动能定理典型分类例题(经典题型)
动能定理经典题型总结(打印)

、合外力做功和动能变化的关系,正确的是(、合外力做功和动能变化的关系,正确的是( 物体在合外力作用下做匀变速直线运动,则动能在一段过程中变化量一定不为零物体在合外力作用下做匀变速直线运动,则动能在一段过程中变化量一定不为零 h HA.重力对物体做功为mgH B.物体的重力势能减少了mg(h+H) C.外力对物体做的总功为零外力对物体做的总功为零D.地面对物体平均阻力大小为mg(h+H)/h 5. 5. 如图所示,一轻弹簧直立于水平地面上,质量为如图所示,一轻弹簧直立于水平地面上,质量为m 的小球从距离弹簧上端B 点h 高处的A 点自由下落,在C 点处小球速度达到最大.x 0表示B 、C 两点之间的距离;E k 表示小球在C 处的动能.若改变高度h ,则下列表示x 0随h 变化的图象和E k 随h 变化的图象中正确的是变化的图象中正确的是( ( )四、能力提升1.(2010·武汉高一检测)一个质量为25 kg 的小孩从高度为3.0 m 的弧形滑梯顶端由静止开始滑下,滑到底端时的速度为2.0 m/s.取g=10 m/s 2,关于力对小孩做的功,以下结果正确的是(结果正确的是( )A.支持力做功50 J B.克服阻力做功500 J C.重力做功750 J D.合外力做功50 J 2、起重机钢索吊着m=1.0×103 kg 的物体以a=2 m/s 2的加速度竖直向上提升了5 m,钢索对物体的拉力做的功为多少?物体的动能增加了多少?(g 取10 m/s 2)3.如图所示,质量为m 的小车在水平恒力F 推动下,从山坡(粗糙)底部A 处由静止起运动至高为h 的坡顶B ,获得速度为v ,AB 之间的水平距离为s ,重力加速度为g .下列说法正确的是( ) A .小车克服重力所做的功是mghB .合外力对小车做的功是12m v 2C .推力对小车做的功是12m v 2+mghD .阻力对小车做的功是12m v 2+mgh -Fs 4.一个木块静止于光滑水平面上,现有一个水平飞来的子弹射入此木块并深入2 2 cm cm 而相对于木块静止,同时间内木块被带动前移了1 cm ,则子弹损失的动能、木块获得动能以及子弹和木块共同损失的动能三者之比为( ) A .3∶1∶2 B .3∶2∶1 C .2∶1∶3 D .2∶3∶1 5. 一个质量为m 的小球,用长为l 的轻绳悬挂于O 点,小球在水平力F 作用下,从平衡位置P 很缓慢地移动到Q 点,如图所示,则力F 所做的功为所做的功为 ( )A .q cos mglB .q sin FlC .)cos 1(q -mglD .)cos 1(q -Fl6. 汽车在平直的公路上从静止开始做匀加速运动,当汽车速度达到v m 时关闭发动机,汽车继续滑行了一段时间后停止运动,其运动的速度如图3所示。
动能定理题型及例题讲解

动能定理题型及例题讲解动能定理是物理学中的一个重要定理,描述了物体的动能与物体受力产生的功之间的关系。
动能定理的数学表达式是:动能的变化量等于物体受力所产生的功。
动能定理可以用来研究运动物体的动能与受到的力与加速度的关系,进而预测物体的行为元素、制造机器等。
动能定理题型:1. 给出物体的初速度和末速度,求物体所受到的力所做的功;2. 给出物体的初速度和末速度,求物体从初速度到末速度所经过的路程;3. 以动能定理为基础,解决与碰撞有关的问题。
例题讲解:【例题1】一个质量为 2kg 的物体,以 10m/s 的速度移动,在 100N 的恒力作用下移动了 5s,这个物体的末速度是多少?解答:根据动能定理,物体动能的变化量等于所受到的力所做的功(KE= W)。
可以用以下公式计算物体末速度:v^2 = v0^2 + 2ad,其中v为物体末速度,v0为物体初速度,d为物体运动路程,a为物体加速度。
由于物体是在恒力的作用下移动了 5s,我们可以计算其加速度:F=ma,a=F/m=100N/2kg=50m/s^2物体的起点速度为 10m/s,这意味着 v0 = 10m/s。
为了计算物体的末速度,我们需要知道物体移动的路程。
d = 1/2at^2 = 1/2* 50m/s^2 * 5s^2 = 125m现在我们可以使用上面的公式计算出物体的末速度:v^2 = v0^2 + 2adv^2 = (10 m/s)^2 + 2*(50 m/s^2)*125 mv^2 = 100 m^2/s^2+ 12500 m^2/s^2v^2 = 12600 m^2/s^2v = √(12600 m^2/s^2) ≈ 112.25 m/s因此,这个物体的末速度约为 112.25 m/s。
【例题2】一颗质量为 500g 的小球位于 500m 高的悬崖上。
该小球自由落体直落地面,那么它击中地面时的速度是多少?解答:这道题可以用动能定理和重力势能来解决。
动能定理典型分类例题经典题型

