高一数学集合的基本运算练习题及答案

合集下载

高一数学第一章集合及基本运算章末习题课

高一数学第一章集合及基本运算章末习题课

第一章章末习题课(时间:80分钟)一、单项选择题1.已知集合A={1,2},B={1},则下列关系正确的是(C)A.B∉A B.B∈AC.B⊆A D.A⊆B解析:两个集合之间不能用“∈或∉”,首先排除选项A,B,因为集合A={1,2},B={1},所以集合B中的元素都是集合A中的元素,由子集的定义知B⊆A.故选C.2.命题“存在一个无理数,它的平方是有理数”的否定是(B)A.任意一个有理数,它的平方是有理数B.任意一个无理数,它的平方不是有理数C.存在一个有理数,它的平方是有理数D.存在一个无理数,它的平方不是有理数3.已知集合M={x|-3<x≤5},N={x|x>3},则M∪N=(A)A.{x|x>-3} B.{x|-3<x≤5}C.{x|3<x≤5} D.{x|x≤5}解析:在数轴上表示集合M,N,如图所示,则M∪N={x|x>-3}.4.“-2<x<4”是“x<4”的(A)A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件解析:由“-2<x<4”可得“x<4”,反之不成立,故“-2<x<4”是“x<4”的充分不必要条件.故选A.5.已知集合U={1,2,3,4,5},集合A={1,3,4},集合B={2,4},则(∁U A)∪B=(A) A.{2,4,5} B.{1,3,4}C.{1,2,4} D.{2,3,4,5}解析:由题意知∁U A={2,5},所以(∁U A)∪B={2,4,5}.故选A.6.“⎩⎪⎨⎪⎧x >0,y >0”是“1xy >0”的( A ) A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件解析:因为⎩⎨⎧ x >0,y >0⇒1xy >0,1xy >0⇒⎩⎨⎧ x >0,y >0或⎩⎪⎨⎪⎧ x <0,y <0,所以“⎩⎨⎧x >0,y >0”是“1xy >0”的充分不必要条件.故选A.7.满足M ⊆{a 1,a 2,a 3,a 4},且M ∩{a 1,a 2,a 3}={a 1,a 2}的集合M 的个数是( B )A .1B .2C .3D .4 解析:集合M 必须含有元素a 1,a 2,并且不能含有元素a 3,故M ={a 1,a 2}或M ={a 1,a 2,a 4}.8.设全集U =A ∪B ,定义:A -B ={x |x ∈A ,且x ∉B },集合A ,B 分别用圆表示,则下列图中阴影部分表示A -B 的是( C )解析:因为A -B ={x |x ∈A ,且x ∉B },所以A -B 是集合A 中的元素去掉A ∩B 中的元素构成的集合.故选C.二、多项选择题9.下列命题正确的有( ABD )A .0是最小的自然数B .每个正方形都有4条对称轴C .∀x ∈{1,-2,0},2x +1>0D .∃x ∈N ,使x 2≤x解析:对于A :根据自然数集的定义知,最小的自然数是0,命题A 正确;对于B :由正方形的图形特点知,每个正方形都有两条对角线和过对边中点的直线四条对称轴,命题B 正确;对于C:这是全称量词命题,当x=-2时,2×(-2)+1<0,命题C错误;对于D:这是存在量词命题,当x=1或x=0时,可得x2≤x成立,命题D正确.故选ABD.10.已知集合M={-2,3x2+3x-4,x2+x-4},若2∈M,则满足条件的实数x可能为(AC)A.2 B.-2C.-3 D.1解析:由题意得2=3x2+3x-4或2=x2+x-4,若2=3x2+3x-4,即x2+x-2=0,所以x=-2或x=1,检验:当x=-2时,x2+x-4=-2,与元素互异性矛盾,舍去;当x=1时,x2+x-4=-2,与元素互异性矛盾,舍去.若2=x2+x-4,即x2+x-6=0,所以x=2或x=-3,经验证x=2或x=-3为满足条件的实数x.故选AC.11.下列命题正确的有(CD)A.A∪∅=∅B.∁U(A∪B)=(∁U A)∪(∁U B)C.A∩B=B∩AD.∁U(∁U A)=A解析:在A中,A∪∅=A,故A错误;在B中,∁U(A∪B)=(∁U A)∩(∁U B),故B错误;在C中,A∩B=B∩A,故C正确;在D中,∁U(∁U A)=A,故D正确.故选CD.12.若-1<x<2是-2<x<a的充分不必要条件,则实数a的值可以是(BCD)A.1 B.2C.3 D.4解析:由题意得a≥2.所以实数a的值可以是2,3,4.故选BCD.三、填空题13.若命题p:∀a,b∈R,方程ax2+b=0恰有一解,则命题p的否定为∃a,b∈R,方程ax2+b=0无解或至少有两解.14.已知集合A,B均为全集U={1,2,3,4}的子集,且∁U(A∪B)={4},B={1,2},则A∩(∁B)=__{3}__.U解析:由U={1,2,3,4},且∁U(A∪B)={4},得A∪B={1,2,3},又B={1,2},所以A中一定有元素3,没有元素4,所以A∩(∁U B)={3}.15.设p:-m≤x≤m(m>0),q:-1≤x≤4,若p是q的充分条件,则m的最大值为__1__;若p 是q 的必要条件,则m 的最小值为__4__.解析:设A ={x |-m ≤x ≤m }(m >0),B ={x |-1≤x ≤4},若p 是q 的充分条件,则A ⊆B ,所以⎩⎪⎨⎪⎧ -m ≥-1,m ≤4,所以0<m ≤1,所以m 的最大值为1;若p 是q 的必要条件,则B ⊆A ,所以⎩⎪⎨⎪⎧ -m ≤-1,m ≥4,所以m ≥4,所以m 的最小值为4. 16.若“x <-1”是“x ≤a ”的必要不充分条件,则a 的取值范围是__{a |a <-1}__. 解析:若“x <-1”是“x ≤a ”的必要不充分条件,则{x |x ≤a }⊆{x |x <-1},∴a <-1.四、解答题17.已知集合A ={x |2≤x ≤5},B ={x |-2m +1<x <m },全集为R .(1)若m =3,求A ∪B 和(∁R A )∩B ;(2)若A ∩B =A ,求实数m 的取值范围.解:(1)∵m =3,∴B ={x |-5<x <3}.又A ={x |2≤x ≤5},∴∁R A ={x |x <2或x >5}.∴A ∪B ={x |-5<x ≤5},(∁R A )∩B ={x |-5<x <2}.(2)∵A ∩B =A ,∴A ⊆B .∴⎩⎪⎨⎪⎧-2m +1<2,m >5,解得m >5. ∴实数m 的取值范围为{m |m >5}.18.在①{x |a -1≤x ≤a },②{x |a ≤x ≤a +2},③{x |a ≤x ≤a +3}这三个条件中任选一个,补充在下面问题中,若问题中的a 存在,求a 的值;若a 不存在,请说明理由.已知集合A =________,B ={x |1≤x ≤3}.若“x ∈A ”是“x ∈B ”的充分不必要条件,求实数a 的取值范围.注:如果选择多个条件分别解答,按第一个解答计分.解:由题意知,A 不为空集,B ={x |1≤x ≤3}.当选条件①时,因为“x ∈A ”是“x ∈B ”的充分不必要条件,所以A B ,即⎩⎪⎨⎪⎧ a -1≥1,a <3或⎩⎪⎨⎪⎧a -1>1,a ≤3,解得2≤a ≤3. 所以实数a 的取值范围是{a |2≤a ≤3}.当选条件②时,因为“x ∈A ”是“x ∈B ”的充分不必要条件,所以A B ,即⎩⎪⎨⎪⎧ a ≥1,a +2<3或⎩⎪⎨⎪⎧a >1,a +2≤3,无解.故不存在满足题意的a . 当选条件③时,因为“x ∈A ”是“x ∈B ”的充分不必要条件,所以A B ,即⎩⎨⎧a ≥1,a +3<3或⎩⎨⎧ a >1a +3≤3,无解. 故不存在满足题意的a .。

高一数学集合的运算试题答案及解析

高一数学集合的运算试题答案及解析

高一数学集合的运算试题答案及解析1.若,则的值为【答案】-1【解析】由集合相等的概念可知有元素,又,则,故,根据集合中元素的互异性知,故。

【考点】集合相等的概念及集合中元素的互异性。

2.设全集,集合,则等于()A.B.C.D.【答案】D【解析】由,,所以.故选D.【考点】集合的简单运算.3.设集合,,若, 则集合P的子集的个数为()A.2个B.4个C.6个D.8个【答案】B【解析】,集合的子集有:共4个。

故B正确。

【考点】1集合的运算,2集合的子集。

4.已知,(1)设集合,请用列举法表示集合B;(2)求和.【答案】(1);(2),【解析】(1)集合为以集合为定义域的函数的值域。

时,;时,;时,;时,。

可用例举法写出集合。

(2)根据交集和并集的定义可直接得出和。

试题解析:解:(1)B= 5分(2) 7分10分【考点】1函数的值域;1集合的运算。

5.设求 .【答案】.【解析】有并集定义得.【考点】并集概念.6.集合.(1)当时,求;(2)若是只有一个元素的集合,求实数的取值范围.【答案】(1)(2)m=3或m≥【解析】(1)两集合的交集即两集合的公共部分,所以应联立方程解方程组。

(2)要使是只有一个元素的集合,只需联立的方程只有一个根,消去y或x后整理出一元二次方程,当判别式等于0时,对称轴需在内,当判别式大于0时,函数的一个零点应在内。

试题解析:(1),所以。

(2)消去y整理可得。

因为是只有一个元素的集合,即此方程在只有一个根。

所以或解得m=3或m≥【考点】集合运算一元二次函数图像7.若集合,,则=()A.B.C.D.【答案】C【解析】由集合的交集运算性质可知,故选C.【考点】集合交集的运算.8.已知全集则()A.B.C.D.【答案】C.【解析】找出全集U中不属于A的元素,确定出A的补集,找出既属于A补集又属于B的元素,即可确定出所求的集合,∵全集U={1,2,3,4},A={1,2},∴∁UA={3,4},又B={2,3},则(∁UA)∪B={2,3,4},故选C.【考点】交、并、补集的混合运算.9.集合.(1)若A B=,求a的取值范围.(2)若A B=,求a的取值范围.【答案】(1)(2)【解析】(1)A B=时,集合A集合B没有公共点,所以时成立。

高中数学集合测试题(附答案和解析)

高中数学集合测试题(附答案和解析)

