 lim f (x, y) A,或 lim f (P) A
x, y x0 , y0
x0
sin( x x2
2 y) y2
.
y0
解
lim
x0
sin( x x2
2 y) y2
y0
lim
x0
sin( x2 x2 y
y)
x2 y x2 y2
,
y0
其中
lim
x0
sin( x
x2 2y
y
)
y0
u x2 y sin u
lim 1, u0 u
x2 y x2 y2
1x 2
x0 0,
lim
f
(P)
A.
PE
推论 1.设 E1 D , P0 是 E1 的聚点。若极限
lim f (P)不存在,则极限 lim f (P)也不存在 .
PP0
PP0
二元函数求极限的洛必达法则解析

二元函数求极限的洛必达法则解析洛必达法则是一种用于求解二元函数极限的有效方法。
在这个方法中,我们可以将函数表示为两个单变量函数的比值,并通过对这些函数应用洛必达法则来求解极限。
下面将对洛必达法则进行详细解析。
在进行洛必达法则的求解之前,我们首先需要确定极限函数的形式,即将函数表示为两个单变量函数的比值。
设函数为f(x)和g(x),则极限函数的形式可以表示为lim(x→a) f(x)/g(x)。
在这种情况下,如果f(x)和g(x)在x=a的附近连续并满足一定的条件,那么可以将其化简为lim(x→a) f'(x)/g'(x)。
为了使用洛必达法则,我们需要满足以下条件:1. 两个函数在x=a的附近连续;2. 在x=a附近,g(x)不等于0且g'(x)也不等于0;3. 当x趋近于a时,函数f(x)和g(x)的极限存在。
在满足这些条件的前提下,我们可以按照以下步骤使用洛必达法则求解极限:Step 1: 计算f'(x)和g'(x)的极限。
这些极限可以通过直接求导或应用其他求导规则来计算。
Step 2: 计算lim(x→a) f'(x)/g'(x)。
如果这个极限存在,那么它就是lim(x→a) f(x)/g(x)的极限。
Step 3: 如果极限lim(x→a) f'(x)/g'(x)不存在,那么重复Step 1和Step 2,直到找到一个极限。
通过洛必达法则,我们可以更容易地求解二元函数的极限。
这个方法不仅可以简化计算过程,还可以提供更准确的结果。
然而,需要注意的是,洛必达法则并不适用于所有情况。
有些函数无法通过洛必达法则求解其极限,因此在使用该方法时需要注意。
总结起来,洛必达法则是一种用于求解二元函数极限的有效方法。
通过将函数表示为两个单变量函数的比值,并应用洛必达法则,我们可以简化计算过程并获得更准确的结果。
然而,需要注意的是,洛必达法则并不适用于所有情况,因此在使用该方法时需要谨慎。
二元函数极限证明

二元函数极限证明)in1y?ysin1x, 求在点( 0 , 0 )的两个累次极限 .二重极限与累次极限的关系:(1)两个累次极限可以相等也可以不相等,所以计算累次极限时一定要注意不能随意改变它们的次序。
例函数 f(x,y)?x?y?x?yx?y22的两个累次极限是 y?yyx?xx22limlimx?y?x?yx?yx?y?x?yx?yy?0x?0?limy?0?lim(y?1)??1y?0?lim(x?1)?1x?0limlimx?0y?0?limx?0(2)两个累次极限即使都存在而且相等,也不能保证二重极限存在例f(x,y)?xyx?yxyx?y,两个累次极限都存在limlimy?0x?0?0,limlimxyx?yx?0y?0?0但二重极限却不存在,事实上若点p(x,)沿直线 y?kx趋于原点时,kxf(x,y)?x?(kx)?k1?k二重极限存在也不能保证累次极限存在二重极限存在时,两个累次极限可以不存在.例函数 f(x,y)?xsin1y?ysin1x由|f(x,y)| ? |x|?|y|?0 ,( x ,y)?(0,0).可见二重极限存在 ,但1xlimsinx?0和limsiny?01y不存在,从而两个累次极限不存在。