动能定理典型分类例题经典题型动能定理典型分类例题模型一:水平面问题1.两个质量相同的物体在水平面上以相同的初动能滑动,最终都静止,它们滑行的距离相同。
2.两个质量相同的物体在水平面上以相同的初速度滑动,最终都静止,它们滑行的距离相同。
3.一个质量为1kg的物体在不光滑的水平面上静止,施加水平外力F=2N使其滑行5m,然后撤去外力F,求物体还能滑多远。
答案为1.95m。
4.一个质量为1kg的物体在不光滑的水平面上静止,施加斜向上与水平面成37度的外力F=2N使其滑行5m,然后撤去水平外力F,求物体还能滑多远。
答案为0.98m。
5.一辆汽车在滑动摩擦系数为0.7的路面上行驶,刹车后轮子只滑动不滚动,从刹车开始到汽车停下来,汽车前进12m。
求刹车前汽车的行驶速度。
答案为10.95m/s。
6.一个质量为M的列车沿水平直线轨道以速度V匀速前进,末节车厢质量为m,在中途脱节,司机发觉时,机车已行驶L的距离,于是立即关闭油门,除去牵引力。
设运动的阻力与质量成正比,机车的牵引力是恒定的。
当列车的两部分都停止时,它们的距离为L×m/(M+m)。
模型二:斜面问题基础1.一个质量为2kg的物体在沿斜面方向拉力F=40N的作用下从静止出发沿倾角为37度的斜面上滑,物体与斜面的摩擦系数为0.40,求物体在斜面上滑行5m时的速度。
答案为6.31m/s。
基础2.一个质量为2kg的物体在水平力F=40N的作用下从静止出发沿倾角为37度的斜面上滑,物体与斜面的摩擦系数为0.40,求物体在斜面上滑行5m时的速度。
答案为6.31m/s。
基础3.一个物体以某一速度从斜面底沿斜面上滑,当它滑行4m后速度变为零,然后再下滑到斜面底。
已知斜面长5m,高3m,物体和斜面间的摩擦系数μ=0.25.求物体开始上滑时的速度及物体返回到斜面底时的速度。
答案为3.46m/s和6.71m/s。
典型例题1.一个质量为m的木块以v=10m/s初速度沿倾角为30度的斜面上滑,物体与斜面的摩擦系数为0.2,求物体在斜面上滑行5m时的速度。
高中物理动能定理解析例题

高中物理动能定理解析例题(一)水平面问题1、一物体质量为2kg ,以4m/s 的速度在光滑水平面上向左滑行。
从某时刻起作用一向右的水平力,经过一段时间后,滑块的速度方向变为水平向右,大小为4m/s ,在这段时间内,水平力做功为( ) A. 0 B. 8J C. 16J D. 32J2、 一个物体静止在不光滑的水平面上,已知m=1kg ,u=0.1,现用水平外力F=2N ,拉其运动5m 后立即撤去水平外力F ,求其还能滑 m (g 取2/10s m )3、总质量为M 的列车,沿水平直线轨道匀速前进,其末节车厢质量为m ,中途脱节,司机发觉时,机车已行驶L 的距离,于是立即关闭油门,除去牵引力,如图所示。
设运动的阻力与质量成正比,机车的牵引力是恒定的。
当列车的两部分都停止时,它们的距离是多少?4a 、运动员踢球的平均作用力为200N ,把一个静止的质量为1kg 的球以10m/s 的速度踢出,在水平面上运动60m 后停下. 求运动员对球做的功?4b 、如果运动员踢球时球以10m/s 迎面飞来,踢出速度仍为10m/s ,则运动员对球做功为多少?5、在水平的冰面上,以大小为F =20N 的水平推力,推着质量m =60kg 的冰车,由静止开始运动. 冰车受到的摩擦力是它对冰面压力的0. 01倍,当冰车前进了s 1=30m 后,撤去推力F ,冰车又前进了一段距离后停止. 取g = 10m/s 2. 求: (1)撤去推力F 时的速度大小. (2)冰车运动的总路程s .6、汽车质量为m = 2×103kg ,沿平直的路面以恒定功率20kW 由静止出发,经过60s ,汽车达到最大速度20m/s. 设汽车受到的阻力恒定. 求:(1)阻力的大小. (2)这一过程牵引力所做的功. (3)这一过程汽车行驶的距离. S 2S 1LV 0V 0vmB7. 如图8-30所示,长为L ,质量为m1的木板A 置于光滑水平面上,在A 板上表面左端有一质量为m2的物块B ,B 与A 的摩擦因数为μ,A 和B 一起以相同的速度v 向右运动,在A 与竖直墙壁碰撞过程中无机械能损失,要使B 一直不从A 上掉下来,v 必须满足什么条件(用m1、m2、L 、μ表示)?倘若V0已知,木板B 的长度L 应满足什么条件(用m1、m2、V0、μ表示)?(二)竖直面问题(重力、摩擦力和阻力) 1、人从地面上,以一定的初速度v 将一个质量为m 的物体竖直向上抛出,上升的最大高度为h ,空中受的空气阻力大小恒力为f ,则人在此过程中对球所做的功为( )A. 2021mvB. fh mgh -C. fhmgh mv -+2021 D. fh mgh +2a 、一小球从高出地面H 米处,由静止自由下落,不计空气阻力,球落至地面后又深入沙坑h 米后停止,求沙坑对球的平均阻力是其重力的多少倍。
功能关系动能定理经典例题.

