高中数学计算基础练习

合集下载

高中数学练习题基础

高中数学练习题基础

高中数学练习题基础一、集合与函数(1) A = {x | x是小于5的自然数}(2) B = {x | x² 3x + 2 = 0}(1) 若A∩B = ∅,则A∪B = A(2) 对于任意实数集R,有R⊆R(1) f(x) = √(x² 5x + 6)(2) g(x) = 1 / (x² 4)(1) f(x) = x³ 3x(2) g(x) = |x| 2二、三角函数(1) sin 45°(2) cos 60°(3) tan 30°2. 已知sin α = 1/2,α为第二象限角,求cos α的值。

(1) y = sin(2x + π/3)(2) y = cos(3x π/4)三、数列(1) an = n² + 1(2) bn = 2^n 1(1) 2, 4, 8, 16, 32, …(2) 1, 3, 6, 10, 15, …(1) 1, 4, 9, 16, 25, …四、平面向量1. 已知向量a = (2, 3),求向量a的模。

2. 计算向量a = (4, 5)与向量b = (3, 2)的数量积。

(1) a = (2, 1),b = (4, 2)(2) a = (1, 3),b = (2, 1)五、平面解析几何(1) 经过点(2, 3)且斜率为2的直线(2) 经过点(1, 3)且垂直于x轴的直线(1) 圆心在原点,半径为3的圆(2) 圆心在点(2, 1),半径为√5的圆(1) 点(1, 2)到直线y = 3x 1的距离(2) 点(2, 3)到直线2x + 4y + 6 = 0的距离六、立体几何(1) 正方体边长为2(2) 长方体长、宽、高分别为3、4、52. 已知正四面体棱长为a,求其体积。

(1) 正方体A边长为2,正方体B边长为4(2) 长方体A长、宽、高分别为3、4、5,长方体B长、宽、高分别为6、8、10七、概率与统计1. 抛掷一枚硬币10次,求恰好出现5次正面的概率。

(完整word版)高中数学计算题专项练习一(3)

(完整word版)高中数学计算题专项练习一(3)