(4)二重极限极限lim(x,y)?(x0,y0)f(x,y)和累次极限limlimf(x,y)(或另一次序)都存x?x0y?y0在 , 则必相等.( 证 )(5)累次极限与二重极限的关系若累次极限和二重极限都存在,则它们必相等第三篇:二元函数极限的研究二元函数极限的研究作者:郑露遥指导教师:杨翠摘要函数的极限是高等数学重要的内容,二元函数的极限是一元函数极限的基础上发展起来的,本文讨论了二元函数极限的定义、二元函数极限存在或不存在的判定方法、求二元函数极限的方法、简单讨论二元函数极限与一元函数极限的关系以及二元函数极限复杂的原因、最后讨论二重极限与累次极限的关系。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
经典合同二元函数极限证明姓名:XXX 日期:XX年X月X日二元函数极限证明目录第一篇:二元函数极限证明第二篇:二元函数的极限第三篇:二元函数极限的研究第四篇:二元函数的极限与连续第五篇:函数极限的证明正文第一篇:二元函数极限证明二元函数极限证明设p=f(x,y),p0=(a,b),当p→p0时f(x,y)的极限是x,y同时趋向于a,b时所得到的称为二重极限。
此外,我们还要讨论x,y先后相继地趋于a,b时的极限,称为二次极限。
我们必须注意有以下几种情形:’(1)两个二次极限都不存在而二重极限仍有可能存在(2)两个二次极限存在而不相等(3)两个二次极限存在且相等,但二重极限仍可能不存在2函数f(x)当x→x0时极限存在,不妨设:limf(x)=a(x→x0)根据定义:对任意ε>0,存在δ>0,使当|x-x0|<δ时,有|f(x)-a|<ε而|x-x0|<δ即为x属于x0的某个邻域u(x0;δ)第 2 页共 26 页又因为ε有任意性,故可取ε=1,则有:|f(x)-a|<ε=1,即:a-1再取m=max{|a-1|,|a+1|},则有:存在δ>0,当任意x属于x0的某个邻域u(x0;δ)时,有|f(x)|证毕3首先,我的方法不正规,其次,正确不正确有待考察。
1,y以y=x^2-x的路径趋于0limitedsin(x+y)/x^2=limitedsinx^2/x^2=1而y=x的路径趋于0结果是无穷大。
2,3可以用类似的方法,貌似同济书上是这么说的,二元函数在该点极限存在,是p(x,y)以任何方式趋向于该点。
4f(x,y)={(x^2+y^2)/(|x|+|y|)}*sin(1/x)显然有y->0,f->(x^2/|x|)*sin(1/x)存在当x->0,f->(y^2/|y|)*sin(1/x),sin(1/x)再0处是波动的所以不存在而当x->0,y->0时由|sin(1/x)|<=1得|f|<=(x^2+y^2)/(|x|+|y|)而x^2+y^2<=x^2+y^2+2*|x||y|=(|x|+|y|)^2所以|f|<=|x|+|y|所以显然当x->0,y->0时,f的极限就为0这个就是你说的,唯一不一样就是非正常极限是不存在而不是你说的正无穷或负无穷或无穷,我想这个就可以了就我这个我就线了好久了第 3 页共 26 页5(一)时函数的极限:以时和为例引入.介绍符号:的意义,的直观意义.定义(和.)几何意义介绍邻域其中为充分大的正数.然后用这些邻域语言介绍几何意义.例1验证例2验证例3验证证……(二)时函数的极限:由考虑时的极限引入.定义函数极限的“”定义.几何意义.用定义验证函数极限的基本思路.例4验证例5验证例6验证证由=为使需有为使需有于是,倘限制,就有例7验证例8验证(类似有(三)单侧极限:1.定义:单侧极限的定义及记法.几何意义:介绍半邻域然后介绍等的几何意义.例9验证证考虑使的2.单侧极限与双侧极限的关系:th类似有:例10证明:极限不存在.例11设函数在点的某邻域内单调.若存在,则有=§2函数极限的性质(3学时)教学目的:使学生掌握函数极限的基本性质。