【例1】如图5-1-1所示,小物体位于光滑的斜面上,斜面位于光滑的水平地面上,从地面上看,在小物体沿斜面下滑的过程中,斜面对小物体的作用力( )A.垂直于接触面,做功为零;B.垂直于接触面,做功不为零;C.不垂直于接触面,做功为零;D.不垂直于接触面,做功不为零.下面列举的哪几种情况下所做的功是零( )A .卫星做匀速圆周运动,地球引力对卫星做的功B .平抛运动中,重力对物体做的功C .举重运动员,扛着杠铃在头上的上方停留10s ,运动员对杠铃做的功D .木块在粗糙水平面上滑动,支持力对木块做的功例如:用铁锤把小铁钉钉入木板,设木板对钉子的阻力与钉进木板的深度成正比,已知铁锤第一次将钉子钉进d ,如果铁锤第二次敲钉子时对钉子做的功与第一次相同,那么,第二次进入木板的深度是多少?【例2】以一定的速度竖直向上抛出一小球,小球上升的最大速度为h ,空气的阻力大小恒为F ,则从抛出至落回出发点的过程中,空气阻力对小球做的功为( )A .0B .-FhC .-2FhD .-4Fh如图5-1-3在光滑的水平面上,物块在恒力F =100N的作用下从A 点运动到B 点,不计滑轮的大小,不计绳与滑轮的质量及绳、滑轮间的摩擦,H=2.4 m,α=37°,β=53°,求绳的拉力对物体所做的功.【例3】物块从光滑曲面上的P 点自由滑下,通过粗糙的静止水平传送带以后落到地面上的Q 点,若传送带的皮带轮沿逆时针方向转动起来,使传送带随之运动,如图5-1-4所示,再把物块放到P 点自由滑下则( )A.物块将仍落在Q 点B.物块将会落在Q 点的左边C.物块将会落在Q 点的右边D.物块有可能落不到地面上1.如图5-1-5所示,木块A 放在木块B 的左上端,用恒力F 将A 拉至B 的右端.第一次将B 固定在地面上,F 做的功为 W 1;第二次让B 可以在光滑的地面上自由滑动,F 做的功为W 2.比较两次做功,应有( )A .21W W <B .21W W =C .21W W >D .无法比较.10.半径R =0.50m 的光滑圆环固定在竖直平面内,如图所示,轻质弹簧的一端固定在环的最高点A 处,另一端系一个质量m = 0.20kg的小球,小球套在圆环上,已知弹簧的原长L o = 0.50m ,劲度系数K =4.8N/m ,将小球从图示位置的B 点由静止释放,小球将沿圆环滑动并通过最低点C ,在C 点时弹簧的弹性势能J E PC 6.0=,g 取10m/s 2。
(完整版)动能定理经典题型总结,推荐文档

21222121mv mv W -=动能和动能定理一、知识聚焦1、动能:物体由于运动而具有的能量叫动能. 表达式:Ek = 动能是标量,是状态量 单位:焦耳( J )221mv 2、动能定理内容:合力对物体所做的功等于物体动能的变化。
3、动能定理表达式:二、经典例题例1、(课本例题)一架喷气式飞机,质量m=5×103 kg ,起飞过程中从静止开始滑跑的路程为s =5.3×102m时,达到起飞速度v=60m/s ,在此过程中飞机受到的平均阻力是飞机重量的0.02倍(k=0.02),求飞机受到的牵引力. 分析: 研究对象:飞机研究过程:从静止→起飞(V=60m/s )适用公式:动能定理:2022121mv mv W -=合 表达式:=-S f F )(221mv得到牵引力:N kmg S mv F 42108.12⨯=+=例2、将质量m=2kg 的一块石头从离地面H=2m 高处由静止开始释放,落入泥潭并陷入泥中h=5cm 深处,不计空气阻力,求泥对石头的平均阻力。
(g 取10m/s2)提示 石头的整个下落过程分为两段,如图5—45所示,第一段是空中的自由下落运动,只受重力作用;第二段是在泥潭中的运动,受重力和泥的阻力。
两阶段的联系是,前一段的末速度等于后一段的初速度。
考虑用牛顿第二定律与运动学公式求解,或者由动能定理求解。
解析 这里提供三种解法。
解法一(应用牛顿第二定律与运动学公式求解):石头在空中做自由落体运动,落地速度gH v 2=在泥潭中的运动阶段,设石头做减速运动的加速度的大小为a ,则有v2=2ah ,解得g hH a =由牛顿第二定律,ma mg F =-所以泥对石头的平均阻力N=820N 。
