高三基础知识天天练4-1. 数学 数学doc人教版

合集下载

高三基础知识天天练 数学选修4-1-1人教版

高三基础知识天天练 数学选修4-1-1人教版

选修4-1 第1节一、选择题1.若三角形三边上的高分别为a 、b 、c ,这三边长分别为6、4、3,则a ∶b ∶c =( )A .1∶2∶3B .6∶4∶3C .2∶3∶4D .3∶4∶6解析:由三角形面积公式: 12×6a =12×4b =12×3c , ∴6a =4b =3c ,设3c =k ,则a =k 6,b =k 4,c =k 3,∴a ∶b ∶c =k 6∶k 4∶k32∶3∶4.答案:C2.如下图,DE ∥BC ,DF ∥AC ,AD =4 cm ,BD =8 cm ,DE =5 cm ,则线段BF 的长为( )A .5 cmB .8 cmC .9 cmD .10 cm解析:∵DE ∥BC ,DF ∥AC , ∴四边形DECF 是平行四边形, ∴FC =DE =5 cm , ∵DF ∥AC ,∴BF FC =BD DA, 即BF 5=84,∴BF =10 cm. 答案:D3.Rt △ABC 中,∠CAB =90°,AD ⊥BC 于D ,AB ∶AC =3∶2,则CD ∶BD =( )A .3∶2B .2∶3C .9∶4D .4∶9解析:由△ABD ∽△CBA 得AB 2=BD ·BC , 由△ADC ∽△BAC 得AC 2=DC ·BC , ∴CD ·BC BD ·BC =AC 2AB 2=49,即CD ∶BD =4∶9. 答案:D4.已知:如右图,正方形ABCD 的边长为4,P 为AB 上的点,且AP ∶PB =1∶3,PQ ⊥PC ,则PQ 的长为( )A .1 B.54 C.32D. 2解析:∵PQ ⊥PC ,∴∠APQ +∠BPC =90°, ∴∠APQ =∠BCP ,∴Rt △APQ ∽Rt △PBC , ∴AP BC =AQBP. ∵AB =4,AP ∶PB =1∶3,∴PB =3,AP =1, ∴AQ =AP ·BP BC =1×34=34, ∴PQ =AQ 2+AP 2=916+1=54. 答案:B5.已知矩形ABCD ,R 、P 分别在边CD 、BC 上,E 、F 分别为AP 、PR 的中点,当P 在BC 上由B 向C 运动时,点R 在CD 上固定不变,设BP =x ,EF =y ,那么下列结论中正确的是( )A .y 是x 的增函数B .y 是x 的减函数C .y 随x 的增大先增大再减小D .无论x 怎样变化,y 为常数解析:∵E 、F 分别为AP 、PR 中点,∴EF 是△P AR 的中位线,∴EF =12AR ,∵R 固定,∴AR 是常数,即y 为常数.答案:D6.如右图所示,矩形ABCD 中,AB =12,AD =10,将此矩形折叠使点B 落在AD 边的中点E 处,则折痕FG 的长为( )A .13 B.635 C.656D.636解析:过A 作AH ∥FG 交DG 于H ,则四边形AFGH 为平行四边形.∴AH =FG . ∵折叠后B 点与E 点重合,折痕为FG , ∴B 与E 关于FG 对称.∴BE ⊥FG ,∴BE ⊥AH . ∴∠ABE =∠DAH ,∴Rt △ABE ∽Rt △DAH . ∴BE AB =AH AD. ∵AB =12,AD =10,AE =12AD =5,∴BE =122+52=13, ∴FG =AH =BE ·AD AB =656.答案:C 二、填空题7.在Rt △ABC 中,CD 、CE 分别是斜边AB 上的高和中线,设该图中共有x 个三角形与△ABC 相似,则x =________.解析:2个,△ACD 和△CBD . 答案:28.在△ABC 中,D ,E 分别为AB ,AC 上的点,且DE ∥BC ,△ADE 的面积是2 cm 2,梯形DBCE 的面积为6 cm 2,则DE ∶BC 的值为________.解析:△ADE ∽△ABC ,利用面积比等于相似比的平方可得答案. 答案:1∶29.如右图,在直角梯形ABCD 中,上底AD =3,下底BC =33,与两底垂直的腰AB =6,在AB 上选取一点P ,使△PAD 和△PBC 相似,这样的点P 有________个.解析:设AP =x ,(1)若△ADP ∽△BPC ,则AD BP =APBC,即36-x =x 33,所以x 2-6x +9=0,解得x =3. (2)若△ADP ∽△BCP ,则AD BC =APBP ,即333=x 6-x ,解得x =32, 所以符合条件的点P 有两个. 答案:两 三、解答题10.如右图,BD 、CE 分别是△ABC 的两边上的高,过D 作DG ⊥BC 于G ,分别交CE 及BA 的延长线于F 、H .求证:(1)DG 2=BG ·CG ; (2)BG ·CG =GF ·GH .证明:(1)DG 为Rt △BCD 斜边上的高, ∴由射影定理得DG 2=BG ·CG . (2)∵DG ⊥BC ,∴∠ABC +∠H =90°, ∵CE ⊥AB ,∴∠ABC +∠ECB =90°, ∴∠ABC +∠H =∠ABC +∠ECB , ∴∠H =∠ECB .又∵∠HGB =∠FGC =90°, ∴Rt △HBG ∽Rt △CFG , ∴BG GF =GHGC,∴BG ·CG =GF ·GH . 11.如右图,正方形ABCD 中,AB =2,P 是BC 边上与B 、C 不重合的任意一点,DQ ⊥AP 于Q .(1)试证明△DQA ∽△ABP ;(2)当点P 在BC 上变动时,线段DQ 也随之变化,设PA =x ,DQ =y ,求y 与x 之间的函数关系式.解:(1)∵DQ ⊥AP ,∴∠DQA =90°, ∠DAQ +∠ADQ =90°, 又∵∠DAQ +∠BAP =90°, ∴∠BAP =∠QDA . ∴△DQA ∽△ABP .(2)∵△DQA ∽△ABP ,∴DA AP =DQ AB,∴DQ =DA ·AB PA ,即y =4x. 12.有一块直角三角形木板,如右图所示,∠C =90°,AB =5 cm ,BC =3 cm ,AC =4 cm.根据需要,要把它加工成一个面积最大的正方形木板,设计一个方案,应怎样裁才能使正方形木板面积最大,并求出这个正方形木板的边长.解:如图(1)所示,设正方形DEFG 的边长为x cm ,过点C 作CM ⊥AB 于M ,交DE 于N ,因为S △ABC =12AC ·BC =12AB ·CM ,所以AC ·BC =AB ·CM ,即3×4=5·CM .所以CM =125. 因为DE ∥AB ,所以△CDE ∽△CAB . 所以CN CM =DE AB ,即125-x125=x 5.所以x =6037.如图(2)所示,设正方形CDEF 的边长为y cm , 因为EF ∥AC ,所以△BEF ∽△BCA . 所以BF BC =EF AC ,即3-y 3=y 4.所以y =127. 因为x =6037,y =127=6035,所以x <y . 所以当按图(2)的方法裁剪时,正方形面积最大,其边长为127cm.。

