江苏省无锡市2016年中考数学试卷含答案解析
江苏省无锡市宜兴实验中学2016年中考数学一模试卷(解析版)

江苏省无锡市宜兴实验中学2016年中考数学一模试卷(解析版)参考答案与试题解析一、选择题(本大题共10小题,每小题3分,满分30分)1.﹣的相反数是()A.﹣2 B.2 C.﹣D.【分析】根据相反数的含义,可得求一个数的相反数的方法就是在这个数的前边添加“﹣”,据此解答即可.【解答】解:根据相反数的含义,可得﹣的相反数是:﹣(﹣)=.故选:D.【点评】此题主要考查了相反数的含义以及求法,要熟练掌握,解答此题的关键是要明确:相反数是成对出现的,不能单独存在;求一个数的相反数的方法就是在这个数的前边添加“﹣”.2.若二次根式在实数范围内有意义,则x的取值范围是()A.x≤﹣1 B.x≥﹣1 C.x≤1 D.x≥1【分析】根据被开方数大于等于0列式计算即可得解.【解答】解:由题意得,x﹣1≥0,解得x≥1.故选D.【点评】本题考查了二次根式有意义的条件,二次根式中的被开方数必须是非负数,否则二次根式无意义.3.未来三年,国家将投入8450亿元用于缓解群众“看病难、看病贵”的问题.将8450亿元用科学记数法表示为()亿元.A.0.845×104B.8.45×103C.8.45×104D.84.5×102【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值是易错点,由于8450有4位,所以可以确定n=4﹣1=3.【解答】解:8450=8.45×103.故选B.【点评】此题考查科学记数法表示较大的数的方法,准确确定a与n值是关键.4.二元一次方程组的解是()A.B.C.D.【分析】方程组利用加减消元法求出解即可.【解答】解:,①+②得:2x=2,即x=1,①﹣②得:2y=4,即y=2,则方程组的解为.故选:B【点评】此题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.5.若一次函数y=(m﹣3)x+5的函数值y随x的增大而增大,则()A.m>0 B.m<0 C.m>3 D.m<3【分析】直接根据一次函数的性质可得m﹣3>0,解不等式即可确定答案.【解答】解:∵一次函数y=(m﹣3)x+5中,y随着x的增大而增大,∴m﹣3>0,解得:m>3.故选:C.【点评】本题考查的是一次函数的性质,熟知一次函数y=kx+b(k≠0)中,当k<0时,y 随x的增大而减小是解答此题的关键.6.如图,在△ABC中,点D在BC上,AB=AD=DC,∠B=80°,则∠C的度数为()A.30° B.40° C.45° D.60°【分析】先根据等腰三角形的性质求出∠ADB的度数,再由平角的定义得出∠ADC的度数,根据等腰三角形的性质即可得出结论.【解答】解:∵△ABD中,AB=AD,∠B=80°,∴∠B=∠ADB=80°,∴∠ADC=180°﹣∠ADB=100°,∵AD=CD,∴∠C===40°.故选:B.【点评】本题考查的是等腰三角形的性质,熟知等腰三角形的两底角相等是解答此题的关键.7.如果两个相似多边形面积的比为1:5,则它们的相似比为()A.1:25 B.1:5 C.1:2.5 D.1:【分析】根据相似多边形的面积的比等于相似比的平方解答.【解答】解:∵两个相似多边形面积的比为1:5,∴它们的相似比为1:.故选:D.【点评】本题考查了相似多边形的性质,熟记性质是解题的关键.8.七边形外角和为()A.180° B.360° C.900° D.1260°【分析】根据多边形的外角和等于360度即可求解.【解答】解:七边形的外角和为360°.故选:B.【点评】本题考查了多边形的内角和外角的知识,属于基础题,掌握多边形的外角和等于360°是解题的关键.9.)如过正方体中有公共顶点的三条棱的中点切出一个平面,形成如图所示的几何体,其正确展开图为()A.B.C.D.【分析】由平面图形的折叠及立体图形的表面展开图的特点解题.【解答】解:选项A、C、D折叠后都不符合题意,只有选项B折叠后两个剪去三角形与另一个剪去的三角形交于一个顶点,•与正方体三个剪去三角形交于一个顶点符合.故选:B.【点评】考查了截一个几何体和几何体的展开图.解决此类问题,要充分考虑带有各种符号的面的特点及位置.10.如图,已知正方形ABCD的边长为12,BE=EC,将正方形边CD沿DE折叠到DF,延长EF交AB于G,连接DG,现在有如下4个结论:①△ADG≌△FDG;②GB=2AG;③△GDE∽△BEF;④S△BEF=.在以上4个结论中,正确的有()A.1 B.2 C.3 D.4【分析】根据正方形的性质和折叠的性质可得AD=DF,∠A=∠GFD=90°,于是根据“HL”判定△ADG≌△FDG,再由GF+GB=GA+GB=12,EB=EF,△BGE为直角三角形,可通过勾股定理列方程求出AG=4,BG=8,进而求出△BEF的面积,再抓住△BEF是等腰三角形,而△GED显然不是等腰三角形,判断③是错误的.【解答】解:由折叠可知,DF=DC=DA,∠DFE=∠C=90°,∴∠DFG=∠A=90°,∴△ADG≌△FDG,①正确;∵正方形边长是12,∴BE=EC=EF=6,设AG=FG=x,则EG=x+6,BG=12﹣x,由勾股定理得:EG2=BE2+BG2,即:(x+6)2=62+(12﹣x)2,解得:x=4∴AG=GF=4,BG=8,BG=2AG,②正确;BE=EF=6,△BEF是等腰三角形,易知△GED不是等腰三角形,③错误;S△GBE=×6×8=24,S△BEF=•S△GBE==,④正确.故选:C.【点评】本题综合性较强,考查了翻折变换的性质和正方形的性质,全等三角形的判定与性质,勾股定理,平行线的判定,三角形的面积计算,有一定的难度.二、填空题(本大题共8小题,每小题2分,满分16分)11.9的算术平方根是3.【分析】9的平方根为±3,算术平方根为非负,从而得出结论.【解答】解:∵(±3)2=9,∴9的算术平方根是|±3|=3.故答案为:3.【点评】本题考查了数的算式平方根,解题的关键是牢记算术平方根为非负.12.()因式分解:2x2﹣18=2(x+3)(x﹣3).【分析】提公因式2,再运用平方差公式因式分解.【解答】解:2x2﹣18=2(x2﹣9)=2(x+3)(x﹣3),故答案为:2(x+3)(x﹣3).【点评】本题考查了用提公因式法和公式法进行因式分解,一个多项式有公因式首先提取公因式,然后再用其他方法进行因式分解,同时因式分解要彻底,直到不能分解为止.13.已知反比例函数y=的图象经过点A(﹣1,4),则当x=﹣2时,y=2.【分析】先把点A(﹣1,4)代入y=求得k的值,然后将x=﹣2代入,即可求出y的值.【解答】解:∵反比例函数y=的图象经过点A(﹣1,4),∴k=﹣1×4=﹣4,∴反比例函数解析式为y=﹣,∴当x=﹣2时,y=﹣=2.故答案为:2.【点评】本题考查了反比例函数图象上点的坐标特征.利用待定系数法求得一次函数解析式是解题的关键.14.若圆锥的底面半径为3cm,母线长为4cm,则圆锥的侧面积为12πcm2.(结果保留π)【分析】圆锥的侧面积=底面周长×母线长÷2.【解答】解:底面圆的半径为3,则底面周长=6π,侧面面积=×6π×4=12πcm2.故答案为:12π.【点评】本题考查了圆锥的计算,利用了圆的周长公式和扇形面积公式求解.15.如图,将矩形纸片ABCD折叠,使点A与点C重合,折痕为EF,EF与AC交于点O,分别连接AE、CF.若AB=,∠DCF=30°,则EF的长为2.【分析】先根据解直角三角形得到DF和CF的长,再根据勾股定理求得AC的长,并得出AO的长,然后利用勾股定理求得OF的长,最后根据等腰三角形的性质,求得EF的长等于OF长的2倍.