10205.005.02)()(⨯⨯+=⋅+=+=+=mg h h H g h H g m a g m F 例题3、如图所示,倾角θ=37°的斜面底端B 平滑连接着半径r =0.40m 的竖直光滑圆轨道。
动能定理的典型例题

“动能定理”的典型例题【例1】质量为m=2kg的物体,在水平面上以v1= 6m/s的速度匀速向西运动,若有一个F=8N、方向向北的恒定力作用于物体,在t=2s内物体的动能增加了[ ]A.28J B.64J C.32J D.36J E.100J【分析】物体原来在平衡力作用下西行,受向北的恒力F作用后将做类似于平抛的曲线运动(见图).物体在向北方向上的加速度2s后在向北方向上的速度分量故2s后物体的合速度所以物体在2s内增加的动能为也可以根据力对物体做动能定理来计算.由于在这个过程中,可以看作物体只受外力F作用,在这个力方向上的位移外力F对物体做的功W =Fs= 8×8J=64J,故物体动能的增加【答】B.【说明】由上述计算可知,动能定理在曲线运动中同样适用,而且十分简捷.有的学生认为,物体在向西方向上不受外力,保持原动运能不变,向北方向上受到外力后,向北方向上的动能增加了即整个物体的动能增加了64J,故选B.必须注意,这种看法是错误的.动能是一个标量(不同于动量),不能分解.外力对物体做功引起物体动能的变化,是对整个物体而言的,它没有分量式(不同于物体在某方向上不受外力,该方向上动量守恒的分量式).上述计算结果的巧合是由于v2与v1互成90°角的缘故.【例2】一个物体从斜面上高h处由静止滑下并紧接着在水平面上滑行一段距离后停止,量得停止处对开始运动处的水平距离为s(见图),不考虑物体滑至斜面底端的碰撞作用,并认为斜面与水平面对物体的动摩擦因数相同,求摩擦因数μ.【分析】以物体为研究对象,它从静止开始运动,最后又静止在平面上,整个过程中物体的动能没有变化,即E k2=E k1=0.可以根据全过程中功与物体动能的变化上找出联系.【解】物体沿斜面下滑时,重力和摩擦力对物体做功(支持力不做功),设斜面倾角为α,斜坡长L,则重力和摩擦力的功分别为W G= mgsinαL,W f1= -μmgcosαL.在平面上滑行时仅有摩擦力做功(重力和支持力不做功),设平面上滑行距离为s2,则W f2= -μmgs2.整个运动过程中所有外力的功为W=W G+W f1+W f2,=mgsinαL - μumgcosαL- μmgs2.根据动能定理,W=E k2-E k1,式中s1为斜面底端与物体初位置间水平距离,故【说明】本题也可运用牛顿第二定律结合运动学公式求解.物体沿斜面下滑时的加速度物体在平面上滑行时的加速度比较这两种解法,可以看到,应用动能定理求解时,只需考虑始末运动状态,无需关注运动过程中的细节变化(如从斜面到平面的运动情况的变化),显得更为简捷.本题也为我们提供了一种测定动摩擦因数的方法.厢所受阻力不变,对车厢的牵引力应增加[ ]A.1×103N B.2×103NC.4×103N D.条件不足,无法判断【分析】矿砂落入车厢后,受到车厢板摩擦力f的作用,使它做加速运动,经时间△t后矿砂的速度达到车厢的速度v=2m/s,这段时间内矿砂的位移因此选△t内落下的矿砂△m为研究对象,以将接角车箱板和达到速度v=2m/s两时刻为始末两状态时,动能增量由功与动能变化的关系得在这过程中,车厢板同时受到矿砂的反作用f′,其大小也为4×103N,方向与原运动方向相反,所以,为保持车厢的匀速运动需增加的牵引力为【答】C.【说明】常有人误认为矿砂落入车厢内,矿砂的位移就是车厢的位移s =v t,于是得车厢应增加的牵引力大小为这是不正确的,因为在矿砂将接触车厢板到两者以共同速度v=2m/s运动的过程中,车厢和矿砂做两种不同的运动,矿砂的速度小于车厢的速度,它们之间才存在着因相对滑动而出现的滑动摩擦力.也正是由于滑动摩擦力的存在,车厢所增加的牵引力做的功并没有完全转化为矿砂的动能,其中有一部分消耗在克服摩擦做功而转化为热能.!iedtxx(`stylebkzd', `1107P02.htm')【例4】一辆车通过一根跨过定滑轮的绳PQ提升井中质量为m为物体,如图a所示.绳的P端拴在车后的挂钩上,Q端拴在物体上.