天天练4

天天练4

2019年下期高三文科数学天天练四命题人:徐健 审题人:高三文科数学组班级 姓名星期二1.(2019·安徽)函数f (x )=ax 3+bx 2+cx +d 的图象如图所示,则下列结论成立的是( )A .a >0,b <0,c >0,d >0B .a >0,b <0,c <0,d >0C .a <0,b <0,c >0,d >0D .a >0,b >0,c >0,d <02.设a 为实数,函数f (x )=x 3+ax 2+(a -3)x 的导函数为f ′(x ),且f ′(x )是偶函数,则曲线y =f (x )在原点处的切线方程为( )A .y =3x +1B .y =-3xC .y =-3x +1D .y =3x -3 3.(2019·唐山一中高三检测)如果f ′(x )是二次函数,且f ′(x )的图象开口向上,顶点坐标为(1,3),那么曲线y =f (x )上任一点的切线的倾斜角α的取值范围是( ) A.⎝ ⎛⎦⎥⎤0,π3 B.⎣⎢⎡⎭⎪⎫π3,π2 C.⎝ ⎛⎦⎥⎤π2,2π3 D.⎣⎢⎡⎭⎪⎫π3,π4.(2019·昆明三中模拟)设函数f (x )=sin θ3x 3+3cos θ2x 2+tan θ,其中θ∈⎣⎢⎡⎦⎥⎤0,5π12,则导数f ′(1)的取值范围是( )A .[-2,2]B .[2,3]C .[3,2]D .[2,2]5.(2019·新课标全国Ⅱ)若函数f (x )=kx -ln x 在区间(1,+∞)单调递增,则k 的取值范围是( )A .(-∞,-2]B .(-∞,-1]C .[2,+∞)D .[1,+∞) 6.(2019·江西)在同一直角坐标系中,函数y =ax 2-x +a2与y =a 2x 3-2ax 2+x +a (a ∈R )的图象不可能的是( )7.(2019·新课标全国Ⅰ)已知函数f(x)=ax3+x+1的图象在点(1,f(1))处的切线过点(2,7),则a=________.8.(2019·新课标全国Ⅱ)已知曲线y=x+ln x在点(1,1)处的切线与曲线y=ax2+(a+2)x+1相切,则a=________.9.(2019·江西)若曲线y=x ln x上点P处的切线平行于直线2x-y+1=0,则点P的坐标是________.10.(2019·江苏)在平面直角坐标系xOy中,若曲线y=ax2+bx(a,b为常数)过点P(2,-5),且该曲线在点P处的切线与直线7x+2y+3=0平行,则a+b的值是________.(附加题)已知函数f(x)=x2+ax,g(x)=bx3+x.(1)若曲线y=f(x)与曲线y=g(x)在它们的交点C(1,m)处具有公共切线,求实数m的值;(2)当b=13,a=-4时,求函数F(x)=f(x)+g(x)在区间[-3,4]上的最大值.星期三1.(2019·长春名校联考)若函数y=f(x)的导函数y=f′(x)的图象如图所示,则y=f(x)的图象可能为()2.已知定义在R 上的函数f (x )满足f (-3)=f (5)=1,f ′(x )为f (x )的导函数,且导函数y =f ′(x )的图象如图所示.则不等式f (x )<1的解集是A .(-3,0)B .(-3,5)C .(0,5)D .(-∞,-3)∪(5,+∞)3.(2019·云南师大附中检测)若函数f (x )=x 3-tx 2+3x 在区间[1,4]上单调递减,则实数t 的取值范围是( )A.⎝ ⎛⎦⎥⎤-∞,518 B .(-∞,3] C.⎣⎢⎡⎭⎪⎫518,+∞ D .[3,+∞) 4.已知定义在(-1,1)上的奇函数f (x ),其导函数为f ′(x )=1+cos x ,如果f (1-a )+f (1-a 2)<0,则实数a 的取值范围为( )A .(0,1)B .(1,2)C .(-2,-2)D .(1,2)∪(-2,-1) 5.(2019·巴蜀中学一模)定义域为R 的可导函数y =f (x )的导函数为f ′(x ),满足f (x )>f ′(x ),且f (0)=1,则不等式f (x )e x <1的解集为( )A .(-∞,0)B .(0,+∞)C .(-∞,2)D .(2,+∞)6.(2019·山东省实验中学二诊)已知函数f (x )(x ∈R )满足f (1)=1,且f (x )的导函数f ′(x )<13,则f (x )<x 3+23的解集是( )A .{x |-1<x <1}B .{x |x <-1}C .{x |x <-1或x >1}D .{x |x >1} 7.已知函数f (x )是定义在R 上的奇函数,f (1)=0,当x >0时,有xf ′(x )-f (x )x 2>0成立,则不等式f (x )>0的解集是( )A .(-1,0)∪(1,+∞)B .(-1,0)C .(1,+∞)D .(-∞,-1)∪(1,+∞)8.(2019·珠海模拟)已知函数f (x )=x 3+x ,对任意的m ∈[-2,2],f (mx -2)+f (x )<0恒成立,则x 的取值范围为________.10.(2019·山西省二诊)函数f (x )=2x -sin x 的零点个数为________.(附加题)设函数f (x )=e 2x -a ln x . (1)讨论f (x )的导函数f ′(x )零点的个数; (2)证明:当a >0时,f (x )≥2a +a ln 2a .星期五1.若sin α=-513,且α为第四象限角,则tan α的值等于( ) A.125 B .-125 C.512 D .-512 2.若点(4,a )在y =x 12的图象上,则tan a6π的值为( ) A .0 B.33 C .1 D. 33.若点P 在-10π3角的终边上,且P 的坐标为(-1,y ),则y 等于 A .-33 B.33 C .- 3 D. 3 4.