【解答】解:∵矩形ABCD中,AB=CD=,∠D=90°∴DF=1,CF=2由折叠可得,AC被EF垂直平分∴AF=CF=2∴AD=2+1=3∴直角三角形ACD中,AC===∴AO=AC=∴直角三角形AOF中,OF==1又∵由折叠得∠AEO=∠CE0,由AD∥BC得∠AFO=∠CEO∴∠AFO=∠AEO,即AF=AE∵AO⊥EF∴EF=2FO=2故答案为:2【点评】本题主要考查了矩形的性质以及折叠的性质:折叠前后两图形全等,即对应线段相等,对应角相等.解题时注意:对应点的连线段被折痕垂直平分.此题也可以通过判定△AEF 为等边三角形进行求解.16.如图,AB 为⊙O 的弦,⊙O 的半径为5,OC ⊥AB 于点D ,交⊙O 于点C ,且CD=1,则弦AB 的长是 6 .【分析】连接AO ,得到直角三角形,再求出OD 的长,就可以利用勾股定理求解.【解答】解:连接AO ,∵半径是5,CD=1,∴OD=5﹣1=4,根据勾股定理,AD===3,∴AB=3×2=6,因此弦AB 的长是6.【点评】解答此题不仅要用到垂径定理,还要作出辅助线AO ,这是解题的关键.17.一组数据3,5,5,4,5,6的众数是 5 .【分析】根据众数的定义:一组数据中出现次数最多的数据即可得出答案.【解答】解:这组数据中出现次数最多的数据为:5.故众数为5.故答案为:5.【点评】本题考查了众数的知识,属于基础题,解答本题的关键是熟练掌握一组数据中出现次数最多的数据叫做众数.18.实验室里,水平桌面上有甲、乙、丙三个圆柱形容器(容器足够高),底面半径之比为1:2:1,用两个相同的管子在容器的5cm高度处连通(即管子底端离容器底5cm).现三个容器中,只有甲中有水,水位高1cm,如图所示.若每分钟同时向乙和丙注入相同量的水,开始注水1分钟,乙的水位上升cm,则开始注入,,分钟的水量后,甲与乙的水位高度之差是0.5cm.【分析】由甲、乙、丙三个圆柱形容器(容器足够高),底面半径之比为1:2:1,注水1分钟,乙的水位上升cm,得到注水1分钟,丙的水位上升cm,设开始注入t分钟的水量后,甲与乙的水位高度之差是0.5cm,甲与乙的水位高度之差是0.5cm有三种情况:①当乙的水位低于甲的水位时,②当甲的水位低于乙的水位时,甲的水位不变时,③当甲的水位低于乙的水位时,乙的水位到达管子底部,甲的水位上升时,分别列方程求解即可.【解答】解:∵甲、乙、丙三个圆柱形容器(容器足够高),底面半径之比为1:2:1,∵注水1分钟,乙的水位上升cm,∴注水1分钟,丙的水位上升cm,设开始注入t分钟的水量后,甲与乙的水位高度之差是0.5cm,甲与乙的水位高度之差是0.5cm有三种情况:①当乙的水位低于甲的水位时,有1﹣t=0.5,解得:t=分钟;②当甲的水位低于乙的水位时,甲的水位不变时,∵t﹣1=0.5,解得:t=,∵×=6>5,∴此时丙容器已向乙容器溢水,∵5÷=分钟,=,即经过分钟丙容器的水到达管子底部,乙的水位上升,∴,解得:t=;③当甲的水位低于乙的水位时,乙的水位到达管子底部,甲的水位上升时,∵乙的水位到达管子底部的时间为;分钟,∴5﹣1﹣2×(t﹣)=0.5,解得:t=,综上所述开始注入,,分钟的水量后,甲与乙的水位高度之差是0.5cm.【点评】本题考查了一元一次方程的应用,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系列出方程,再求解.三、解答题(本大题共10小题,满分84分)19.计算:(1);(2).【分析】结合二次根式的乘除法、分式的加减法和零指数幂的运算法则求解即可.【解答】解:(1)原式=3﹣1+4=6.(2)原式=﹣(x﹣3)=(x﹣1)﹣(x﹣3)=2.【点评】本题考查了二次根式的乘除法、分式的加减法和零指数幂的知识,解答本题的关键是熟练掌握各知识点的运算法则.20.解方程:(1)x2﹣3x+2=0;(2).【分析】(1)根据因式分解法解一元二次方程的步骤:①移项使方程的右边化为零;②将方程的左边分解为两个一次因式的乘积;③令每个因式分别为零得到两个一元一次方程;④解这两个一元一次方程,即可得答案;(2)依据解分式方程的步骤:①去分母;②求出整式方程的解;③检验;④得出结论.【解答】解:(1)方程左边因式分解,得:(x﹣1)(x﹣2)=0,∴x﹣1=0或x﹣2=0,解得:x=1或x=2;(2)去分母,得:3(x+2)﹣x=0,去括号,得:3x+6﹣x=0,移项、合并,得:2x=﹣6,系数化为1,得:x=﹣3,经检验:x=﹣3是原分式方程的解,故该分式方程的解为x=﹣3.【点评】本题主要考查解分式方程和一元二次方程的能力,熟练掌握解方程的转化思想:分式方程转化为整式方程、一元二次方程因式分解转化为两个一元一次方程是解题的关键.21.如图,点B、C、E、F在同一直线上,BC=EF,AC⊥BC于点C,DF⊥EF于点F,AC=DF.求证:(1)△ABC≌△DEF;(2)AB∥DE.【分析】(1)由SAS容易证明△ABC≌△DEF;(2)由△ABC≌△DEF,得出对应角相等∠B=∠DEF,即可得出结论.【解答】证明:(1)∵AC⊥BC于点C,DF⊥EF于点F,∴∠ACB=∠DFE=90°,在△ABC和△DEF中,,∴△ABC≌△DEF(SAS);(2)∵△ABC≌△DEF,∴∠B=∠DEF,∴AB∥DE.【点评】本题考查了全等三角形的判定与性质、平行线的判定;熟练掌握全等三角形的判定与性质,证明三角形全等是解决问题的关键.22.如图,在△ABC中,AB=AC,以AB为直径的⊙O分别与BC,AC交于点D,E,过点D作⊙O的切线DF,交AC于点F.(1)求证:DF⊥AC;(2)若⊙O的半径为4,∠CDF=22.5°,求阴影部分的面积.【分析】(1)连接OD,易得∠ABC=∠ODB,由AB=AC,易得∠ABC=∠ACB,等量代换得∠ODB=∠ACB,利用平行线的判定得OD∥AC,由切线的性质得DF⊥OD,得出结论;(2)连接OE,利用(1)的结论得∠ABC=∠ACB=67.5°,易得∠BAC=45°,得出∠AOE=90°,利用扇形的面积公式和三角形的面积公式得出结论.【解答】(1)证明:连接OD,∵OB=OD,∴∠ABC=∠ODB,∵AB=AC,∴∠ABC=∠ACB,∴∠ODB=∠ACB,∴OD∥AC,∵DF是⊙O的切线,∴DF⊥OD,∴DF⊥AC.(2)解:连接OE,∵DF⊥AC,∠CDF=22.5°,∴∠ABC=∠ACB=67.5°,∴∠BAC=45°,∵OA=OE,∴∠AOE=90°,∵⊙O的半径为4,=4π,S△AOE=8,∴S扇形AOE=4π﹣8.∴S阴影【点评】本题主要考查了切线的性质,扇形的面积与三角形的面积公式,圆周角定理等,作出适当的辅助线,利用切线性质和圆周角定理,数形结合是解答此题的关键.23.一个不透明的布袋里装有2个白球,1个黑球和若干个红球,它们除颜色外其余都相同,从中任意摸出1个球,是白球的概率为.(1)布袋里红球有多少个?(2)先从布袋中摸出1个球后不放回,再摸出1个球,请用列表法或画树状图等方法求出两次摸到的球都是白球的概率.【分析】(1)设红球的个数为x,根据白球的概率可得关于x的方程,解方程即可;(2)画出树形图,即可求出两次摸到的球都是白球的概率.【解答】解:(1)设红球的个数为x,由题意可得:,解得:x=1,经检验x=1是方程的根,即红球的个数为1个;(2)画树状图如下:∴P(摸得两白)==.【点评】此题考查的是用列表法或树状图法求概率.列表法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件;树状图法适合两步或两步以上完成的事件;解题时要注意此题是放回实验还是不放回实验.用到的知识点为:概率=所求情况数与总情况数之比.24.亚健康是时下社会热门话题,进行体育锻炼是远离亚健康的一种重要方式,为了解某市初中学生每天进行体育锻炼的时间情况,随机抽样调查了100名初中学生,根据调查结果得到如图所示的统计图表.请根据图表信息解答下列问题:(1)a=35;(2)补全条形统计图;(3)小王说:“我每天的锻炼时间是调查所得数据的中位数”,问小王每天进行体育锻炼的时间在什么范围内?