第四章桩基础
基础工程-桩基础-(史上最全面)

2、 下列桩基应进行变形验算:
1)、桩端持力层为软弱土的一,二级桩基以及 桩端持力层为粘土,粉土或存在软弱下卧层 一级建筑桩基,应验算沉降并考虑上部结构 与基础共同作用.沉降不超过建筑沉降允许 值;
2)、受水平荷载较大或对水平变位要求严格 的一级建筑桩基应验算水平位移。
第四章 桩基础
本章教学目标: 1 了解桩基础的使用,熟悉桩基础的设计内容、
设计原则、分类及成桩效应; 2 了解桩基础单桩传递机理,熟悉掌握桩基础
竖向承载力的确定,熟悉群桩效应; 3 了解单桩沉降计算,熟悉群桩沉降计算及减
小桩负摩阻力的措施。 4 掌握桩基础承台设计,熟悉桩基础设计步骤
及施工图绘制。
4.1概述
桩基按极限状态设计法设计,应满足承载 能力极限状态和正常使用极限状态的要求。
建筑桩基分三个安全等级。 桩基设计应进行下列计算和验算:
1、所有桩基础都应进行承载能力计算,计算内容包括:
1)、按使用功能,受力特征进行 竖向(压.拔)和水平承载 力计算,不宜超过承载力特征值。 某些条件下群桩基 础宜考虑桩.土、承台共同作用;
3、 下列桩基应进行桩身和承台抗裂和 裂缝宽度验算:
根据使用条件要求混凝土不得出现裂 缝的桩基应进行抗裂验算;使用上需 限制裂缝宽度的桩基应进行裂缝宽度 验算。
4、建于软土上的一、二级建筑桩基施 工 过程和使用期间必须进行沉降观
测直到 稳定。
4.1.4 桩基设计内容
桩基设计包括下列基本内容: 1、桩的类型及几何尺寸的选择; 2、单桩竖向(和水平向)承载力的
载的桩基。 桩基应用:以有百年历史,承载力高、稳 定性好,沉降均匀的特点,在不良土上修 建建筑,普遍应用的基础形式。
基础工程-赵明华-第四章-桩基础-4

4.3 单桩竖向承载力的确定
一、基本概念
单桩承载力:指单桩在外荷(桩顶或沿桩身)作用下,不 丧失稳定性、不产生过大变形时的承载能力。 竖向极限承载力Quk:指单桩在竖向荷载作用下达到破坏状 态前或出现不适于继续承载的变形时所对应的最大荷载。通 常等于总极限侧阻力Qsk和总极限端阻力Qpk之和
Quk Qsk Qpk 竖向承载力设计值R:JGJ94-94 (已废止) 考虑承载能力极限状态,以分项系数表述的基桩承载力值
A's— 全部纵向钢筋的截面积
j — 稳定系数,≤1.0,查规范表格
yc— 成桩工艺(工作条件)系数,由桩型按规范取值
4.3 单桩竖向承载力的确定
三、按单桩竖向静载试验确定
优缺点:直观、可靠,但费时费力 。 基本要求 试验数量:不宜小于总数的1%,且不少于3根 对象:地基条件复杂、桩施工质量可靠性低及本地区采用的
新桩型或新工艺等情况下的桩基 试验时间:灌注桩待桩身砼达设计强度;预制桩考虑一定休
止期(砂类土≮7天;粉土≮10天,非饱和粘性土≮15天, 饱和粘性土≮25天) 取值方法:按现行《建筑基桩检测技术规范》(JGJ106-2003) 进行,取各试桩的平均值(极差≤平均值的30%)作为Quk值, 将其除以2得承载力特征值Ra
R Qsk Qpk
s p
4.3 单桩竖向承载力的确定
一、基本概念
竖向承载力特征值Ra:单桩竖向极限承载力标准值除以安全系 数后的承载力值
JGJ94-2008
Ra Quk / K (K 2)
GB50007-2011规定,初步设计时可按经验公式进行预估