(2019·四川)下列函数中,最小正周期为π的奇函数是( ) A .y =sin ⎝ ⎛⎭⎪⎫2x +π2 B .y =cos ⎝ ⎛⎭⎪⎫2x +π2C .y =sin 2x +cos 2xD .y =sin x +cos x5.(2019·湖北八校一联)下列函数中 ,对于任意x ∈R ,同时满足条件f (x )=f (-x )和f (x -π)=f (x )的函数是( )A .f (x )=sin xB .f (x )=sin x cos xC .f (x )=cos xD .f (x )=cos 2x -sin 2x 6.(2019·南充市第一次适应性考试)已知角α的终边经过点P (2,-1),则sin α-cos αsin α+cos α=( )A .3 B.13 C .-13D .-37.(2019·江西省质检三)已知sin(α-π)=log 814,且α∈⎝ ⎛⎭⎪⎫-3π2,-π2,则tan(-α)的值为( )A .-255 B.255 C .-52 D.528.(2019·四川)已知sin α+2cos α=0,则2sin αcos α-cos 2α的值是________. 9.(2019·郑州预测)若sin ⎝ ⎛⎭⎪⎫π3-α=14,则cos ⎝ ⎛⎭⎪⎫π6+α=________.10.(2019·黄冈中学检测)已知sin 2α=-sin α,α∈⎝ ⎛⎭⎪⎫π2,π,则tan α的值是________.(附加题)在△ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c .已知tan ⎝ ⎛⎭⎪⎫π4+A =2.(1)求sin 2Asin 2A +cos 2 A的值;(2)若B =π4,a =3,求△ABC 的面积.星期六1.(2019·新课标全国Ⅰ)sin 20°cos 10°-cos 160°sin 10°=( ) A .-32 B.32 C .-12 D.122.(2019·重庆)若tan α=13,tan(α+β)=12,则tan β=( )A.17B.16C.57 D 56 3.(2019·重庆)若tan α=2tan π5,则cos ⎝⎛⎭⎪⎫α-3π10sin ⎝ ⎛⎭⎪⎫α-π5=( )A .1B .2C .3D .44.(2019·北京东城区高三期末)已知cos α=34,α∈⎝ ⎛⎭⎪⎫-π2,0,则sin 2α的值为( )A.38 B .-38 C.378 D .-378 5.已知sin α=52,则sin 2α-cos 2α的值为( ) A .-15 B .-35 C.15 D.356.(2019·玉溪一中高三检测)已知sin α=23,则cos(π-2α)=( ) A .-53 B .-19 C.19 D.537.(2019·云南统考)若sin ⎝ ⎛⎭⎪⎫π3-α=14,则cos ⎝ ⎛⎭⎪⎫π3+2α=( )A .-78B .-14 C.14 D.788.(2019·山东省实验中学二诊)已知α∈⎝ ⎛⎭⎪⎫π,32π,cos α=-45,则tan ⎝ ⎛⎭⎪⎫π4-α等于( )A .7 B.17 C .-17 D .-79.(2019·浙江)函数f (x )=sin 2 x +sin x cos x +1的最小正周期是________,最小值是________. 10.(2019·湖北)函数f (x )=4cos 2x 2cos ⎝ ⎛⎭⎪⎫π2-x -2sin x -|ln(x +1)|的零点个数为________.(附加题)已知函数f (x )=(sin x +cos x )2+cos 2x .(1)求f (x )的最小正周期;(2)求f (x )在区间⎣⎢⎡⎦⎥⎤0,π2上的最大值和最小值.星期日1.(2019·怀化市监测)函数f (x )=1-2sin 2x 的最小正周期是( ) A.12 B .2 C .2π D .π2.(2019·泰安市检测)设a =sin 31°,b =cos 58°,c =tan 32°,则 A .a >b >c B .c >b >a C .c >a >b D .b >c >a 3.要得到函数y =sin ⎝ ⎛⎭⎪⎫4x -π3的图象,只需将函数y =sin 4x 的图象A .向左平移π12个单位B .向右平移π12个单位 C .向左平移π3个单位 D .向右平移π3个单位4.(2019·宝鸡市质检)设x 是三角形的最小内角,则函数y =sin x +cos x 的值域是( ) A .(0,2] B .[-2,2] C .(1,2] D.⎝ ⎛⎦⎥⎤1,3+12 5.(2019·绵阳市一诊)在(0,2π)内,使|sin x |≥cos x 成立的x 的取值范围是( ) A.⎣⎢⎡⎦⎥⎤π4,7π4 B.⎣⎢⎡⎦⎥⎤π4,5π4 C.⎣⎢⎡⎦⎥⎤0,5π4 D.⎣⎢⎡⎦⎥⎤0,π4∪⎣⎢⎡⎦⎥⎤7π4,2π6.(2019·安徽)若将函数f (x )=sin 2x +cos 2x 的图象向右平移φ个单位,所得图象关于y 轴对称,则φ的最小正值是( )A.π8B.π4C.3π8D.5π47.(2019·新课标全国Ⅰ)在函数①y =cos|2x |,②y =|cos x |,③y =cos ⎝ ⎛⎭⎪⎫2x +π6,④y =tan ⎝ ⎛⎭⎪⎫2x -π4中,最小正周期为π的所有函数为A .②④B .①③④C .①②③D .①③8.(2019·湖南)已知ω>0,在函数y =2sin ωx 与y =2cos ωx 的图象的交点中,距离最短的两个交点的距离为23,则ω=________. 9.(2019·重庆)已知函数f (x )=12sin 2x -3cos 2x . (1)求f (x )的最小正周期和最小值;(2)将函数f (x )的图象上每一点的横坐标伸长到原来的两倍,纵坐标不变,得到函数g (x )的图象,当x ∈⎣⎢⎡⎦⎥⎤π2,π时,求g (x )的值域.。