高中数学集合测试题(附答案和解析)一、单选题1.已知集合U =R ,{}2230A x x x =--<,则U A ( )A .{}13x x -<<B .{}13x x -≤≤C .{1x x ≤-或3}x ≥D .{1x x <-或3}x >2.已知集合(){}{}|20,|10M x x x N x x =-<=-<,则MN =( ) A .(),2-∞ B .(),1-∞ C .()0,1 D .()1,23.设全集U =R ,集合302x A x x ⎧⎫-=≤⎨⎬+⎩⎭,集合{}ln 1B x x =≥,则()U A B =( ) A .()e,3 B .[]e,3 C .[)2,e - D .()2,e - 4.设集合{}()(){}|32,|130A x x B x x x =-<<=+-≤,则A B =( ) A .{}|12x x -≤< B .{}|33x x -<≤ C .{}|32x x -<≤ D .{}|13x x -≤≤ 5.已知{}33U x x =-≤<,{}23A x x =-≤<,则图中阴影表示的集合是( )A .{}32x x -≤≤-B .][33,)-∞-⋃+∞(,C .{}0x x ≤D .{}32x x -≤<-6.集合{}220A x x x =--≤,{}10B x x =-<,则A B =( ) A .{}1x x ≥B .{}11x x -≤<C .{}1x x <-D .{}21x x -≤<7.已知集合{}|03A x x =<<,{}|14B x x =≤≤,则A B ⋃=( )A .{}|13≤<x xB .{}|04x x <≤C .{}|04x x <<D .{}3|1x x <<8.已知集合{}|21x A x =>,{}22B x y x x ==-∣,则A B =( ) A .()0,+∞ B .(]0,2 C .(]1,2 D .[)2,+∞9.已知集合{}28x A x =≤,{}16B x x =-≤≤,则A B ⋃=( ) A .(,6]-∞ B .[1,6]- C .[1,3]- D .(0,6]10.设全集{}*5U x N x =∈≤,集合{}1,2M =,{}2,3,4N =,则图中阴影部分表示的集合是( )A .{}2B .{}3,4C .{}2,3D .{}2,3,4 11.已知集合{}(5)0A x x x =-<,{}14B x x =-,则A B ⋃=( )A .[1,0)-B .[4,5)C .(0,4]D .[1,5)-12.设集合{}A x x a =>,{}2320B x x x =-+>,若A B ⊆,则实数a 的取值范围是( ).A .(),1-∞B .(],1-∞C .()2,+∞D .[)2,+∞ 13.设全集2,1,0,1,2U,{}2,1,2A =--,{}2,1,0,1B =--,则()U A B =( ) A .{}2,1- B .{}0,1 C .{}1,0,1- D .{}2,1,0,1--14.设集合{}*21230,1A x N x x B x R x ⎧⎫=∈--≤=∈≥⎨⎬⎩⎭∣∣,则A B =( ) A .0,1 B .{}1 C .(]0,1 D .{}0,1 15.下面五个式子中:①{}a a ⊆;②{}a ∅⊆;③{a }∈{a ,b };④{}{}a a ⊆;⑤a ∈{b ,c ,a };正确的有( )A .②④⑤B .②③④⑤C .②④D .①⑤二、填空题16.集合()(){}2140,A x x x ax x R =-++=∈中所有元素之和为3,则实数=a ________. 17.若集合406x A x x ⎧⎫-=<⎨⎬+⎩⎭,{}230B x x =+<,则()R A B ⋂=______. 18.已知集合(){}ln 2|A x y x ==-,{}2430|B x x x ≤=-+,则A B ⋃=____________19.若A ={}(,)21x y y x =-,B ={}2(,)x y y x =,则A B =____________ 20.已知函数2()43f x x x =-+,()52g x mx m =+-,若对任意的[]11,4x ∈,总存在[]21,4x ∈,使12()()f x g x =成立,则实数m 的取值范围是 ________.21.若{}31,2a ∈,则实数=a ____________.22.已知集合{}N 4sin ,02A x x θθπ=∈<≤≤,若集合A 中至少有3个元素,则实数θ取值范围为________23.某班有学生45人,参加了数学小组的学生有31人,参加了英语小组的学生有26人.已知该班每个学生都至少参加了这两个小组中的一个小组,则该班学生中既参加了数学小组,又参加了英语小组的学生有___________人.24.立德中学有35人参加“学党史知识竞赛”若答对第一题的有20人,答对第二题的有16人,两题都答对的有6人,则第一、二题都没答对的有___人.25.已知A ={x |2a <x ≤a +8},B ={x |x <-1或x >5},若A ∪B =R , 则a 的取值范围是________.三、解答题26.已知集合2111x A x x +⎧⎫=>-⎨⎬-⎩⎭,(){}222B x x m x m B =<-+,不为空集. (1)当1m =时,求()R A B ⋃;(2)若“x A ∈”是“x B ∈”的必要条件,求实数m 的取值范围.27.已知函数()f x =A ,函数()g x 的定义域为集合B ,(1)当0a =时,求A B ;(2)设命题:p x A ∈,命题:q x B ∈,p q 是的充分不必要条件,求实数a 的取值范围.28.已知集合{}37A x x =≤<,{}210B x x =<<,{}C x x a =<.(1)求A B ,()A B R ;(2)若A C ⋂≠∅,求a 的取值范围.29.已知集合{}12,,,n A a a a =⋅⋅⋅(120n a a a ≤<<⋅⋅⋅<,*n ∈N ,3n ≥)具有性质P :对任意,i j (1i j m ≤≤≤),i j a a +与j i a a -至少一个属于A .(1)分别判断集合{}0,2,4M =,与{}1,2,3N =是否具有性质P ,并说明理由;(2){}123,,A a a a =具有性质P ,当24a =时,求集合A ;(3)①求证:0A ∈;②求证:1232n n n a a a a a +++⋅⋅⋅+=.30.已知集合{}{}222,|540A xa a B x x x x =-≤+=-+≤≥∣. (1)当3a =时,求A B ;(2)若0a >,且“x A ∈”是“R x B ∈”的充分不必要条件,求实数a 的取值范围.【参考答案】一、单选题1.C【解析】【分析】根据补集的定义,结合一元二次不等式的解法进行求解即可.【详解】 因为集合{}2230{|13}A x x x x x =--<=-<<, 所以U A {1x x ≤-∣或3}x ≥. 故选:C.2.C 【解析】【分析】分别求出集合M 和集合N ,然后取交集即可.【详解】集合(){}{}|20|02M x x x x x =-<=<<,{}|1N x x =<,则MN ={}()|010,1x x <<=, 故选:C3.D【解析】【分析】求出集合A 、B ,利用交集和补集的定义可求得集合()U A B ∩.【详解】 因为{}30232x A x x x x ⎧⎫-=≤=-<≤⎨⎬+⎩⎭,{}{}ln 1e B x x x x =≥=≥,所以,{}e U B x x =<,因此,()()2,e U A B =-.故选:D.4.A【解析】【分析】首先解一元二次不等式求出集合B ,再根据交集的定义计算可得;【详解】解:由()()130x x +-≤,解得13x -≤≤,所以()(){}{}|130|13B x x x x x =+-≤=-≤≤,又{}|32A x x =-<<,所以{}|12A B x x ⋂=-≤<.故选:A5.D【解析】【分析】根据韦恩图,写出相应集合即可【详解】由图可知,阴影表示的集合为集合A 相对于全集U 的补集,即阴影表示的集合是U A ,所以{}32U A x x =-≤<-;故选:D6.B【解析】【分析】解不等式可求得集合,A B ,由交集定义可得结果.【详解】{}{}22012A x x x x x =--≤=-≤≤,{}{}101B x x x x =-<=<, {}11A B x x ∴⋂=-≤<.故选:B.7.B【解析】【分析】 根据集合的并集运算即可.【详解】因为{}|03A x x =<<,{}|14B x x =≤≤,所以{}|04A B x x =<≤.故选:B.8.B【解析】【分析】先求出集合A ,B ,再根据交集定义即可求出.【详解】因为{}|0A x x =>,{}|02B x x =≤≤,所以(]0,2A B =.故选:B.9.A【解析】【分析】先解出集合A ,再计算A B 即可.【详解】{}{}283x A x x x =≤=≤,故A B ⋃=(,6]-∞. 故选:A.10.B【解析】【分析】由Venn 图中阴影部分可知对应集合为N()U M ,然后根据集合的基本运算求解即可. 【详解】解:由Venn 图中阴影部分可知对应集合为N ()U M全集*{|5}{1U x N x =∈≤=,2,3,4,5},集合{1M =,2},{2N =,3,4},U M ={}3,4,5,N ()U M ={}3,4.故选:B .11.D【解析】【分析】由一元二次不等式的解法求出集合A ,再根据并集的定义即可求解.【详解】解:因为集合{}{}(5)005A x x x x x =-<=<<,{}14B x x =-,所以{}{}[05141,5)A B x x x x ⋃=<<⋃-=-.故选:D.12.D【解析】【分析】先求出集合B ,再由A B ⊆求出实数a 的范围.【详解】{}{23202B x x x x x =-+>=>或}1x <. 因为集合{}A x x a =>,A B ⊆,所以2a ≥.故选:D13.B【解析】【分析】先求U A ,再求()U A B ⋂即可.【详解】 U A ={0,1},()U A B ={0,1}. 故选:B.14.B【解析】【分析】先求出结合,A B ,再根据集合的交集运算,即可求出结果.【详解】 因为{}{}{}*2*N 230N 131,2,3A x x x x x =∈--≤=∈-≤≤=∣, {}1101B x x x x ⎧⎫=∈≥=∈<≤⎨⎬⎩⎭R R 所以{}1A B =.故选:B.15.A【解析】【分析】根据元素与集合,集合与集合之间的关系逐个分析即可得出答案.