(4)据了解该市大约有30万名初中学生,请估计该市初中学生每天进行体育锻炼时间在1小时以上的人数.【分析】(1)用样本总数100减去A、B、D、E类的人数即可求出a的值;(2)由(1)中所求a的值得到C类别的人数,即可补全条形统计图;(3)根据中位数的定义,将这组数据按从小到大的顺序排列,求出第50与第51个数的平均数得到中位数,进而求解即可;(4)用30万乘以样本中每天进行体育锻炼时间在1小时以上的人数所占的百分比即可.【解答】解:(1)a=100﹣(5+20+30+10)=35.故答案为35;(2)补全条形统计图如下所示:(3)根据中位数的定义可知,这组数据的中位数落在C类别,所以小王每天进行体育锻炼的时间范围是1<t≤1.5;(4)30×=22.5(万人).即估计该市初中学生每天进行体育锻炼时间在1小时以上的人数是22.5万人.【点评】本题考查的是条形统计图和频数分布表的综合运用.读懂统计图表,从不同的统计图表中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据.也考查了中位数的定义以及利用样本估计总体.25.母亲节前夕,某淘宝店主从厂家购进A、B两种礼盒,已知A、B两种礼盒的单价比为2:3,单价和为200元.(1)求A、B两种礼盒的单价分别是多少元?(2)该店主购进这两种礼盒恰好用去9600元,且购进A种礼盒最多36个,B种礼盒的数量不超过A种礼盒数量的2倍,共有几种进货方案?(3)根据市场行情,销售一个A种礼盒可获利10元,销售一个B种礼盒可获利18元.为奉献爱心,该店主决定每售出一个B种礼盒,为爱心公益基金捐款m元,每个A种礼盒的利润不变,在(2)的条件下,要使礼盒全部售出后所有方案获利相同,m值是多少?此时店主获利多少元?【分析】(1)利用A、B两种礼盒的单价比为2:3,单价和为200元,得出等式求出即可;(2)利用两种礼盒恰好用去9600元,结合(1)中所求,得出等式,利用两种礼盒的数量关系求出即可;(3)首先表示出店主获利,进而利用a,b关系得出符合题意的答案.【解答】解:(1)设A种礼盒单价为2x元,B种礼盒单价为3x元,依据题意得:2x+3x=200,解得:x=40,则2x=80,3x=120,答:A种礼盒单价为80元,B种礼盒单价为120元;(2)设购进A种礼盒a个,B种礼盒b个,依据题意可得:,解得:30≤a≤36,∵a,b的值均为整数,∴a的值为:30、33、36,∴共有三种方案;(3)设店主获利为w元,则w=10a+(18﹣m)b,由80a+120b=9600,得:a=120﹣b,则w=(3﹣m)b+1200,∵要使(2)中方案获利都相同,∴3﹣m=0,∴m=3,此时店主获利1200元.【点评】此题主要考查了一元一次方程的应用以及一次函数的应用和一元一次不等式的应用,根据题意结合得出正确等量关系是解题关键.26.(1)如图①,已知D、E分别是△ABC的边AB、AC上一点,DE∥BC,连接CD、BE,CD、BE交于点F,连接AF并延长,分别交DE、BC于点H、G.求证:①;②G是BC的中点.(2)运用(1)中的方法,在图②中,只用一把无刻度的直尺画出矩形ABCD的一条对称轴.(不写画法,保留画图痕迹)【分析】(1)①由DE∥BC,得到△ADH∽△ABG和△AHE∽△AGC,即可得到结论;②易证△DEN∽△AEM,△OND∽△OMB,则依据相似三角形的对应边的比相等,可以证得,得到BG=CG即可;(2)①连接AC ,BD ,两线交于点O 1.②在矩形ABCD 外任取一点E ,连接EA ,EB ,分别交DC 于点G ,H ③连接BG ,AH ,两线交于点O 2.④作直线EO 2,交AB 于点M .⑤作直线MO 1.直线MO 1就是矩形ABCD 的一条对称轴.【解答】(1)证明:①∵DE ∥BC ,∴△ADH ∽△ABG ,∴,同理:,∴; ②∵DE ∥BC∴△FDH ∽△FCG ,∴=,同理:,∴,∴,由(1)得:,∴,∴BG=CG ,即点G 是BC 的中点;(2)解:如图所示,直线MO 1即为所求.【点评】本题是相似形综合题目,考查了相似三角形的判定与性质、矩形的性质,正确根据相似三角形的对应边的比相等,通过等量代换得到是解决问题的关键.27.我们定义:有一组对角相等而另一组对角不相等的凸四边形叫做“等对角四边形”.(1)已知:如图1,四边形ABCD是“等对角四边形”,∠A≠∠C,∠A=70°,∠B=80°.求∠C,∠D的度数.(2)在探究“等对角四边形”性质时:①小红画了一个“等对角四边形”ABCD(如图2),其中∠ABC=∠ADC,AB=AD,此时她发现CB=CD成立.请你证明此结论;②由此小红猜想:“对于任意‘等对角四边形’,当一组邻边相等时,另一组邻边也相等”.你认为她的猜想正确吗?若正确,请证明;若不正确,请举出反例.(3)已知:在“等对角四边形”ABCD中,∠DAB=60°,∠ABC=90°,AB=5,AD=4.求对角线AC的长.【分析】(1)根据四边形ABCD是“等对角四边形”得出∠D=∠B=80°,根据多边形内角和定理求出∠C即可;(2)①连接BD,根据等边对等角得出∠ABD=∠ADB,求出∠CBD=∠CDB,根据等腰三角形的判定得出即可;②先画出反例图形,即可得出答案;(3)分两种情况:①当∠ADC=∠ABC=90°时,延长AD,BC相交于点E,先用含30°角的直角三角形的性质求出AE,得出DE,再用三角函数求出CD,由勾股定理求出AC;②当∠BCD=∠DAB=60°时,过点D作DM⊥AB于点M,DN⊥BC于点N,则∠AMD=90°,四边形BNDM是矩形,先求出AM、DM,再由矩形的性质得出DN=BM=3,BN=DM=2,求出CN、BC,根据勾股定理求出AC即可【解答】(1)解:∵四边形ABCD是“等对角四边形”,∠A≠∠C,∠A=70°,∠B=80°,∴∠D=∠B=80°,∴∠C=360°﹣80°﹣80°﹣70°=130°;(2)①证明:如图1,连接BD,∵AB=AD,∴∠ABD=∠ADB,∵∠ABC=∠ADC,∴∠ABC﹣∠ABD=∠ADC﹣∠ADB,∴∠CBD=∠CDB,∴CB=CD;②解:小红的猜想不正确,如图:四边形ABCD是“等对角四边形”∠A=∠C=90°,AB=AD,但是BC和CD不等,所以小红的猜想不正确;(3)解:分两种情况:①当∠ADC=∠ABC=90°时,延长AD,BC相交于点E,如图3所示:∵∠ABC=90°,∠DAB=60°,AB=5,∴∠E=30°,∴AE=2AB=10,∴DE=AE﹣AD=10﹣4═6,∵∠EDC=90°,∠E=30°,∴CD=2,∴AC===2;②当∠BCD=∠DAB=60°时,过点D作DM⊥AB于点M,DN⊥BC于点N,如图4所示:则∠AMD=90°,四边形BNDM是矩形,∵∠DAB=60°,∴∠ADM=30°,∴AM=AD=2,∴DM=2∴BM=AB﹣AM=5﹣2=3,∵四边形BNDM是矩形,∴DN=BM=3,BN=DM=2,∵∠BCD=60°,∴CN=,∴BC=CN+BN=3,∴AC==2;综上所述:AC的长为2或2.【点评】本题是四边形综合题目,考查了新定义、四边形内角和定理、等腰三角形的判定与性质、勾股定理、三角函数、矩形的判定与性质等知识;本题难度较大,综合性强,特别是(3)中,需要进行分类讨论,通过作辅助线运用三角函数和勾股定理才能得出结果.28.已知抛物线C1:y=ax2+bx+(a≠0)经过点A(﹣1,0)和B(3,0).(1)求抛物线C1的解析式,并写出其顶点C的坐标;(2)如图1,把抛物线C1沿着直线AC方向平移到某处时得到抛物线C2,此时点A,C分别平移到点D,E处.设点F在抛物线C1上且在x轴的下方,若△DEF是以EF为底的等腰直角三角形,求点F的坐标;(3)如图2,在(2)的条件下,设点M是线段BC上一动点,EN⊥EM交直线BF于点N,点P为线段MN的中点,当点M从点B向点C运动时:①tan∠ENM的值如何变化?