设绳的总长不变、绳的质量、定滑轮的质量和尺寸,滑轮上的摩擦都忽略不计.开始时,车在A点,左右两侧绳都已绷紧并且是竖直的,左侧绳绳长为H.提升时,车加速向左运动,沿水平方向从A经过B驶向C.设A到B 的距离也为H.车过B点时的速度为v B.求在车由A移到B的过程中,绳Q端的拉力对物体做的功.【分析】汽车从A到B把物体提升的过程中,物体只受到拉力和重力的作用,根据物体速度的变化和上升高度,由动能定理即得.【解】以物体为研究对象,开始时其动能E k1=0.随着车的加速拖动,重物上升,同时速度也不断增加.当车子运动到B点时,重物获得一定的上升速度v Q,这个速度也就是收绳的速度,它等于车速沿绳子方向的一个分量(图b),即于是重物的动能增为在这个提升过程中,重物受到绳中拉力T、重力mg.物体上升的高度和重力的功分别为于是由动能定理得即所以绳子拉力对物体做的功【说明】必须注意,速度分解跟力的分解一样,两个分速度的方向应该根据运动的实际效果确定.车子向左运动时,绳端(P)除了有沿绳子方向的运动趋势外(每一瞬间绳处于张紧的状态),还参予了绕O点的转动运动(绳与竖直方向间夹角不断变化),因此还应该有一个绕O点转动的速度,这个速度垂直于绳长方向.所以车子运动到B点时的速度分解图应如图6所示,由此得拉绳的速度V b1(即提升重物的速度v Q)与车速v B的关系为【例5】在平直公路上,汽车由静止开始作匀速运动,当速度达到v m后立即关闭发动机直到停止,v-t图像如图所示.设汽车的牵引力为F,摩擦力为f,全过程中牵引力做功W1,克服摩擦力做功W2,则[ ]A.F:f = 1:3 B.F:f = 4:1C.W1:W2= 1:1 D.W1:W2 = 1:3【分析】在t = 0~1s内,汽车在牵引力F和摩擦力f共同作用下作匀加速运动,设加速度为a1.由牛顿第二定律F-f = ma1.在t=l~4s内,汽车仅受摩擦力作用作匀减速滑行,设加速度为a2,则-f = ma2.由于两过程中加速度大小之比为在前、后两过程中,根据合力的动能定理可知,∴ W F=W f1+W f2=W f。
动能定理典型例题.doc

动能定理典型例题动能定理典型题精讲一、经典题组,打穿一块固定的木块后速度刚好变为零(若木块对子弹的阻力为恒力,1.子弹的速度为v那么当子弹射入木块的深度为其厚度的一半时,子弹的速度是 ( )v2vvA.2 B.2v C.3 D.42.如图1所示,物体与斜面AB、DB间动摩擦因数相同(可视为质点的物体分别沿AB、DB从斜面顶端由静止下滑到底端,下列说法正确的是 ( ) A(物体沿斜面DB滑动到底端时动能较大B(物体沿斜面滑动到底端时动能较大图1 ABC(物体沿斜面DB滑动过程中克服摩擦力做的功较多D(物体沿斜面AB滑动过程中克服摩擦力做的功较多3.如图3所示,光滑水平平台上有一个质量为m的物块,站在地面上的人用跨过定滑轮的绳子向右拉动物块,不计绳和滑轮的质量及滑轮的摩擦,且平台边缘离人手作用点竖直高度始终为h.当人以速度v从平图3 台的边缘处向右匀速前进位移x时,则 ( )A(在该过程中,物块的运动可能是匀速的mv2x2B(在该过程中,人对物块做的功为2(h2,x212C(在该过程中,人对物块做的功为2mvvhD(人前进x时,物块的运动速率为h2,x24(如图4所示,一质量为m的质点在半径为R的半球形容器中(容器固定) 由静止开始自边缘上的A点滑下,到达最低点B时,它对容器的正压力为F.重力加速度为g,则质点自A滑到B的过程中,摩擦力对其所做 N的功为 ( ) 图411A.2R(F,3mg) B.2R(3mg,F) NN11C.2R(F,mg) D.2R(F,2mg) NN5.质点所受的力F随时间变化的规律如图所示,力的方向始终在一直线上.已知t=0时质点的速度为零.在右图所示的t、t、t和t各时刻中,质点动能最大的时刻是( ). 1234(A)t(B)t(C)t(D)t 1 2 3 46.以速度v飞行的子弹先后穿透两块由同种材料制成的平行放置的固定金属板,若子弹穿透两块金属板后的速度分别变为0.8v和0.6v,则两块金属板的厚度之比为( ). (A)1:1 (B)9:7 (C)8:6 (D)16:97.一个物块从斜面底端冲上足够长的斜面后,返回到斜面底端.