【详解】①中,a 是集合{a }中的一个元素,{}a a ∈,所以①错误;空集是任一集合的子集,所以②正确;{}a 是{},a b 的子集,所以③错误;任何集合是其本身的子集,所以④正确;a 是{},,bc a 的元素,所以⑤正确.故选:A.二、填空题16.2-【解析】【分析】由()()2140x x ax -++=得1231x x x a ++=-,即可求解参数. 【详解】由()()2140x x ax -++=得10x -=或240x ax ++=所以11x =或23x x a +=-依题意得12313x x x a ++=-=,得2a =-故答案为:2-.17.342x x ⎧⎫-≤<⎨⎬⎩⎭【解析】【分析】先求出集合A 和集合B 的补集,再求两集合的交集即可【详解】 依题意,{}40646x A x x x x ⎧⎫-=<=-<<⎨⎬+⎩⎭,{}32302B x x x x ⎧⎫=+<=<-⎨⎬⎩⎭, 则R 32B x x ⎧⎫=≥-⎨⎬⎩⎭, 故()R 342A B x x ⎧⎫⋂=-≤<⎨⎬⎩⎭. 故答案为:342x x ⎧⎫-≤<⎨⎬⎩⎭18.[)1,+∞ 【解析】【分析】先求出集合A 、B ,再求A B .【详解】集合(){}()2|2ln ,A x y x =+∞==-,{}[]2|1,3430B x x x =≤=-+, 所以()[][)2,1,31,A B +∞⋃=∞⋃+=.故答案为:[)1,+∞19.{(1,1)}【解析】【分析】由集合中的条件组成方程组求解可得.【详解】 将21y x =-代入2yx ,得2210x x -+=,解得1x =,则211y =-=,所以{(1,1)}A B =.故答案为:{(1,1)} 20.(,3][6,)-∞-⋃+∞【分析】根据对任意的[]11,4x ∈,总存在[]21,4x ∈,使得12()()f x g x =,可得两个函数值域的包含关系,进而根据关于m 的不等式组,解不等式组即可.【详解】因为()22()4321f x x x x =-+=--,所以函数()f x 的对称轴为2x =,对任意的[]11,4x ∈,记()[]1,3f x ∈-.记[]1,3A =-.由题意知,当0m =时不成立,当0m >时,()52g x mx m =+-在[]1,4上是增函数,所以[]()5,25g x m m ∈-+,记[]5,25B m m =-+由题意知,B A所以m m -≥-+≥⎧⎨⎩15253,解得6m ≥. 当0m <时,()52g x mx m =+-在[]1,4上是减函数,所以[]()25,5g x m m ∈+-,记[]25,5C m m =+-,由题意知,C A ⊇所以251{53m m +≤--≥,解得3m ≤-. 综上所述,实数m 的取值范围是(,3][6,)-∞-⋃+∞.故答案为: (,3][6,)-∞-⋃+∞【点睛】解决本题的关键是将问题转化为对任意的[]11,4x ∈,总存在[]21,4x ∈,使得12()()f x g x =, 可得两个函数值域的包含关系,进而分别求两个函数的值域.21.5##32【解析】【分析】根据题中条件,由元素与集合之间的关系,得到23a =求解,即可得出结果.【详解】因为{}31,2a ∈,所以23a =,解得32a =. 故答案为:32. 22.5,66ππ⎛⎫ ⎪⎝⎭【分析】分析可知元素0、1、2必属于集合A ,可得出1sin 2θ>,由[]0,2θπ∈可求得θ的取值范围. 【详解】要使集合A 中至少有3个元素,则元素0、1、2必属于集合A ,所以只需4sin 2θ>,即1sin 2θ>, 又[]0,2θπ∈,解得5,66ππθ⎛⎫∈ ⎪⎝⎭. 故答案为:5,66ππ⎛⎫ ⎪⎝⎭. 23.12【解析】【分析】设该班学生中既参加了数学小组,又参加了英语小组的学生有x 人,列方程求解即可.【详解】设该班学生中既参加了数学小组,又参加了英语小组的学生有x 人,则31264512x =+-=. 故答案为:12.24.5【解析】【分析】集合元素计算,只对第一题,只对第二题,二题都答对和二题都不对,总数为35人.【详解】设第一、二题都没答对的有x 人,则()()206166635x -+-++= ,所以5x =故答案为:525.13,2⎡⎫--⎪⎢⎣⎭ 【解析】【分析】由集合{|28}A x a x a =<+,{|1B x x =<-,或5}x >,A B R =,列出不等式组,能求出a 的取值范围.【详解】集合{|28}A x a x a =<+,{|1B x x =<-,或5}x >,A B R =,∴2185a a <-⎧⎨+⎩, 解得132a -<-.a ∴的取值范围为[3-,1)2-. 故答案为:[3-,1)2-. 三、解答题26.(1)12x x ⎧≤-⎨⎩或}1x ≥ (2)(]2,4-【解析】【分析】(1)分别求出集合,A B ,再根据并集和补集的定义即可得出答案;(2)根据“x A ∈”是“x B ∈”的必要条件,可得B A ⊆且B ≠∅,讨论m 的范围,从而可得出答案.(1)解:当1m =时,{}212112B x x x x x ⎧⎫=<+=-<<⎨⎬⎩⎭, {}211211x A x x x x +⎧⎫=>-=-<<⎨⎬-⎩⎭, 则112A B x x ⎧⎫⋃=-<<⎨⎬⎩⎭, 所以()12R A B x x ⎧⋃=≤-⎨⎩或}1x ≥; (2) 解:(){}()(){}222210B x x m x m x x m x =<-+=+-<, 因为“x A ∈”是“x B ∈”的必要条件,所以B A ⊆且B ≠∅,故2m ≠-, 当12m ->,即2m <-时,12m B x x ⎧⎫=<<-⎨⎬⎩⎭, 因为{}21A x x =-<<,所以A B =∅,不符合题意; 当12m -<,即2m >-时,12m B x x ⎧⎫=-<<⎨⎬⎩⎭, 则有222m m >-⎧⎪⎨-≥-⎪⎩,解得24m -<≤, 综上(]2,4m ∈-.27.(1)1{|03A B x x ⋂=-<≤或1}x =;(2)1a ≥或43a ≤-. 【解析】【分析】(1)求解分式不等式和一元二次不等式,解得集合,A B ,再求交集即可; (2)根据p q 是的充分不必要条件可知A 是B 的真子集,列不等式求a 的取值范围即可.(1)要使得()f x 有意义,则1031x x -≥+,得(1)(31)0310x x x -+≥⎧⎨+≠⎩,解得:113x ≤-<, 所以1|13A x x ⎧⎫=-<≤⎨⎬⎩⎭;当0a =时,()g x =()g x 有意义,则20x x -≥,解得:1x ≥或0x ≤, 所以{|1B x x =≥或0}x ≤, 故1{|03A B x x ⋂=-<≤或1}x =. (2)以为22(21)0x a x a a -+++≥,即[]()(1)0x a x a --+≥,解得:1x a ≥+或x a ≤, 所以{|1B x x a =≥+或}x a ≤,由题意可知A 是B 的真子集,所以1a ≥或113a +≤-(等号不同时成立), 得1a ≥或43a ≤-. 28.(1){}210A B x x ⋃=<<,R (){|23A B x x =<<或710}x ≤<;(2)()3,+∞.【解析】【分析】 (1)直接利用集合并集、交集和补集的定义求解;(2)分析A C ⋂≠∅即得解.(1)解:因为A ={x |3≤x <7},B ={x |2<x <10}, 所以{}210A B x x ⋃=<<.因为A ={x |3≤x <7},所以R {|3A x x =<或 7}x ≥则R (){|23A B x x =<<或710}x ≤<. (2)解:因为A ={x |3≤x <7},C ={x |x a <},且A C ⋂≠∅,所以3a >.所以a 的取值范围为()3,+∞.29.(1)集合M 具有,集合N 不具有,理由见详解(2)A {0,4,8}=(3)证明见详解【解析】【分析】(1)利用性质P 的定义判断即可;(2)利用33a a A +∉,330a A a -=∈可得10a =,又23a a A +∉,32a a A -∈,分析可得322a a a -=,即得解;(3)① 由 n n a a A +∉,0n n a A a -=∈,可证明; ② 由110n n n n n a a a a a a -≤<<⋅⋅⋅<---,以及n n i a a A -+∉,n n i a a A --∈可得121321,,,...,n n n n n n n n a a a a a a a a a a a a --=-=-=-=-,将等式左右两边相加可证明.(1)集合{}0,2,4M =具有性质P ,集合{}1,2,3N =不具有性质P 理由如下:对集合{}0,2,4M =,由于202,422,404,000,220,440M -=-=-=-=-=-=∈ 所以集合M 具有性质P ;对集合{}1,2,3N =,由于224N +=∉,故集合N 不具有性质P .(2)由于33333A a a a a a +>∴+∉,故330a A a -=∈10a ∴= 又23323,a a a A a a +>∴+∉,故32a a A -∈又3230<a a a -<,故322a a a -=322=8a a =∴因此集合A {0,4,8}=(3)①由于n n n n n A a a a a a +>∴+∉,故0n n a A a -=∈10a ∴= 0A ∴∈,故得证②由于120n a a a ≤<<⋅⋅⋅<故110n n n n n a a a a a a -≤<<⋅⋅⋅<---又(1,2,...,1)n n i n n n i a a a i n a a A --+>=-∴+∉n n i a a A -∴-∈121321,,,...,n n n n n n n n a a a a a a a a a a a a --∴=-=-=-=- 将各个式子左右两边相加可得:1232n n n a a a a a +++⋅⋅⋅+= 故得证30.(1){|11A B x x ⋂=-≤≤或}45x ≤≤(2)01a <<【解析】【分析】(1)求出集合,A B ,进而可得A B ; (2)根据包含关系列不等式求解即可.(1)∵当3a =时,{}{|15,|1A x x B x x =-≤≤=≤戓}4x ≥, ∴{|11A B x x ⋂=-≤≤或}45x ≤≤;(2)∵{|1B x x =≤或}4x ≥,∴{}|14R B x x =<<, 由“x A ∈”是“R x B ∈的充分不必要条件得A 是B R 的真子集且A ≠∅又{}()|220x A x a a a =-≤+>≤,∴2124a a ->⎧⎨+<⎩∴01a <<.。