请说明理由;②点M到达点C时,直接写出点P经过的路线长.【分析】(1)根据待定系数法即可求得解析式,把解析式化成顶点式即可求得顶点坐标;(2)根据A、C的坐标求得直线AC的解析式为y=x+1,根据题意求得EF=4,求得EF∥y轴,设F(m,﹣m2+m+),则E(m,m+1),从而得出(m+1)﹣(﹣m2+m+)=4,解方程即可求得F的坐标;(3)①先求得四边形DFBC是矩形,作EG⊥AC,交BF于G,然后根据△EGN∽△EMC,对应边成比例即可求得tan∠ENM==2;②根据勾股定理和三角形相似求得EN=,然后根据三角形中位线定理即可求得.【解答】解:(1)∵抛物线C1:y=ax2+bx+(a≠0)经过点A(﹣1,0)和B(3,0),∴解得,∴抛物线C1的解析式为y=﹣x2+x+,∵y=﹣x2+x+=﹣(x﹣1)2+2,∴顶点C的坐标为(1,2);(2)如图1,作CH⊥x轴于H,∵A(﹣1,0),C(1,2),∴AH=CH=2,∴∠CAB=∠ACH=45°,∴直线AC的解析式为y=x+1,∵△DEF是以EF为底的等腰直角三角形,∴∠DEF=45°,∴∠DEF=∠ACH,∴EF∥y轴,∵DE=AC=2,∴EF=4,设F(m,﹣m2+m+),则E(m,m+1),∴(m+1)﹣(﹣m2+m+)=4,解得m=3(舍)或m=﹣3,∴F(﹣3,﹣6);(3)①tan∠ENM的值为定值,不发生变化;如图2,∵DF⊥AC,BC⊥AC,∴DF∥BC,∵DF=BC=AC,∴四边形DFBC是矩形,作EG⊥AC,交BF于G,∴EG=BC=AC=2,∵EN⊥EM,∴∠MEN=90°,∵∠CEG=90°,∴∠CEM=∠NEG,∴△ENG∽△EMC,∴=,∵F(﹣3,﹣6),EF=4,∴E(﹣3,﹣2),∵C(1,2),∴EC==4,∴==2,∴tan∠ENM==2;∵tan∠ENM的值为定值,不发生变化;②点P经过的路径是线段P1P2,如图3,∵四边形BCEG是矩形,GP2=CP2,∴EP2=BP2,∵△EGN∽△ECB,∴=,∵EC=4,EG=BC=2,∴EB=2,∴=,∴EN=,∵P1P2是△BEN的中位线,∴P1P2=EN=;∴点M到达点C时,点P经过的路线长为.。
江苏省无锡市 2016年中考数学真题试卷附解析

2016年江苏省无锡市中考数学试卷参考答案与试题解析一、选择题:本大题共10小题,每小题3分,共30分1.(2016·江苏无锡)﹣2的相反数是()A.B.±2 C.2 D.﹣【考点】相反数.【分析】根据一个数的相反数就是在这个数前面添上“﹣”号,求解即可.【解答】解:﹣2的相反数是2;故选C.2.(2016·江苏无锡)函数y=中自变量x的取值范围是()A.x>2 B.x≥2 C.x≤2 D.x≠2【考点】函数自变量的取值范围.【分析】因为当函数表达式是二次根式时,被开方数为非负数,所以2x﹣4≥0,可求x的范围.【解答】解:依题意有:2x﹣4≥0,解得x≥2.故选:B.3.(2016·江苏无锡)sin30°的值为()A.B.C.D.【考点】特殊角的三角函数值.【分析】根据特殊角的三角函数值,可以求得sin30°的值.【解答】解:sin30°=,故选A.4.(2016·江苏无锡)初三(1)班12名同学练习定点投篮,每人各投10次,进球数统计A.3.75 B.3 C.3.5 D.7【考点】众数.【分析】根据统计表找出各进球数出现的次数,根据众数的定义即可得出结论.【解答】解:观察统计表发现:1出现1次,2出现1次,3出现4次,4出现2次,5出现3次,7出现1次,故这12名同学进球数的众数是3.故选B.5.(2016·江苏无锡)下列图案中,是轴对称图形但不是中心对称图形的是()A.B. C.D.【考点】中心对称图形;轴对称图形.【分析】根据轴对称图形与中心对称图形的性质对各选项进行逐一分析即可.【解答】解:A、是轴对称图形,但不是中心对称图形,故本选项正确;B、既是轴对称图形,又是中心对称图形,故本选项错误;C、既不是轴对称图形,又不是中心对称图形,故本选项错误;D、不是轴对称图形,但是中心对称图形,故本选项错误.故选A.6.(2016·江苏无锡)如图,AB是⊙O的直径,AC切⊙O于A,BC交⊙O于点D,若∠C=70°,则∠AOD的度数为()A.70°B.35°C.20°D.40°【考点】切线的性质;圆周角定理.【分析】先依据切线的性质求得∠CAB的度数,然后依据直角三角形两锐角互余的性质得到∠CBA的度数,然后由圆周角定理可求得∠AOD的度数.【解答】解:∵AC是圆O的切线,AB是圆O的直径,∴AB⊥AC.∴∠CAB=90°.又∵∠C=70°,∴∠CBA=20°.∴∠DOA=40°.故选:D.7.(2016·江苏无锡)已知圆锥的底面半径为4cm,母线长为6cm,则它的侧面展开图的面积等于()A.24cm2B.48cm2C.24πcm2D.12πcm2【考点】圆锥的计算.【分析】根据圆锥的侧面积=×底面圆的周长×母线长即可求解.【解答】解:底面半径为4cm,则底面周长=8πcm,侧面面积=×8π×6=24π(cm2).故选:C.8.(2016·江苏无锡)下列性质中,菱形具有而矩形不一定具有的是( )A .对角线相等B .对角线互相平分C .对角线互相垂直D .邻边互相垂直【考点】菱形的性质;矩形的性质.【分析】菱形的性质有:四边形相等,两组对边分别平行,对角相等,邻角互补,对角线互相垂直且平分,且每一组对角线平分一组对角.矩形的性质有:两组对边分别相等,两组对边分别平行,四个内角都是直角,对角线相等且平分.【解答】解:(A )对角线相等是矩形具有的性质,菱形不一定具有;(B )对角线互相平分是菱形和矩形共有的性质;(C )对角线互相垂直是菱形具有的性质,矩形不一定具有;(D )邻边互相垂直是矩形具有的性质,菱形不一定具有.故选:C .9.(2016·江苏无锡)一次函数y=x ﹣b 与y=x ﹣1的图象之间的距离等于3,则b 的值为( )A .﹣2或4B .2或﹣4C .4或﹣6D .﹣4或6【考点】一次函数的性质;含绝对值符号的一元一次方程.【分析】将两个一次函数解析式进行变形,根据两平行线间的距离公式即可得出关于b 的含绝对值符号的一元一次方程,解方程即可得出结论.【解答】解:一次函数y=x ﹣b 可变形为:4x ﹣3y ﹣3b=0;一次函数y=x ﹣1可变形为4x ﹣3y ﹣3=0.两平行线间的距离为:d==|b ﹣1|=3,解得:b=﹣4或b=6.故选D .10.(2016·江苏无锡)如图,Rt △ABC 中,∠C=90°,∠ABC=30°,AC=2,△ABC 绕点C 顺时针旋转得△A 1B 1C ,当A 1落在AB 边上时,连接B 1B ,取BB 1的中点D ,连接A 1D ,则A 1D 的长度是( )A .B .2C .3D .2【考点】旋转的性质;含30度角的直角三角形.【分析】首先证明△ACA 1,△BCB 1是等边三角形,推出△A 1BD 是直角三角形即可解决问题.【解答】解:∵∠ACB=90°,∠ABC=30°,AC=2,∴∠A=90°﹣∠ABC=60°,AB=4,BC=2,∵CA=CA1,∴△ACA1是等边三角形,AA1=AC=BA1=2,∴∠BCB1=∠ACA1=60°,∵CB=CB1,∴△BCB1是等边三角形,∴BB1=2,BA1=2,∠A1BB1=90°,∴BD=DB1=,∴A1D==.故选A.二、填空题:本大题共8小题,每小题2分,共16分11.(2016·江苏无锡)分解因式:ab﹣a2=a(b﹣a).【考点】因式分解-提公因式法.【分析】直接把公因式a提出来即可.【解答】解:ab﹣a2=a(b﹣a).故答案为:a(b﹣a).12.(2016·江苏无锡)某公司在埃及新投产一座鸡饲料厂,年生产饲料可饲养57000000只肉鸡,这个数据用科学记数法可表示为 5.7×107.【考点】科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:将57000000用科学记数法表示为:5.7×107.