Ra qpa Ap up qsiali Ra qpa Ap (桩底嵌入完整及较完整硬质岩)
《基础工程》教案(四1——单桩承载力)

黏性土
1 软塑 0.75 I L 1 可塑、硬塑 0 I L 0.75 坚硬 I L 0
中密 密实 中密 密实 中密 密实 中密 密实 中密 密实 中密 密实
黑龙江工程学院
粉土 粉砂、细砂 中砂 粗砂、砾砂 圆砾、角砾 碎石、卵石 漂石、块石
本表采用。
基础工程
第四章 桩基础 之单桩承载力
表 4-2 修正系数 值
hd
桩端土情况 透水性土 不透水性土
4~20 0.70 0.65
20~25 0.70~0.85 0.65~0.72
>25 0.85 0.72
注: h 为桩的埋置深度,取值同式(4-4); d 为桩的设计直径。
表 4-3 清底系数 m0 值
黑龙江工程学院
23
基础工程
第四章 桩基础 之单桩承载力
②
S n 1 2 ,且24h未稳定 Sn
黑龙江工程学院
13
基础工程
第四章 桩基础 之单桩承载力
3、极限荷载和轴向容许承载力的确定 直接计算法 曲线分析法
黑龙江工程学院
14
基础工程
第四章 桩基础 之单桩承载力
①直接计算法——P-S曲线明显转折
破坏荷载
极限荷载 P j 容许荷载
黑龙江工程学院
4
基础工程
第四章 桩基础 之单桩承载力
单桩承载力之单桩轴向容许承载力的确定
计算目的: 1、确定桩长 2、验算桩长
黑龙江工程学院
5
基础工程
第四章 桩基础 之单桩承载力
4.1.1 单桩工作机理
(一) 荷载传递与土对桩的支承力 1、桩顶轴向位移(沉降)=桩身弹性压缩+桩底土层压缩 桩身弹性压缩桩与侧土的相对位移
桩基础的设计计算

无量纲法 (桩身在地面以下任一深度处的内力和位移的简捷计算方法) 当桩的支承条件、入土深度符合一定要求时,可利用比较简捷的计算方法计算。即无量纲法。 主要特点: 利用边界条件求x0、 0时,系数采用简化公式; 利用x0、 0是Q0、M0的函数的特征,代入基本公式后,无须再计算x0、 0,可由已知的Q0、M0直接计算。
单击此处添加大标题内容
多排桩在外力作用平面内有多根桩,各桩受力相互影响,其影响与桩间净距L1有关。 单排桩或L1≥0.6h1的多排桩 k=1.0; L1<0.6h1的多排桩 h1——地面或最大冲刷线以下桩柱 计算埋入深度:h1=3(d+1) ;但h1值不 得大于桩的入土深度(h);
L1
H
q1、q2——梯形土压力强度。
桩顶为弹性嵌固——适合于墩 台受上部结构约束较强的情况。 轻型桥台用锚柱固接; 摩擦力较大的毛毡支座; 固定支座的单孔桥。
——单位水平力作用在地面或最大冲刷线处,桩在该处产生的转角;
——单位弯矩作用在地面或最大冲刷线处,桩在该处产生的转角;
x0、 0的计算 摩擦桩、柱承桩 x0、 0 的计算 桩底受力情况分析 桩底为非岩石类土或支承在岩基面上,在外荷作用下,桩底产生位移 xh、 h,桩底 x 处产生竖向位移 x h,桩底的抗力情况如下图所示。如竖向地基系数为C0,桩底竖向力增量:
z——地面或最大冲刷线以下地基系数计算点的深度; n——随不同计算假定而设置的指数。 “m”法假定—— “K”法假定——地基系数C沿深度分两段变化,在桩身第一挠曲零点以上按凹形抛物线变化(n=2),以下为常数K。 “C”法假定——地基系数C沿深度分两段变化, , ; 的桩长段地基系数C取常数。 “张有龄”法假定(常数法)——地基系数C沿深度不变为常数C=K0(n=0)。