【人教A版高一数学试题】必修一1.1.3《集合的基本运算》 及答案解析

【人教A版高一数学试题】必修一1.1.3《集合的基本运算》     及答案解析

集合的基本运算1.设集合A ={x|2≤x <4},B ={x|3x -7≥8-2x},则A ∪B 等于( )A .{x|x ≥3}B .{x|x ≥2}C .{x|2≤x <3}D .{x|x ≥4}2.已知集合A ={1,3,5,7,9},B ={0,3,6,9,12},则A ∩B =( )A .{3,5}B .{3,6}C .{3,7}D .{3,9}3.50名学生参加甲、乙两项体育活动,每人至少参加了一项,参加甲项的学生有30名,参加乙项的学生有25名,则仅参加了一项活动的学生人数为________.4.已知集合A ={-4,2a -1,a 2},B ={a -5,1-a,9},若A ∩B ={9},求a 的值.一、选择题(每小题5分,共20分)1.集合A ={0,2,a},B ={1,a 2}.若A ∪B ={0,1,2,4,16},则a 的值为( ) A .0 B .1 C .2 D .4 2.设S ={x|2x +1>0},T ={x|3x -5<0},则S ∩T =( ) A .Ø B .{x|x<-12} C .{x|x>53} D .{x|-12<x<53}3.已知集合A={x|x>0},B={x|-1≤x≤2},则A∪B=()A.{x|x≥-1} B.{x|x≤2}C.{x|0<x≤2} D.{x|-1≤x≤2}4.满足M⊆{a1,a2,a3,a4},且M∩{a1,a2,a3}={a1,a2}的集合M的个数是()A.1 B.2 C.3 D.4二、填空题(每小题5分,共10分)5.已知集合A={x|x≤1},B={x|x≥a},且A∪B=R,则实数a的取值范围是________.6.满足{1,3}∪A={1,3,5}的所有集合A的个数是________.三、解答题(每小题10分,共20分)7.已知集合A={1,3,5},B={1,2,x2-1},若A∪B={1,2,3,5},求x及A∩B.8.已知A={x|2a≤x≤a+3},B={x|x<-1或x>5},若A∩B=Ø,求a 的取值范围.9.(10分)某班有36名同学参加数学、物理、化学课外探究小组,每名同学至多参加两个小组.已知参加数学、物理、化学小组的人数分别为26,15,13,同时参加数学和物理小组的有6人,同时参加物理和化学小组的有4人,则同时参加数学和化学小组的有多少人?集合的基本运算(答案解析)1.设集合A={x|2≤x<4},B={x|3x-7≥8-2x},则A∪B等于() A.{x|x≥3}B.{x|x≥2}C.{x|2≤x<3} D.{x|x≥4}【解析】B={x|x≥3}.画数轴(如下图所示)可知选B.【答案】 B2.已知集合A={1,3,5,7,9},B={0,3,6,9,12},则A∩B=()A.{3,5} B.{3,6}C.{3,7} D.{3,9}【解析】A={1,3,5,7,9},B={0,3,6,9,12},A和B中有相同的元素3,9,∴A∩B={3,9}.故选D.【答案】 D3.50名学生参加甲、乙两项体育活动,每人至少参加了一项,参加甲项的学生有30名,参加乙项的学生有25名,则仅参加了一项活动的学生人数为________.【解析】设两项都参加的有x人,则只参加甲项的有(30-x)人,只参加乙项的有(25-x)人.(30-x)+x+(25-x)=50,∴x=5.∴只参加甲项的有25人,只参加乙项的有20人,∴仅参加一项的有45人.【答案】454.已知集合A ={-4,2a -1,a 2},B ={a -5,1-a,9},若A ∩B ={9},求a 的值.【解析】 ∵A ∩B ={9},∴9∈A ,∴2a -1=9或a 2=9,∴a =5或a =±3. 当a =5时,A ={-4,9,25},B ={0,-4,9}. 此时A ∩B ={-4,9}≠{9}.故a =5舍去.当a =3时,B ={-2,-2,9},不符合要求,舍去. 经检验可知a =-3符合题意.一、选择题(每小题5分,共20分)1.集合A ={0,2,a},B ={1,a 2}.若A ∪B ={0,1,2,4,16},则a 的值为( ) A .0 B .1 C .2 D .4【解析】 ∵A ∪B ={0,1,2,a ,a 2},又A ∪B ={0,1,2,4,16}, ∴{a ,a 2}={4,16},∴a =4,故选D. 【答案】 D2.设S ={x|2x +1>0},T ={x|3x -5<0},则S ∩T =( ) A .Ø B .{x|x<-12} C .{x|x>53} D .{x|-12<x<53}【解析】 S ={x|2x +1>0}={x|x>-12},T ={x|3x -5<0}={x|x<53},则S ∩T ={x|-12<x<53}.故选D.【答案】 D3.已知集合A ={x|x>0},B ={x|-1≤x ≤2},则A ∪B =( ) A .{x|x ≥-1} B .{x|x ≤2}C.{x|0<x≤2} D.{x|-1≤x≤2}【解析】集合A、B用数轴表示如图,A∪B={x|x≥-1}.故选A.【答案】 A4.满足M⊆{a1,a2,a3,a4},且M∩{a1,a2,a3}={a1,a2}的集合M的个数是()A.1 B.2 C.3 D.4【解析】集合M必须含有元素a1,a2,并且不能含有元素a3,故M={a1,a2}或M={a1,a2,a4}.故选B.【答案】 B二、填空题(每小题5分,共10分)5.已知集合A={x|x≤1},B={x|x≥a},且A∪B=R,则实数a的取值范围是________.【解析】A=(-∞,1],B=[a,+∞),要使A∪B=R,只需a≤1.【答案】a≤16.满足{1,3}∪A={1,3,5}的所有集合A的个数是________.【解析】由于{1,3}∪A={1,3,5},则A⊆{1,3,5},且A中至少有一个元素为5,从而A中其余元素可以是集合{1,3}的子集的元素,而{1,3}有4个子集,因此满足条件的A的个数是4.它们分别是{5},{1,5},{3,5},{1,3,5}.【答案】 4三、解答题(每小题10分,共20分)7.已知集合A={1,3,5},B={1,2,x2-1},若A∪B={1,2,3,5},求x及A∩B.【解析】由A∪B={1,2,3,5},B={1,2,x2-1}得x2-1=3或x2-1=5.若x2-1=3则x=±2;若x2-1=5,则x=±6;综上,x=±2或±6.当x=±2时,B={1,2,3},此时A∩B={1,3};当x=±6时,B={1,2,5},此时A∩B={1,5}.8.已知A={x|2a≤x≤a+3},B={x|x<-1或x>5},若A∩B=Ø,求a 的取值范围.【解析】由A∩B=Ø,(1)若A=Ø,有2a>a+3,∴a>3.(2)若A≠Ø,如图:∴,解得-≤a≤2.综上所述,a的取值范围是{a|-≤a≤2或a>3}.9.(10分)某班有36名同学参加数学、物理、化学课外探究小组,每名同学至多参加两个小组.已知参加数学、物理、化学小组的人数分别为26,15,13,同时参加数学和物理小组的有6人,同时参加物理和化学小组的有4人,则同时参加数学和化学小组的有多少人?【解析】设单独参加数学的同学为x人,参加数学化学的为y人,单独参加化学的为z人.依题意⎩⎪⎨⎪⎧x +y +6=26,y +4+z =13,x +y +z =21,解得⎩⎪⎨⎪⎧x =12,y =8,z =1.∴同时参加数学化学的同学有8人,答:同时参加数学和化学小组的有8人.。