故答案为:5.7×107.13.(2016·江苏无锡)分式方程=的解是x=4.【考点】分式方程的解.【分析】首先把分式方程=的两边同时乘x(x﹣1),把化分式方程为整式方程;然后根据整式方程的求解方法,求出分式方程=的解是多少即可.【解答】解:分式方程的两边同时乘x(x﹣1),可得4(x﹣1)=3x解得x=4,经检验x=4是分式方程的解.故答案为:x=4.14.(2016·江苏无锡)若点A(1,﹣3),B(m,3)在同一反比例函数的图象上,则m 的值为﹣1.【考点】反比例函数图象上点的坐标特征.【分析】由A、B点的坐标结合反比例函数图象上点的坐标特征即可得出关于m的一元一次方程,解方程即可得出结论.【解答】解:∵点A(1,﹣3),B(m,3)在同一反比例函数的图象上,∴1×(﹣3)=3m,解得:m=﹣1.故答案为:﹣1.15.(2016·江苏无锡)写出命题“如果a=b”,那么“3a=3b”的逆命题如果3a=3b,那么a=b.【考点】命题与定理.【分析】先找出命题的题设和结论,再说出即可.【解答】解:命题“如果a=b”,那么“3a=3b”的逆命题是:如果3a=3b,那么a=b,故答案为:如果3a=3b,那么a=b.16.(2016·江苏无锡)如图,矩形ABCD的面积是15,边AB的长比AD的长大2,则AD的长是3.【考点】矩形的性质.【分析】根据矩形的面积公式,可得关于AD的方程,根据解方程,可得答案.【解答】解:由边AB的长比AD的长大2,得AB=AD+2.由矩形的面积,得AD(AD+2)=15.解得AD=3,AD=﹣5(舍),故答案为:3.17.(2016·江苏无锡)如图,已知▱OABC的顶点A、C分别在直线x=1和x=4上,O是坐标原点,则对角线OB长的最小值为5.【考点】平行四边形的性质;坐标与图形性质.【分析】当B在x轴上时,对角线OB长的最小,由题意得出∠ADO=∠CEB=90°,OD=1,OE=4,由平行四边形的性质得出OA∥BC,OA=BC,得出∠AOD=∠CBE,由AAS证明△AOD≌△CBE,得出OD=BE=1,即可得出结果.【解答】解:当B在x轴上时,对角线OB长的最小,如图所示:直线x=1与x轴交于点D,直线x=4与x轴交于点E,根据题意得:∠ADO=∠CEB=90°,OD=1,OE=4,∵四边形ABCD是平行四边形,∴OA∥BC,OA=BC,∴∠AOD=∠CBE,在△AOD和△CBE中,,∴△AOD≌△CBE(AAS),∴OD=BE=1,∴OB=OE+BE=5;故答案为:5.18.(2016·江苏无锡)如图,△AOB中,∠O=90°,AO=8cm,BO=6cm,点C从A点出发,在边AO上以2cm/s的速度向O点运动,与此同时,点D从点B出发,在边BO上以1.5cm/s的速度向O点运动,过OC的中点E作CD的垂线EF,则当点C运动了s时,以C点为圆心,1.5cm为半径的圆与直线EF相切.【考点】直线与圆的位置关系.【分析】当以点C为圆心,1.5cm为半径的圆与直线EF相切时,即CF=1.5cm,又因为∠EFC=∠O=90°,所以△EFC∽△DCO,利用对应边的比相等即可求出EF的长度,再利用勾股定理列出方程即可求出t的值,要注意t的取值范围为0≤t≤4.【解答】解:当以点C 为圆心,1.5cm 为半径的圆与直线EF 相切时,此时,CF=1.5,∵AC=2t ,BD=t ,∴OC=8﹣2t ,OD=6﹣t ,∵点E 是OC 的中点,∴CE=OC=4﹣t ,∵∠EFC=∠O=90°,∠FCE=∠DCO∴△EFC ∽△DCO∴=∴EF===由勾股定理可知:CE 2=CF 2+EF 2,∴(4﹣t )2=+,解得:t=或t=, ∵0≤t ≤4,∴t=.故答案为:三、解答题:本大题共10小题,共84分19.(2016·江苏无锡)(1)|﹣5|﹣(﹣3)2﹣()0(2)(a ﹣b )2﹣a (a ﹣2b )【考点】单项式乘多项式;完全平方公式;零指数幂.【分析】(1)原式利用绝对值的代数意义,乘方的意义,以及零指数幂法则计算即可得到结果;(2)原式利用完全平方公式,单项式乘以多项式法则计算,去括号合并即可得到结果.【解答】解:(1)原式=5﹣9﹣1=﹣5;(2)a 2﹣2ab+b 2﹣a 2+2ab=b 2.20.(2016·江苏无锡)(1)解不等式:2x ﹣3≤(x+2)(2)解方程组:.【考点】解一元一次不等式;解二元一次方程组.【分析】(1)根据解一元一次不等式的步骤,去分母、移项、合并同类项、系数化为1,即可得出结果;(2)用加减法消去未知数y求出x的值,再代入求出y的值即可.【解答】解:(1)2x﹣3≤(x+2)去分母得:4x﹣6≤x+2,移项,合并同类项得:3x≤8,系数化为1得:x≤;(2).由①得:2x+y=3③,③×2﹣②得:x=4,把x=4代入③得:y=﹣5,故原方程组的解为.21.(2016·江苏无锡)已知,如图,正方形ABCD中,E为BC边上一点,F为BA延长线上一点,且CE=AF.连接DE、DF.求证:DE=DF.【考点】正方形的性质;全等三角形的判定与性质.【分析】根据正方形的性质可得AD=CD,∠C=∠DAF=90°,然后利用“边角边”证明△DCE 和△DAF全等,再根据全等三角形对应边相等证明即可.【解答】证明:∵四边形ABCD是正方形,∴AD=CD,∠DAB=∠C=90°,∴∠FAD=180°﹣∠DAB=90°.在△DCE和△DAF中,,∴△DCE≌△DAF(SAS),∴DE=DF.22.(2016·江苏无锡)如图,OA=2,以点A为圆心,1为半径画⊙A与OA的延长线交于点C,过点A画OA的垂线,垂线与⊙A的一个交点为B,连接BC(1)线段BC的长等于;(2)请在图中按下列要求逐一操作,并回答问题:①以点A为圆心,以线段BC的长为半径画弧,与射线BA交于点D,使线段OD的长等于②连OD,在OD上画出点P,使OP得长等于,请写出画法,并说明理由.【考点】作图—复杂作图.【分析】(1)由圆的半径为1,可得出AB=AC=1,结合勾股定理即可得出结论;(2)①结合勾股定理求出AD的长度,从而找出点D的位置,根据画图的步骤,完成图形即可;②根据线段的三等分点的画法,结合OA=2AC,即可得出结论.【解答】解:(1)在Rt△BAC中,AB=AC=1,∠BAC=90°,∴BC==.故答案为:.(2)①在Rt△OAD中,OA=2,OD=,∠OAD=90°,∴AD===BC.∴以点A为圆心,以线段BC的长为半径画弧,与射线BA交于点D,使线段OD的长等于.依此画出图形,如图1所示.故答案为:A;BC.②∵OD=,OP=,OC=OA+AC=3,OA=2,∴.故作法如下:连接CD,过点A作AP∥CD交OD于点P,P点即是所要找的点.依此画出图形,如图2所示.23.(2016·江苏无锡)某校为了解全校学生上学期参加社区活动的情况,学校随机调查了本校50名学生参加社区活动的次数,并将调查所得的数据整理如下:(1)表中a=12,b=0.08;(2)请把频数分布直方图补充完整(画图后请标注相应的数据);(3)若该校共有1200名学生,请估计该校在上学期参加社区活动超过6次的学生有多少人?【考点】频数(率)分布直方图;用样本估计总体;频数(率)分布表.【分析】(1)直接利用已知表格中3<x≤6范围的频率求出频数a即可,再求出m的值,即可得出b的值;(2)利用(1)中所求补全条形统计图即可;(3)直接利用参加社区活动超过6次的学生所占频率乘以总人数进而求出答案.【解答】解:(1)由题意可得:a=50×0.24=12(人),∵m=50﹣10﹣12﹣16﹣6﹣2=4,∴b==0.08;故答案为:12,0.08;(2)如图所示:;(3)由题意可得,该校在上学期参加社区活动超过6次的学生有:1200×(1﹣0.20﹣0.24)=648(人),答:该校在上学期参加社区活动超过6次的学生有648人.24.