桩基础设计计算

第四章桩基础的设计和计算桩基础具有承载力高、稳定性好、沉降变形小、抗震能力强,以及能适应各种复杂地质条件的显著优点,是桥梁工程的常用基础结构。
在受到上部结构传来的荷载作用时,桩基础通过承台将其分配给各桩,再由桩传递给周围的岩土层。
当为低承台桩基础时,承台同时也将部分荷载传递给承台周边的土体。
由于桩基础的埋置深度更大,与岩土层的接触界面和相互作用关系更为复杂,所以桩基础的设计计算远比浅基础繁琐和困难。
本章主要依据《铁路桥涵地基和基础设计规范》TB 10002.5-2005(以下简称《铁路桥涵地基规范》)的相关规定介绍铁路桥涵桩基础的设计与计算。
第一节桩基础的设计原则设计桩基础时,应先根据荷载、地质及水文等条件,初步拟定承台的位置和尺寸、桩的类型、直径、长度、桩数以及桩的排列形式等,然后经过反复试算和比较将其确定下来。
在上述设计过程中,设计者必须注意遵守相关设计规范的基本原则和具体规定,因此,在讨论设计计算方法之前,先将桩基础的设计原则介绍如下。
一、承台座板底面高程的确定低承台桩基和高承台桩基在计算原理及方法上没有根本的不同,但将影响到施工难易程度和桩的受力大小,故在拟定承台座板底面高程时,应根据荷载的大小、施工条件及河流的地质、水文、通航、流冰等情况加以决定。
一般对于常年有水且水位较高,施工时不易排水或河床冲刷深度较大的河流,为方便施工,多采用高承台桩基。
若河流不通航无流冰时,甚至可以把承台座板底面设置在施工水位之上,使施工更加方便。
但若河流航运繁忙或有流冰时,应将承台座板适当放低或在承台四周安设伸至通航或流冰水位以下一定深度的钢筋混凝土围板,以避免船只、排筏或流冰直接撞击桩身。
对于有强烈流冰的河流,则应将承台底面置于最低流冰层底面以下且不少于0.25m处。
低承台桩基的稳定性较好,但水中施工难度较大,故多用于季节性河流或冲刷深度较小的河流。
若承台位于冻胀性土中时,承台座板底面应置于冻结线以下不少于0.25m处。
基础工程-赵明华-第四章-桩基础-3

负摩阻计算:经验公式
qsni
n
' i
(一般)
qsni cu
(软土或中等强度粘土)
qsni Ni / 5 3 (砂土)
n— 负摩阻力系数(0.15~0.5),见表4-4; i'— 桩周第iห้องสมุดไป่ตู้土平均竖向有效上覆压力;
cu— 土的不排水抗剪强度,kPa; Ni— 桩周第i层土经杆长修正后的平均标准贯入试验击数
Q
o
s
o
Q
Z
s
4.2 竖向荷载下单桩的工作性能
四、单桩的破坏模式
刺入破坏
桩入土深度较大而桩 周土强度均匀,荷载主要 由桩测摩阻力承受,桩端 阻力可忽略不计。 Q-s曲 线可能为缓变型或陡变型。 承载力以桩侧阻力为主, 由桩顶容许沉降量控制设 计。
Q o
s
Q o
s Z
4.2 竖向荷载下单桩的工作性能
4.1 概 述
五、桩基设计原则
所有桩基均应进行承载能力计算
桩基竖向承载力(抗压、抗拔及负摩阻)、水平承载力计算 桩端平面以下软弱下卧层验算 桩基抗震承载力计算 桩身结构设计(预制桩吊运和沉桩强度验算、桩身压屈验算、
钢管桩局部压屈验算、岸坡桩稳定性验算等) 桩基尚应进行变形验算 桩端平面以下存在软弱土层、体型复杂且荷载分布显著不均