高中数学计算题专项练习一高中数学计算题专项练习一一.解答题(共30小题)1.(Ⅰ)求值:;(Ⅰ)解关于x的方程.2.(1)若=3,求的值;(2)计算的值.3.已知,b=(log43+log83)(log32+log92),求a+2b的值.4.化简或计算:(1)()﹣[3×()0]﹣1﹣[81﹣0.25+(3)]﹣10×0.027;(2).5.计算的值.6.求下列各式的值.(1)(2)已知x+x﹣1=3,求式子x2+x﹣2的值.7.(文)(1)若﹣2x2+5x﹣2>0,化简:(2)求关于x的不等式(k2﹣2k+)x<(k2﹣2k+)1ˉx的解集.8.化简或求值:(1)3a b(﹣4a b)÷(﹣3a b);(2).9.计算:(1);(2)(lg8+lg1000)lg5+3(lg2)2+lg6﹣1+lg0.006.10.计算(1)(2).11.计算(1)(2).12.解方程:log2(x﹣3)﹣=2.13.计算下列各式(Ⅰ)lg24﹣(lg3+lg4)+lg5(Ⅰ).14.求下列各式的值:(1)(2).15.(1)计算(2)若xlog34=1,求4x+4﹣x的值.16.求值:.17.计算下列各式的值(1)0.064﹣(﹣)0+160.75+0.25(2)lg25+lg5•lg4+lg22.18.求值:+.19.(1)已知a>b>1且,求log a b﹣log b a的值.(2)求的值.20.计算(1)(2)(lg5)2+lg2×lg50 21.不用计算器计算:.22.计算下列各题(1);(2).23.解下列方程:(1)lg(x﹣1)+lg(x﹣2)=lg(x+2);(2)2•(log3x)2﹣log3x﹣1=0.24.求值:(1)(2)2log525﹣3log264.25.化简、求值下列各式:(1)•(﹣3)÷;(2)(注:lg2+lg5=1).26.计算下列各式(1);(2).27.(1)计算;(2)设log23=a,用a表示log49﹣3log26.28.计算下列各题:(1);(2)lg25+lg2lg50.29.计算:(1)lg25+lg2•lg50;(2)30++32×34﹣(32)3.30.(1)计算:;(2)解关于x的方程:.高中数学计算题专项练习一参考答案与试题解析一.解答题(共30小题)1.(Ⅰ)求值:;(Ⅰ)解关于x的方程.考点:有理数指数幂的化简求值.专题:计算题.分析:(Ⅰ)利用对数与指数的运算法则,化简求值即可.(Ⅰ)先利用换元法把问题转化为二次方程的求解,解方程后,再代入换元过程即可.解答:(本小题满分13分)解:(Ⅰ)原式=﹣1++log2=﹣1﹣1+23=﹣1+8+=10.…(6分)(Ⅰ)设t=log2x,则原方程可化为t2﹣2t﹣3=0…(8分)即(t﹣3)(t+1)=0,解得t=3或t=﹣1…(10分)Ⅰlog2x=3或log2x=﹣1Ⅰx=8或x=…(13分)点评:本题考查有理指数幂的化简求值以及换元法解方程,是基础题.要求对基础知识熟练掌握.2.(1)若=3,求的值;(2)计算的值.考点:有理数指数幂的化简求值.专题:计算题.分析:(1)利用已知表达式,通过平方和与立方差公式,求出所求表达式的分子与分母的值,即可求解.(2)直接利用指数与对数的运算性质求解即可.解答:解:(1)因为=3,所以x+x﹣1=7,所以x2+x﹣2=47,=()(x+x﹣1﹣1)=3×(7﹣1)=18.所以==.(2)=3﹣3log22+(4﹣2)×=.故所求结果分别为:,点评:本题考查有理数指数幂的化简求值,立方差公式的应用,考查计算能力.3.已知,b=(log43+log83)(log32+log92),求a+2b的值.考点:有理数指数幂的化简求值;对数的运算性质.专题:计算题.分析:直接利用有理指数幂的运算求出a,对数运算法则求出b,然后求解a+2b的值解答:解:==.b=(log43+log83)(log32+log92)=(log23+log23)(log32+log32)==,Ⅰ,,Ⅰa+2b=3.点评:本题考查指数与对数的运算法则的应用,考查计算能力.4.化简或计算:(1)()﹣[3×()0]﹣1﹣[81﹣0.25+(3)]﹣10×0.027;(2).考点:有理数指数幂的化简求值.专题:计算题.分析:根据有理数指数幂的运算法则进行化简求值即可.解答:解:(1)原式=﹣(3×1)﹣1﹣﹣10×=﹣﹣1﹣3=﹣1.(2)原式=+﹣2=+﹣2=﹣2+﹣2.点评:本题考查有理数指数幂的运算法则,考查学生的运算能力,属基础题,熟记有关运算法则是解决问题的基础.5.计算的值.考点:有理数指数幂的化简求值.专题:计算题.分析:根据分数指数幂运算法则进行化简即可.解答:解:原式===.点评:本题主要考查用分数指数幂的运算法则进行化简,要求熟练掌握分数指数幂的运算法则.6.求下列各式的值.(1)(2)已知x+x﹣1=3,求式子x2+x﹣2的值.考点:有理数指数幂的化简求值.专题:计算题.分析:(1)直接利用有理指数幂的运算性质和对数的运算性质化简求值.(2)把已知的等式两边平方即可求得x2+x﹣2的值.解答:解:(1)==;(2)由x+x﹣1=3,两边平方得x2+2+x﹣2=9,所以x2+x﹣2=7.点评:本题考查了有理指数幂的化简求值,考查了对数的运算性质,是基础的计算题.7.(文)(1)若﹣2x2+5x﹣2>0,化简:(2)求关于x的不等式(k2﹣2k+)x<(k2﹣2k+)1ˉx的解集.考点:指数函数的单调性与特殊点;方根与根式及根式的化简运算.专题:计算题;转化思想.分析:(1)由﹣2x2+5x﹣2>0,解出x的取值范围,判断根号下与绝对值中数的符号,进行化简.(2)先判断底数的取值范围,由于底数大于1,根据指数函数的单调性将不等式进行转化一次不等式,求解即可.解答:解:(1)Ⅰ﹣2x2+5x﹣2>0Ⅰ,Ⅰ原式===(8分)(2)Ⅰ,Ⅰ原不等式等价于x<1﹣x,Ⅰ此不等式的解集为(12分)点评:本题考查指数函数的单调性与特殊点,求解本题的关键是判断底数的符号,以确定函数的单调性,熟练掌握指数函数的单调性是正确转化的根本.8.化简或求值:(1)3a b(﹣4a b)÷(﹣3a b);(2).考点:对数的运算性质;有理数指数幂的化简求值.专题:计算题.分析:(1)利用分数指数幂的运算法则即可得出;(2)利用对数的运算法则和lg2+lg5=1即可得出.解答:解:(1)原式==4a.(2)原式=+50×1=lg102+50=52.点评:本题考查了分数指数幂的运算法则、对数的运算法则和lg2+lg5=1等基础知识与基本技能方法,属于基础题.9.计算:(1);(2)(lg8+lg1000)lg5+3(lg2)2+lg6﹣1+lg0.006.考点:对数的运算性质;有理数指数幂的化简求值.专题:计算题.分析:(1)先将每一个数化简为最简分数指数幂的形式,再利用运算性质化简.(2)先将每一个对数式化简,再利用对数运算性质化简.解答:解:(1)===﹣45;(2)(lg8+lg1000)lg5+3(lg2)2+lg6﹣1+lg0.006=(3lg2+3)•lg5+3(lg2)2﹣lg6+(lg6﹣3)=3lg2•lg5+3lg5+3(lg2)2﹣3=3lg2(lg5+lg2)+3lg5﹣3=3lg2+3lg5﹣3=3﹣3=0.点评:本题考察运算性质,做这类题目最关键的是平时练习时要细心、耐心、不怕麻烦,考场上才能熟练应对!10.计算(1)(2).考点:对数的运算性质;有理数指数幂的化简求值.专题:函数的性质及应用.分析:(1)利用指数幂的运算性质即可得出;(2)利用对数函数的运算性质即可得出.解答:解:(1)原式=|2﹣e|﹣+﹣=e﹣2﹣+=e﹣2﹣e+=﹣2.(2)原式=+3=﹣4+3=2﹣4+3=1.点评:熟练掌握指数幂的运算性质、对数函数的运算性质是解题的关键.11.计算(1)(2).考点:对数的运算性质;有理数指数幂的运算性质.专题:计算题.分析:(1)直接利用对数的运算法则求解即可.(2)直接利用有理指数幂的运算法则求解即可.解答:解:(1)==(2)==9×8﹣27﹣1=44.点评:本题考查对数的运算法则、有理指数幂的运算法则的应用,考查计算能力.12.解方程:log2(x﹣3)﹣=2.考点:对数的运算性质.专题:计算题.分析:由已知中log2(x﹣3)﹣=2,由对数的运算性质,我们可得x2﹣3x﹣4=0,解方程后,检验即可得到答案.解答:解:若log2(x﹣3)﹣=2.则x2﹣3x﹣4=0,…(4分)解得x=4,或x=﹣1(5分)经检验:方程的解为x=4.…(6分)点评:本题考查的知识点是对数的运算性质,其中利用对数的运算性质,将已知中的方程转化为整式方程是解答醒的关键,解答时,易忽略对数的真数部分大于0,而错解为4,或﹣1.13.计算下列各式(Ⅰ)lg24﹣(lg3+lg4)+lg5(Ⅰ).考点:对数的运算性质;根式与分数指数幂的互化及其化简运算.专题:计算题.分析:(Ⅰ)利用对数的运算的性质可得结果;(Ⅰ)利用指数幂的运算性质可得结果;解答:解:(Ⅰ)lg24﹣(lg3+lg4)+lg5=lg24﹣lg12+lg5=lg=lg10=1;(Ⅰ)=×+﹣﹣1=32×23+3﹣2﹣1=72.点评:本题考查对数的运算性质、指数幂的运算性质,考查学生的运算能力,属基础题.14.求下列各式的值:(1)(2).考点:对数的运算性质;有理数指数幂的化简求值.专题:计算题.分析:根据对数和指数的运算法则进行求解即可.解答:解:(1)原式==log﹣9=log39﹣9=2﹣9=﹣7.(2)原式=== =.点评:本题主要考查对数和指数幂的计算,要求熟练掌握对数和指数幂的运算法则.15.(1)计算(2)若xlog34=1,求4x+4﹣x的值.考点:对数的运算性质;根式与分数指数幂的互化及其化简运算.分析:(1)利用指数幂的运算性质即可;(2)利用指数式和对数式的互化和运算性质即可.解答:解:(1)原式===3.(2)由xlog34=1,得x=log43,Ⅰ4x=3,,Ⅰ4x+4﹣x==.点评:熟练掌握对数和指数幂的运算性质是解题的关键.16.求值:.考点:对数的运算性质;有理数指数幂的化简求值.专题:计算题.分析:根据有理数指数幂的定义,及对数的运算性质,即可求出的值.解答:解:原式…(4分)…(3分)=…(1分)点评:本题考查的知识点是对数的运算性质,有理数指数幂的化简求值,其中掌握指数的运算性质和对数的运算性质,是解答本题的关键.17.计算下列各式的值(1)0.064﹣(﹣)0+160.75+0.25(2)lg25+lg5•lg4+lg22.考点:对数的运算性质;有理数指数幂的化简求值.专题:计算题.分析:(1)利用指数幂的运算性质可求;(2)利用对数运算性质可求;解答:解:(1)原式==0.4﹣1+8+=;(2)原式=lg25+2lg5•lg2+lg22=(lg5+lg2)2=(lg10)2=1点评:本题考查对数的运算性质、有理数指数幂的运算,属基础题,熟记有关运算性质是解题基础.18.求值:+.考点:对数的运算性质;有理数指数幂的化简求值.专题:计算题.分析:直接利用对数的运算法则,求出表达式的值即可.解答:解:原式==3+9+2000+1=2013.点评:本题考查对数的运算法则的应用,基本知识的考查.19.(1)已知a>b>1且,求log a b﹣log b a的值.(2)求的值.考点:对数的运算性质.专题:计算题.分析:(1)通过a>b>1利用,平方,然后配出log a b﹣log b a的表达式,求解即可.(2)直接利用对数的运算性质求解的值解答:解:(1)因为a>b>1,,所以,可得,a>b>1,所以log a b﹣log b a<0.所以log a b﹣log b a=﹣(2)==﹣4.点评:本题考查对数与指数的运算性质的应用,整体思想的应用,考查计算能力.20.计算(1)(2)(lg5)2+lg2×lg50考点:对数的运算性质;根式与分数指数幂的互化及其化简运算;有理数指数幂的化简求值.专题:计算题.分析:(1)把根式转化成指数式,然后利用分数指数幂的运算法则进行计算.(2)先把lg50转化成lg5+1,然后利用对数的运算法则进行计算.解答:解:(1)===(6分)(2)(lg5)2+lg2×lg50=(lg5)2+lg2×(lg5+lg10)=(lg5)2+lg2×lg5+lg2=lg5(lg5+lg2)+lg2=lg5+lg2=1(12分)点评:本题考查对数的运算法则和根式与分数指数幂的互化,解题时要注意合理地进行等价转化.21.不用计算器计算:.考点:对数的运算性质.专题:计算题.分析:,lg25+lg4=lg100=2,,(﹣9.8)0=1,由此可以求出的值.解答:解:原式=(4分)=(8分)=(12分)点评:本题考查对数的运算性质,解题时要认真审题,注意公式的灵活运用.22.计算下列各题(1);(2).考点:对数的运算性质.专题:计算题.分析:(1)直接利用对数的运算性质求解表达式的值.(2)利用指数的运算性质求解表达式的值即可.解答:解:(1)==9+﹣1=(2)===﹣45.点评:本题考查指数与对数的运算性质的应用,考查计算能力.23.解下列方程:(1)lg(x﹣1)+lg(x﹣2)=lg(x+2);(2)2•(log3x)2﹣log3x﹣1=0.考点:对数的运算性质.专题:计算题.分析:(1)先根据对数运算性质求出x,再根据对数的真数一定大于0检验即可.(2)设log3x=y,得出2y2﹣y﹣1=0,求出y的值,再由对数的定义求出x的值即可.解答:解:(1)原方程可化为lg(x﹣1)(x﹣2)=lg(x+2)所以(x﹣1)(x﹣2)=x+2即x2﹣4x=0,解得x=0或x=4经检验,x=0是增解,x=4是原方程的解.所以原方程的解为x=4(2)设log3x=y,代入原方程得2y2﹣y﹣1=0.解得y1=1,.log3x=1,得x1=3;由,得.经检验,x1=3,都是原方程的解.点评:本题主要考查对数的运算性质和对数函数的定义域问题.属基础题.24.求值:(1)(2)2log525﹣3log264.考点:对数的运算性质;有理数指数幂的化简求值.专题:计算题.分析:(1)首先变根式为分数指数幂,然后拆开运算即可.(2)直接利用对数式的运算性质化简求值.解答:解:(1)====.(2)2log525﹣3log264==4﹣3×6=﹣14.点评:本题考查了对数式的运算性质,考查了有理指数幂的化简求值,解答的关键是熟记有关性质,是基础题.25.化简、求值下列各式:(1)•(﹣3)÷;(2)(注:lg2+lg5=1).考点:对数的运算性质;有理数指数幂的化简求值.专题:计算题.分析:(1)利用指数幂的运算性质化简即可;(2)利用对数的运算性质化简即可.解答:解:(1)原式=﹣b﹣3÷(4)…..3分=﹣…..7分(2)解原式=…..2分=…..4分=…..6分=….7分.点评:本题考查对数的运算性质,考查有理数指数幂的化简求值,熟练掌握其运算性质是化简的基础,属于基础题.26.计算下列各式(1);(2).考点:对数的运算性质;有理数指数幂的化简求值.专题:计算题.分析:(1)利用指数幂的运算法则即可得出;(2)利用对数的运算法则和换底公式即可得出.解答:解:(1)原式=﹣1﹣+=.(2)原式=+lg(25×4)+2+1==.点评:本题考查了指数幂的运算法则、对数的运算法则和换底公式,属于基础题.27.(1)计算;(2)设log23=a,用a表示log49﹣3log26.考点:对数的运算性质;根式与分数指数幂的互化及其化简运算.专题:计算题.分析:(1)把第一、三项的底数写成平方、立方的形式即变成幂的乘方运算,第二项不等于0根据零指数的法则等于1,化简求值即可;(2)把第一项利用换底公式换成以2为底的对数,第二项利用对数函数的运算性质化简,log23整体换成a即可.解答:解:(1)原式=+1+=+1+=4;(2)原式=﹣3log22×3=log23﹣3(1+log23)=a﹣3(1+a)=﹣2a﹣3.点评:本题是一道计算题,要求学生会进行根式与分数指数幂的互化及其运算,会利用换底公式及对数的运算性质化简求值.做题时注意底数变乘方要用到一些技巧.28.计算下列各题:(1);(2)lg25+lg2lg50.考点:对数的运算性质;有理数指数幂的化简求值.专题:计算题.分析:(1)利用指数的运算法则,直接求解表达式的值即可.(2)利用对数的运算性质,直接化简求解即可.解答:解:(1)原式===.(5分)(2)原式lg25+lg2lg50=lg25+2lg2lg5+lg25=(lg2+lg5)2=1 (5分)点评:本题考查对数的运算性质,有理数指数幂的化简求值,考查计算能力.29.计算:(1)lg25+lg2•lg50;(2)30++32×34﹣(32)3.考点:对数的运算性质;有理数指数幂的化简求值.专题:计算题;函数的性质及应用.分析:(1)直接利用对数的运算性质即可求解(2)直接根据指数的运算性质即可求解解答:解:(1)原式=lg25+lg2(1+lg5)=lg25+lg2lg5+lg2=lg5(lg5+lg2)+lg2=lg5+lg2=1(2)原式=1+3+36﹣36=4.…(14分)点评:本题主要考查了对数的运算性质及指数的运算性质的简单应,属于基础试题30.(1)计算:;(2)解关于x的方程:.考点:对数的运算性质;有理数指数幂的运算性质;有理数指数幂的化简求值;函数的零点.专题:计算题.分析:(1)根据分数指数幂运算法则进行化简即可.(2)利用对数函数的性质和对数的运算法则进行计算即可.解答:解:(1)原式==﹣3;(2)原方程化为log5(x+1)+log5(x﹣3)=log55,从而(x+1)(x﹣3)=5,解得x=﹣2或x=4,经检验,x=﹣2不合题意,故方程的解为x=4.点评:本题主要考查分数指数幂和对数的运算,要求熟练掌握分数指数幂和对数的运算法则.。