(2016·江苏无锡)甲、乙两队进行打乒乓球团体赛,比赛规则规定:两队之间进行3局比赛,3局比赛必须全部打完,只要赢满2局的队为获胜队,假如甲、乙两队之间每局比赛输赢的机会相同,且甲队已经赢得了第1局比赛,那么甲队最终获胜的概率是多少?(请用“画树状图”或“列表”等方法写出分析过程)【考点】列表法与树状图法.【分析】根据甲队第1局胜画出第2局和第3局的树状图,然后根据概率公式列式计算即可得解.【解答】解:根据题意画出树状图如下:一共有4种情况,确保两局胜的有4种,所以,P=.25.(2016·江苏无锡)某公司今年如果用原线下销售方式销售一产品,每月的销售额可达100万元.由于该产品供不应求,公司计划于3月份开始全部改为线上销售,这样,预计今年每月的销售额y(万元)与月份x(月)之间的函数关系的图象如图1中的点状图所示(5月及以后每月的销售额都相同),而经销成本p(万元)与销售额y(万元)之间函数关系的图象图2中线段AB所示.(1)求经销成本p(万元)与销售额y(万元)之间的函数关系式;(2)分别求该公司3月,4月的利润;(3)问:把3月作为第一个月开始往后算,最早到第几个月止,该公司改用线上销售后所获得利润总额比同期用线下方式销售所能获得的利润总额至少多出200万元?(利润=销售额﹣经销成本)【考点】一次函数的应用.【分析】(1)设p=kx+b,,代入即可解决问题.(2)根据利润=销售额﹣经销成本,即可解决问题.(3)设最早到第x个月止,该公司改用线上销售后所获得利润总额比同期用线下方式销售所能获得的利润总额至少多出200万元,列出不等式即可解决问题.【解答】解:(1)设p=kx+b,,代入得解得,∴p=x+10,.(2)∵x=150时,p=85,∴三月份利润为150﹣85=65万元.∵x=175时,p=97.5,∴四月份的利润为175﹣97.5=77.5万元.(3)设最早到第x个月止,该公司改用线上销售后所获得利润总额比同期用线下方式销售所能获得的利润总额至少多出200万元∵5月份以后的每月利润为90万元,∴65+77.5+90(x﹣2)﹣40x≥200,∴x≥4.75,∴最早到第5个月止,该公司改用线上销售后所获得利润总额比同期用线下方式销售所能获得的利润总额至少多出200万元26.(2016·江苏无锡)已知二次函数y=ax2﹣2ax+c(a>0)的图象与x轴的负半轴和正半轴分别交于A、B两点,与y轴交于点C,它的顶点为P,直线CP与过点B且垂直于x轴的直线交于点D,且CP:PD=2:3(1)求A、B两点的坐标;(2)若tan∠PDB=,求这个二次函数的关系式.【考点】抛物线与x轴的交点;二次函数的性质;待定系数法求二次函数解析式.【分析】(1)由二次函数的解析式可求出对称轴为x=1,过点P作PE⊥x轴于点E,所以OE:EB=CP:PD;(2)过点C作CF⊥BD于点F,交PE于点G,构造直角三角形CDF,利用tan∠PDB=即可求出FD,由于△CPG∽△CDF,所以可求出PG的长度,进而求出a的值,最后将A(或B)的坐标代入解析式即可求出c的值.【解答】解:(1)过点P作PE⊥x轴于点E,∵y=ax2﹣2ax+c,∴该二次函数的对称轴为:x=1,∴OE=1∵OC∥BD,∴CP:PD=OE:EB,∴OE:EB=2:3,∴EB=,∴OB=OE+EB=,∴B(,0)∵A与B关于直线x=1对称,∴A(﹣,0);(2)过点C作CF⊥BD于点F,交PE于点G,令x=1代入y=ax2﹣2ax+c,∴y=c﹣a,令x=0代入y=ax2﹣2ax+c,∴y=c∴PG=a,∵CF=OB=,∴tan∠PDB=,∴FD=2,∵PG∥BD∴△CPG∽△CDF,∴==∴PG=,∴a=,∴y=x2﹣x+c,把A(﹣,0)代入y=x2﹣x+c,∴解得:c=﹣1,∴该二次函数解析式为:y=x2﹣x﹣1.27.(2016·江苏无锡)如图,已知▱ABCD的三个顶点A(n,0)、B(m,0)、D(0,2n)(m>n>0),作▱ABCD关于直线AD的对称图形AB1C1D(1)若m=3,试求四边形CC1B1B面积S的最大值;(2)若点B1恰好落在y轴上,试求的值.【考点】坐标与图形性质;勾股定理;相似三角形的判定与性质.【分析】(1)如图1,易证S▱BCEF=S▱BCDA=S▱B1C1DA=S▱B1C1EF,从而可得S▱BCC1B1=2S▱BCDA=﹣4(n﹣)2+9,根据二次函数的最值性就可解决问题;(2)如图2,易证△AOD∽△B1OB,根据相似三角形的性质可得OB1=,然后在Rt△AOB1中运用勾股定理就可解决问题.【解答】解:(1)如图1,∵▱ABCD与四边形AB1C1D关于直线AD对称,∴四边形AB1C1D是平行四边形,CC1⊥EF,BB1⊥EF,∴BC∥AD∥B1C1,CC1∥BB1,∴四边形BCEF、B1C1EF是平行四边形,∴S▱BCEF=S▱BCDA=S▱B1C1DA=S▱B1C1EF,∴S▱BCC1B1=2S▱BCDA.∵A(n,0)、B(m,0)、D(0,2n)、m=3,∴AB=m﹣n=3﹣n,OD=2n,∴S▱BCDA=AB•OD=(3﹣n)•2n=﹣2(n2﹣3n)=﹣2(n﹣)2+,∴S▱BCC1B1=2S▱BCDA=﹣4(n﹣)2+9.∵﹣4<0,∴当n=时,S▱BCC1B1最大值为9;(2)当点B1恰好落在y轴上,如图2,∵DF⊥BB1,DB1⊥OB,∴∠B1DF+∠DB1F=90°,∠B1BO+∠OB1B=90°,∴∠B1DF=∠OBB1.∵∠DOA=∠BOB1=90°,∴△AOD∽△B1OB,∴=,∴=,∴OB1=.由轴对称的性质可得AB1=AB=m﹣n.在Rt△AOB1中,n2+()2=(m﹣n)2,整理得3m2﹣8mn=0.∵m>0,∴3m﹣8n=0,∴=.28.(2016·江苏无锡)如图1是一个用铁丝围成的篮框,我们来仿制一个类似的柱体形篮框.如图2,它是由一个半径为r、圆心角90°的扇形A2OB2,矩形A2C2EO、B2D2EO,及若干个缺一边的矩形状框A1C1D1B1、A2C2D2B2、…、A n B n C n D n,OEFG围成,其中A1、G、B1在上,A2、A3…、A n与B2、B3、…B n分别在半径OA2和OB2上,C2、C3、…、C n和D2、D3…D n分别在EC2和ED2上,EF⊥C2D2于H2,C1D1⊥EF于H1,FH1=H1H2=d,C1D1、C2D2、C3D3、C n D n依次等距离平行排放(最后一个矩形状框的边C n D n与点E间的距离应不超过d),A1C1∥A2C2∥A3C3∥…∥A n C n(1)求d的值;(2)问:C n D n与点E间的距离能否等于d?如果能,求出这样的n的值,如果不能,那么它们之间的距离是多少?【考点】垂径定理.【分析】(1)根据d=FH2,求出EH2即可解决问题.(2)假设C n D n与点E间的距离能等于d,列出关于n的方程求解,发现n没有整数解,由r÷r=2+2≈4.8,求出n即可解决问题.【解答】解:(1)在RT△D2EC2中,∵∠D2EC2=90°,EC2=ED2=r,EF⊥C2D2,∴EH1=r,FH1=r﹣r,∴d=(r﹣r)=r,(2)假设C n D n与点E间的距离能等于d,由题意•r=r,这个方程n没有整数解,所以假设不成立.∵r÷r=2+2≈4.8,∴n=6,此时C n D n与点E间的距离=r﹣4×r=r.2016年广西南宁市中考数学试卷参考答案与试题解析一、选择题(本大题共12小题,每小题3分,共36分)1.(2016·广西南宁)﹣2的相反数是()A.﹣2 B.0 C.2 D.4【考点】相反数.【分析】根据只有符号不同的两个数叫做互为相反数解答.【解答】解:﹣2的相反数是2.故选C.【点评】本题考查了相反数的定义,是基础题,熟记概念是解题的关键.2.(2016·广西南宁)把一个正六棱柱如图1摆放,光线由上向下照射此正六棱柱时的正投影是()A.B.C.D.【考点】平行投影.【分析】根据平行投影特点以及图中正六棱柱的摆放位置即可求解.