基础知识天天练 数学选修4-1-2

基础知识天天练 数学选修4-1-2

选修4-1 第2节[知能演练]一、填空题1.一平面截球面产生的截面形状是________;它截圆柱面所产生的截面形状是________.答案:圆 圆或椭圆2.如下图所示,圆O 的直径AB =6,C 为圆周上一点,BC =3,过C 作圆的切线l ,过A 作l 的垂线AD ,垂足为D ,则∠DAC =________.解析:由弦切角定理,可知∠DCA =∠B =60°,又AD ⊥l ,故∠DAC =30°. 答案:30°3.一个圆的两弦相交,一条弦被分为12 cm 和18 cm 两段,另一弦被分为3∶8,则另一弦的长为________.解析:设另一弦被分的两段长分别为3k,8k (k >0), 由相交弦定理,得3k ·8k =12×18,解得k =3, 故所求弦长为3k +8k =11k =33 cm. 答案:33 cm4.已知P A 是圆O 的切线,切点为A ,P A =2,AC 是圆O 的直径,PC 与圆O 交于点B ,PB =1,则圆O 的半径R 的长为________.解析:如右图,连接AB ,∵P A 是⊙O 的切线, ∴∠P AB =∠C , 又∵∠APB =∠CP A , ∴△P AB ∽△PCA , ∴P A AC =PB AB ,即P A 2R =PBAB, ∴R =P A ·AB 2PB =2×22-122×1= 3.答案: 35.已知如下图,⊙O 和⊙O ′相交于A 、B 两点,过A 作两圆的切线分别交两圆于C 、D .若BC =2,BD =4,则AB 的长为________.解析:∵AC 、AD 分别是两圆的切线,∴∠C =∠2,,1=∠D , ∴△ACB ∽△DAB . ∴BC AB =ABBD, ∴AB 2=BC ·BD =2×4=8. ∴AB =8=22(舍去负值). 答案:2 26.如右图,已知EB 是半圆O 的直径,A 是BE 延长线上一点,AC 切半圆O 于点D ,BC ⊥AC 于点C ,DF ⊥EB 于点F ,若BC =6,AC =8,则DF =________.解析:设圆的半径为r ,AD =x , 连接OD ,得OD ⊥AC ,故AD AC =OD BC ,即x 8=r 6,故x =43r . 又由切割线定理得AD 2=AE ·AB , 即169r 2=(10-2r )×10,故r =154. 由射影定理知DF =3. 答案:3 二、解答题7.如下图,已知AP 是⊙O 的切线,P 为切点,AC 是⊙O 的割线,与⊙O 交于B ,C 两点,圆心O 在∠P AC 的内部,点M 是BC 的中点.(1)证明:A ,P ,O ,M 四点共圆;(2)求∠OAM +∠APM 的大小.(1)证明:连结OP ,OM , 因为AP 与⊙O 相切于点P , 所以OP ⊥AP .因为M 是⊙O 中弦BC 的中点,所以OM ⊥BC .于是∠OP A +∠OMA =180°,由圆心O 在∠P AC 的内部,可知四边形APOM 的对角互补,所以A ,P ,O ,M 四点共圆.(2)解:由(1),得A ,P ,O ,M 四点共圆, 所以∠OAM =∠OPM .由(1),得OP ⊥AP .由圆心O 在∠P AC 的内部,可知∠OPM +∠APM =90°,所以∠OAM +∠APM =90°. 8.如右图,梯形ABCD 内接于⊙O ,AD ∥BC ,过B 引⊙O 的切线分别交DA 、CA 的延长线于E 、F .(1)求证:AB 2=AE ·BC .(2)已知BC =8,CD =5,AF =6,求EF 的长. (1)证明:因为BE 切⊙O 于B , 所以∠ABE =∠ACB .由于AD ∥BC ,所以∠BAE =∠ABC . 所以△EAB ∽△ABC . 所以AE AB =ABBC .故AB 2=AE ·BC .(2)解:由(1),知△EAB ∽△ABC , 所以BE AC =AB BC .又AE ∥BC ,所以EF AF =BE AC .所以AB BC =EFAF .又AD ∥BC ,所以AB =CD .所以AB =CD .所以58=EF6.所以EF =308=154.[高考·模拟·预测]1.如右图,已知P A 、PB 是圆O 的切线,A 、B 分别为切点,C 为圆O 上不与A 、B 重合的另一点,若∠ACB =120°,则∠APB =________.解析:连结OA 、OB ,∠P AO =∠PBO =90°, ∵∠ACB =120°,∴∠AOB =120°. 又P 、A 、O 、B 四点共圆,故∠APB =60°.答案:60°2.如右图,点P 在圆O 直径AB 的延长线上,且PB =OB =2,PC切圆O 于C 点,CD ⊥AB 于D 点,则CD =________.解析:由切割线定理知,PC 2=P A ·PB ,解得PC =2 3.又OC ⊥PC ,故CD =PC ·OC PO =23×24= 3.答案: 33.如下图,圆O 和圆O ′相交于A 、B 两点,AC 是圆O ′的切线,AD 是圆O 的切线,若BC =2,AB =4,则BD =________.解析:易证△CBA ∽△ABD , 所以BC AB =ABBD ,BD =8.答案:84.如右图,点A ,B ,C 是圆O 上的点,且AB =4,∠ACB =45°,则圆O 的面积等于________.解析:根据同弧所对的圆心角是圆周角的2倍.知∠AOB =2∠ACB =90°,在Rt △OAB 中,得OA =22,即r =22,∴S =πr 2=8π.答案:8π5.如右图,已知△ABC 中,AB =AC ,D 是△ABC 外接圆劣弧AC上的点(不与点A ,C 重合),延长BD 到E .(1)求证:AD 的延长线平分∠CDE ;(2)若∠BAC =30°,△ABC 中BC 边上的高为2+3,求△ABC 外接圆的面积.解:(1)如右图,设F 为AD 延长线上一点. ∵A 、B 、C 、D 四点共圆, ∴∠CDF =∠ABC .又AB =AC ,∴∠ABC =∠ACB , 且∠ADB =∠ACB ,∴∠ADB =∠CDF . 对顶角∠EDF =∠ADB , 故∠EDF =∠CDF ,即AD的延长线平分∠CDE.(2)设O为外接圆圆心,连结AO交BC于H,则AH⊥BC. 连结OC,由题意∠OAC=∠OCA=15°,∠ACB=75°,∴∠OCH=60°.设圆半径为r,则r+32r=2+3,得r=2,外接圆面积为4π.。

2019高考数学一轮复习(文科)训练题:天天练 4 Word版含解析

2019高考数学一轮复习(文科)训练题:天天练 4 Word版含解析
2.若奇函数f(x)在[2,8]上是增函数,且最小值是2 017,则函数f(x)在[-8,-2]上是()
A.增函数且最小值是-2 017
B.增函数且最大值是-2 017
C.减函数且最大值是-2 017
D.减函数且最小值是-2 017
答案:B
解析:因为奇函数f(x)在[2,8]上是增函数,所以f(x)在[-8,-2]上也是增函数,若奇函数f(x)在[2,8]上有最小值,且f(x)min=f(2)=2 017,则f(x)在[-8,-2]上有最大值,且f(x)max=f(-2)=-f(2)=-2 017,故选B.
8.(2018·四川双流中学必得分训练)函数y=log3(x2-2x)的单调递减区间是()
A.(-∞,1) B.(-∞,0)
C.(0,+∞) D.(1,+∞)
答案:B
解析:由对数函数的定义得x2-2x>0,所以函数的定义域是(-∞,0)∪(2,+∞).因为函数u(x)=x2-2x在(-∞,1)上为减函数,结合原函数的单调性和定义域,得其单调递减区间为(-∞,0).
∴f(x)在[-2,0]上也单调递减,
∴f(x)在[-2,2]上单调递减,
又∵f(1+m)+f(m)<0⇔f(1+m)<-f(m)=f(-m),
∴1+m>-m即m>- ②
由①②可知:- <m≤1
故答案为:
三、解答题
12.设a为实数,函数f(x)=x2+|x-a|+1,x∈R.
(1)讨论f(x)的奇偶性;
二、填空题
9.设函数f(x)= 为奇函数,则a=________.
答案:-1
解析:f(x)= (x+1)(x+a)为奇函数⇔g(x)=(x+1)(x+a)为偶函数,
故g(-1)=g(1),∴a=-1.