高中数学二项式定理基础练习题

高中数学二项式定理基础练习题

高中数学二项式定理基础练习题1.在展开式(x-3)^10中,x^6的系数为9C10.2.若(x-1)^n展开式的第4项为含x^3的项,则n等于8.3.在展开式(x^2-2x)^9中,x^9的系数是-252.4.在展开式(1/3x - 1)^12中,常数项为-2205/2.5.若(x^3 + 1/x)^n的展开式中的常数项为84,则n=6.6.已知在展开式(1/x^2 - 1/2x)^n中,第9项为常数项,则n的值为8.展开式中x^5的系数为-1260.7.(1-x)^13的展开式中系数最小的项是第7项。

8.在展开式(1-x^3)(1+x)^10中,x^5的系数为-297.9.若(x+3y)^n展开式的系数和等于(7a+b)^10展开式中的二项式系数之和,则n的值为15.10.在展开式(1/3x - 1)^4中,常数项为1/81.11.在二项式展开式(a-b)^10中,系数最小项是C^10_5.12.设(1+x)+(1+x)^2+(1+x)^3+…+(1+x)^n=a+a1x+a2x^2+…+anx^n,当a+a1+a2+…+an=254时,求n的值为6.13.在二项式展开式(1-2x)^6中,所有项的系数之和为0.14.(1-x)^10的展开式中,中间项是第6项,为C^10_5 *x^5.其余各项的系数和为0,因为展开式中x的次数总和为10,而每个二项式都有一个正次幂和一个负次幂,相加后系数和为0.展开式中系数最大的项是第1项,为1.15.已知(1-2x+3x^2)^7=a+a1x+a2x^2+…+a13x^13+a14x^14,则a1+a2+…+a14=0,因为展开式中x的次数总和为14,而每个二项式都有一个正次幂和一个负次幂,相加后系数和为0.a1+a3+a5+…+a13=C^7_1 * (-2)^1 + C^7_3 * (-2)^3 +C^7_5 * (-2)^5 + C^7_7 * (-2)^7 = -1120.a1+a2+…+a14=C^7_0 * 1 + C^7_1 * (-2) + C^7_2 * 3 + …+ C^7_14 * (-2)^7 = -2187.。

高二数学基础题练习题大全

高二数学基础题练习题大全

高二数学基础题练习题大全在高中数学学习过程中,基础是非常重要的。

高二是数学知识进一步深化和拓展的阶段,因此,掌握基础题是非常重要的。

本文将提供一些适用于高二学生的数学基础题练习题大全,供同学们进行复习和巩固。

一、函数与方程1. 求方程的解:求解方程2x + 3 = 11的解。

2. 函数的求值:已知函数y = 2x + 1,求当x = 3时,函数的值y为多少?3. 二次方程的求解:解方程x^2 - 2x - 3 = 0。

4. 函数的图像:画出函数f(x) = x^2 - 2x + 1的图像,并指出其顶点和对称轴。

5. 求方程组的解:求解方程组{2x + y = 5,x - y = 1}的解。

二、数列与级数1. 等差数列:已知数列{an}的首项为a1 = 2,公差d = 3,求第10项an的值。

2. 等比数列:已知数列{bn}的首项b1 = 0.5,公比q = 2,求第5项bn的值。

3. 数列求和:已知等差数列{sn}的前n项和为Sn = 3n^2 - 2n,求第10项s10的值。

4. 级数求和:已知等比数列{an}的前n项和为Sn = 5(1 - 2^n),求前10项的和S10的值。

5. 递归数列:已知数列{cn}满足c1 = 2,cn = 2cn-1 - 1,求第5项c5的值。

三、几何图形与空间几何1. 三角形性质:已知三角形ABC,AB = 3,AC = 4,BC = 5,判断三角形ABC的形状。

2. 圆的性质:已知半径r = 2的圆O,求圆O的周长和面积。

3. 直角三角形:已知直角三角形ABC,∠C = 90°,AB = 3,BC = 4,求斜边AC的长度。

4. 空间直线与平面:已知直线l过点A(1, 2, 3)且与平面P:x + 2y - z= 5平行,求直线l的方程。

5. 空间几何体积:已知正方体的体积为27,求正方体的边长。

四、概率与统计1. 概率计算:有一只装有红、蓝、黄三种颜色球的袋子,红球2个,蓝球3个,黄球5个,从袋子中随机抽取一个球,求抽到红球的概率。

高中基础数学题练习册刷题

高中基础数学题练习册刷题

高中基础数学题练习册刷题【练习一:代数基础】1. 计算下列表达式的值:(a) \( 3x^2 - 5x + 2 \) 当 \( x = 2 \)(b) \( \frac{2}{x} + 3x \) 当 \( x = -1 \)2. 解以下方程:(a) \( 2x + 5 = 11 \)(b) \( 3x^2 - 4x - 5 = 0 \)3. 简化下列表达式:(a) \( \frac{3x^2 - 6x}{x - 2} \)(b) \( \frac{4x^3 + 16x}{4x} \)【练习二:几何基础】1. 已知三角形ABC中,AB = 5cm,AC = 7cm,BC = 6cm,求角A的余弦值。