中性点的位置取决于桩-土 间的相对位移,并与桩端阻 所占荷载比例有关,通常可 取中性点深度ln与桩周变形土
层下限深度l0之比为b,则 ln = b l0。一般b =0.5~1.0(基 岩上的桩b 取1.0)
Ⅰ
桩侧土下
沉曲线 摩阻力分
桩下沉 布曲线 Ⅱ 曲线
桩底下沉
有负摩阻力时的荷载传递
基础工程-第4章 桩基础-

桩顶荷载一般包括轴向力、水平力和力矩,为简化 起见,在研究桩的受力性能及计算桩的承载力时,对 竖向受力情况单独进行研究。
4.3.1 桩的荷载传递
竖向荷载施加于桩顶时,桩身的上部 首先受到压缩而发生相对于土的向下位 移,于是桩周土在桩侧界面上产生向上 的摩阻力;荷载沿桩身向下传递的过程 就是不断克服这种摩阻力并通过它向土 中扩散的过程 。 如果桩侧摩阻力不足以抵抗竖向荷载, 一部分竖向荷载将传递到桩底,桩底持 力层也将产生压缩变形,故桩底土也会 对桩端产生阻力。
4.4 单桩竖向承载力的确定
单桩的承载力: 是指单桩在竖向荷载作用下,不丧失稳定性、不产生过 大变形时的承载能力。 单桩的竖向承载力主要取决于两方面: 一是地基土对桩的支承能力; 二是桩身的材料强度。 一般情况下,桩的承载力由地基土的支承能力所控制, 材料强度往往不能充分发挥,只有对端承桩、超长桩以及 桩身质量有缺陷的桩,桩身材料强度才起控制作用。
(1)静载荷试验装置及其方法:
试验装置主要由加荷稳压、提供反力和沉降观测三部分组成。
主梁
千斤顶 百分表 次梁 锚筋 锚桩
基准柱
试验时加载方式通常 有慢速维持荷载法、快 速维持荷载法、等贯入 速率法、等时间间隔加 载法以及循环加载法。 锚桩桁架法 工程中最常用的是慢速维持荷载法,即逐级加载,每级 加载值为单桩承载力特征值的1/8-1/5,当每级荷载下桩顶 沉降量小于0.1mm/h时,则认为已趋于稳定。然后施加下 一级荷载直到试桩破坏,再分级卸载到零。
4.3 竖向荷载下单桩的工作性能
本节重点: 竖向荷载作用下单桩的工作性能。
本节难点: 单桩的破坏模式已及单桩承载力的确定。
4.3 竖向荷载下单桩的工作性能
单桩工作性能的研究是单桩承载力分析理论的基础, 通过桩土相互作用分析,了解桩土间的传力途径和单 桩承载力的构成及其发展过程,以及单桩的破坏机理 等,对正确评价单桩承载力设计值具有一定的指导意 义。
第四章桩基础三

验资料时可按表4.4-2取值;
21
x0 a—桩顶(承台)的水平位移允许值,当以位移控
制时,可取 =10mm(对水平位移敏感的结构物 取 =6mm);当以桩身强度控制(低配筋率灌注 桩)时,可近似按前述式(4.4.2-9)确定;
Bc— ' 承台受侧向土抗力一边的计算宽度;
Bc— 承台宽度;
hc— 承台高度;
终止试验的条件:
当桩身折断或水平位移超过30~40mm(软土取 40mm)或水平位移达到设计要求的水平位移允许 值时,可终止试验。
6
3.单桩水平临界荷载和极限荷载的确定
根据试验数据可绘制荷载一时间一位移H t Y曲0 线(图 6-12)和荷载一位移梯度 H 曲Y0线H(图6-13),据此
可综合确定单桩水平临界荷载 与极限H荷cr 载 。
5
桩的水平变形系数 (1/m): mb0
EI
(4.4.2-2)
m --桩侧土水平抗力系数的比例系数
(MNm/ 4 ),该系数为地面以下2(d+1) m深度内各土 层的综合值;宜通过单桩水平静载试验确定,当桩 顶自由且水平力作用位置位于地面处,计算公式 为:
13
m
(
H cr xcr
x
b0 (EI )2
r— 桩顶约束效应系数(桩顶嵌入承台长度50~
100mm时),按表4.4-3取值;
l— 承台侧向土抗力效应系数(承台侧面回填土为
松散状态时取 )0;
— b
l
承台底摩阻效应系数;
sa / d— 沿水平荷载方向的距径比;
n,1 n—2 分别为沿水平荷载方向与垂直水平荷载方
向每排桩中的桩数;
m— 承台侧面土水平抗力系数的比例系数,当无试
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
3)对不允许出现裂缝或需限制裂缝宽度的混 凝土桩身和承台应进行抗裂或裂缝宽度验算。
四、
桩 基 础 的 设 计 步 骤
结构与地质资料 桩型、桩长、桩距
确定桩数n=P/R No
桩基中基桩承载力验算
实体深基础验算
软弱下卧层验算 沉降计算 承台设计
4 4E cI kB
六、 按施工方法(成型方式效应)
施工方法—沉桩方法
1 预制桩 Prefabricated pile
挤土桩,部分挤土桩
2 现场灌注桩 Cast in place
非挤土桩,部分挤土桩
气锤打入 引孔,部分挤土,
1 预制桩 振动沉桩
大面积地面隆起
静压桩
离心,预应力,
不引孔,挤土桩
P
端承型桩
s P
摩擦型桩
P s
二、按材料:
木桩、混凝土、钢筋混 凝土、钢管(型钢)桩、 复合桩
钢筋混凝土:普通混凝 土、预应力混凝土(离 心预制)、高强混凝土
三 、 按形状
• 按纵断面:楔形桩、树根桩、螺旋 桩、多节(分叉)桩、扩底桩、支 盘桩、微型桩
• 按横断面:圆形,八边形,十字桩、 X形桩
桩身
横断面
四、按尺寸
• 按断面(直径)的大小: 大直径桩:d800mm; 小直径桩:d250mm; 中等直径桩: 250<d<800mm 。
• 按长度(长径比): 长桩: 40m< L≤80m(>3);短桩:L≤15m; 中长桩:15m< L≤40m;超长桩:L > 80m
L/ (:桩的特征长度)
1.0-3.0 m
0.6-0.9 m
UK英国
英国是近代工业革 命的发源地,正式 名称“联合王国”, 全称“大不列颠及 北爱尔兰联合王国
(the United Kingdom of Great Britain and Northern Ireland)”
爆破扩底桩
挤扩桩(支盘桩)
七、桩的质量检验
桩基础---隐蔽工程(灌注桩)---缩颈、夹泥、断桩、沉渣过厚。
(1)开挖检查:桩顶标高、桩的位置(轴线)、桩顶质量(完整 性和混凝土强度)
(2)抽芯法:在灌注桩身内钻孔(直径100~150㎜),取混凝土 芯样进行观测和单轴抗压强度试验,了解混凝土有无离析、空洞、 桩底沉渣和夹泥等现象。
第二节 桩的类型
按不同的分类标准,叫法不同。
承载性状 施工方法 成型方式效应 材料 形状 按尺寸
软土层
一、 按承载性状分类
端承型桩
端承桩
(嵌岩桩)
摩擦端承桩
摩擦型桩
摩擦桩 端承摩擦桩
Q = Qp+Qs Tip resistance, Skin friction
端承型桩 主要由桩端承受极限荷载,桩不长,桩端土坚硬 摩擦型桩 主要由桩侧壁与土的摩擦力承受极限荷载,桩长,深
承台在地面以下, 承台 本身可承担部分荷载
2.高承台桩基