【解答】解:把一个正六棱柱如图摆放,光线由上向下照射此正六棱柱时的正投影是正六边形.故选A.【点评】本题考查了平行投影特点,不同位置,不同时间,影子的大小、形状可能不同,具体形状应按照物体的外形即光线情况而定.3.(2016·广西南宁)据《南国早报》报道:2016年广西高考报名人数约为332000人,创历史新高,其中数据332000用科学记数法表示为()A.0.332×106B.3.32×105C.3.32×104D.33.2×104【考点】科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:将332000用科学记数法表示为:3.32×105.故选:B.【点评】此题考查了科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.4.(2016·广西南宁)已知正比例函数y=3x的图象经过点(1,m),则m的值为()A.B.3 C.﹣D.﹣3【考点】一次函数图象上点的坐标特征.【分析】本题较为简单,把坐标代入解析式即可求出m的值.【解答】解:把点(1,m)代入y=3x,可得:m=3,故选B【点评】此题考查一次函数的问题,利用待定系数法直接代入求出未知系数m,比较简单.5.(2016·广西南宁)某校规定学生的学期数学成绩满分为100分,其中研究性学习成绩占40%,期末卷面成绩占60%,小明的两项成绩(百分制)依次是80分,90分,则小明这学期的数学成绩是()A.80分B.82分C.84分D.86分【考点】加权平均数.【分析】利用加权平均数的公式直接计算即可得出答案.【解答】解:由加权平均数的公式可知===86,故选D.【点评】本题主要考查加权平均数的计算,掌握加权平均数的公式=是解题的关键.6.(2016·广西南宁)如图,厂房屋顶人字形(等腰三角形)钢架的跨度BC=10米,∠B=36°,则中柱AD(D为底边中点)的长是()A.5sin36°米B.5cos36°米C.5tan36°米D.10tan36°米【考点】解直角三角形的应用.【分析】根据等腰三角形的性质得到DC=BD=5米,在Rt△ABD中,利用∠B的正切进行计算即可得到AD的长度.【解答】解:∵AB=AC,AD⊥BC,BC=10米,∴DC=BD=5米,在Rt△ADC中,∠B=36°,∴tan36°=,即AD=BD•tan36°=5tan36°(米).故选:C.【点评】本题考查了解直角三角形的应用.解决此问题的关键在于正确理解题意的基础上建立数学模型,把实际问题转化为数学问题.7.(2016·广西南宁)下列运算正确的是()A.a2﹣a=a B.ax+ay=axy C.m2•m4=m6D.(y3)2=y5【考点】幂的乘方与积的乘方;合并同类项;同底数幂的乘法.【分析】结合选项分别进行幂的乘方与积的乘方、合并同类项、同底数幂的乘法等运算,然后选择正确答案.【解答】解:A、a2和a不是同类项,不能合并,故本选项错误;B、ax和ay不是同类项,不能合并,故本选项错误;C、m2•m4=m6,计算正确,故本选项正确;D、(y3)2=y6≠y5,故本选项错误.故选C.【点评】本题考查了幂的乘方与积的乘方、合并同类项、同底数幂的乘法的知识,解答本题的关键在于掌握各知识点的运算法则.8.(2016·广西南宁)下列各曲线中表示y是x的函数的是()A.B.C.D.【考点】函数的概念.【分析】根据函数的意义求解即可求出答案.【解答】解:根据函数的意义可知:对于自变量x的任何值,y都有唯一的值与之相对应,故D正确.故选D.【点评】主要考查了函数的定义.注意函数的意义反映在图象上简单的判断方法是:做垂直x轴的直线在左右平移的过程中与函数图象只会有一个交点.9.(2016·广西南宁)如图,点A,B,C,P在⊙O上,CD⊥OA,CE⊥OB,垂足分别为D,E,∠DCE=40°,则∠P的度数为()A.140° B.70° C.60° D.40°【考点】圆周角定理.【分析】先根据四边形内角和定理求出∠DOE的度数,再由圆周角定理即可得出结论.【解答】解:∵CD⊥OA,CE⊥OB,垂足分别为D,E,∠DCE=40°,∴∠DOE=180°﹣40°=140°,∴∠P=∠DOE=70°.故选B.【点评】本题考查的是圆周角定理,熟知在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半是解答此题的关键.10.(2016·广西南宁)超市店庆促销,某种书包原价每个x元,第一次降价打“八折”,第二次降价每个又减10元,经两次降价后售价为90元,则得到方程()A.0.8x﹣10=90 B.0.08x﹣10=90 C.90﹣0.8x=10 D.x﹣0.8x﹣10=90【考点】由实际问题抽象出一元一次方程.【分析】设某种书包原价每个x元,根据题意列出方程解答即可.【解答】解:设某种书包原价每个x元,可得:0.8x﹣10=90,故选A【点评】本题考查一元一次方程,解题的关键是明确题意,能列出每次降价后的售价.11.(2016·广西南宁)有3个正方形如图所示放置,阴影部分的面积依次记为S1,S2,则S1:S2等于()A.1:B.1:2 C.2:3 D.4:9【考点】正方形的性质.【分析】设小正方形的边长为x,再根据相似的性质求出S1、S2与正方形面积的关系,然后进行计算即可得出答案.【解答】解:设小正方形的边长为x,根据图形可得:∵=,∴=,∴=,∴S1=S,正方形ABCD∴S1=x2,∵=,∴=,∴S2=S,正方形ABCD∴S2=x2,∴S1:S2=x2:x2=4:9;故选D.【点评】此题考查了正方形的性质,用到的知识点是正方形的性质、相似三角形的性质、正方形的面积公式,关键是根据题意求出S1、S2与正方形面积的关系.12.(2016·广西南宁)二次函数y=ax2+bx+c(a≠0)和正比例函数y=x的图象如图所示,则方程ax2+(b﹣)x+c=0(a≠0)的两根之和()A.大于0 B.等于0 C.小于0 D.不能确定【考点】抛物线与x轴的交点.【分析】设ax2+bx+c=0(a≠0)的两根为x1,x2,由二次函数的图象可知x1+x2>0,a>0,设方程ax2+(b﹣)x+c=0(a≠0)的两根为a,b再根据根与系数的关系即可得出结论.【解答】解:设ax2+bx+c=0(a≠0)的两根为x1,x2,∵由二次函数的图象可知x1+x2>0,a>0,∴﹣>0.设方程ax2+(b﹣)x+c=0(a≠0)的两根为a,b,则a+b=﹣=﹣+,∵a>0,∴>0,∴a+b>0.故选C.【点评】本题考查的是抛物线与x轴的交点,熟知抛物线与x轴的交点与一元二次方程根的关系是解答此题的关键.二、填空题(本大题共6小题,每小题3分,共18分)13.(2016·广西南宁)若二次根式有意义,则x的取值范围是x≥1.【考点】二次根式有意义的条件.【分析】根据二次根式的性质可知,被开方数大于等于0,列出不等式即可求出x的取值范围.【解答】解:根据二次根式有意义的条件,x﹣1≥0,∴x≥1.故答案为:x≥1.【点评】此题考查了二次根式有意义的条件,只要保证被开方数为非负数即可.14.(2016·广西南宁)如图,平行线AB,CD被直线AE所截,∠1=50°,则∠A=50°.【考点】平行线的性质.【分析】根据两直线平行,同位角相等可得∠1=∠A.【解答】解:∵AB∥CD,∴∠A=∠1,∵∠1=50°,∴∠A=50°,故答案为50°.【点评】本题主要考查了平行线的性质,解题的关键是掌握两直线平行,同位角相等.15.(2016·广西南宁)分解因式:a2﹣9=(a+3)(a﹣3).【考点】因式分解-运用公式法.【分析】直接利用平方差公式分解因式进而得出答案.【解答】解:a2﹣9=(a+3)(a﹣3).故答案为:(a+3)(a﹣3).【点评】此题主要考查了公式法分解因式,熟练应用平方差公式是解题关键.16.(2016·广西南宁)如图,在4×4正方形网格中,有3个小正方形已经涂黑,若再涂黑任意一个白色的小正方形如图所示,反比例函数y=(k≠0,x>0)的图象经过矩形OABC 的对角线AC的中点D.