教学要求:掌握函数极限的基本性质:唯一性、局部保号性、不等第 4 页共 26 页式性质以及有理运算性等。
教学重点:函数极限的性质及其计算。
教学难点:函数极限性质证明及其应用。
教学方法:讲练结合。
一、组织教学:我们引进了六种极限:,.以下以极限为例讨论性质.均给出证明或简证.二、讲授新课:(一)函数极限的性质:以下性质均以定理形式给出.1.唯一性:2.局部有界性:3.局部保号性:4.单调性(不等式性质):th4若和都存在,且存在点的空心邻域,使,都有证设=(现证对有) 註:若在th4的条件中,改“”为“”,未必就有以举例说明.5.迫敛性:6.四则运算性质:(只证“+”和“”)(二)利用极限性质求极限:已证明过以下几个极限:(注意前四个极限中极限就是函数值)这些极限可作为公式用.在计算一些简单极限时,有五组基本极限作为公式用,我们将陆续证明这些公式.利用极限性质,特别是运算性质求极限的原理是:通过有关性质,把所求极限化为基本极限,代入基本极限的值,即计算得所求极限.例1(利用极限和)第 5 页共 26 页例2例3註:关于的有理分式当时的极限.例4例5例6例7第二篇:二元函数的极限§2 二元函数的极限(一) 教学目的:掌握二元函数的极限的定义,了解重极限与累次极限的区别与联系.(二) 教学内容:二元函数的极限的定义;累次极限.基本要求:(1)掌握二元函数的极限的定义,了解重极限与累次极限的区别与联系,熟悉判别极限存在性的基本方法.(2) 较高要求:掌握重极限与累次极限的区别与联系,能用来处理极限存在性问题.(三) 教学建议:(1) 要求学生弄清一元函数极限与多元函数极限的联系与区别,教会他们求多元函数极限的方法.(2) 对较好学生讲清重极限与累次极限的区别与联系,通过举例介绍判别极限存在性的较完整的方法.一二元函数的极限先回忆一下一元函数的极限: limf(x)?a 的“???” 定义(c31):x?x00设函数f(x)在x0的某一空心邻域u(x0,?1)内由定义,如果对第 6 页共 26 页???0,当 x?u(x0,?),即 |x?x0|?? 时,都有|f(x)?a|??,???0,???1,则称x?x0时,函数f(x)的极限是 a.类似的,我们也可以定义二元函数的极限如下:设二元函数f(x,y)为定义在d?r2上的二元函数,在点p0(x0,y0)为d的一个聚点,a是一个确定的常数,如果对 ???0,???0,使得当p(x,y)?u(p0,?)?d 时,0都有 |f(p)?a|??,则称f在d上当 p?p0时,以a为极限。
记作p?p0p?dlimf(p)?a也可简写为limf(p)?a或p?p0(x,y)?(x0,y0)2limf(x,y)?a 例1用定义验证2lim(x,y)?(2,1)2(x?xy?y)?7 222证明:|x?xy?y?7|?|x?x?6?xy?x?y?1|?|x?3||x?2|?|x?y?1||y?1|限制在(2,1)的邻域 {(x,y)||x?2|?1,|y?1|?1}|x?3|?6,|x?y?1|?6取 ??min{1,?/6},则有|x?xy?y|??由二元函数极限定义lim(x,y)?(2,1)(x?xy?y)?7第 7 页共 26 页22?x?y,(x,y)?(0,0)?xy22例2 f(x,y)??x?y,?0,(x,y)?(0,0)?证明lim(x,y)?(0,0)f(x,y)?0x?yx?y2222证|f(x,y)|?|xy所以lim(x,y)?(0,0)|?|xy|lim(x,y)?(0,0)|f(x,y)|?lim(x,y)?(0,0)|xy|?0|f(x,y)|?0对于二元函数的极限的定义,要注意下面一点:第 8 页共 26 页limf(p)?a 是指: p(x,y)以任何方式趋于p0(x0,y0),包括沿任何直线,沿任何曲线趋于p0(x0,y0) 时,f(x,y)必须趋于同一确定的常数。