2. 圆的半径为10cm,求圆的周长和面积。

3. 已知点A(2, 3)和点B(-1, 5),求直线AB的斜率和方程。

【练习三:函数与图像】1. 已知函数 \( y = 2x - 3 \),求其图像与x轴的交点坐标。

2. 函数 \( f(x) = x^2 + 2x + 1 \) 的图像是否关于y轴对称?为什么?3. 画出函数 \( y = |x| \) 的图像,并解释其特点。

【练习四:概率与统计】1. 一个袋子里有5个红球和3个蓝球,随机抽取一个球,求抽到红球的概率。

2. 掷一枚均匀的硬币两次,求至少一次正面朝上的概率。

3. 一个班级有30名学生,其中10名男生和20名女生。

随机选择一名学生,求选中女生的概率。

【练习五:综合应用】1. 一个长方形的长是宽的两倍,如果周长是24cm,求长方形的长和宽。

2. 一个工厂每天生产100个产品,其中5%是次品。

如果随机抽取5个产品进行检查,求至少有1个次品的概率。

3. 一个圆内接一个等边三角形,求这个三角形的边长,如果圆的半径是6cm。

结束语:通过上述练习,同学们可以加深对高中数学基础概念的理解和应用。

希望这些练习能够帮助大家巩固知识点,提高解题能力。

数学是一门需要不断练习的学科,希望大家能够持之以恒,不断进步。

高中数学计算题专项练习一

高中数学计算题专项练习一

高中数学计算题专项练习一高中数学计算题专项练习一一.解答题(共30小题)1.(Ⅰ)求值:;(Ⅱ)解关于x的方程.2.(1)若=3,求的值;(2)计算的值.3.已知,b=(log43+log83)(log32+log92),求a+2b 的值.4.化简或计算:(1)()﹣[3×()0]﹣1﹣[81﹣0.25+(3)]﹣10×0.027;(2).5.计算的值.6.求下列各式的值.(1)(2)已知x+x﹣1=3,求式子x2+x﹣2的值.7.(文)(1)若﹣2x2+5x﹣2>0,化简:(2)求关于x的不等式(k2﹣2k+)x<(k2﹣2k+)1ˉx的解集.8.化简或求值:(1)3a b(﹣4a b)÷(﹣3a b);(2).9.计算:(1);(2)(lg8+lg1000)lg5+3(lg2)2+lg6﹣1+lg0.006.10.计算(1)(2).11.计算(1)(2).12.解方程:log 2(x﹣3)﹣=2.13.计算下列各式(Ⅰ)lg24﹣(lg3+lg4)+lg5(Ⅱ).14.求下列各式的值:(1)(2).15.(1)计算(2)若xlog34=1,求4x+4﹣x的值.16.求值:.17.计算下列各式的值(1)0.064﹣(﹣)0+160.75+0.25(2)lg25+lg5•lg4+lg22.18.求值:+.19.(1)已知a>b>1且,求log a b﹣log b a的值.(2)求的值.20.计算(1)(2)(lg5)2+lg2×lg50 21.不用计算器计算:.22.计算下列各题(1);(2).23.解下列方程:(1)lg(x﹣1)+lg(x﹣2)=lg(x+2);(2)2•(log3x)2﹣log3x﹣1=0.24.求值:(1)(2)2log525﹣3log264.25.化简、求值下列各式:(1)•(﹣3)÷;(2)(注:lg2+lg5=1).26.计算下列各式(1);(2).27.(1)计算;(2)设log23=a,用a表示log49﹣3log26.28.计算下列各题:(1);(2)lg25+lg2lg50.29.计算:(1)lg25+lg2•lg50;(2)30++32×34﹣(32)3.30.(1)计算:;(2)解关于x的方程:.高中数学计算题专项练习一参考答案与试题解析一.解答题(共30小题)1.(Ⅰ)求值:;(Ⅱ)解关于x的方程.考点:有理数指数幂的化简求值.专题:计算题.分析:(Ⅰ)利用对数与指数的运算法则,化简求值即可.(Ⅱ)先利用换元法把问题转化为二次方程的求解,解方程后,再代入换元过程即可.解答:(本小题满分13分)解:(Ⅰ)原式=﹣1++log2=﹣1﹣1+23=﹣1+8+=10.…(6分)(Ⅱ)设t=log2x,则原方程可化为t2﹣2t﹣3=0…(8分)即(t﹣3)(t+1)=0,解得t=3或t=﹣1…(10分)∴log2x=3或log2x=﹣1∴x=8或x=…(13分)点评:本题考查有理指数幂的化简求值以及换元法解方程,是基础题.要求对基础知识熟练掌握.2.(1)若=3,求的值;(2)计算的值.考点:有理数指数幂的化简求值.专题:计算题.分析:(1)利用已知表达式,通过平方和与立方差公式,求出所求表达式的分子与分母的值,即可求解.(2)直接利用指数与对数的运算性质求解即可.解答:解:(1)因为=3,所以x+x﹣1=7,所以x2+x﹣2=47,=()(x+x﹣1﹣1)=3×(7﹣1)=18.所以==.(2)=3﹣3log22+(4﹣2)×=.故所求结果分别为:,点评:本题考查有理数指数幂的化简求值,立方差公式的应用,考查计算能力.3.已知,b=(log43+log83)(log32+log92),求a+2b 的值.考点:有理数指数幂的化简求值;对数的运算性质.专题:计算题.分析:直接利用有理指数幂的运算求出a,对数运算法则求出b,然后求解a+2b的值解答:解:==.b=(log43+log83)(log32+log92)=(log23+log23)(log32+log32)==,∴,,∴a+2b=3.点评:本题考查指数与对数的运算法则的应用,考查计算能力.4.化简或计算:(1)()﹣[3×()0]﹣1﹣[81﹣0.25+(3)]﹣10×0.027;(2).考点:有理数指数幂的化简求值.专题:计算题.分析:根据有理数指数幂的运算法则进行化简求值即可.解答:解:(1)原式=﹣(3×1)﹣1﹣﹣10×=﹣﹣1﹣3=﹣1.(2)原式=+﹣2=+﹣2=﹣2+﹣2.点评:本题考查有理数指数幂的运算法则,考查学生的运算能力,属基础题,熟记有关运算法则是解决问题的基础.5.计算的值.考点:有理数指数幂的化简求值.专题:计算题.分析:根据分数指数幂运算法则进行化简即可.解答:解:原式===.点评:本题主要考查用分数指数幂的运算法则进行化简,要求熟练掌握分数指数幂的运算法则.6.求下列各式的值.(1)(2)已知x+x﹣1=3,求式子x2+x﹣2的值.考点:有理数指数幂的化简求值.专题:计算题.分析:(1)直接利用有理指数幂的运算性质和对数的运算性质化简求值.(2)把已知的等式两边平方即可求得x2+x﹣2的值.解答:解:(1)==;(2)由x+x﹣1=3,两边平方得x2+2+x﹣2=9,所以x2+x﹣2=7.点评:本题考查了有理指数幂的化简求值,考查了对数的运算性质,是基础的计算题.7.(文)(1)若﹣2x2+5x﹣2>0,化简:(2)求关于x的不等式(k2﹣2k+)x<(k2﹣2k+)1ˉx的解集.考点:指数函数的单调性与特殊点;方根与根式及根式的化简运算.专题:计算题;转化思想.分析:(1)由﹣2x2+5x﹣2>0,解出x的取值范围,判断根号下与绝对值中数的符号,进行化简.(2)先判断底数的取值范围,由于底数大于1,根据指数函数的单调性将不等式进行转化一次不等式,求解即可.解答:解:(1)∵﹣2x2+5x﹣2>0∴,∴原式===(8分)(2)∵,∴原不等式等价于x<1﹣x,∴此不等式的解集为(12分)点评:本题考查指数函数的单调性与特殊点,求解本题的关键是判断底数的符号,以确定函数的单调性,熟练掌握指数函数的单调性是正确转化的根本.8.化简或求值:(1)3a b(﹣4a b)÷(﹣3a b);(2).考点:对数的运算性质;有理数指数幂的化简求值.专题:计算题.分析:(1)利用分数指数幂的运算法则即可得出;(2)利用对数的运算法则和lg2+lg5=1即可得出.解答:解:(1)原式==4a.(2)原式=+50×1=lg102+50=52.点评:本题考查了分数指数幂的运算法则、对数的运算法则和lg2+lg5=1等基础知识与基本技能方法,属于基础题.9.计算:(1);(2)(lg8+lg1000)lg5+3(lg2)2+lg6﹣1+lg0.006.考点:对数的运算性质;有理数指数幂的化简求值.专题:计算题.分析:(1)先将每一个数化简为最简分数指数幂的形式,再利用运算性质化简.(2)先将每一个对数式化简,再利用对数运算性质化简.解答:解:(1)===﹣45;(2)(lg8+lg1000)lg5+3(lg2)2+lg6﹣1+lg0.006=(3lg2+3)•lg5+3(lg2)2﹣lg6+(lg6﹣3)=3lg2•lg5+3lg5+3(lg2)2﹣3=3lg2(lg5+lg2)+3lg5﹣3=3lg2+3lg5﹣3=3﹣3=0.点评:本题考察运算性质,做这类题目最关键的是平时练习时要细心、耐心、不怕麻烦,考场上才能熟练应对! 10.计算(1)(2).考点:对数的运算性质;有理数指数幂的化简求值.专题:函数的性质及应用.分析:(1)利用指数幂的运算性质即可得出;(2)利用对数函数的运算性质即可得出.解答:解:(1)原式=|2﹣e|﹣+﹣=e﹣2﹣+=e﹣2﹣e+=﹣2.(2)原式=+3=﹣4+3=2﹣4+3=1.点评:熟练掌握指数幂的运算性质、对数函数的运算性质是解题的关键.11.计算(1)(2).考点:对数的运算性质;有理数指数幂的运算性质.专题:计算题.分析:(1)直接利用对数的运算法则求解即可.(2)直接利用有理指数幂的运算法则求解即可.解答:解:(1)==(2)==9×8﹣27﹣1=44.点评:本题考查对数的运算法则、有理指数幂的运算法则的应用,考查计算能力.12.解方程:log 2(x﹣3)﹣=2.考点:对数的运算性质.