高三基础知识天天练 数学选修4-1-2人教版

高三基础知识天天练 数学选修4-1-2人教版

选修4-1 第2节[知能演练]一、填空题1.一平面截球面产生的截面形状是________;它截圆柱面所产生的截面形状是________.答案:圆 圆或椭圆2.如下图所示,圆O 的直径AB =6,C 为圆周上一点,BC =3,过C 作圆的切线l ,过A 作l 的垂线AD ,垂足为D ,则∠DAC =________.解析:由弦切角定理,可知∠DCA =∠B =60°,又AD ⊥l ,故∠DAC =30°. 答案:30°3.一个圆的两弦相交,一条弦被分为12 cm 和18 cm 两段,另一弦被分为3∶8,则另一弦的长为________.解析:设另一弦被分的两段长分别为3k,8k (k >0), 由相交弦定理,得3k ·8k =12×18,解得k =3, 故所求弦长为3k +8k =11k =33 cm. 答案:33 cm4.已知P A 是圆O 的切线,切点为A ,P A =2,AC 是圆O 的直径,PC 与圆O 交于点B ,PB =1,则圆O 的半径R 的长为________.解析:如右图,连接AB ,∵P A 是⊙O 的切线, ∴∠P AB =∠C , 又∵∠APB =∠CP A , ∴△P AB ∽△PCA , ∴P A AC =PB AB ,即P A 2R =PBAB, ∴R =P A ·AB 2PB =2×22-122×1= 3.答案: 35.已知如下图,⊙O 和⊙O ′相交于A 、B 两点,过A 作两圆的切线分别交两圆于C 、D .若BC =2,BD =4,则AB 的长为________.解析:∵AC 、AD 分别是两圆的切线,∴∠C =∠2,,1=∠D , ∴△ACB ∽△DAB . ∴BC AB =ABBD, ∴AB 2=BC ·BD =2×4=8. ∴AB =8=22(舍去负值). 答案:2 26.如右图,已知EB 是半圆O 的直径,A 是BE 延长线上一点,AC 切半圆O 于点D ,BC ⊥AC 于点C ,DF ⊥EB 于点F ,若BC =6,AC =8,则DF =________.解析:设圆的半径为r ,AD =x , 连接OD ,得OD ⊥AC ,故AD AC =OD BC ,即x 8=r 6,故x =43r . 又由切割线定理得AD 2=AE ·AB , 即169r 2=(10-2r )×10,故r =154. 由射影定理知DF =3. 答案:3 二、解答题7.如下图,已知AP 是⊙O 的切线,P 为切点,AC 是⊙O 的割线,与⊙O 交于B ,C 两点,圆心O 在∠P AC 的内部,点M 是BC 的中点.(1)证明:A ,P ,O ,M 四点共圆;(2)求∠OAM +∠APM 的大小.(1)证明:连结OP ,OM , 因为AP 与⊙O 相切于点P , 所以OP ⊥AP .因为M 是⊙O 中弦BC 的中点,所以OM ⊥BC .于是∠OP A +∠OMA =180°,由圆心O 在∠P AC 的内部,可知四边形APOM 的对角互补,所以A ,P ,O ,M 四点共圆.(2)解:由(1),得A ,P ,O ,M 四点共圆, 所以∠OAM =∠OPM .由(1),得OP ⊥AP .由圆心O 在∠P AC 的内部,可知∠OPM +∠APM =90°,所以∠OAM +∠APM =90°. 8.如右图,梯形ABCD 内接于⊙O ,AD ∥BC ,过B 引⊙O 的切线分别交DA 、CA 的延长线于E 、F .(1)求证:AB 2=AE ·BC .(2)已知BC =8,CD =5,AF =6,求EF 的长. (1)证明:因为BE 切⊙O 于B , 所以∠ABE =∠ACB .由于AD ∥BC ,所以∠BAE =∠ABC . 所以△EAB ∽△ABC . 所以AE AB =ABBC .故AB 2=AE ·BC .(2)解:由(1),知△EAB ∽△ABC , 所以BE AC =AB BC .又AE ∥BC ,所以EF AF =BE AC .所以AB BC =EFAF .又AD ∥BC ,所以AB =CD .所以AB =CD .所以58=EF6.所以EF =308=154.[高考·模拟·预测]1.如右图,已知P A 、PB 是圆O 的切线,A 、B 分别为切点,C 为圆O 上不与A 、B 重合的另一点,若∠ACB =120°,则∠APB =________.解析:连结OA 、OB ,∠P AO =∠PBO =90°, ∵∠ACB =120°,∴∠AOB =120°. 又P 、A 、O 、B 四点共圆,故∠APB =60°.答案:60°2.如右图,点P 在圆O 直径AB 的延长线上,且PB =OB =2,PC切圆O 于C 点,CD ⊥AB 于D 点,则CD =________.解析:由切割线定理知,PC 2=P A ·PB ,解得PC =2 3.又OC ⊥PC ,故CD =PC ·OC PO =23×24= 3.答案: 33.如下图,圆O 和圆O ′相交于A 、B 两点,AC 是圆O ′的切线,AD 是圆O 的切线,若BC =2,AB =4,则BD =________.解析:易证△CBA ∽△ABD , 所以BC AB =ABBD ,BD =8.答案:84.如右图,点A ,B ,C 是圆O 上的点,且AB =4,∠ACB =45°,则圆O 的面积等于________.解析:根据同弧所对的圆心角是圆周角的2倍.知∠AOB =2∠ACB =90°,在Rt △OAB 中,得OA =22,即r =22,∴S =πr 2=8π.答案:8π5.如右图,已知△ABC 中,AB =AC ,D 是△ABC 外接圆劣弧AC上的点(不与点A ,C 重合),延长BD 到E .(1)求证:AD 的延长线平分∠CDE ;(2)若∠BAC =30°,△ABC 中BC 边上的高为2+3,求△ABC 外接圆的面积.解:(1)如右图,设F 为AD 延长线上一点. ∵A 、B 、C 、D 四点共圆, ∴∠CDF =∠ABC .又AB =AC ,∴∠ABC =∠ACB , 且∠ADB =∠ACB ,∴∠ADB =∠CDF . 对顶角∠EDF =∠ADB , 故∠EDF =∠CDF ,即AD的延长线平分∠CDE.(2)设O为外接圆圆心,连结AO交BC于H,则AH⊥BC. 连结OC,由题意∠OAC=∠OCA=15°,∠ACB=75°,∴∠OCH=60°.设圆半径为r,则r+32r=2+3,得r=2,外接圆面积为4π.。