已知小物块的初动能为E,它返回斜面底端的速度大小为v,克服摩擦阻力做功为.若小物块冲上斜面的初动能变为2E,则有( ).(A)返回斜面底端时的动能为E (B)返回斜面底端时的动能为 (C)返回斜面底端时的速度大小为2v (D)克服摩擦阻力做的功仍为 8.如图所示,物体自倾角为θ、长为L的斜面顶端由静止开始滑下,到斜面底端时与固定挡板发生碰撞,设碰撞时无机械能损失.碰后物体又沿斜面上升,若到最后停止时,物体总共滑过的路程为s,则物体与斜面间的动摩擦因数为( )(A)(B)(C)(D)9.质量为m的物体,作加速度为a的匀加速直线运动,在运动中连续通过A、B、C三点,如果物体通过AB段所用时间和通过BC段所用的时间相等,均为T,那么物体在BC段的动能增量和在AB段的动能增量之差为______.10.质量m=10kg的物体静止在光滑水平面上,先在水平推力F=40N的作用下移动距离s=5m,11然后再给物体加上与F反向、大小为F=10N的水平阻力,物体继续向前移动s=4m,此时物122体的速度大小为______m,s.11.如图所示,一个物体从斜面上高h处由静止滑下并紧接着在水平面上滑行一段距离后停止,测得停止处与开始运动处的水平距离为s,不考虑物体滑至斜面底端的碰撞作用,并认为斜面与水平面对物体的动摩擦因数相同,求动摩擦因数μ.12.如图11所示,用跨过光滑定滑轮的缆绳将海面上一艘失去动力的小船沿直线拖向岸边(已知拖动缆绳的电动机功率恒为P,小船的质量为m,小船受到的阻力大小恒为f,经过A点时的速度大小为v,小船从A点沿直线加速运动到B点经历时间为t,A、B两01点间距离为d,缆绳质量忽略不计(求:图11(1)小船从A点运动到B点的全过程克服阻力做的功W; f(2)小船经过B点时的速度大小v; 1(3)小船经过B点时的加速度大小a.13.水平方向的传送带以2m/s的速度匀速运动,把一质量为2kg的小物体轻轻放在传送带上左端,经过4s物体到达传送带的右端。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
动能定理典型分类例题模型一 水平面问题1、两个材料相同的物体,甲的质量大于乙的质量,以相同的初动能在同一水平面上滑动,最后都静止,它们滑行的距离是( ). A .乙大 B .甲大 C .一样大 D .无法比较2.两个材料相同的物体,甲的质量大于乙的质量,以相同的初速度在同一水平面上滑动,最后都静止,它们滑行的距离是( ). A .乙大 B .甲大 C .一样大 D .无法比较3、 一个物体静止在不光滑的水平面上,已知m=1kg ,u=0.1,现用水平外力F=2N ,拉其运动5m 后立即撤去水平外力F ,求其还能滑 m (g 取2/10s m )4.一个物体静止在不光滑的水平面上,已知m=1kg ,u=0.1,现外力F=2N ,斜向上与水平面成37度拉其运动5m 后立即撤去水平外力F ,求其还能滑 m (g 取2/10s m )4.用拉力F 使一个质量为m 的木箱由静止开始在水平冰道上移动了s ,拉力F 跟木箱前进的方向的夹角为α,木箱与冰道间的动摩擦因数为μ,木箱获得的速度(如图)。
5.一辆汽车沿着平直的道路行驶,遇有紧急情况而刹车,刹车后轮子只滑动不滚动,从刹车开始到汽车停下来,汽车前进12m 。
已知轮胎与路面之间的滑动摩擦系数为0.7,求刹车前汽车的行驶速度。
5、总质量为M 的列车,沿水平直线轨道匀速前进,其末节车厢质量为m ,中途脱节,司机发觉时,机车已行驶L 的距离,于是立即关闭油门,除去牵引力,如图所示。
设运动的阻力与质量成正比,机车的牵引力是恒定的。
当列车的两部分都停止时,它们的距离是多少?模型二 斜面问题 基础1质量为2kg 的物体在沿斜面方向拉力F 为40N 的作用下从静止出发沿倾角为37o 的斜面上滑,物体与斜面的摩擦系数为0.40,求物体在斜面上滑行5m 时的速度。
基础2质量为2kg 的物体在水平力F 为40N 的作用下从静止出发沿倾角为37o 的斜面上滑,物体与斜面的摩擦系数为0.40,求物体在斜面上滑行5m 时的速度。
S 2S 1LV 0V 0基础3有一物体以某一速度从斜面底沿斜面上滑,当它滑行4m 后速度变为零,然后再下滑到斜面底。