承台在地面以上,桥桩, 码头,栈桥
软土层
青岛·前海栈桥
1891年登州镇总兵章高元奉调率兵移驻青岛后,先在青岛村 (今人民会堂处)修建总兵衙门,然后在前海处搭起一座长200 米左右、铁木结构的简易码头,当时只供军用,故名栈桥。
低承台桩基
高承台桩基
三、桩基设计原则
1、安全等级:
2、桩基计算内容:
1)桩基的竖向承载力计算(基桩、群桩承载 力计算);
2)桩端平面以下软弱下卧层承载力验算; 3)桩基抗震承载力验算; 4)承台计算和桩身结构计算;
5)必要的验算,如变形验算。
3、变形验算:
•以下桩基应进行变形验算:
1)桩端持力层为软弱土的一、二级建筑物以及 桩端持力层为粘性土、粉土或存在软弱下卧层 的一级建筑桩基的沉降验算,并宜考虑上部结 构与桩基的相互作用。
工厂,现场
人工挖孔
成
2
现场灌注桩
孔 方
省,易
法
螺旋钻 正反循环—地下水以下泥浆护壁 冲击,夯扩,爆破 沉管灌注
泥皮,虚土,断桩
浇 水上 注 水下 法 其他
振动沉桩 预制桩1-13m
Pile Point
离心预应力预制钢筋混凝土
人工挖孔桩
广州市亚洲大酒店人工挖孔桩
螺旋钻
扩底桩
人工挖孔扩孔桩 (芝加哥法)
部分风化及 不风化泥岩
风化砂岩及粉砂岩
大直径钻孔桩
新加坡发展银行, 四墩7.3m
现场灌注 护坡桩
造价低
现场灌注 护坡桩
造价低
2.特点
优点
1. 将荷载传递到下部好 土层,承载力高
2. 沉降量小
3. 抗震性能好,穿过液 化层
4. 承受抗拔(抗滑桩)及 横向力(如风载荷)
5. 与其他深基础比较, 施工造价低
干栏式建筑
排桩
带撑木桩
灞河上建桥始于春秋时期,秦穆公称霸西 戎,将滋水改为灞水,并于河上建桥,故 称“灞桥”,是我国最古老的石柱墩桥。
1400年前的隋代灞桥遗址
隋代灞桥桥墩上的龙头
被洪水冲走的隋代灞桥上的桥桩
隋代灞桥石料上刻有“耀州” 二字证实修桥石料来源于西 安以北约100公里的古耀州
新加坡发展银行,四 墩, 每墩直径7.3m 将荷载传递到下部 好土层,承载力高
第四章桩基础
第四章 桩基础
Pile foundation
减轻不均匀沉降危害的措施
• 采用连续基础(如柱下条基) • 对地基局部或一定范围进行人工处理 • 在建筑、结构、施工方面采取有效措施 • 述桩的功能及类型 • 桩的承载机理? • 单桩承载力capacity of single pile • 群桩承载力capacity of pile group • 桩基础设计
缺点
施工环境影响,
预制桩施工噪音, 钻孔灌注桩的泥浆
有地下室时,有一定 干扰,深基坑中做 桩
3. 适用条件
(1)水上建筑物 (2)深持力层,高地下水位 (3)抗震地基 (4)对沉降非常敏感的建
筑,如精密仪器
详见教材117页
二、桩基础的类型(按承台位置分类)
• 承台:将几个桩结合 起来传递荷载
1.低承台桩基
桩杆
桩基础
承台
软土 层
沉井caisson 其他深基础
支护
通气
桶 梯子
工作间
地下连续墙 diaphragm
第一节 概 述
一、桩的应用
1 历史 • 十九世纪以前,木桩 • 7000-8000年前湖上居民,浙江河姆渡 • 西安灞桥,北京御河桥,隋唐建塔 • 十九世纪开始,材料和动力进步
铸铁管桩,1824年波特兰水泥注册专利, 蒸汽动力 • 十九世纪末,现场钻孔桩(1897, Raymond)