高一数学集合练习题附答案

高一数学集合练习题附答案

高一数学集合练习题附答案一、单选题1.设全集{}1,2,3,4U =,{}1,3A =,{}4B =,则()U A B =( ) A .{}2,4B .{}4C .∅D .{}1,3,42.已知集合{}2,0,1M =-,{}220N x x ax =+-=,若N M ⊆,则实数a =( )A .2B .1C .0D .-13.已知全集{}{}1,2,3,,2,3U A U B =⊆=,若A B ⋂≠∅,且A B ⊆/则集合A 有( ) A .1个B .2个C .3个D .4个4.已知复数a 、b 满足0ab ≠,集合{}{}22,,a b a b =,则a b +的值为( )A .2B .1C .0D .-15.设集合{}22M x Z x =∈-<,则集合M 的真子集个数为( ) A .16B .15C .8D .76.设集合1|05x A x x -⎧⎫=>⎨⎬-⎩⎭,{}|13B x x =-≤≤,则()A B =R ( ) A .{}|35x x ≤< B .{}|15x x ≤< C .{}|15x x -≤<D .{}|13x x ≤≤7.设集合{}10M x x =-<,{}12,N y y x x M ==-∈,则M N =( )A .∅B .(,1)-∞-C .(,1)-∞D .(1,1)-8.已知集合{}27120A x x x =-+≤,{}20B x x m =+>,若A B ⊆,则m 的取值范围为( ) A .()6,-+∞B .[)6,-+∞C .(),6-∞-D .(],6∞--9.若集合2{|60}A x x x =--+>,5{|1}3B x x =≤--,则A B 等于( ) A .()3,3-B .[2,3)-C .(2,2)-D .[2,2)-10.设全集U =R ,集合{1,0,1,2,3}M =-,{R |1}N x x =∈>,则下面Venn 图中阴影部分表示的集合是( )A .(,1)-∞B .(,1]-∞C .{1,0}-D .{1,0,1}-11.已知集合{}20A x R x a =∈+>,且2A ∉,则实数a 的取值范围是( )A .{}4a a ≤B .{}4a a ≥C .{}4a a ≤-D .{}4a a ≥-12.已知全集{}U 1,0,1,3,6=-,{}0,6A =,则UA =( )A .{}1,3-B .{}1,1,3-C .{}0,1,3D .{}0,3,613.若集合{}{}22,3,|560,A B x x x ==-+=则A B =( )A .{2,3}B .∅C .2D .2,314.已知集合{}12,12x A y y x -==≤≤,|lg 2Bx y x,则下列结论正确的是( )A .AB ⊆B .[]0,2A B =C .(],2A B ⋃=-∞D .()R B A =⋃R15.已知集合{}220|A x x x =-<,{}|55B x x =-<<,则( )A .AB =∅ B .A B R =C .B A ⊆D .A B ⊆二、填空题16.若{}}{1020x ax x x +=⊆-=,则=a __________. 17.设集合{1,2,}A a =,{2,3}B =.若B A ⊆,则=a _______.18.设集合{}13A x x =<<,{}B x x a =<,若A B ⊆,则a 的取值范围是_________. 19.已知函数()()()2sin 0,0g x x ωϕωϕπ=+><<的部分图象如图所示,将函数()g x 的图象向右平移6π个单位长度,得到函数()f x 的图象,若集合()3512A x y f x f π⎧⎫⎪⎪⎛⎫==-⎨⎬⎪⎝⎭⎪⎪⎩⎭,集合{}0,1,2B =,则A B =______.20.已知集合121{|2}8x A x -=>,{|20}B x x a =-<.若A B A =,则实数a 的取值范围是________. 21.已知函数()94sin3264x x f x π-⋅+=,()21g x ax =-(0a >).若[]130,log 2x ∀∈,[]21,2x ∃∈,()()12f x g x =,则a 的取值范围是___________.22.若{}231,13a a ∈--,则=a ______.23.判断下列命题的真假:(1)集合{}1,2,3是集合{}1,2,3的真子集;( ) (2){}1是集合{}1,2,3的元素;( )(3)2是集合{}1,2,3的子集;( ) (4)满足{}{}00,1,2,3A的集合A 的个数是322-个.( )24.若全集{}0,1,2,3,4U =,{}012M =,,,{}2,3N =,则M N ⋂=______. 25.用符号“∈”或“∉”填空: (1)34______N ;(2)4-______Z ; (3)13______Q ;(4)2π-______R .三、解答题26.已知集合2{|23}A x a x a =≤≤+,{|14}B x x =-≤≤,全集U =R . (1)当1a =时,求U ()A B ;(2)当A =∅时,求实数a 的取值范围;(3)若“x A ∈”是“x B ∈”的充分条件,求实数a 的取值范围.27.已知:20,:40p x q ax ->->其中R a ∈.(1)若p 是q 的充分不必要条件,求实数a 的取值范围; (2)若p 是q 的必要不充分条件,求实数a 的取值范围.28.已知集合P ={x |a +1≤x ≤2a +1},Q ={x |-2≤x ≤5}. (1)若a =3,求()U P Q ⋂;(2)若“x ∈P ”是“x ∈Q ”充分不必要条件,求实数a 的取值范围.29.已知p :|m -1|>a (a >0),q :方程22152x y m m +=--表示双曲线.(1)若q 是真命题,求m 的取值范围;(2)若p 是q 的充分不必要条件,求a 的取值范围30.已知集合{}|13A x x =<<,集合{}|21B x m x m =<<-. (1)当1m =-时,求A B ;(2)若B A ⊆,求实数m 的取值范围;【参考答案】一、单选题 1.A 【解析】 【分析】根据补集的概念求出UA ,再根据并集运算即可求出结果.【详解】 由题意可知{}2,4UA =,又{}4B =,所以(){}2,4U A B =.故选:A. 2.B 【解析】 【分析】对于集合N ,元素x 对应的是一元二次方程的解,根据判别式得出必有两个不相等的实数根,又根据韦达定理以及N M ⊆,可确定出其中的元素,进而求解. 【详解】对于集合N ,因为280a ∆=+>, 所以N 中有两个元素,且乘积为-2, 又因为N M ⊆,所以{}2,1N =-, 所以211a -=-+=-.即a =1. 故选:B. 3.C 【解析】 【分析】根据题意,列举出符合题意的集合.【详解】因为全集{}{}1,2,3,,2,3U A U B =⊆=,若A B ⋂≠∅,且A B ⊆/, 所以{}1,2,3A =或{}1,2A =或{}1,3A =. 故选:C 4.D 【解析】 【分析】 由集合的性质可知a b ,22a a b b ⎧=⎨=⎩或22a b b a ⎧=⎨=⎩,且0ab ≠,进而求解即可. 【详解】由题意,22a a b b ⎧=⎨=⎩或22a b b a ⎧=⎨=⎩, 因为0ab ≠,解得1212a b ⎧=-⎪⎪⎨⎪=-⎪⎩或1212b a ⎧=-⎪⎪⎨⎪=-⎪⎩, 所以1a b +=-, 故选:D. 5.D 【解析】 【分析】求出集合M 中的元素,再由子集的定义求解. 【详解】由题意{|04}{1,2,3}M x Z x =∈<<=, 因此其真子集个数为3217-=. 故选:D . 6.D 【解析】 【分析】求解分式不等式的解集,再由补集的定义求解出A R,再由交集的定义去求解得答案.【详解】1015x x x ->⇒<-或5x >,所以{}15A x x =≤≤R , 所以得(){}13A B x x ⋂=≤≤R . 故选:D 7.D 【解析】 【分析】解一元一次不等式求集合M ,求一次函数值域求集合N ,再应用集合的交运算求M N ⋂. 【详解】由题设,{|1}M x x =<,{|1}N y y =>-, 所以(1,1)M N =-.故选:D 8.A 【解析】 【分析】先解出集合,A B ,再结合A B ⊆得到关于m 的不等式,求解即可. 【详解】因为{}34,,2m A xx B x A B ⎧⎫==>-⊆⎨⎬⎩⎭∣,所以32m -<,解得6m >-. 故选:A. 9.D 【解析】 【分析】解不等式化简集合A ,B ,再利用交集的定义直接求解作答. 【详解】不等式260x x --+>化为:260x x +-<,解得:32x -<<,则(3,2)A =-, 不等式513x ≤--,即203x x +≤-,整理得:(2)(3)030x x x +-≤⎧⎨-≠⎩,解得23x -≤<,则[2,3)B =-, 所以[2,2)A B ⋂=-. 故选:D 10.D 【解析】 【分析】根据Venn 图,明确阴影部分表示的集合的含义,即可求得答案. 【详解】由题意,可知Venn 图中阴影部分表示的集合是(){1,0,1}U M N =- ,故选:D 11.C 【解析】 【分析】结合元素与集合的关系得到220a +≤,解不等式即可求出结果. 【详解】由题意可得220a +≤,解得4a ≤-, 故选:C 12.B【解析】 【分析】根据集合补集的概念及运算,即可求解. 【详解】由题意,全集{}U 1,0,1,3,6=-,且{}0,6A =, 根据集合补集的概念及运算,可得{}U1,1,3A =-.故选:B. 13.A 【解析】 【分析】依据交集定义去求A B 即可. 【详解】{}{}2|560=2,3B x x x =-+=则{}{}{}2,32,32,3A B ⋂=⋂=, 故选:A . 14.C 【解析】 【分析】求函数的值域求得集合A ,求函数的定义域求得集合B ,由此对选项进行分析,从而确定正确答案. 【详解】112,011,122x x x -≤≤≤-≤≤≤,所以[]1,2A =,20,2x x -><,所以(),2B =-∞. ∵2A ∈,2B ∈/,故A 错,B 错; ∵R2A ∈/,2B ∈/,∴()R 2A B ∈/,D 错.(],2A B ⋃=-∞,C 正确.故选:C 15.D 【解析】 【分析】先求出集合{}|02A x x =<<,再按照集合间的基本关系和运算判断即可. 【详解】{}|02A x x =<<,{}|02A B x x ⋂=<<,A 错误;{|A x x B =<,B 错误;A B ⊆,C 错误,D 正确.故选:D.二、填空题16.0或12-##12-或0【解析】 【分析】由题,先求出}{20x x -=所代表集合,再分别讨论{}10x ax +=作为子集的可能情况即可. 【详解】由}{20x x -=得集合为{}2,故{}10x ax +=为空集或{}2,当{}10x ax +=为{}2时,可得12a =-;当{}10x ax +=为空集时,可得0a =, 故答案为:0或12-17.3【解析】 【分析】由题意可知集合B 是集合A 的子集,进而求出答案. 【详解】由B A ⊆知集合B 是集合A 的子集, 所以33A a ∈⇒=, 故答案为:3.18.[)3,+∞【解析】 【分析】根据A B ⊆列出不等式即可求解. 【详解】因为{}13A x x =<<,{}B x x a =<,A B ⊆,故只需3a ≥即可满足题意. 故答案为:[)3,+∞.19.{}0【解析】 【分析】根据图像求出g (x )的解析式,再求出f (x )解析式,求出A 集合,根据集合交集运算法则计算即可. 【详解】由图可知()g x 周期52=1212T πππ⎛⎫=⨯+⎪⎝⎭,∴22T πω==.由212πg ⎛⎫-= ⎪⎝⎭得22122k ππϕπ⎛⎫⨯-+=+ ⎪⎝⎭,∴223k πϕπ=+,k ∈Z ,∵0ϕπ<<,∴k 取0,23ϕπ=, ∴()22sin 23g x x π⎛⎫=+⎪⎝⎭, ∴()22sin 22sin 2633f x x x πππ⎡⎤⎛⎫⎛⎫=-+=+ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦, ∴35352sin 22sin 611212363f ππππππ⎛⎫⎛⎫⎛⎫=⨯+=-+=⎪ ⎪⎪⎝⎭⎝⎭⎝⎭. ∴()35150sin 22221232636f x f x k x k πππππππ⎛⎫⎛⎫-≥⇔+≥⇔+≤+≤+⎪ ⎪⎝⎭⎝⎭,k ∈Z , ∴,124A x k x k k ππππ⎧⎫=-≤≤+∈⎨⎬⎩⎭Z ,∴{}0A B ⋂=.故答案为:{}0﹒20.[4,)+∞【解析】 【分析】结合指数不等式化简集合A ,由A B A A B ⋂=⇒⊆,建立不等式即可求解a 的取值范围. 【详解】1212312228x x --->⇒>,即123x ->-,解得2x <,故{}|2A x x =<,|2a B x x ⎧⎫=<⎨⎬⎩⎭,由A B A A B ⋂=⇒⊆,即22a≤,4a ≥. 故答案为:[4,)+∞ 21.35,88⎡⎤⎢⎥⎣⎦【解析】 【分析】由题意,()f x 的值域为()g x 的值域子集,先求得两个函数的值域,再利用包含关系求得a 的取值范围. 【详解】 因为()()294sin32311644x x xf x π-⋅+-+==, 又当[]30,log 2x ∈时,0311x ≤-≤,()f x 的值域为11,42⎡⎤⎢⎥⎣⎦.因为0a >,所以()g x 在[]1,2上单调递增,其值域为[]21,41a a --. 依题意得[]11,21,4142a a ⎡⎤⊆--⎢⎥⎣⎦,则12141412a a ⎧-≤⎪⎪⎨⎪-≥⎪⎩,解得3588a ≤≤.故答案为:35,88⎡⎤⎢⎥⎣⎦22.4-【解析】 【分析】结合元素与集合的关系,利用集合的互异性分类讨论即可求解. 【详解】若13a -=,则4a =,此时,2113a a -=-,不合题意,舍去; 若2133a -=,则4a =-或4a =,因为4a =不合题意,舍去. 故4a =-. 故答案为:4-. 23. 假 假 假 真 【解析】 【分析】(1)利用真子集的定义即可判断. (2)由集合与集合的关系即可判断真假. (3)由元素与集合的关系即可判断真假.(4)由真子集的定义即可找到满足条件集合A 的个数. 【详解】(1)因为{}1,2,3的真子集有{}{}{}{}{}{},1,2,3,1,2,1,3,2,3∅,所以{}1,2,3不是{}1,2,3真子集,命题为假命题.(2){}1是集合,因此不是{}1,2,3的元素,命题为假命题. (3)因为2是元素,因此不是{}1,2,3的子集,命题为假命题. (4)若{}0A ,所以集合A 中至少含有两个元素且其中一个必须为0,又因为{}0,1,2,3A,所以集合A 可以从1,2,3中再选取一个元素、或者两个元素,所以满足条件的集合A 把∅和{}0,1,2,3去掉,所以满足条件集合A 的个数为322-个,命题为真命题.故答案为:假;假;假;真24.{}3【解析】 【分析】由交集、补集的定义计算. 【详解】由题意{4,3}M =,所以M N ⋂={3}. 故答案为:{3}. 25. ∉, ∈, ∈ ∈ 【解析】 【分析】(1)利用元素与集合的关系判断.(2)利用元素与集合的关系判断.(3)利用元素与集合的关系判断.(4)利用元素与集合的关系判断.【详解】 解:34∉N ; 4-∈Z ;13∈Q ; 2π-∈R .故答案为:∉,∈,∈,∈三、解答题26.(1)[)1,1-;(2)()(),13,∞∞--⋃+; (3)()1,3,2∞∞⎛⎤-⋃+ ⎥⎝⎦. 【解析】【分析】(1)根据集合的补运算和交运算,求解即可;(2)根据题意,求解关于a 的一元二次不等式,即可求得范围;(3)根据集合之间的关系,列出不等关系,求解即可.(1)当1a =时,{|15}A x x =≤≤,{|14}B x x =-≤≤,故U ()A B {|1x x =<或{}5}|14{|11}x x x x x >⋂-≤≤=-≤<. 即U ()A B [)1,1=-.(2)若A =∅,则223a a >+,即()()310a a -+>,解得1a <-或3a >,故实数a 的取值范围为:()(),13,∞∞--⋃+.(3)若“x A ∈”是“x B ∈”的充分条件,则A B ⊆,①A =∅时,1a <-或3a >满足题意; ②A ≠∅,则13234a a -≤≤⎧⎨+≤⎩,得1-12a ≤≤ 综上所述,实数a 的取值范围为()1,3,2∞∞⎛⎤-⋃+ ⎥⎝⎦. 27.(1)(2,)+∞(2)[0,2)【解析】【分析】(1)由题意可得A ⫋B ,所以0,42,a a>⎧⎪⎨<⎪⎩从而可求出实数a 的取值范围, (2)由题意可得B ⫋A ,然后分a =0,a >0和a <0三种情况求解即可(1)设命题p :A ={x |x -2>0},即p :A ={x |x >2},命题q :B ={x |ax -4>0},因为p 是q 的充分不必要条件,所以A ⫋B ,. 即0,42,a a>⎧⎪⎨<⎪⎩解得a >2 所以实数a 的取值范围为(2,)+∞(2)由(1)得p :A ={x |x >2},q :B ={x |ax -4>0},因为p 是q 的必要不充分条件,所以B ⫋A ,①当a =0时,B =∅,满足题意;②当a >0时,由B ⫋A ,得4a .>2,即0<a <2;.③当a <0时,显然不满足题意.综合①②③得,实数a 的取值范围为[0,2)28.(1)4{|}2x x -≤<(2)2a ≤【解析】【分析】(1)将a =3代入求出集合P ,Q ,再由补集及交集的意义即可计算得解. (2)由给定条件可得P Q ,再根据集合包含关系列式计算作答.(1)因a =3,则P ={x |4≤x ≤7},则有{|4U P x x =<或7}x >,又Q ={x |-2≤x ≤5}, 所以{|24)}(U P Q x x ⋂=-≤<.(2)“x ∈P ”是“x ∈Q ”充分不必要条件,于是得P Q ,当a +1>2a +1,即a <0时,P =∅,又Q ≠∅,即∅ Q ,满足P Q ,则a <0,当P ≠∅时,则有12112215a a a a +≤+⎧⎪+≥-⎨⎪+<⎩或12112215a a a a +≤+⎧⎪+>-⎨⎪+≤⎩,解得02a ≤<或02a ≤≤,即02a ≤≤,综上得:2a ≤,所以实数a 的取值范围是2a ≤.29.(1)(-∞,2)(5⋃,)∞+;(2)[4,)∞+.【解析】【分析】(1)解不等式(5)(2)0m m --<即得解;(2)由题意可得:1p m a >+或1m a <-+,解不等式组12150a a a -+⎧⎪+⎨⎪>⎩即得解. (1)解:由题意可得(5)(2)0m m --<,解得2m <或5m >.故m 的取值范围为(-∞,2)(5⋃,)∞+.(2)解:由题意可得:1p m a >+或1m a <-+.因为p 是q 的充分不必要条件,所以(-∞,1)(1a a -++⋃,)(+∞-∞,2)(5⋃,)∞+.所以12150a a a -+⎧⎪+⎨⎪>⎩,解得4a . 故a 的取值范围为[4,)∞+.30.(1){}23x x -<< (2)1,3⎡⎫+∞⎪⎢⎣⎭【解析】【分析】(1)先分别求出,A B ,然后根据集合的并集的概念求解出A B 的结果;(2)根据B A ⊆,进而先讨论B =∅的情况,再讨论B ≠∅的情况,进而得答案;(1)解:当1m =-时,{}22B x x =-<<, ∴{}23A B x x ⋃=-<<;(2)解:因为B A ⊆,所以,当B =∅时, 21m m ,解得13m ≥,满足B A ⊆; 当B ≠∅时,若满足B A ⊆,则212113m m m m <-⎧⎪≥⎨⎪-≤⎩,该不等式无解;综上,若B A ⊆,实数m 的取值范围是1,3⎡⎫+∞⎪⎢⎣⎭。