高三基础知识天天练4-2. 数学 数学doc人教版

高三基础知识天天练4-2. 数学 数学doc人教版

第4模块 第2节[知能演练]一、选择题1.已知向量a =(2,3),b =(-1,2),若m a +n b 与a -2b 共线,则mn等于( )A .-12B .2 C.12D .-2解析:m a +n b =(2m,3m )+(-n,2n ) =(2m -n,3m +2n ),a -2b =(2,3)-(-2,4)=(4,-1). 由m a +n b 与a -2b 共线, 则有2m -n 4=3m +2n-1∴n -2m =12m +8n ,∴m n =-12.答案:A2.已知向量OM →=(3,-2),ON →=(-5,-1),则12MN →等于( )A .(8,1)B .(-8,1)C .(4,-12D .(-4,12)解析:∵OM →=(3,-2),ON →=(-5,-1), ∴12MN →=12(ON →-OM →) =12[(-5,-1)-(3,-2)] =12×(-8,1)=(-4,12). 答案:D3.在四边形ABCD 中,AB →=a +2b ,BC →=-4a -b ,CD →=-5a -3b ,其中a ,b 不共线,则四边形ABCD 是( )A .梯形B .矩形C .菱形D .正方形解析:∵AB →+BC →+CD →=a +2b -4a -b -5a -3b =-8a -2b ,∴AD →=2(-4a -b )=2BC →,∴AD →∥BC →且|AD →|=2|BC →|,故四边形是梯形. 答案:A4.平面直角坐标系中,O 为坐标原点,已知两点A (3,1),B (-1,3),若点C (x ,y )满足OC →=αOA →+βOB →,其中α、β∈R ,且α+β=1,则x ,y 满足的关系式为( )A .3x +2y -11=0B .(x -1)2+(y -1)2=5C .2x -y =0D .x +2y -5=0解析:由OC →=αOA →+βOB →, ∴(x ,y )=(3α-β,α+3β).∴⎩⎪⎨⎪⎧x =3α-β,y =α+3β.∴⎩⎨⎧α=3x +y10,β=-x +3y10.∵α+β=1,∴x +2y -5=0. 答案:D 二、填空题5.设向量a =(1,2),b =(2,3),若向量λa +b 与向量c = (-4,-7)共线,则λ=________. 解析:由题意得λa +b =(2+λ,2λ+3), 又λa +b 与c 共线,因此有(λ+2)×(-7)-(2λ+3)×(-4)=0, ∴λ=2. 答案:26.已知点A (1,-2),若向量AB →与a =(2,3)同向,|AB →|=213,则点B 的坐标为________. 解析:∵向量AB →与a 同向, ∴设AB →=(2t,3t )(t >0).由|AB →|=213,∴4t 2+9t 2=4×13.∴t 2=4. ∵t >0,∴t =2.∴AB →=(4,6). 设B 为(x ,y ), ∴⎩⎪⎨⎪⎧x -1=4,y +2=6.∴⎩⎪⎨⎪⎧x =5,y =4. 答案:(5,4) 三、解答题7.已知A (-2,4),B (3,-1),C (-3,-4). 设AB →=a ,BC →=b ,CA →=c ,且CM →=3c ,CN →=-2b , (1)求:3a +b -3c ;(2)求满足a =m b +n c 的实数m ,n . 解:由已知得a =(5,-5), b =(-6,-3),c =(1,8). (1)3a +b -3c=3(5,-5)+(-6,-3)-3(1,8)=(15-6-3,-15-3-24)=(6,-42). (2)∵m b +n c =(-6m +n ,-3m +8n ),∴⎩⎪⎨⎪⎧ -6m +n =5-3m +8n =-5,解得⎩⎪⎨⎪⎧m =-1n =-1. 8.在▱ABCD 中,A (1,1),AB →=(6,0),点M 是线段AB 的中点,线段CM 与BD 交于点P .(1)若AD →=(3,5),求点C 的坐标; (2)当|AB →|=|AD →|时,求点P 的轨迹. 解:(1)设点C 坐标为(x 0,y 0), 又AC →=AD →+AB →=(3,5)+(6,0)=(9,5), 即(x 0-1,y 0-1)=(9,5), ∴x 0=10,y 0=6,即点C (10,6). (2)由三角形相似,不难得出PC →=2MP →设P (x ,y ),则BP →=AP →-AB →=(x -1,y -1)-(6,0)=(x -7,y -1),AC →=AM →+MC →=12AB →+3MP →=12AB →+3(AP →-12AB →) =3AP →-AB →=(3(x -1),3(y -1))-(6,0) =(3x -9,3y -3),∵|AB →|=|AD →|,∴▱ABCD 为菱形,∴AC ⊥BD . ∴AC →⊥BP →,即(x -7,y -1)·(3x -9,3y -3)=0. (x -7)(3x -9)+(y -1)(3y -3)=0, ∴x 2+y 2-10x -2y +22=0(y ≠1). ∴(x -5)2+(y -1)2=4(y ≠1).故点P 的轨迹是以(5,1)为圆心,2为半径的圆去掉与直线y =1的两个交点.[高考·模拟·预测]1.已知平面向量a =(x,1),b =(-x ,x 2),则向量a +b( )A .平行于x 轴B .平行于第一、三象限的角平分线C .平行于y 轴D .平行于第一、四象限的角平分线解析:a +b =(0,1+x 2),由1+x 2≠0及向量的性质可知,C 正确.故选C. 答案:C2.在平行四边形ABCD 中,AC 为一条对角线,若AB →=(2,4),AC →=(1,3),则BD →等于( )A .(-2,-4)B .(-3,-5)C .(3,5)D .(2,4)解析:在平行四边形ABCD 中,AC →=AB →+AD →,BD →=AD →-AB →, ∴BD →=(AC →-AB →)-AB →=(1,3)-2(2,4)=(1,3)-(4,8)=(-3,-5). 答案:B3.在平行四边形ABCD 中,AC 与BD 交于点O ,E 是线段OD 的中点,AE 的延长线与CD 交于点F .若AC →=a ,BD →=b ,则AF →=( )A.14a +12bB.23a +13C.12a +14bD.13a +23b 解析:由已知得DE =13EB ,则DF =13DC ,∴CF =23CD ,∴CF →=23CD →=23(OD →-OC →)=23(12b -12a )=13b -13a , ∴AF →=AC →+CF →=a +13b -13a=23a +13b . 答案:B4.已知向量a =(3,1),b =(1,3),c =(k,7),若(a -c )∥b ,则k =________. 解析:3-k 1=-63⇒k =5.故填5.答案:55.已知向量a =(1,2),b =(-2,1),k ,t 为正实数,x =a +(t 2+1)b ,y =-1k a +1t b ,问是否存在k 、t ,使x ∥y ,若存在,求出k 的取值范围;若不存在,请说明理由.解:x =a +(t 2+1)b=(1+2)+(t 2+1)(-2,1)=(-2t 2-1,t 2+3) y =-1k a +1t b =-1k (1,2)+1t (-2,1)=(-1k -2t ,-2k +1t,假设存在正实数k ,t ,使x ∥y ,则 (-2t 2-1)(-2k +1t )-(t 2+3)(-1k -2t )=0,化简得t 2+1k +1t=0,即t 3+t +k =0,∵k ,t 是正实数,故满足上式的k ,t 不存在. ∴不存在这样的正实数k ,t ,使x ∥y .[备选精题]6.已知向量a =(sin θ,cos θ-2sin θ),b =(1,2). (1)若a ∥b ,求tan θ的值; (2)若|a |=|b |,0<θ<π,求θ的值.解:(1)因为a ∥b ,所以2sin θ=cos θ-2sin θ,于是4sin θ=cos θ,故tan θ=14.(2)由|a |=|b |知,sin 2θ+(cos θ-2sin θ)2=5,所以1-2sin2θ+4sin 2θ=5.从而-2sin2θ+2(1-cos2θ)=4,即sin2θ+cos2θ=-1,于是sin(2θ+π4)=-22.又由0<θ<π知,π4<2θ+π4<9π4,所以2θ+π4=5π4,或2θ+π4=7π4.因此θ=π2,或θ=3π4.。

高三(文科)数学天天练(4)

高三(文科)数学天天练(4)

小组 姓名 成绩1.设集合,,若,则y 的值为( )A .B .1C .D .02.设,则= 3.为了得到函数y =sin 3x ﹣cos 3x 的图象,可将函数y =sin 3x 的图象( )A .向左平移个单位 B .向右平移个单位 C .向左平移个单位 D .向右平移个单位 4.等差数列的公差和首项都不等于0,且,,成等比数列,则( )A .2B .3C .5D .75.已知向量,向量,则的最大值是 。