专题:计算题.分析:由已知中log 2(x﹣3)﹣=2,由对数的运算性质,我们可得x2﹣3x﹣4=0,解方程后,检验即可得到答案.解答:解:若log 2(x﹣3)﹣=2.则x2﹣3x﹣4=0,…(4分)解得x=4,或x=﹣1(5分)经检验:方程的解为x=4.…(6分)点评:本题考查的知识点是对数的运算性质,其中利用对数的运算性质,将已知中的方程转化为整式方程是解答醒的关键,解答时,易忽略对数的真数部分大于0,而错解为4,或﹣1.13.计算下列各式(Ⅰ)lg24﹣(lg3+lg4)+lg5(Ⅱ).考点:对数的运算性质;根式与分数指数幂的互化及其化简运算.专题:计算题.分析:(Ⅰ)利用对数的运算的性质可得结果;(Ⅱ)利用指数幂的运算性质可得结果;解答:解:(Ⅰ)lg24﹣(lg3+lg4)+lg5=lg24﹣lg12+lg5=lg=lg10=1;(Ⅱ)=×+﹣﹣1=32×23+3﹣2﹣1=72.点评:本题考查对数的运算性质、指数幂的运算性质,考查学生的运算能力,属基础题.14.求下列各式的值:(1)(2).考点:对数的运算性质;有理数指数幂的化简求值.专题:计算题.分析:根据对数和指数的运算法则进行求解即可.解答:解:(1)原式==log﹣9=log39﹣9=2﹣9=﹣7.(2)原式=== =.点评:本题主要考查对数和指数幂的计算,要求熟练掌握对数和指数幂的运算法则.15.(1)计算(2)若xlog34=1,求4x+4﹣x的值.考点:对数的运算性质;根式与分数指数幂的互化及其化简运算.分析:(1)利用指数幂的运算性质即可;(2)利用指数式和对数式的互化和运算性质即可.解答:解:(1)原式===3.(2)由xlog34=1,得x=log43,∴4x=3,,∴4x+4﹣x==.点评:熟练掌握对数和指数幂的运算性质是解题的关键.16.求值:.考点:对数的运算性质;有理数指数幂的化简求值.专题:计算题.分析:根据有理数指数幂的定义,及对数的运算性质,即可求出的值.解答:解:原式…(4分)…(3分)=…(1分)点评:本题考查的知识点是对数的运算性质,有理数指数幂的化简求值,其中掌握指数的运算性质和对数的运算性质,是解答本题的关键.17.计算下列各式的值(1)0.064﹣(﹣)0+160.75+0.25(2)lg25+lg5•lg4+lg22.考点:对数的运算性质;有理数指数幂的化简求值.专题:计算题.分析:(1)利用指数幂的运算性质可求;(2)利用对数运算性质可求;解答:解:(1)原式==0.4﹣1+8+=;(2)原式=lg25+2lg5•lg2+lg22=(lg5+lg2)2=(lg10)2=1点评:本题考查对数的运算性质、有理数指数幂的运算,属基础题,熟记有关运算性质是解题基础.18.求值:+.考点:对数的运算性质;有理数指数幂的化简求值.专题:计算题.分析:直接利用对数的运算法则,求出表达式的值即可.解答:解:原式==3+9+2000+1=2013.点评:本题考查对数的运算法则的应用,基本知识的考查.19.(1)已知a>b>1且,求log a b﹣log b a的值.(2)求的值.考点:对数的运算性质.专题:计算题.分析:(1)通过a>b>1利用,平方,然后配出log a b﹣log b a的表达式,求解即可.(2)直接利用对数的运算性质求解的值解答:解:(1)因为a>b>1,,所以,可得,a>b>1,所以log a b﹣log b a<0.所以log a b﹣log b a=﹣(2)==﹣4.点评:本题考查对数与指数的运算性质的应用,整体思想的应用,考查计算能力.20.计算(1)(2)(lg5)2+lg2×lg50考点:对数的运算性质;根式与分数指数幂的互化及其化简运算;有理数指数幂的化简求值.专题:计算题.分析:(1)把根式转化成指数式,然后利用分数指数幂的运算法则进行计算.(2)先把lg50转化成lg5+1,然后利用对数的运算法则进行计算.解答:解:(1)===(6分)(2)(lg5)2+lg2×lg50=(lg5)2+lg2×(lg5+lg10)=(lg5)2+lg2×lg5+lg2=lg5(lg5+lg2)+lg2=lg5+lg2=1(12分)点评:本题考查对数的运算法则和根式与分数指数幂的互化,解题时要注意合理地进行等价转化.21.不用计算器计算:.考点:对数的运算性质.专题:计算题.分析:,lg25+lg4=lg100=2,,(﹣9.8)0=1,由此可以求出的值.解答:解:原式=(4分)=(8分)=(12分)点评:本题考查对数的运算性质,解题时要认真审题,注意公式的灵活运用.22.计算下列各题(1);(2).考点:对数的运算性质.专题:计算题.分析:(1)直接利用对数的运算性质求解表达式的值.(2)利用指数的运算性质求解表达式的值即可.解答:解:(1)==9+﹣1=(2)===﹣45.点评:本题考查指数与对数的运算性质的应用,考查计算能力.23.解下列方程:(1)lg(x﹣1)+lg(x﹣2)=lg(x+2);(2)2•(log3x)2﹣log3x﹣1=0.考点:对数的运算性质.专题:计算题.分析:(1)先根据对数运算性质求出x,再根据对数的真数一定大于0检验即可.(2)设log3x=y,得出2y2﹣y﹣1=0,求出y的值,再由对数的定义求出x的值即可.解答:解:(1)原方程可化为lg(x﹣1)(x﹣2)=lg(x+2)所以(x﹣1)(x﹣2)=x+2即x2﹣4x=0,解得x=0或x=4经检验,x=0是增解,x=4是原方程的解.所以原方程的解为x=4(2)设log3x=y,代入原方程得2y2﹣y﹣1=0.解得y1=1,.log3x=1,得x1=3;由,得.经检验,x1=3,都是原方程的解.点评:本题主要考查对数的运算性质和对数函数的定义域问题.属基础题.24.求值:(1)(2)2log525﹣3log264.考点:对数的运算性质;有理数指数幂的化简求值.专题:计算题.分析:(1)首先变根式为分数指数幂,然后拆开运算即可.(2)直接利用对数式的运算性质化简求值.解答:解:(1)====.(2)2log525﹣3log264==4﹣3×6=﹣14.点评:本题考查了对数式的运算性质,考查了有理指数幂的化简求值,解答的关键是熟记有关性质,是基础题.25.化简、求值下列各式:(1)•(﹣3)÷;(2)(注:lg2+lg5=1).考点:对数的运算性质;有理数指数幂的化简求值.专题:计算题.分析:(1)利用指数幂的运算性质化简即可;(2)利用对数的运算性质化简即可.解答:解:(1)原式=﹣b﹣3÷(4)…..3分=﹣…..7分(2)解原式=…..2分=…..4分=…..6分=….7分.点评:本题考查对数的运算性质,考查有理数指数幂的化简求值,熟练掌握其运算性质是化简的基础,属于基础题.26.计算下列各式(1);(2).考点:对数的运算性质;有理数指数幂的化简求值.专题:计算题.分析:(1)利用指数幂的运算法则即可得出;(2)利用对数的运算法则和换底公式即可得出.解答:解:(1)原式=﹣1﹣+=.(2)原式=+lg(25×4)+2+1==.点评:本题考查了指数幂的运算法则、对数的运算法则和换底公式,属于基础题.27.(1)计算;(2)设log23=a,用a表示log49﹣3log26.考点:对数的运算性质;根式与分数指数幂的互化及其化简运算.专题:计算题.分析:(1)把第一、三项的底数写成平方、立方的形式即变成幂的乘方运算,第二项不等于0根据零指数的法则等于1,化简求值即可;(2)把第一项利用换底公式换成以2为底的对数,第二项利用对数函数的运算性质化简,log23整体换成a即可.解答:解:(1)原式=+1+=+1+=4;(2)原式=﹣3log22×3=log23﹣3(1+log23)=a﹣3(1+a)=﹣2a﹣3.点评:本题是一道计算题,要求学生会进行根式与分数指数幂的互化及其运算,会利用换底公式及对数的运算性质化简求值.做题时注意底数变乘方要用到一些技巧.28.计算下列各题:(1);(2)lg25+lg2lg50.考点:对数的运算性质;有理数指数幂的化简求值.专题:计算题.分析:(1)利用指数的运算法则,直接求解表达式的值即可.(2)利用对数的运算性质,直接化简求解即可.解答:解:(1)原式===.(5分)(2)原式lg25+lg2lg50=lg25+2lg2lg5+lg25=(lg2+lg5)2=1 (5分)点评:本题考查对数的运算性质,有理数指数幂的化简求值,考查计算能力.29.计算:(1)lg25+lg2•lg50;(2)30++32×34﹣(32)3.考点:对数的运算性质;有理数指数幂的化简求值.专题:计算题;函数的性质及应用.分析:(1)直接利用对数的运算性质即可求解(2)直接根据指数的运算性质即可求解解答:解:(1)原式=lg25+lg2(1+lg5)=lg25+lg2lg5+lg2=lg5(lg5+lg2)+lg2=lg5+lg2=1(2)原式=1+3+36﹣36=4.…(14分)点评:本题主要考查了对数的运算性质及指数的运算性质的简单应,属于基础试题30.(1)计算:;(2)解关于x的方程:.考点:对数的运算性质;有理数指数幂的运算性质;有理数指数幂的化简求值;函数的零点.专题:计算题.分析:(1)根据分数指数幂运算法则进行化简即可.(2)利用对数函数的性质和对数的运算法则进行计算即可.解答:解:(1)原式==﹣3;(2)原方程化为log5(x+1)+log5(x﹣3)=log55,从而(x+1)(x﹣3)=5,解得x=﹣2或x=4,经检验,x=﹣2不合题意,故方程的解为x=4.点评:本题主要考查分数指数幂和对数的运算,要求熟练掌握分数指数幂和对数的运算法则.。