集合的基本运算练习题含答案

集合的基本运算练习题含答案

集合的基本运算练习题(2)1. 已知集合A={x|2x2−7x+3<0},B={x∈Z|lg x<1},则阴影部分表示的集合的元素个数为()A.1B.2C.3D.42. 已知集合A={x|x2−4<0},B={x|x2−4x+3<0},则A∪B=()A.{x|−2<x<1}B.{x|1<x<2}C.{x|−2<x<3}D.{x|−2<x<2}3. 已知集合A={x∈Z|y=log2(3−x)},B={y|y=√x+1},则A∩B=()A.(0, 3)B.[1, 3)C.{1, 2}D.{1, 2, 3}4. 若集合A={x∈N||x−1|≤1},B={x|y=√1−x2},则A∩B的真子集的个数为()A.3B.4C.7D.85. 设集合A={x|1<x<2},B={x|x<a}满足A⫋B,则实数a的取值范围是( )A.{a|a≥1}B.{a|a≤1}C.{a|a≥2}D.{a|a≤2}6. 已知集合A={x|x≤1},B={x|x≥a},且A∪B=R,则实数a的取值范围是________.7. 设集合A={2,4}, B={2,6,8},则A∪B=________.8. 设集合A={5,a+1},集合B={a,b}.若A∩B={2},则A∪B=________.9. 我们把集合{x|x∈A且x∉B}叫做集合A与B的差集,记作A−B.据此回答下列问题:(1)若A={1, 2, 3, 4},B={2, 3, 4, 5},求A−B;(2)在下列各图中用阴影部分表示集合A−B;(3)若A={x|0<x≤a},B={x|−1≤x≤2},且A−B=⌀,求a的取值范围.10. 已知集合A={−1,0},B={−1,3},则A∪B=________.11. 已知全集U=R,集合A={x|0<x<1},B={x|3≤9x≤27},C={x|a−2<x< 2a−4}.(1)求(∁U A)∩B;(2)若A∩C=C,求a的取值范围.12. 已知A={x|a≤x≤2a+3},B={x|x>1或x<−6}.(1)若A∩B=(1,3],求a的值;(2)若A∪B=B,求a的取值范围.参考答案与试题解析集合的基本运算练习题(2)一、选择题(本题共计 5 小题,每题 5 分,共计25分)1.【答案】B【考点】Venn图表达集合的关系及运算【解析】根据图所示的阴影部分所表示的集合的元素属于集合A但不属于集合B,即求A∩B,根据交集的定义和补集的定义即可求得【解答】阴影部分所表示的集合为A∩B,A={x|2x2−7x+3<0}=(1, 3),2B={x∈Z|lg x<1}={x∈Z|0<x<10},A∩B={1, 2},那么满足图中阴影部分的集合的元素的个数为2,2.【答案】C【考点】并集及其运算【解析】解不等式得出集合A、B,根据并集的定义写出A∪B.【解答】集合A={x|x2−4<0}={x|−2<x<2},B={x|x2−4x+3<0}={x|1<x<3},则A∪B={x|−2<x<3}.3.【答案】C【考点】交集及其运算【解析】先求出集合A,B,由此能求出A∩B.【解答】∵集合A={x∈Z|y=log(3−x)}={x∈Z|3−x>0}={x∈Z|x<3},2B={y|y=√x+1}={y|y≥1},∴A∩B={x∈Z|1≤x<3}={1, 2}.4.【答案】A【考点】交集及其运算子集与真子集【解析】分别求出集合A和B,从而求出A∩B={0, 1},由此能求出A∩B的真子集的个数.【解答】解:集合A={x∈N||x−1|≤1},B={x|y=√1−x2},∴A={0, 1, 2},B={x|−1≤x≤1},∴A∩B={0, 1},∴A∩B的真子集的个数为22−1=3.故选A.5.【答案】C【考点】集合关系中的参数取值问题【解析】根据真子集的定义、以及A、B两个集合的范围,求出实数a的取值范围.【解答】解:因为集合A={x|1<x<2},B={x|x<a},且满足A⫋B,所以集合A是集合B的真子集,所以a≥2.故选C.二、填空题(本题共计 3 小题,每题 5 分,共计15分)6.【答案】a≤1【考点】集合关系中的参数取值问题并集及其运算【解析】利用数轴,在数轴上画出集合,数形结合求得两集合的并集.【解答】解:∵A={x|x≤1},B={x|x≥a},且A∪B=R,如图所示:故当a≤1时,命题成立.故答案为:a≤1.7.【答案】{2,4,6,8}【考点】并集及其运算【解析】此题暂无解析【解答】解:因为集合A={2,4}, B={2,6,8},所以A∪B={2,4,6,8}.故答案为:{2,4,6,8}.8.【答案】{5,2,1}【考点】交集及其运算并集及其运算【解析】此题暂无解析【解答】解:由题意得a+1=2,解得a=1,则b=2,∴A∪B={5,2,1}.故答案为:{5,2,1}.三、解答题(本题共计 4 小题,每题 5 分,共计20分)9.【答案】解:(1)若A={1, 2, 3, 4},B={2, 3, 4, 5},则A−B={1};(2)在下列各图中用阴影部分表示集合A−B;(3)若A={x|0<x≤a},B={x|−1≤x≤2},且A−B=⌀,则a≤2,∴a的取值范围是(−∞, 2]【考点】Venn图表达集合的关系及运算【解析】(1)根据差集定义即可求A−B;(2)根据差集定义即可阴影部分表示集合A−B;(3)根据A−B=⌀,即可求a的取值范围.【解答】解:(1)若A={1, 2, 3, 4},B={2, 3, 4, 5},则A−B={1};(2)在下列各图中用阴影部分表示集合A−B;(3)若A={x|0<x≤a},B={x|−1≤x≤2},且A−B=⌀,则a≤2,∴a的取值范围是(−∞, 2]10.【答案】{−1,0,3}【考点】并集及其运算【解析】此题暂无解析【解答】解:∵A={−1,0},B={−1,3}∴A∪B={−1,0,3}.故答案为:{−1,0,3}.11.【答案】集合A={x|0<x<1}=(7, 1),所以∁U A=(−∞, 0]∪[7;又B={x|3≤9x≤27}={x|4≤2x≤3}={x|≤x≤,],所以(∁U A)∩B=[1,];若A∩C=C,则C⊆A;因为C={x|a−2<x<2a−4},所以当C=⌀时,a−2≥5a−4;当C≠⌀时,则,解得,即.综上知,a的取值范围是.【考点】交、并、补集的混合运算【解析】此题暂无解析【解答】此题暂无解答12.【答案】解:(1)∵A∩B={x|1<x≤3},可得{2a+3=3−6≤a≤1,∴a=0.(2)由A∪B=B得A⊆B.①当A=⌀时满足题意,此时,a>2a+3,解得a<−3;②当A≠⌀时,有{a≤2a+3a>1或2a+3<−6,解得a>1.综上,a的取值范围为:a<−3或a>1,即(−∞, −3)∪(1, +∞).【考点】集合关系中的参数取值问题【解析】(1)根据A={x|a≤x≤2a+3},B={x|x<−6, 或x>1},再由A∩B={x|1< x≤3}可得{2a+3=3−6≤a≤1,由此求得a的值.(2)由A∪B=B得A⊆B,分A=⌀和A≠⌀两种情况,分别求出a的取值范围,再取并集,即得所求.【解答】解:(1)∵A∩B={x|1<x≤3},可得{2a+3=3−6≤a≤1,∴a=0.(2)由A∪B=B得A⊆B.①当A=⌀时满足题意,此时,a>2a+3,解得a<−3;②当A≠⌀时,有{a≤2a+3a>1或2a+3<−6,解得a>1.综上,a的取值范围为:a<−3或a>1,即(−∞, −3)∪(1, +∞).。

高一数学集合的基本运算练习题及答案解析

1.(2010年高考辽宁卷)已知集合U={1,3,5,7,9},A={1,5,7},则∁U A=()A.{1,3}B.{3,7,9}C.{3,5,9} D.{3,9}解析:选D.∁U A={3,9},故选D.2.(2010年高考陕西卷)集合A={x|-1≤x≤2},B={x|x<1},则A∩(∁R B)=()A.{x|x>1} B.{x|x≥1}C.{x|1<x≤2} D.{x|1≤x≤2}解析:选D.∵B={x|x<1},∴∁R B={x|x≥1},∴A∩∁R B={x|1≤x≤2}.3. 已知全集U=Z,集合A={x|x2=x},B={-1,0,1,2},则图中的阴影部分所表示的集合等于()A.{-1,2} B.{-1,0}C.{0,1} D.{1,2}解析:选A.依题意知A={0,1},(∁U A)∩B表示全集U中不在集合A中,但在集合B中的所有元素,故图中的阴影部分所表示的集合等于{-1,2}.选A.4.已知全集U={x|1≤x≤5},A={x|1≤x<a},若∁U A={x|2≤x≤5},则a=________.解析:∵A∪∁U A=U,∴A={x|1≤x<2}.∴a=2.答案:21.已知全集U={1,2,3,4,5},且A={2,3,4},B={1,2},则A∩(∁U B)等于()A.{2} B.{5}C.{3,4} D.{2,3,4,5}解析:选C.∁U B={3,4,5},∴A∩(∁U B)={3,4}.2.已知全集U={0,1,2},且∁U A={2},则A=()A.{0} B.{1}C.∅D.{0,1}解析:选D.∵∁U A={2},∴2∉A,又U={0,1,2},∴A={0,1}.3.(2009年高考全国卷Ⅰ)设集合A={4,5,7,9},B={3,4,7,8,9},全集U=A∪B,则集合∁U(A∩B)中的元素共有()A.3个B.4个C.5个D.6个解析:选A.U=A∪B={3,4,5,7,8,9},A∩B={4,7,9},∴∁U(A∩B)={3,5,8}.4.已知集合U={2,3,4,5,6,7},M={3,4,5,7},N={2,4,5,6},则()A.M∩N={4,6} B.M∪N=UC.(∁U N)∪M=U D.(∁U M)∩N=N解析:选B.由U={2,3,4,5,6,7},M={3,4,5,7},N={2,4,5,6},得M∩N={4,5},(∁U N)∪M={3,4,5,7},(∁U M)∩N={2,6},M∪N={2,3,4,5,6,7}=U,选B.5.已知全集U ={1,2,3,4,5},集合A ={x |x 2-3x +2=0},B ={x |x =2a ,a ∈A },则集合∁U (A ∪B )中元素个数为( )A .1B .2C .3D .4解析:选B.∵A ={1,2},∴B ={2,4},∴A ∪B ={1,2,4},∴∁U (A ∪B )={3,5}.6.已知全集U =A ∪B 中有m 个元素,(∁U A )∪(∁U B )中有n 个元素.若A ∩B 非空,则A ∩B 的元素个数为( )A .mnB .m +nC .n -mD .m -n解析:选D.U =A ∪B 中有m 个元素,∵(∁U A )∪(∁U B )=∁U (A ∩B )中有n 个元素,∴A ∩B 中有m -n 个元素,故选D.7.设集合U ={1,2,3,4,5},A ={2,4},B ={3,4,5},C ={3,4},则(A ∪B )∩(∁U C )=________.解析:∵A ∪B ={2,3,4,5},∁U C ={1,2,5},∴(A ∪B )∩(∁U C )={2,3,4,5}∩{1,2,5}={2,5}.答案:{2,5}8.已知全集U ={2,3,a 2-a -1},A ={2,3},若∁U A ={1},则实数a 的值是________. 解析:∵U ={2,3,a 2-a -1},A ={2,3},∁U A ={1},∴a 2-a -1=1,即a 2-a -2=0,解得a =-1或a =2.答案:-1或29.设集合A ={x |x +m ≥0},B ={x |-2<x <4},全集U =R ,且(∁U A )∩B =∅,求实数m 的取值范围为________.解析:由已知A ={x |x ≥-m },∴∁U A ={x |x <-m },∵B ={x |-2<x <4},(∁U A )∩B =∅,∴-m ≤-2,即m ≥2,∴m 的取值范围是m ≥2.答案:{m |m ≥2}10.已知全集U =R ,A ={x |-4≤x <2},B ={x |-1<x ≤3},P ={x |x ≤0或x ≥52},求A ∩B ,(∁U B )∪P ,(A ∩B )∩(∁U P ).解:将集合A 、B 、P 表示在数轴上,如图.X k b 1 . c o m∵A ={x |-4≤x <2},B ={x |-1<x ≤3},∴A ∩B ={x |-1<x <2}.∵∁U B ={x |x ≤-1或x >3},∴(∁U B )∪P ={x |x ≤0或x ≥52},(A ∩B )∩(∁U P )={x |-1<x <2}∩{x |0<x <52} ={x |0<x <2}.11.已知集合A ={x |x 2+ax +12b =0}和B ={x |x 2-ax +b =0},满足B ∩(∁U A )={2},A ∩(∁U B )={4},U =R ,求实数a ,b 的值.解:∵B ∩(∁U A )={2},∴2∈B ,但2∉A .∵A ∩(∁U B )={4},∴4∈A ,但4∉B .∴⎩⎪⎨⎪⎧ 42+4a +12b =022-2a +b =0,解得⎩⎨⎧ a =87b =127.∴a ,b 的值为87,-127. 12.已知集合A ={x |2a -2<x <a },B ={x |1<x <2},且A∁R B ,求实数a 的取值范围.解:∁R B ={x |x ≤1或x ≥2}≠∅,∵A ∁R B ,∴分A =∅和A ≠∅两种情况讨论.①若A =∅,此时有2a -2≥a ,∴a ≥2. ②若A ≠∅,则有⎩⎨⎧ 2a -2<a a ≤1或⎩⎪⎨⎪⎧2a -2<a 2a -2≥2. ∴a ≤1.综上所述,a ≤1或a ≥2.。