6、在直角坐标系xOy 中,直线l 1的参数方程为⎩⎨⎧=+-=kt y t x 24(t 为参数),直线l 2的参数方程为⎪⎩⎪⎨⎧=-=k m y m x 2(m 为参数),当k 变化时,设 l 1与l 2的交点的轨迹为曲线C . (I )以原点为极点,x 轴的非负半轴为极轴建立极坐标系,求曲线C 的极坐标方程;(II )设曲线C 上的点A 的极角为6π,射线OA 与直线022)sin(:3=-+ϕθρl )20(πϕ<<的交点为B ,且||7||OA OB =,求ϕ的值.{}2,ln A x ={},B x y ={}0AB =e e11cos()43πα-=sin 2α24π4π12π12π{}n a 2a 4a 8a 36945a a a a a ++=+)sin ,(cos θθ=a )1,1(=b b a+小组 姓名 成绩1、在等差数列}{n a 中,105531=++a a a ,99642=++a a a ,以n S 表示}{n a 的前n 项和,则使n S 达到最大值的n 是( )A .21 B .20 C .19 D .182、已知函数)0)(6sin(2)(>+=ωπωx x f 的图象与函数)2|)(|2cos()(πϕϕ<+=x x g 的图象的对称中心完全相同,则ϕ为( )A .6π B .6π- C .3πD .3π-3、设)1,1(=a ,)2,1(=b ,b a k c +=,若c a ⊥,则=k .4、函数)0()(≠++=x b xax x f 在点))1(,1(f 处的切线方程为52+=x y ,则=-b a . 5、已知向量,a b 满足()2,3a a b a =-=-,则向量b 在a 方向上的投影为 . 6、若药用昆虫的产卵数y 与一定范围内的温度x 有关,现收集了该中药用昆虫的6组观测数据如表:得:6666211111126,33,()()557,()84,66i i i i i i i i i x x y y x x y y x x ========--=-=∑∑∑∑621()3930ii y y =-=∑,线性回归模型的残差平方和为62 6.00661ˆ()236.64,3167i i y y e =-=≈∑, 1,2,3,4,5,6i =,(1)若用线性回归模型,求y 关于x 的回归方程ˆˆˆybx a =+(精确到0.1 ); (2)若用非线性回归模型求得y 关于x 的回归方程0.2103ˆ0.06xye =,且相关指数20.9952R =,试与(1)中的回归模型相比. ①用2R 说明哪种模型的拟合效果更好;②用拟合效果更好的模型预测温度为035C 时该中药用昆虫的产卵数(结果取整数).附: 121()()ˆˆˆ,()ni i i nii x x y y b a y bx x x ==--==--∑∑, 相关指数22121ˆ()()nii nii y yR y y ==-=-∑∑小组 姓名 成绩 1、已知i 为虚数单位,a R ∈,如果复数21aii i--是实数,则a 的值为 2、在边长为2的正三角形ABC ∆内任取一点P ,则使点P 到三个顶点的距离都不小于1的概率是( )A.1-BC.1- D3、已知点1(,)2a 在幂函数()(1)af x a x =-的图象上,则函数()f x 是( ) A .奇函数 B .偶函数 C .定义域内的减函数 D .定义域内的增函数 4、定义12nn p p p +++为n 个正整数12,,,n p p p 的“均倒数”,若已知数列{}n a 的前n 项的“均倒数”为15n ,又5n n a b =,则12231011111b b b b b b +++= 5、已知函数()21cos 12x xf x x +=⋅-,则()y f x =的图象大致是( )6、在中,角的对边分别为,且.(1)求的值; (2)若,且,求和的值.ABC ∆C B A 、、c b a 、、B c B a C b cos cos 4cos -=B cos 2=⋅BC BA 32=b a c小组 姓名 成绩1.“常数是2与8的等比中项”是“”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件2.已知是双曲线的一个焦点,点到的一条渐近线的距离为,则双曲线的离心率为( )A . BC D .2 3.等差数列的第四项等于( )A .3B .4C .D . 4.如图,网格纸上的小正方形的边长为1,粗线画出的是某几何体的三视图,则该几何体的表面积为( )A .B .C .D .5、若对时,不等式恒成立,则实数的取值范围是6、如图,四棱锥P ABCD -中,侧面PAB ⊥底面ABCD ,,24PA PB CD AB ===,//,CD AB 90BPA BAD ∠=∠=︒.(1)求证:PB ⊥平面PAD ;(2)若三棱锥C PBD -的体积为2,求PAD ∆的面积.m 4m =F ()2222:10,0x y C a b a b-=>>F C 2a C ()()()333log 2,log 3,log 42,x x x +3log 183log 24488π+968π+9616π+4816π+),1[+∞∈x x x m 22+≤-m。

人教A版高中数学必修四天天练(一)

人教A版高中数学必修四天天练(一)