已知斜面长5m ,高3m ,物体和斜面间的摩擦系数μ=0.25。
求物体开始上滑时的速度及物体返回到斜面底时的速度。
典型例题1、一块木块以s m v /100=初速度沿平行斜面方向冲上一段长L=10m ,倾角为︒=30α的斜面,见图所示木块与斜面间的动摩擦因数2.0=μ,(1)求木块到达的最大高度(空气阻力不计,2/10s m g =)。
(2)求木块回到地面时的速度2.质量为 10kg 的物体在F =200N 的沿斜面方向推力作用下从粗糙斜面的底端由静止开始沿斜面运动,斜面固定不动,与水平地面的夹角θ=37O .力F 作用2m 后撤去,再经过2秒最后速度减为零.求:物体与斜面间的动摩擦因数μ和物体从开始沿斜面运动到速度为零时间内的总位移S .(已知 sin37o =0.6,cos37O =0.8,g =10 m/s 2)3. 物体质量为10kg ,在平行于斜面的拉力F 作用下沿斜面向上运动,斜面与物ABChS 1 S 2α体间的动摩擦因数为1.0=μ,当物体运动到斜面中点时,去掉拉力F ,物体刚好能运动到斜面顶端停下,斜面倾角为30°,求拉力F 多大?(2/10s m g =)4.如图所示,小滑块从斜面顶点A 由静止滑至水平部分C 点而停止。
已知斜面高为h ,滑块运动的整个水平距离为s ,设转角B 处无动能损失,斜面和水平部分与小滑块的动摩擦因数相同,求此动摩擦因数。
5 物块从斜面上的A 处由静止滑下,在由斜面底端进入水平面时速度大小不变, 最后停在水平面上的B 处。
量得A 、B 两点间的 水平距离为s ,A 高为h ,已知物体与斜面及水平 面的动摩擦因数相同,则此动摩擦因数=μ 。
模型三 竖直平面问题(有空气阻力的抛体问题)hsA B1、人从地面上,以一定的初速度0v将一个质量为m的物体竖直向上抛出,上升的最大高度为h,空中受的空气阻力大小恒力为f,则人在此过程中对球所做的功为()A.221mvB. fhmgh- C.fhmghmv-+221D. fhmgh+2.一个人站在距地面高h=15m处,将一质量为m = 100g的石块以v0= 10m/s的速度斜向上抛出. (1)若不计空气阻力,求石块落地时的速度v.(2)若石块落地时速度的大小为v t =19m/s,求石块克服空气阻力做的功W.3.在离地面高为h处竖直上抛一质量为m的物块,抛出时的速度为v0,当它落到地面时速度为v,用g表示重力加速度,则在此过程中物块克服空气阻力所做的功是多少?4.物体以速度V1竖直向上抛出,物体落回原处时速度大小为V2,设空气阻力保持不变求:(1)物体上升的最大高度;(2)阻力与重力之比5.将一质量为m的小球以v0竖直上抛,受到的空气阻力大小不变,最高点距抛出点为h,求:1上升过程克服空气阻力做功2下落过程克服空气阻力做功3下落过程重力做功4上升过程合外力做的功为5.一个质量为0.2kg的小球在空气阻力大小不变的情况下以22m/s的初速度从地面处竖直上抛,2秒后到达最高点,然后落回原处(g取10m/s2),试求:(1)小球向上运动过程中空气阻力的大小.(2)小球能到达的最大高度.6、一小球从高出地面H米处,由静止自由下落,不计空气阻力,球落至地面后又深入沙坑h米后停止,求沙坑对球的平均阻力是其重力的多少倍。
模型四与圆周运动结合1.如图所示,AB为1/4圆弧轨道,半径为0.8m,BC是水平轨道,长L=3m,BC处的摩擦系数为1/15,今有质量m=1kg的物体,自A点从静止起下滑到C 点刚好停止。
求物体在轨道AB段所受的阻力对物体做的功2.如图过山车模型,小球从h高处由静止开始滑下,若小球经过光滑轨道上最高点不掉下来,求h的最小值?3.如图所示是某游乐场的一种过山车的简化图,光滑的过山车轨道由倾角为θ的足够长斜面和半径为R的圆形轨道组成.可视为质点的过山车从斜面A处由静止开始下滑,沿着斜面运动到B点(B为斜面与圆形轨道的切点),而后沿圆形轨道内侧运动.求:(1)若过山车刚好能通过圆形轨道的最高点C,过山车经过C点时的速度大小(2)在(1)情况下过山车过最低点D时对轨道的压力为重力的几倍(3)考虑到游客的安全,要求全过程游客受到的支持力不超过自身重力的7倍,则允许过山车初始位置与B点的最大距离为多大.5质量为m 的小球被系在轻绳一端,在竖直平面内做半径为R 的圆周运动,运动过程中小球受到空气阻力的作用。