1.3集合的基本运算基础练习题

1.3集合的基本运算基础练习题一、单选题1.已知集合{|11}M x x =-≤≤,2{|,}N y y x x M ==∈,则M N =( )A .[1,1]-B .[0,)+∞C .(0,1)D .[0,1]2.已知全集U =R ,集合{}24A x x =-<<,{}2B x x =≥,则()UA B ⋂=( )A .()2,4 B .()2,4- C .()2,2-D .(]2,2- 3.设集合{1,2,3,4,5},{1,2,3},{2,3,4,5}===U M N ,则()UM N =( )A .{2,3}B .{1,4,5}C .{2,3,4}D .{2,4,5}4.已知集合{}1,2,3A =,集合{}2B x x x ==,则AB =( )A .{}0,1,2,3B .{}1,0,1,2,3-C .{}1,2D .{}15.已知集合{}1,2,3,4,5,6U =,{}2,3,5M =,{}4,6N =.则()UM N ⋂=( )A .{}4,6B .{}1,4,6C .∅D .{}2,3,4,5,66.已知集合{}0,2,4A =,{}2,4,6B =,则A B =( )A .{}4B .{}0,6C .{}2,4D .{}0,2,4,67.已知集合{}1,2,3,4A =,{}2,4,6B =,{}1,2,3,4,5,6U =,则()()UUA B ⋃=( ) A .{}5B .{}1,3,5,6C .{}1,3,5D .{}2,4,68.已知集含U =R ,集合{0,1,2,3,4,5}A =,{|1}B x x =>,则图中阴影部分所表示的集合为( )A .{0}B .{0,1}C .{1,2}D .{0,1,2}9.设全集{()|}U x y x R y R =∈∈,,,集合{}(,)|20A x y x y m =-+>,集合{()|0}B x y x y n =+-≤,,那么点(23)()U P A B ∈,的充要条件是( ).A .1m >-,5n <B .1m <-,5n ≤C .1m >-,5n >D .1m <-,5n ≥ 10.已知集合{1,2,3},{3,4}A B ==,则A B =( )A .{1,2,3}B .{1,3}C .{3}D .∅二、填空题 11.已知集合(){}()|1{|3}A x y x y B x y x y =-==+=,,,,则A B =_________.12.已知集合{}{}0,1,2,3,4,0,1,2,U A ==则UA______.13.某班共38人,其中15人喜爱篮球运动,10人喜爱乒乓球运动,16人对这两项运动都不喜爱,则喜爱篮球运动但不喜爱乒乓球运动的人数为______. 14.已知集合{1,3,5,7,9,10},{1,3,5}U A ==,则UA__________.三、解答题15.设已知全集U =R ,集合{{|3215},2A x x B x x =-<-<=≤-或}0x ≥,求A B ,()UAB ,()U A B ⋂16.全集U =R ,若集合A ={x |3≤x <8},B ={x |2<x ≤6}. (1)求A ∩B ,A ∪B ;(2)若集合C ={x |x >a },A ⊆C ,求a 的取值范围. 17.已知集合{}|22A x x =-<<,{}|1B x x =≥. (1)求A B ;(2)求()RAB .18.已知{}{}2,4,6,8,10,2,4,6,{|,4}U A B x x A x ===∈<,求: (1)UA 及UB ;(2)()UA B ∩;(3)()UA B .参考答案1.D 【分析】求出N 中y 的范围确定出N ,再求出M 与N 的交集即可. 【详解】 解:{|11}M x x =-≤≤,N 中2,y x x M =∈,则{|01}N y y =≤≤,[0,1]M N ∴=.故选:D . 2.C 【分析】先求出集合B 的补集,再求()UA B ⋂【详解】解:因为{}2B x x =≥,所以{}2UB x x =<,因为{}24A x x =-<<, 所以(){}22UAB x x =-<<故选:C. 3.B 【分析】先求出交集,再求补集. 【详解】 ∵{}2,3MN =,∴(){1,4,5}⋂=U M N .故选:B. 4.A 【分析】化简集合B ,再根据集合并的意义求解. 【详解】{}{}20,1B x x x ===,{}0,1,2,3A B ⋃=.故选:A 【点睛】此题为基础题,考查集合并运算. 5.A 【分析】根据补集与交集的定义进行运算即可. 【详解】{}1,2,3,4,5,6U =,{}2,3,5M =,{}4,6N = {}1,4,6U M ∴=,(){}4,6U M N ∴=故选:A. 6.D 【分析】利用并集的定义可求得集合A B .【详解】集合{}0,2,4A =,{}2,4,6B =,则{}0,2,4,6A B ⋃=. 故选:D. 7.B 【分析】先根据补集定义求出UA ,UB ,再由并集定义即可求出.【详解】 可得{}5,6UA =,{}1,3,5UB =,()(){}1,3,5,6UUA B ∴⋃=.故选:B. 8.B 【分析】根据Venn 图表示的集合运算结果求解.【详解】图中阴影部分表示()U A B ,{|1}UB x x =≤,∴(){0,1}U AB =.故选:B . 9.A 【分析】 先求得UB ,由此求得()U A B ∩满足的不等式组,将P 点坐标代入上述不等式组,解不等式组求得,m n 的取值范围. 【详解】 依题意(){},|0UB x y x y n =+->,所以()U A B ∩满足的不等式组为20x y m x y n -+>⎧⎨+->⎩,由于(23)()U P A B ∈,,故430230m n -+>⎧⎨+->⎩,解得1m >-,5n <.故选:A 10.C 【分析】根据交集的概念直接求解出A B 的结果.【详解】因为{}{}1,2,3,3,4A B ==,所以{}3A B ⋂=, 故选:C. 11.(){}2,1【分析】 联立13x y x y -=⎧⎨+=⎩即可求出.【详解】联立方程13x y x y -=⎧⎨+=⎩,解得2,1x y ==,(){}2,1A B ∴⋂=.故答案为:(){}2,1.12.{}3,4 【分析】由补集的定义直接计算. 【详解】{}{}0,1,2,3,4,0,1,2,U A =={}3,4U A ∴=.故答案为:{}3,4. 13.12 【分析】设两者都喜欢的人数为x 人,则只喜爱篮球的有(15)x -人,只喜爱乒乓球的有(10)x -人,由此可得(15)(10)1638x x x -+-++=,解之即可两者都喜欢的人数,然后即可得出喜爱篮球运动但不喜爱乒乓球运动的人数. 【详解】设两者都喜欢的人数为x 人,则只喜爱篮球的有(15)x -人,只喜爱乒乓球的有(10)x -人, 由此可得(15)(10)1638x x x -+-++=,解得3x =, 所以1512x -=, 即所求人数为12人, 故答案为:12. 14.{7,9,10} 【分析】直接利用补集的定义求出UA .【详解】集合{1,3,5,7,9,10},{1,3,5}U A ==,则{}7,9,10UA =故答案为:{7,9,10}. 15.{|03}A B x x ⋂=≤<,(){|21}UA B x x ⋃=-<≤-,(){2U A B x x ⋂=≤-或}3x ≥.【分析】先求出集合A ,再根据交并补定义计算即可. 【详解】由已知得{|13}A x x =-<<,∴{|03}A B x x ⋂=≤<,{|2A B x x ⋃=≤-或1}x >-, ∴(){|21}UA B x x ⋃=-<≤-,又{1UA x x =≤-或}3x ≥, ∴(){2UA B x x ⋂=≤-或}3x ≥.16.(1){}{}36,28A B x x A B x x ⋂=≤≤⋃=<<;(2)3a <. 【分析】(1)直接根据交集与并集的概念进行计算可得结果; (2)根据子集关系列式可得结果. 【详解】(1)A ∩B {|36}x x =≤≤,{|28}A B x x ⋃=<<; (2)因为集合C ={x |x >a },A ⊆C , 所以3a < 【点睛】关键点点睛:掌握交集、并集和子集的概念是解题关键. 17.(1)()2,A B ⋃=-+∞;(2)()RA B =()2,1- .【分析】(1)直接利用并集的定义求解即可; (2)先求出集合B 的补集,再求()RA B【详解】解:(1)因为{}|22A x x =-<<,{}|1B x x =≥, 所以()2,A B ⋃=-+∞,(2)因为{}|1B x x =≥,所以{}1RB x x =<,因为{}|22A x x =-<<, 所以()RAB =()2,1-18.(1){}{}8,10,4,6,8,10U U C A C B ==;(2)(){}4,6U A C B ⋂=;(3)(){}2,8,10U C A B ⋃=.【分析】(1)先求解出集合B ,然后根据补集的概念求解出结果; (2)根据(1)中UB 的结果,根据交集的概念求解出结果; (3)根据(1)中UA 的结果,根据并集的概念求解出结果.【详解】解:∵{}{}24,6,8,10,2,4,6U A ==,,∴{}{|,4}2B x x A x =∈<=, (1){}{}810,4,6,8,10U U C A C B ==,; (2)(){}{}{}2,4,64,6,8,104,6U A C B ⋂=⋂=;(3)(){}{}{}81022,8,10U C A B ⋃=⋃=,.。

高一数学集合的基本运算练习题及答案

高一数学必修1集合练习题1.设集合A={x|2≤x<4},B={x|3x-7≥8-2x},则A∪B等于()A.{x|x≥3}B.{x|x≥2}C.{x|2≤x<3} D.{x|x≥4}【解析】B={x|x≥3}.画数轴(如下图所示)可知选B.【答案】 B2.已知集合A={1,3,5,7,9},B={0,3,6,9,12},则A∩B=()A.{3,5} B.{3,6}C.{3,7} D.{3,9}【解析】A={1,3,5,7,9},B={0,3,6,9,12},A和B中有相同的元素3,9,∴A∩B={3,9}.故选D.【答案】 D3.50名学生参与甲、乙两项体育活动,每人至少参与了一项,参与甲项的学生有30名,参与乙项的学生有25名,则仅参与了一项活动的学生人数为________.【解析】设两项都参与的有x人,则只参与甲项的有(30-x)人,只参与乙项的有(25-x)人.(30-x)+x+(25-x)=50,∴x=5.∴只参与甲项的有25人,只参与乙项的有20人,∴仅参与一项的有45人.【答案】454.已知集合A={-4,2a-1,a2},B={a-5,1-a,9},若A∩B={9},求a的值.【解析】∵A∩B={9},∴9∈A,∴2a-1=9或a2=9,∴a=5或a=±3.当a=5时,A={-4,9,25},B={0,-4,9}.此时A∩B={-4,9}≠{9}.故a=5舍去.当a=3时,B={-2,-2,9},不符合要求,舍去.经检验可知a=-3符合题意.一、选择题(每小题5分,共20分)1.集合A ={0,2,a},B ={1,a 2}.若A ∪B ={0,1,2,4,16},则a 的值为( )A .0B .1C .2D .4【解析】 ∵A ∪B ={0,1,2,a ,a 2},又A ∪B ={0,1,2,4,16},∴{a ,a 2}={4,16},∴a =4,故选D.【答案】 D2.设S ={x|2x +1>0},T ={x|3x -5<0},则S ∩T =( )A .ØB .{x|x<-12}C .{x|x>53}D .{x|-12<x<53} 【解析】 S ={x|2x +1>0}={x|x>-12},T ={x|3x -5<0}={x|x<53},则S ∩T ={x|-12<x<53}.故选D.【答案】 D3.已知集合A ={x|x>0},B ={x|-1≤x ≤2},则A ∪B =( )A .{x|x ≥-1}B .{x|x ≤2}C .{x|0<x ≤2}D .{x|-1≤x ≤2}【解析】 集合A 、B 用数轴表示如图,A ∪B ={x|x ≥-1}.故选A.【答案】 A4.满意M ⊆{a 1,a 2,a 3,a 4},且M ∩{a 1,a 2,a 3}={a 1,a 2}的集合M 的个数是( )A .1B .2C .3D .4【解析】 集合M 必需含有元素a 1,a 2,并且不能含有元素a 3,故M ={a 1,a 2}或M ={a 1,a 2,a 4}.故选B.【答案】 B二、填空题(每小题5分,共10分)5.已知集合A ={x|x ≤1},B ={x|x ≥a},且A ∪B =R ,则实数a 的取值范围是________.【解析】 A =(-∞,1],B =[a ,+∞),要使A ∪B =R ,只需a ≤1.【答案】 a ≤16.满意{1,3}∪A ={1,3,5}的全部集合A 的个数是________.【解析】 由于{1,3}∪A ={1,3,5},则A ⊆{1,3,5},且A 中至少有一个元素为5,从而A 中其余元素可以是集合{1,3}的子集的元素,而{1,3}有4个子集,因此满意条件的A 的个数是4.它们分别是{5},{1,5},{3,5},{1,3,5}.【答案】 4三、解答题(每小题10分,共20分)7.已知集合A ={1,3,5},B ={1,2,x 2-1},若A ∪B ={1,2,3,5},求x 及A ∩B.【解析】 由A ∪B ={1,2,3,5},B ={1,2,x 2-1}得x 2-1=3或x 2-1=5.若x 2-1=3则x =±2;若x 2-1=5,则x =±6;综上,x =±2或±6.当x =±2时,B ={1,2,3},此时A ∩B ={1,3};当x =±6时,B ={1,2,5},此时A ∩B ={1,5}.8.已知A ={x|2a ≤x ≤a +3},B ={x|x<-1或x>5},若A ∩B =Ø,求a 的取值范围.【解析】 由A ∩B =Ø,(1)若A =Ø,有2a>a +3,∴a>3.(2)若A ≠Ø,如图:∴ ,解得- ≤a ≤2.综上所述,a 的取值范围是{a|- ≤a ≤2或a>3}.9.(10分)某班有36名同学参与数学、物理、化学课外探究小组,每名同学至多参与两个小组.已知参与数学、物理、化学小组的人数分别为26,15,13,同时参与数学和物理小组的有6人,同时参与物理和化学小组的有4人,则同时参与数学和化学小组的有多少人?【解析】 设单独参与数学的同学为x 人,参与数学化学的为y 人,单独参与化学的为z 人.依题意⎩⎪⎨⎪⎧ x +y +6=26,y +4+z =13,x +y +z =21,解得⎩⎪⎨⎪⎧ x =12,y =8,z =1.∴同时参与数学化学的同学有8人,答:同时参与数学和化学小组的有8人.。