高中数学学习材料金戈铁骑整理制作天天练(一)1.-300°化为弧度是 ( ) A.34π-B.35π- C .32π- D .65π- 2.为得到函数)32sin(π-=x y 的图象,只需将函数)62sin(π+=x y 的图像( )A .向左平移4π个单位长度B .向右平移4π个单位长度 C .向左平移2π个单位长度 D .向右平移2π个单位长度 3.若α是第一象限的角,则2α-是 ( )A .第一象限的角B .第一或第四象限的角C .第二或第三象限的角D .第二或第四象限的角4.点A(x,y)是300°角终边上异于原点的一点,则xy值为( )A.3B. - 3C.33 D. -335. 函数)32sin(π-=x y 的单调递增区间是( ) A .⎥⎦⎤⎢⎣⎡+-125,12ππππk k Z k ∈ B .⎥⎦⎤⎢⎣⎡+-1252,122ππππk k Z k ∈ C .⎥⎦⎤⎢⎣⎡+-65,6ππππk k Z k ∈ D .⎥⎦⎤⎢⎣⎡+-652,62ππππk k Z k ∈ 6已知sin α是方程06752=--x x 的根,求233sin sin tan (2)22cos cos cot()22αππαπαππααπα⎛⎫⎛⎫--⋅-⋅- ⎪ ⎪⎝⎭⎝⎭⎛⎫⎛⎫-⋅+⋅- ⎪ ⎪⎝⎭⎝⎭的值.天天练(二)1.sin(-310π)的值等于( ) A .21 B .-21C .23D .-232.在△ABC 中,若)sin()sin(C B A C B A +-=-+,则△ABC 必是( ) A .等腰三角形B .直角三角形C .等腰或直角三角形D .等腰直角三角5.已知1sin cos 3αα+=,则ααcos sin = ( )A .21 B .21- C .94 D .94- 4.比较大小,正确的是( ) A .5sin 3sin )5sin(<<- B .5sin 3sin )5sin(>>-C .5sin )5sin(3sin <-<D . 5sin )5sin(3sin >->5.终边在坐标轴上的角的集合为_________.6.已知角α的终边经过点P(-5,12),则sin α+2cos α的值为______.7.一个扇形的周长是6厘米,该扇形的中心角是1弧度,该扇形的面积是________________.8、已知4cos 5a =-,且α为第三象限角,求sin a 、αtan 的值天天练(三)1、-510°是第( )象限角。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第4模块 第1节[知能演练]一、选择题1.判断下列各命题的真假:(1)向量AB →的长度与向量BA →的长度相等;(2)向量a 与b 平行,则a 与b 的方向相同或相反; (3)两个有共同起点而且相等的向量,其终点必相同; (4)两个有公共终点的向量,一定是共线向量;(5)向量AB →与向量CD →是共线向量,则点A 、B 、C 、D 必在同一条直线上; (6)有向线段就是向量,向量就是有向线段. 其中假命题的个数为( )A .2B .3C .4D .5解析:(1)真命题;(2)假命题,若a 与b 中有一个为零向量时,其方向是不确定的;(3)真命题;(4)假命题,终点相同并不能说明这两个向量的方向相同或相反;(5)假命题,共线向量所在直线可以重合、可以平行;(6)假命题,向量可用有向线段来表示,但并不是有向线段.答案:C2.若四边形ABCD 是正方形,E 是DC 边的中点,且AB →=a ,AD →=b ,则BE →等于( )A .b +12aB .b -12aC .a +12bD .a -12b解析:BE →=BC →+CE →=b +(-12a )=b -12a .答案:B3.已知△ABC 中,点D 在BC 边上,且CD →=2DB →,若CD →= rAB →+sAC →,则r +s 的值是( )A.23B .0C.43D .-3解析:在△ABC 中,CD →=23CB →=23(AB →-AC →)=23AB →-23AC →,故r +s =0. 答案:B4.平行四边形ABCD 中,O 为AC 与BD 的交点,点E 在BC 上,且BE →=2EC →,设AB →=a ,AD →=b ,则OE →为( )A.32a +76b B.12a +16b C.12a -16bD.12a +23b 解析:如右图.由向量的运算法则得OE →=OC →+CE →=12AC →+13DA →=12(a +b )-13b =12a +16b ,故选B.答案:B 二、填空题5.△ABC 中,BD →=12DC →,AE →=3ED →,若AB →=a ,AC →=b ,则BE →=________.解析:依题意有BE →=BD →+DE →=BD →+14DA →=BD →+14(BA →-BD →)=34BD →+14BA →=34×13BC →+14BA →=14(b -a )+14(-a )=-12a +14b .答案:-12a +14b6.如下图所示,两块斜边长相等的直角三角板并在一起,若AD →=xAB →+yAC →,则x =________,y =________.解析:以A 为原点,AB 所在直线为x 轴建立直角坐标系,设AB →=(1,0),AC →=(0,1),则|BC →|=2,∴|BD →|=2×sin60°=62.由题意有AD →=(x ,y ),∴x =1+62cos45°=1+32,y =62sin45°=32.故x =1+32,y=32. 答案:1+32,32三、解答题7.在△AOB 中,C 是AB 边上的一点,且BC CA =λ(λ>0),若OA →=a ,OB →=b .(1)当λ=1时,用a ,b 表示OC →; (2)用a ,b 表示OC →.解:(1)当λ=1时,OC →=12(OA →+OB →)=12a +12b .(2)OC →=OB →+BC →,BA →=OA →-OB →=a -b , 因为BCCA =λ,BC =λCA ,BA =BC +CA ,BA =(λ+1)·CA ,BC =λ1+λBA .所以BC →=λ1+λBA →,即OC →=OB →+λ1+λBA →=b +λ1+λ(a -b )=λa +b 1+λ.8.如下图,点O 是梯形ABCD 对角线的交点,|AD |=4,|BC |=6,|AB |=2. 设与BC →同向的单位向量为a 0,与BA →同向的单位向量为b 0.(1)用a 0和b 0表示AC →,CD →和OA →;(2)若点P 在梯形ABCD 所在的平面上运动,且|CP →|=2,求|BP →|的最大值和最小值. 解:(1)由题意知BC →=6a 0,BA →=2b 0,∴AC →=BC →-BA →=6a 0-2b 0; ∵AD →∥BC →,∴AD →=4a 0,则CD →=CA →+AD →=2b 0-6a 0+4a 0=2b 0-2a 0; 过C 点作CM ∥BD ,易知四边形BCMD 是平行四边形.则|AO ||AD |=|AC ||AM |,即|AO |4=|6a 0-2b 0|10, 得OA →=45b 0-125a 0.(2)BP →=BC →+CP →,BP →2=(BC →+CP →)2=BC →·BC →+CP →·CP →+2BC →·CP →,即|BP →|2=|BC →|2+|CP →|2+2|BC →|·|CP →|·cos 〈BC →,CP →〉=62+22+2·6·2cos 〈BC →,CP →〉=40+24cos 〈BC →,CP →〉.∵cos 〈BC →,CP →〉∈[-1,1],∴当cos 〈BC →,CP →〉=1时,|BP →|max =8. 当cos 〈BC →,CP →〉=-1时,|BP →|min =4.[高考·模拟·预测]1.已知向量a ,b 不共线,c =k a +b (k ∈R ),d =a -b .如果c ∥d ,那么( )A .k =1且c 与d 同向B .k =1且c 与d 反向C .k =-1且c 与d 同向D .k =-1且c 与d 反向解析:由c ∥d ,则存在λ使c =λd ,即k a +b =λa -λb , ∴(k -1)a +(λ+1)b =0.又a 与b 不共线, ∴k -λ=0,且λ+1=0.∴k =-1.此时c =-a +b =-(a -b )=-d . 故c 与d 反向,选D. 答案:D2.已知非零向量AB →与AC →满足⎝ ⎛⎭⎪⎫AB →|AB →|+AC →|AC →|·BC →=0,且AB →|AB →|·AC →|AC →|=12,则△ABC 的形状是 ( )A .三边均不相等的三角形B .直角三角形C .等腰(非等边)三角形D .等边三角形解析:由⎝ ⎛⎭⎪⎫AB →|AB →|+AC →|AC →|·BC →=0,得∠BAC 的平分线垂直于BC . ∴AB =AC .而AB →|AB →|·AC →|AC →|=cos 〈AB →,AC →〉=12,又〈AB →,AC →〉∈[0°,180°],∴∠BAC =60°.故△ABC 为正三角形,选D. 答案:D3.在四边形ABCD 中,AB →=DC →=(1,1),1|BA →|BA →+1|BC →|BC →=3|BD →|BD →,则四边形ABCD的面积为________.解析:由于AB →=DC →=(1,1),则四边形ABCD 是平行四边形且|AB →|=2,又由1|BA →|BA →+1|BC →|BC →=3|BD →|BD →,得BC 、CD (BA )与BD 三者之间的边长之比为1∶1∶3,那么可知∠DAB =120°,所以AB 边上的高为62.所以四边形ABCD 的面积为2×62= 3. 答案: 34.已知向量集合M ={a |a =(1,2)+λ(3,4),λ∈R },N ={b |b =(-2,-2)+λ(4,5),λ∈R },则M ∩N =________.解析:由(1,2)+λ1(3,4)=(-2,-2)+λ2(4,5),得⎩⎪⎨⎪⎧1+3λ1=-2+4λ22+4λ1=-2+5λ2, 解得⎩⎪⎨⎪⎧λ1=-1λ2=0,∴M ∩N ={(-2,-2)}.答案:{(-2,-2)}5. O 是平面上一点,A ,B ,C 是平面上不共线三点,动点P 满足OP →=OA →+λ(AB →+AC →),λ=12时,则P A →·(PB →+PC →)的值为________. 解析:由OP →=OA →+λ(AB →+AC →),λ=12,得AP →=12(AB →+AC →),即P 为△ABC 中BC 边的中点.∴PB →+PC →=0.∴P A →·(PB →+PC →)=P A →·0=0. 答案:06.若a ,b 是两个不共线的非零向量,t ∈R .(1)若a ,b 起点相同,t 为何值时,a ,t b ,13(a +b )三向量的终点在一直线上?(2)若|a |=|b |且a 与b 夹角为60°,t 为何值时,|a -t b |的值最小? 解:(1)设a -t b =m [a -13(a +b )],m ∈R ,化简得(23m -1)a =(m3-t )b ,∵a 与b 不共线,∴⎩⎨⎧ 23m -1=0m3-t =0⇒⎩⎨⎧m =32,t =12.∴t =12时,a ,t b ,13(a +b )的终点在一直线上.(2)|a -t b |2=(a -t b )2 =|a |2+t 2|b |2-2t |a ||b |cos60° =(1+t 2-t )|a |2.∴当t =12时,|a -t b |有最小值32|a |.。

相关文档
最新文档