高中数学基础性练习题高二

高中数学基础性练习题高二高中数学基础性练习题(高二)1. 求解下列方程组:(1)x + y = 3x - y = 1(2)2x + 3y = 74x - 3y = 13(3)3x + 4y - z = 52x - y + 2z = 5x + 3y - z = 1(4)a + 2b = 33a - 6b = 92a - 4b = 6解答:(1)将第一个方程两边同时加上第二个方程,消去y的项,得到:2x = 4,即x = 2。

将x = 2代入第一个方程,得到2 + y = 3,解得y = 1。

因此,方程组的解为x = 2,y = 1。

(2)将第一个方程乘以4,得到8x + 12y = 28。

将第二个方程乘以2,得到8x - 6y = 26。

将以上两个方程相减,消去x的项,得到18y = 2,即y = 2/18 =1/9。

将y = 1/9代入第一个方程,得到2x + 3/9 = 7,解得2x = 7 - 1/3 = 20/3,即x = 10/3。

因此,方程组的解为x = 10/3,y = 1/9。

(3)将第一个方程加上第二个方程的2倍,得到5x + 2z = 15。

将第一个方程加上第三个方程的3倍,得到6x + 7y - 3z = 8。

将第二个方程加上第三个方程的2倍,得到4x - 3y + 3z = 10。

将以上三个方程联立解得x = 2,y = 1,z = 1。

因此,方程组的解为x = 2,y = 1,z = 1。

(4)将第一个方程乘以2,得到2a + 4b = 6。

将第二个方程乘以3,得到9a - 18b = 27。

将以上两个方程相减,消去a的项,得到22b = 21,即b = 21/22。

将b = 21/22代入第一个方程,得到a + 2(21/22) = 3,解得a =22/11 - 42/22 = -1。

因此,方程组的解为a = -1,b = 21/22。

2. 求下列函数的零点:(1)f(x) = x^2 - 4x + 3(2)g(x) = (x - 1)(x + 2)(3)h(x) = x^3 - x^2 - 4x + 4解答:(1)令f(x) = 0,得到x^2 - 4x + 3 = 0。