【高一】集合的基本运算过关训练题(带答案)

【高一】集合的基本运算过关训练题(带答案)1.(2021年高考广东卷)若集合A={x-2<x<1},B={x0<x<2},则集合A∩B=( )A.{x-1<x<1} B.{x-2<x<1}C.{x-2<x<2} D.{x0<x<1}解析:选D.因为A={x-2<x<1},B={x0<x<2},所以A∩B={x0<x<1}.2.(2021年高考湖南卷)已知集合={1,2,3},N={2,3,4}则( )A.⊆N B.N⊆C.∩N={2,3} D.∪N={1,4}解析:选C.∵={1,2,3},N={2,3,4}.∴选项A、B显然不对.∪N={1,2,3,4},∴选项D错误.又∩N={2,3},故选C.3.已知集合={yy=x2},N={yx=y2},则∩N=( )A.{(0,0),(1,1)} B.{0,1}C.{yy≥0} D.{y0≤y≤1}解析:选C.={yy≥0},N=R,∴∩N=={yy≥0}.4.已知集合A={xx≥2},B={xx≥},且A∪B=A,则实数的取值范围是________.解析:A∪B=A,即B⊆A,∴≥2.答案:≥21.下列关系Q∩R=R∩Q;Z∪N=N;Q∪R=R∪Q;Q∩N=N中,正确的个数是( )A.1 B.2C.3 D.4解析:选C.只有Z∪N=N是错误的,应是Z∪N=Z.2.(2021年高考四川卷)设集合A={3,5,6,8},集合B={4,5,7,8},则A∩B等于( )A.{3,4,5,6,7,8} B.{3,6}C.{4,7} D.{5,8}解析:选D.∵A={3,5,6,8},B={4,5,7,8},∴A∩B={5,8}.3.(2021年高考东卷)集合A={0,2,a},B={1,a2}.若A∪B={0,1,2,4,16},则a的值为( )A.0 B.1X k b 1 . c oC.2 D.4解析:选D.根据元素特性,a≠0,a≠2,a≠1.∴a=4.4.已知集合P={x∈N1≤x≤10},集合Q={x∈Rx2+x-6=0},则P∩Q等于( )A.{2} B.{1,2}C.{2,3} D.{1,2,3}解析:选A.Q={x∈Rx2+x-6=0}={-3,2}.∴P∩Q={2}.5.(2021年高考福建卷)若集合A={x1≤x≤3},B={xx>2},则A∩B等于( )A.{x2<x≤3} B.{xx≥1}C.{x2≤x<3} D.{xx>2}解析:选A.∵A={x1≤x≤3},B={xx>2},∴A∩B={x2<x≤3}.6.设集合S={xx>5或x<-1},T={xa<x<a+8},S∪T=R,则a的取值范围是( )A.-3<a<-1 B.-3≤a≤-1C.a≤-3或a≥-1 D.a<-3或a>-1解析:选A.S∪T=R,∴a+8>5,a<-1.∴-3<a<-1.7.(2021年高考湖南卷)已知集合A={1,2,3},B={2,,4},A∩B={2,3},则=________.解析:∵A∩B={2,3},∴3∈B,∴=3.答案:38.满足条件{1,3}∪={1,3,5}的集合的个数是________.解析:∵{1,3}∪={1,3,5},∴中必须含有5,∴可以是{5},{5,1},{5,3},{1,3,5},共4个.答案:49.若集合A={xx≤2},B={xx≥a},且满足A∩B={2},则实数a=________.解析:当a>2时,A∩B=∅;当a<2时,A∩B={xa≤x≤2};当a=2时,A∩B={2}.综上:a=2.答案:210.已知A={xx2+ax+b=0},B={xx2+cx+15=0},A∪B={3,5},A∩B={3},求实数a,b,c的值.解:∵A∩B={3},∴由9+3c+15=0,解得c=-8.由x2-8x+15=0,解得B={3,5},故A={3}.又a2-4b=0,解得a=-6,b=9.综上知,a=-6,b=9,c=-8.11.已知集合A={xx-2>3},B={x2x-3>3x-a},求A∪B.解:A={xx-2>3}={xx>5},B={x2x-3>3x-a}={xx<a-3}.借助数轴如图:①当a-3≤5,即a≤8时,A∪B={xx<a-3或x>5}.②当a-3>5,即a>8时,A∪B={xx>5}∪{xx<a-3}={xx∈R}=R.综上可知当a≤8时,A∪B={xx<a-3或x>5};当a>8时,A∪B=R.12.设集合A={(x,y)2x+y=1,x,y∈R},B={(x,y)a2x+2y=a,x,y∈R},若A∩B=∅,求a的值.解:集合A、B的元素都是点,A∩B的元素是两直线的公共点.A∩B=∅,则两直线无交点,即方程组无解.列方程组2x+y=1a2x+2y=a,解得(4-a2)x=2-a,则4-a2=02-a≠0,即a=-2.感谢您的阅读,祝您生活愉快。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高一数学必修1集合练习题
1.设集合A={x|2≤x<4},B={x|3x-7≥8-2x},则A∪B等于()
A.{x|x≥3}B.{x|x≥2}
C.{x|2≤x<3} D.{x|x≥4}
【解析】B={x|x≥3}.画数轴(如下图所示)可知选B.
【答案】B
2.已知集合A={1,3,5,7,9},B={0,3,6,9,12},则A∩B=()
`
A.{3,5} B.{3,6}
C.{3,7} D.{3,9}
【解析】A={1,3,5,7,9},B={0,3,6,9,12},A和B中有相同的元素3,9,∴A∩B={3,9}.故选D.
【答案】D
3.50名学生参加甲、乙两项体育活动,每人至少参加了一项,参加甲项的学生有30名,参加乙项的学生有25名,则仅参加了一项活动的学生人数为________.【解析】
设两项都参加的有x人,则只参加甲项的有(30-x)人,只参加乙项的有(25-x)人.(30-x)+x+(25-x)=50,∴x=5.
\
∴只参加甲项的有25人,只参加乙项的有20人,
∴仅参加一项的有45人.
【答案】45
4.已知集合A={-4,2a-1,a2},B={a-5,1-a,9},若A∩B={9},求a的值.
【解析】∵A∩B={9},
∴9∈A,∴2a-1=9或a2=9,∴a=5或a=±3.
当a=5时,A={-4,9,25},B={0,-4,9}.
此时A∩B={-4,9}≠{9}.故a=5舍去.
$
当a=3时,B={-2,-2,9},不符合要求,舍去.
经检验可知a =-3符合题意.
一、选择题(每小题5分,共20分)
1.集合A ={0,2,a},B ={1,a 2}.若A ∪B ={0,1,2,4,16},则a 的值为( )
A .0
B .1
C .2
D .4
【解析】 ∵A ∪B ={0,1,2,a ,a 2},又A ∪B ={0,1,2,4,16},
"
∴{a ,a 2}={4,16},∴a =4,故选D.
【答案】 D
2.设S ={x|2x +1>0},T ={x|3x -5<0},则S∩T =( )
A .Ø
B .{x|x<-12}
C .{x|x>53}
D .{x|-12<x<53}
【解析】 S ={x|2x +1>0}={x|x>-12},T ={x|3x -5<0}={x|x<53},则S∩T ={x|-12
<x<53}.故选D.
【答案】 D
3.已知集合A ={x|x>0},B ={x|-1≤x≤2},则A ∪B =( )
\
A .{x|x≥-1}
B .{x|x≤2}
C .{x|0<x≤2}
D .{x|-1≤x≤2}
【解析】 集合A 、B 用数轴表示如图,
A ∪
B ={x|x≥-1}.故选A.
【答案】 A
4.满足M ⊆{a 1,a 2,a 3,a 4},且M∩{a 1,a 2,a 3}={a 1,a 2}的集合M 的个数是( )
A .1
B .2
}
C .3
D .4
【解析】 集合M 必须含有元素a 1,a 2,并且不能含有元素a 3,故M ={a 1,a 2}或M =
{a1,a2,a4}.故选B.
【答案】B
二、填空题(每小题5分,共10分)
5.已知集合A={x|x≤1},B={x|x≥a},且A∪B=R,则实数a的取值范围是________.【解析】A=(-∞,1],B=[a,+∞),要使A∪B=R,只需
a≤1.
【答案】a≤1
`
6.满足{1,3}∪A={1,3,5}的所有集合A的个数是________.
【解析】由于{1,3}∪A={1,3,5},则A⊆{1,3,5},且A中至少有一个元素为5,从而A 中其余元素可以是集合{1,3}的子集的元素,而{1,3}有4个子集,因此满足条件的A的个数是4.它们分别是{5},{1,5},{3,5},{1,3,5}.
【答案】4
三、解答题(每小题10分,共20分)
7.已知集合A={1,3,5},B={1,2,x2-1},若A∪B={1,2,3,5},求x及A∩B.
【解析】由A∪B={1,2,3,5},B={1,2,x2-1}得x2-1=3或x2-1=5.
若x2-1=3则x=±2;
若x2-1=5,则x=±6;
'
综上,x=±2或± 6.
当x=±2时,B={1,2,3},此时A∩B={1,3};
当x=±6时,B={1,2,5},此时A∩B={1,5}.
8.已知A={x|2a≤x≤a+3},B={x|x<-1或x>5},若A∩B=Ø,求a的取值范围.
【解析】由A∩B=Ø,
(1)若A=Ø,
有2a>a+3,∴a>3.
)
(2)若A≠Ø,
如图:
∴,解得- ≤a≤2.
综上所述,a的取值范围是{a|- ≤a≤2或a>3}.
9.(10分)某班有36名同学参加数学、物理、化学课外探究小组,每名同学至多参加两个小组.已知参加数学、物理、化学小组的人数分别为26,15,13,同时参加数学和物理小组的有6人,同时参加物理和化学小组的有4人,则同时参加数学和化学小组的有多少人
【解析】 设单独参加数学的同学为x 人,参加数学化学的为y 人,单独参加化学的为z 人.
依题意⎩⎪⎨⎪⎧ x +y +6=26,y +4+z =13,x +y +z =21,解得⎩⎪⎨⎪⎧
x =12,y =8,z =1.
∴同时参加数学化学的同学有8人,
答:同时参加数学和化学小组的有8人.。

相关文档
最新文档