设某一时刻小球通过轨道的最低点,此时绳子的张力为7mg ,此后小球继续做圆周运动,经过半个圆周恰能通过最高点,则在此过程中小球克服空气阻力所做的功为:( ) A . B . C . D .mgR4mgR 3mgR 2mgR6.如图所示是一个设计“过山车”的试验装置的原理示意图,光滑斜面AB与竖直面内的圆形轨道在B点平滑连接,圆形轨道半径为R。
一个质量为m的小车(可视为质点)在A点由静止释放沿斜面滑下,当它第一次经过B点进入圆形轨道时对轨道的压力为其重力的7倍,小车恰能完成圆周运动并第二次经过最低点沿水平轨道向右运动。
已知重力加速度为g。
(1)求A点距水平面的高度h;(2)假设小车在竖直圆轨道左、右半圆轨道部分克服摩擦阻力做的功相等,求小车第二次经过竖直圆轨道最低点时的速度大小7.如图,光滑的水平面AB与光滑的半圆形轨道相接触,直径BC竖直,圆轨道半径为R一个质量为m的物体放在A处,AB=2R,物体在水平恒力F的作用下由静止开始运动,当物体运动到B点时撤去水平外力之后,物体恰好从圆轨道的顶点C水平抛出,(1)求水平力(2)如果在上题中,物体不是恰好过C点,而是在C点平抛,落地点D点距B 点的水平位移为4R,求水平力。
8.如图所示,位于竖直平面内的1/4圆弧光滑轨道,半径为R,轨道的最低点B的切线沿水平方向,轨道上端A距水平地面高度为H。
质量为m的小球(可视为质点)从轨道最上端A点由静止释放,经轨道最下端B点水平飞出,最后落在水平地面上的C点处,若空气阻力可忽略不计,重力加速度为g。
求:(1)小球运动到B点时,轨道对它的支持力多大;(2)小球落地点C与B点的水平距离x为多少;(3)比值R/H为多少时,小球落地点C与B点水平距离x最远;该水平距离最大值是多少。
模型五与摆类结合1如图所示,从A点静止释放小球,摆长为L,摆角为θ。
求小球到最低点的速度V2.如图所示,长L=0.20m 的不可伸长的轻绳上端固定将在O点,下端系一质量m=0.10kg 的小球(可视为质点),绳拉至水平位置,无初速地释放小球。
当小球运动至O点P正下方的M 点时,绳刚好被拉断。
经过一段时间,小球落到了水平地面上P 点,P 点与M 点的水平距离x=0.80m,不计空气阻力,取重力加速度g=10m/s2。
求:(1)小球运动至M点时的速率v;(2)绳所能承受的最大拉力F的大小;(3)M 点距水平地面的高度h。
3.一长l=0.80m的轻绳一端固定在O点,另一端连接一质量m=0.10kg的小球,悬点O距离水平地面的高度H = 1.00m。
开始时小球处于A点,此时轻绳拉直处于水平方向上,如图所示。
让小球从静止释放,当小球运动到B点时,轻绳碰到悬点O正下方一个固定的钉子P时立刻断裂。
不计轻绳断裂的能量损失,取重力加速度g=10m/s2。
求:(1)当小球运动到B点时的速度大小;(2)绳断裂后球从B点抛出并落在水平地面的C点,求C点与B点之间的水平距离;模型六滑雪问题1.跳台滑雪是勇敢者的运动,它是利用依山势特别建造的跳台进行的。
运动员穿着专用滑雪板,不带雪杖在助滑路上获得高速后水平飞出,在空中飞行一段距离后着陆。
这项运动极为壮观。
设一位运动员由山坡顶的A点沿水平方向飞出,到山坡上的B点着陆。
如图所示,已知运动员水平飞出的速度为v0= 20m/s,山坡倾角为θ= 37°,山坡可以看成一个斜面。
(g = 10m/s2,sin37º= 0.6,cos37º= 0.8)求:(1)运动员在空中飞行的时间t;(2)AB间的距离s。
2.如图所示,质量m=60kg的高山滑雪运动员,从A点由静止开始沿滑道滑下,然后由B点水平飞出,最后落在斜坡上的C点.已知BC连线与水平方向成角θ=37o,AB两点间的高度差为h AB=25m,B、C两点间的距离为s=75m,(g取10m/s2,sin37°=0.6)求:(1)运动员从B点飞出时的速度v B的大小.(2)运动员从A滑到B的过程中克服摩擦力所做的功.3.如图所示,跳台滑雪运动员从滑道上的A点由静止滑下,经时间t0从跳台O点沿水平方向飞出。