《空间直线、平面的平行》基础练习【高中数学人教版】

《空间直线、平面的平行》基础练习一、选择题1.α,β是两个不重合的平面,在下列条件中,不能判定平面α∥β的条件是 ( )A .m ,n 是α内一个三角形的两条边,且m ∥β,n ∥βB .α内有不共线的三点到β的距离都相等C .α,β都垂直于同一条直线aD .m ,n 是两条异面直线,m ⊂α,n ⊂β,且m ∥β,n ∥α 2.下列四个结论:⑴两条直线都和同一个平面平行,则这两条直线平行. ⑵两条直线没有公共点,则这两条直线平行. ⑶两条直线都和第三条直线垂直,则这两条直线平行.⑷一条直线和一个平面内无数条直线没有公共点,则这条直线和这个平面平行. 其中正确的个数为( )A .0B .1C .2D .33.直线,a b c ,及平面αβ,,使//a b 成立的条件是( )A .//,a b αα⊂B .//,//a b ααC .//,//a c b cD .//,a b ααβ=4.a ,b 是两条异面直线,A 是不在a ,b 上的点,则下列结论成立的是( )A .过A 有且只有一个平面平行于a ,bB .过A 至少有一个平面平行于a ,bC .过A 有无数个平面平行于a ,bD .过A 且平行a ,b 的平面可能不存在5.已知直线a 与直线b 垂直,a 平行于平面α,则b 与α的位置关系是( )A .b ∥αB .b ⊂αC .b 与α相交D .以上都有可能 6.下列命题中正确的命题的个数为( )①直线l 平行于平面α内的无数条直线,则l ∥α;②若直线a 在平面α外,则a ∥α; ③若直线a ∥b ,直线b ⊂α,则a ∥α;④若直线a ∥b ,b 平面α,那么直线a 就平行于平面α内的无数条直线.A .1B .2C .3D .4 二、填空题1.如果空间中若干点在同一平面内的射影在一条直线上,那么这些点在空间的位置是__________.2.若直线a 和b 都与平面α平行,则a 和b 的位置关系是__________.3.已知a 、b 是相交直线,且a 平行于平面α,那么b 与α的位置关系是________. 4.在棱长为a 的正方体ABCD —A 1B 1C 1D 1中,M 、N 分别是棱A 1B 1、B 1C 1的中点,P 是棱AD 上一点,AP =3a ,过P 、M 、N 的平面与棱CD 交于Q ,则PQ =_________.5.正方体ABCD -A 1B 1C 1D 1中,E 为DD 11中点,则BD 1和平面ACE 位置关系是.三、解答题1.已知,,,E F G H 为空间四边形ABCD 的边,,,AB BC CD DA 上的点,且//EH FG .求证://EH BD .2.如图,正三棱柱111ABC A B C -的底面边长是2D 是AC 的中点.求证:1//B C 平面1A BD .3.如图,在正方体1111ABCD A B C D -中,求证:平面1A BD //平面11CD B .H G FE D BAC1A4.如图,正方形ABCD的边长为13,平面ABCD外一点P到正方形各顶点的距离都是13,M,N分别是PA,DB上的点,且58==PM M A BN ND∶∶∶.(1)求证:直线MN//平面PBC;(2)求线段MN的长.参考答案一、选择题1.B如图,E 、F 、G 、H 分别是正方体各棱的中点,点B 1,C 1,B 到平面EFGH 距离相等,但平面BCC 1B 1与平面EFGH 相交,故B 错.2.A ⑴两条直线都和同一个平面平行,这两条直线三种位置关系都有可能 ⑵两条直线没有公共点,则这两条直线平行或异面⑶两条直线都和第三条直线垂直,则这两条直线三种位置关系都有可能 ⑷一条直线和一个平面内无数条直线没有公共点,则这条直线也可在这个平面内3.C //,,a b αα⊂则//a b 或,a b 异面;所以A 错误;//,//,a b αα则//a b 或,a b 异面或,a b 相交,所以B 错误;//,,a b ααβ=则//a b 或,a b 异面,所以D 错误;//,//a c b c ,则//a b ,这是公理4,所以C 正确.4. D 如当A 与a 确定的平面与b 平行时,过A 作与a ,b 都平行的平面不存在. 5. D a 与b 垂直,a 与b 的关系可以平行、相交、异面,a 与α平行,所以b 与α的位置可以平行、相交、或在α内,这三种位置关系都有可能.6. A 对于①,∵直线l 虽与平面α内无数条直线平行,但l 有可能在平面α内(若改为l 与α内任何直线都平行,则必有l ∥α),∴①是假命题.对于②,∵直线a 在平面α外,包括两种情况a ∥α和a 与α相交,∴a 与α不一定平行,∴②为假命题.对于③,∵a ∥b ,b ⊂α,只能说明a 与b 无公共点,但a 可能在平面α内,∴a 不一定平行于平面α.∴③也是假命题.对于④,∵a ∥b ,b ⊂α.那么a ⊂α,或a ∥α.∴a 可以与平面α内的无数条直线平行.∴④是真命题.综上,真命题的个数为1.二、填空题1.共线或在与已知平面垂直的平面内. 2.相交或平行或异面.3. b ∥α或b 与α相交 b 与α的位置关系除b 在α内,皆有可能,即平行或相交.4由线面平行的性质定理知MN ∥PQ (∵MN ∥平面AC ,PQ =平面PMN ∩平面AC ,∴MN ∥PQ ).易知DP =DQ =23a.故PQ =. 5.平行 连接BD 交AC 于O ,连OE ,∴OE ∥B D 11,OEC 平面ACE ,∴B D 11∥平面ACE .三、解答题1.证明://,////EH BCD FG BCD EH BCD BD BCD EH BD EH FG ⊄⎫⎪⊂⇒⊂⇒⎬⎪⎭2.证明:设AB 1与AB 1相交于点P ,连接PD ,则P 为AB 1中点, D 为AC 中点,∴PD //B 1C . 又PD ⊂平面A 1BD ,∴B 1C //平面A 1BD3.证明:111111B B A A B B D D A A D D ⎧⎪⇒⎨⎪⎩∥ ∥ ∥ ⇒ 四边形11BB D D 是平行四边形⇒ 111111D B DB DB A BD D B A BD⎧⎪⊂⎨⎪⊄⎩平面平面//⇒111111111D B A BDB C A BD D B B C B⎧⎪⎨⎪=⎩平面同理平面////⇒111B CD A BD 平面平面//. 4. 解:(1)证明:连接AN 并延长交BC 于E ,连接PE , 则由AD BC //,得BN NEND AN=. BN PM ND MA =∵,NE PMAN MA=∴. MN PE ∴//,又PE ⊂平面PBC ,M N ⊄平面PBC ,∴MN //平面PBC .(2)由13PB BC PC ===,得60PBC ∠=; 由58BE BN AD ND ==,知5651388BE =⨯=, 由余弦定理可得918PE =,8713MN PE ==∴.。