对于一元函数,x 仅需沿x轴从x0的左右两个方向趋于x0,但是对于二元函数,p趋于p0的路线有无穷多条,只要有两条路线,p趋于p0时,函数f(x,y)的值趋于不同的常数,二元函数在p0点极限就不存在。
?1,0?y?x2例1 二元函数f(x,y)???0,rest请看图像(x62),尽管p(x,y)沿任何直线趋于原点时f(x,y)都趋于零,但也不能说该函数在原点的极限就是零,因为当p(x,y)沿抛物线y?kx,0?k?1时, f(x,y)的值趋于1而不趋于零,所以极限不存在。
(考虑沿直线y?kx的方向极限 ).?x2y例2设函数f(x,y)??x2?y2?0,?(x.,y)?(0,0)(x,y)?(0,0)求证limf(x,y)?0x?0y?0证明因为|f(x,y)?0|?x|y|x?yx|y|x第 9 页共 26 页所以,当 (x,y)?(0,0)时, f(x,y)?0。
请看它的图像,不管p(x,y)沿任何方向趋于原点,f(x,y)的值都趋于零。
通常为证明极限limf(p)不存在,可证明沿某个方向的极限不存在 , 或证明沿某两p?p0个方向的极限不相等, 或证明方向极限与方向有关 .但应注意 ,沿任何方向的极限存在且相等 ?? 全面极限存在. 例3 设函数(x,y)?(0,0)(x,y)?(0,0)?xy,?22f(x,y)??x?y?0,?证明函数 f(x,y)在原点处极限不存在。
证明尽管 p(x,y)沿x轴和y轴趋于原点时 (f(x,y)的值都趋于零,但沿直线y?mx 趋于原点时x?mxx?(mx)f(x,y)??mx22(1?m)xm1?m第 10 页共 26 页沿斜率不同的直线趋于原点时极限不一样,请看它的图象, 例1沿任何路线趋于原点时,极限都是0,但例2沿不同的路线趋于原点时,函数趋于不同的值,所以其极限不存在。
例4非正常极限极限lim(x,y)?(x0,y0)判别函数f(x,y)?xy?1?1x?y在原点是否存在极限.f(x,y)???的定义:12x?3y例1设函数f(x,y)?证明limf(x,y)??x?0y?0证|12x?3y13(x?y)只要取??16m|x?0|??,|y?0|??时,都有12x?3y16?2213(x?y)??m12x?3y请看它的图象,因此是无穷大量。
例2求下列极限: i)limxyx?y22;ii)(x,y)?(0,0)(x,y)?(3,0)limsinxyyiii)(x,y)?(0,0)limxy?1?1xy;iv)(x,y)?(0,0)limln(1?x?y)x?y22二.累次极限: 累次极限前面讲了p(x,y)以任何方式趋于p0(x0,y0)时的极限,我们称它为二重极限,对于两个自变量x,y依一定次序趋于x0,y0时 f(x,y)的极限,称为累次极限。
对于二元函数f(x,y)在p0(x0,y0)的累次极限由两个limlimf(x,y)和limlimf(x,y)y?y0x?x0x?x0y?y0例1f(x,y)?xyx?yx?yx?y222, 求在点( 0 , 0 )的两个累次极限.22例2 f(x,y)?, 求在点( 0 , 0 )的两个累次极限 .例3 f(x,y)?xs(请你支持:..)in1y?ysin1x, 求在点( 0 , 0 )的两个累次极限 .二重极限与累次极限的关系:(1)两个累次极限可以相等也可以不相等,所以计算累次极限时一定要注意不能随意改变它们的次序。