人教课标版(B版)高中数学必修2基础练习-点到直线的距离

2.2.4 点到直线的距离一、选择题1.在直线3x-4y-27=0上到点P(2,1)距离最近的点的坐标是() A.(5,-3)B.(9,0)C.(-3,5) D.(-5,3)2.过点(1,2)且与原点距离最大的直线方程是()A.x+2y-5=0 B.2x+y-4=0C.x+3y-7=0 D.3x+y-5=03.与直线2x+y+1=0的距离为55的直线的方程是()A.2x+y=0B.2x+y-2=0C.2x+y=0或2x+y-2=0D.2x+y=0或2x+y+2=04.过点P(1,2)引直线,使A(2,3),B(4,-5)到它的距离相等,则这条直线的方程是()A.4x+y-6=0B.x+4y-6=0C.2x+3y-7=0或x+4y-6=0D.3x+2y-7=0或4x+y-6=05.已知平行四边形相邻两边所在的直线方程是l1:x-2y+1=0和l2:3x-y-2=0,此四边形两条对角线的交点是(2,3),则平行四边形另外两边所在直线的方程是()A.2x-y+7=0和x-3y-4=0B.x-2y+7=0和3x-y-4=0C.x-2y+7=0和x-3y-4=0D.2x-y+7=0和3x-y-4=06.到直线3x-4y-1=0距离为2的点的轨迹方程是()A.3x-4y-11=0B.3x-4y+11=0C.3x-4y-11=0或3x-4y+9=0D.3x-4y+11=0或3x-4y-9=07.顺次连结A(-4,3)、B(2,5)、C(6,3)、D(-3,0)所组成的图形是()A.平行四边形B.直角梯形C.等腰梯形 D.以上都不对8.直线ax+3y-9=0与直线x-3y+b=0关于原点对称,则a、b的值分别为()A.1,9 B.-1,-9C.1,-9 D.-1,9二、填空题9.过点A(-3,1)的直线中,与原点距离最远的直线方程为________________.10.与直线3x+4y-3=0平行,并且距离为3的直线方程为________________.11.已知a、b、c为某一直角三角形的三边长,c为斜边,若点P(m,n)在直线ax+by+2c=0上,则m2+n2的最小值为__________.12.与三条直线l1:x-y+2=0,l2:x-y-3=0,l3:x+y-5=0,可围成正方形的直线方程为__________.三、解答题13.(2010·曲师大附中高一期末检测)已知正方形中心G(-1,0),一边所在直线方程为x+3y-5=0,求其它三边所在直线方程.14.(2010·山东聊城高一期末检测)已知点A(2,4),B(1,-2),C(-2,3),求△ABC 的面积.15.求经过点A(2,-1)且与点B(-1,1)的距离为3的直线方程.16.已知直线l经过点A(2,4),且被平行直线l1:x-y+1=0与l2:x-y-1=0所截得的线段的中点M在直线x+y-3=0上.求直线l的方程.17.已知直线l过点P(3,1),且被两平行直线l1:x+y+1=0和l2:x+y+6=0 截得的线段的长为5,求直线l的方程.1. [答案] A[解析] 当PQ 与已知直线垂直,垂足为Q 时,点Q (5,-3)即为所求.2. [答案] A[解析] 所求直线与两点A (1,2),O (0,0)连线垂直时与原点距离最大.3. [答案] D[解析] 验证法:直线2x +y =0与2x +y +1=0的距离为122+12=55, 直线2x +y +2=0与2x +y +1=0的距离为|2-1|22+12=55,故选D. 4. [答案] D[解析] 设直线方程为Ax +By +C =0(A 2+B 2≠0),∵直线过(1,2)且与A 、B 两点距离相等, 则⎩⎨⎧ A +2B +C =0 ①|2A +3B +C |A 2+B 2=|4A -5B +C |A 2+B 2 ②由②得:A =4B 或3A -B +C =0. 当A =4B 时,C =-6B ,直线方程4Bx +By -6B =0即4x +y -6=0.当3A -B +C =0时,2A =3B ,-7A =3C ,∴直线方程3Ax +2Ay -7A =0,即3x +2y -7=0.点评:本题实际解答比较麻烦,作为选择题可用检验淘汰法,由P (1,2)在所求直线上,排除B ,C.故只须检验A 、B 两点到直线3x +2y -7=0的距离是否相等即可,选D.5. [答案] B[解析] 解法一:l 1关于P (2,3)的对称直线l 3,l 2关于P (2,3)的对称直线l 4,就是另两边所在直线.解法二:因为另两边分别与l 1、l 3平行且到P (2,3)距离分别相等,∴设l 3:x -2y +c 1=0,l 4:3x -y +c 2=0,由点到直线距离公式得出. 解法三:l 1的对边与l 1平行应为x -2y +c =0形式排除A 、D ;l 2对边也与l 2平行,应为3x -y +c 1=0形式排除C ,∴选B.[解析] 设所求轨迹上任意点P (x ,y ), 由题意,得|3x -4y -1|32+42=2, 化简得3x -4y -11=0或3x -4y +9=0.7. [答案] B[解析] ∵k AB =k CD =13,k BC =-12,k AD =-3,∴AB ∥CD ,AB ⊥AD .8. [答案] B[解析] 设直线ax +3y -9=0关于原点对称的直线方程为-ax -3y -9=0,又∵直线ax +3y -9=0与直线x -3y +b =0关于原点对称,∴-a =1,b =-9,即a =-1,b =-9.9. [答案] 3x -y +10=0[解析] 设原点为O ,则所求直线过点A (-3,1)且与OA 垂直,又k OA =-13,∴所求直线的斜率为3,故其方程为y -1=3(x +3).即3x -y +10=0.10. [答案] 3x +4y -18=0或3x +4y +12=0[解析] 设所求直线上任意一点P (x ,y ) 由题意,得|3x +4y -3|32+42=3, ∴|3x +4y -3|=15,∴3x +4y -3=±15,即3x +4y -18=0或3x +4y +12=0.11. [答案] 4[解析] 由题设a 2+b 2=c 2,m 2+n 2表示直线l :ax +by +2c =0上的点P (m ,n )到原点O 的距离的平方,故当PO ⊥l 时,m 2+n 2取最小值d ,∴d =⎝ ⎛⎭⎪⎫2c a 2+b 22=4c 2a 2+b 2=4. 12. [答案] x +y -10=0或x +y =0[解析] ∵l 1∥l 2其距离d =|2-(-3)|2=52 2.所求直线l 4∥l 3,设l 4:x +y +c =0,则|c +5|2=522, ∴c =0或-10, ∴所求直线方程为x +y =0或x +y -10=0.13. [解析] 正方形中心G (-1,0)到四边距离相等,均为|-1-5|12+32=610 . 设与已知直线平行的一边所在直线方程为x +3y +c 1=0,由|-1+c 1|10=610,∴c 1=-5(舍去)或c 1=7. 故与已知直线平行的一边所在直线方程为x +3y +7=0.设另两边所在直线方程为3x -y +c 2=0.由|3×(-1)+c 2|10=610,得c 2=9或c 2=-3. ∴另两边所在直线方程为3x -y +9=0或3x -y -3=0.综上可知另三边所在直线方程分别为:x +3y +7=0,3x -y +9=0或3x -y -3=0.14. [解析] 设AB 边上的高为h ,则S △ABC =12|AB |·h .|AB |=(1-2)2+(-2-4)2=37,AB 边上的高h 就是点C 到AB 的距离.AB 边所在的直线方程为y -4-2-4=x -21-2. 即6x -y -8=0.点C (-2,3)到6x -y -8=0的距离h =|-12-3-8|62+(-1)2=233737, 因此,S △ABC =12×37×233737=232.15. [解析] 若所求直线斜率不存在,则它的方程为x =2满足要求;若所求直线的斜率存在.设方程为y +1=k (x -2),即kx -y -2k -1=0,由题设B (-1,1)到该直线距离为3, ∴|-k -1-2k -1|k 2+1=3,∴k =512,∴直线方程为:y +1=512(x -2)即:5x -12y -22=0,∴所求直线的方程为:x =2或5x -12y -22=0.16. [解析] 解法一:∵点M 在直线x +y -3=0上,∴设点M 坐标为(t,3-t ),则点M 到l 1、l 2的距离相等, 即|t -(3-t )+1|2=|t -(3-t )-1|2, 解得t =32,∴M ⎝ ⎛⎭⎪⎫32,32. 又l 过点A (2,4),由两点式得y -324-32=x -322-32,即5x -y -6=0,故直线l 的方程为5x -y -6=0.解法二:设与l 1、l 2平行且距离相等的直线l 3:x -y +c =0,由两平行直线间的距离公式得|c -1|2=|c +1|2,解得c =0,即l 3:x -y =0.由题意得中点M 在l 3上,又点M 在x +y -3=0上.解方程组⎩⎨⎧ y -y =0x +y -3=0,得⎩⎪⎨⎪⎧ x =32y =32.∴M ⎝ ⎛⎭⎪⎫32,32.又l 过点A (2,4), 故由两点式得直线l 的方程为5x -y -6=0.解法三:由题意知直线l 的斜率必存在,设l :y -4=k (x -2),由⎩⎨⎧ y -4=k (x -2)x -y -1=0,得⎩⎪⎨⎪⎧ x =2k -5k -1y =k -4k -1.∴直线l 与l 1、l 2的交点分别为⎝ ⎛⎭⎪⎫2k -3k -1,3k -4k -1, ⎝ ⎛⎭⎪⎫2k -5k -1,k -4k -1. ∵M 为中点,∴M ⎝ ⎛⎭⎪⎫2k -4k -1,2k -4k -1. 又点M 在直线x +y -3=0上,∴2k -4k -1+2k -4k -1-3=0,解得k =5. 故所求直线l 的方程为y -4=5(x -2),即5x -y -6=0.17. [解析] 若直线l 的斜率不存在,则直线l 的方程为x =3,此时与l 1、l 2的交点分别为A ′(3,-4)和B ′(3,-9),截得线段A ′B ′的长为|A ′B ′|=|-4+9|=5,符合题意.若直线l 的斜率存在,则设直线l 的方程为y =k (x -3)+1,解方程组⎩⎨⎧ y =k (x -3)+1x +y +1=0, 得A ⎝ ⎛⎭⎪⎫3k -2k +1,-4k -1k +1,解方程组⎩⎨⎧y =k (x -3)+1x +y +6=0, 得B ⎝ ⎛⎭⎪⎫3k -7k +1,-9k -1k +1. ∵|AB |=5,∴⎝ ⎛⎭⎪⎫3k -2k +1-3k -7k +12+⎝ ⎛⎭⎪⎫-4k +1k +1+9k -1k +12=25, 解得k =0,即所求直线方程为y =1.综上可知,所求直线的方程为x =3或y =1.。

高中数学基础练习高二作业(附参考答案)


-!用一个平行于水平面的平面去截球得到如图所示的几何体则它的俯视图是 !!
.!如图所示的几何体是棱柱的有
!!
'(,个
)(&个
*(%个
+($个
/!某同学从&本不同的科普杂志%本不同的文摘杂志$本不同的娱乐新闻杂志中任
选一本阅读则不同的选法共有
!!
'($&种
)(3种
*(%种
+($-种
!!已知集合 #" "!!%!,!.#!$" "$!%!&!,#!则 #($"
'("%#
)(",#
*("%!,#
+("!!$!%!&!,!.#
$!在等差数列!!&!.!*中!-#$/是它的
'(第$##/项
)(第$##3项
*(第$#!#项
+(第$#!!项
%!在等比数列 "+* #中!+!"3/!+*"!%!,"$%!则项数* 为
+(%)0%或%*%
,!若向量$,+#" $$!%%!-,+#" $&!.%!则$,+-"
$!!%
'($0$!0&% )($%!&%
*($-!!#%
+($0-!0!#%
-!若直线%%0("#与直线 '%2(0!"#平行!则 '"
$!!%
'(%
)(0%
*(!%
+(0!%
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档