若矩形OABC的面积为8,则k的值为2.【考点】反比例函数系数k的几何意义.【分析】过D作DE⊥OA于E,设D(m,),于是得到OA=2m,OC=,根据矩形的面积列方程即可得到结论.【解答】解:过D作DE⊥OA于E,设D(m,),∴OE=m.DE=,∵点D是矩形OABC的对角线AC的中点,∴OA=2m,OC=,∵矩形OABC的面积为8,∴OA•OC=2m•=8,∴k=2,故答案为:2.【点评】本题考查了反比例函数系数k的几何意义,矩形的性质,根据矩形的面积列出方程是解题的关键.18.(2016·广西南宁)观察下列等式:在上述数字宝塔中,从上往下数,2016在第44层.【考点】规律型:数字的变化类.【分析】先按图示规律计算出每一层的第一个数和最后一个数;发现第一个数分别是每一层层数的平方,那么只要知道2016介于哪两个数的平方即可,通过计算可知:442<2016<452,则2016在第44层.【解答】解:第一层:第一个数为12=1,最后一个数为22﹣1=3,第二层:第一个数为22=4,最后一个数为23﹣1=8,第三层:第一个数为32=9,最后一个数为24﹣1=15,∵442=1936,452=2025,又∵1936<2016<2025,∴在上述数字宝塔中,从上往下数,2016在第44层,故答案为:44【点评】本题考查了数学变化类的规律题,这类题的解题思路是:①从第一个数起,认真观察、仔细思考,能不能用平方或奇偶或加、减、乘、除等规律来表示;②利用方程来解决问题,先设一个未知数,找到符合条件的方程即可;本题以每一行的第一个数为突破口,找出其规律,得出结论.三、解答题(本大题共8小题,共66分)19.(2016·广西南宁)计算:|﹣2|+4cos30°﹣()﹣3+.【考点】实数的运算;负整数指数幂;特殊角的三角函数值.【分析】直接利用绝对值的性质以及特殊角的三角函数值、负整数指数幂的性质、二次根式的性质化简,进而求出答案.【解答】解:原式=2+4×﹣8+2=4﹣6.【点评】此题主要考查了实数运算,正确利用负整数指数幂的性质化简是解题关键.20.(2016·广西南宁)解不等式组,并把解集在数轴上表示出来.【考点】解一元一次不等式组;在数轴上表示不等式的解集.【分析】首先解每个不等式,两个不等式的解集的公共部分就是不等式组的解集.【解答】解:,解①得x≤1,解②得x>﹣3,。
江苏省无锡市梁溪区2016届中考一模数学试题解析(解析版)

一、选择题(本大题共10小题,每题3分,共计30分.在每小题所给出的四个选项中,恰有一项是符合题目要求的,请用2B铅笔把答题卷上相应的答案涂黑.)1.﹣3的绝对值是()A.3 B.﹣3 C.13D.13【答案】A【解析】2. 计算(﹣xy3)2的结果是()A.x2y6B.﹣x2y6C.x2y9D.﹣x2y9【答案】A【解析】试题分析:(﹣xy3)2=(﹣x)2•(y3)2=x2y6,即计算(﹣xy3)2的结果是x2y6.故选:A.考点:幂的乘方与积的乘方.3. 如图,BC⊥AE于点C,CD∥AB,∠B=40°,则∠ECD的度数是()A.70° B.60° C.50° D.40°【答案】C【解析】试题分析:∵BC⊥AE,∴∠ACB=90°,在Rt△ABC中,∠B=40°,∴∠A=90°﹣∠B=50°,∵CD∥AB,∴∠ECD=∠A=50°,故选C.考点:平行线的性质;垂线.4. 有6个相同的立方体搭成的几何体如图所示,则它的主视图是()【答案】C【解析】5. 下列调查中,适宜采用普查方式的是()A.了解一批圆珠笔的寿命B.了解全国九年级学生身高的现状C.考察人们保护海洋的意识D.检查一枚用于发射卫星的运载火箭的各零部件【答案】D【解析】试题分析:A、了解一批圆珠笔芯的使用寿命,由于具有破坏性,应当使用抽样调查,故本选项错误;B、了解全国九年级学生身高的现状,人数多,耗时长,应当采用抽样调查的方式,故本选项错误;C、考察人们保护海洋的意识,人数多,耗时长,应当采用抽样调查的方式,故本选项错误;D、检查一枚用于发射卫星的运载火箭的各零部件,事关重大,应用普查方式,故本选项正确;考点:全面调查与抽样调查.6. 若12xy=⎧⎨=⎩是关于x、y的二元一次方程ax﹣3y=1的解,则a的值为()A.﹣5 B.﹣1 C.2 D.7 【答案】D【解析】试题分析:把12xy=⎧⎨=⎩代入ax﹣3y=1中,∴a﹣3×2=1,a=1+6=7,故选:D,考点:二元一次方程的解.7. 直线y=2x+2沿y轴向下平移6个单位后与y轴的交点坐标是()A.(0,2)B.(0,8)C.(0,4)D.(0,﹣4)【答案】D【解析】试题分析:直线y=2x+2沿y轴向下平移6个单位后解析式为y=2x+2﹣6=2x﹣4,当x=0时,y=﹣4,因此与y轴的交点坐标是(0,﹣4),故选:D考点:一次函数图象与几何变换.8. 如图,已知菱形ABCD的对角线AC、BD的长分别为6cm、8cm,AE⊥BC于点E,则AE的长是()cmA.B.C.485D.245【答案】D试题分析:∵四边形ABCD 是菱形, ∴CO=12AC=3cm ,BO=12BD=4cm ,AO⊥BO,5=cm ,∴S 菱形ABCD =12×6×8=24cm 2, ∵S 菱形ABCD =BC×AE,∴BC×AE=24, ∴AE=245cm , 故选D .考点:菱形的性质;勾股定理.9. 如图,在矩形ABCD 中,AB=4,AD=5,AD ,AB ,BC 分别与⊙O 相切于E ,F ,G 三点,过点D 作⊙O 的切线BC 于点M ,切点为N ,则DM 的长为( )A .133B .92CD .【答案】A【解析】试题分析:连接OE ,OF ,ON ,OG ,在矩形ABCD 中,∵∠A=∠B=90°,CD=AB=4,∵AD,AB ,BC 分别与⊙O 相切于E ,F ,G 三点,∴∠AEO=∠AFO=∠OFB=∠BGO=90°,∴四边形AFOE ,FBGO 是正方形,∴AF=BF=AE=BG=2,∴DE=3,∵DM是⊙O的切线,∴DN=DE=3,MN=MG,∴CM=5﹣2﹣MN=3﹣MN,在R t△DMC中,DM2=CD2+CM2,∴(3+NM)2=(3﹣NM)2+42,∴NM=43,∴DM=3+43=133,故选A.考点:切线的性质;矩形的性质.10. 如图,在Rt△ABC中,∠ACB=90°,点D是AB边的中点,过D作DE⊥BC于点E,点P是边BC上的一个动点,AP与CD相交于点Q.当AP+PD的值最小时,AQ与PQ之间的数量关系是()A.AQ=52PQ B.AQ=3PQ C.AQ=83PQ D.AQ=4PQ【答案】B【解析】试题分析:如图,作点A关于BC的对称点A′,连接A′D交BC于点P,此时PA+PD最小.作DM∥BC交AC 于M,交PA于N.∵∠ACB=∠DEB=90°,∴DE∥AC,∵AD=DB,∴CE=EB,∴DE=12AC=12CA′, ∵DE∥CA′, ∴EP DE PC CA =′=12, ∵DM∥BC,AD=DB ,∴AM=MC,AN=NP ,∴DM=12BC=CE=EB ,MN=12PC , ∴MN=PE,ND=PC ,在△DNQ 和△CPQ 中,NDQ QCP NQD PQC DN PC ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△DNQ≌△CPQ,∴NQ=PQ,∵AN=NP,∴AQ=3PQ.故选B .考点:轴对称-最短路线问题.二、填空题(本大题共8小题,每题2分,共计16分.请把答案直接填写在答题卷相应位置上.)11.函数y =中,自变量x 的取值范围是 .【答案】x≥﹣2.【解析】试题分析:根据题意得:x+2≥0,解得x≥﹣2.故答案为:x≥﹣2.考点:函数自变量的取值范围.12. 分解因式:ab3﹣4ab= .【答案】ab(b+2)(b﹣2).【解析】试题分析:ab3﹣4ab,=ab(b2﹣4),=ab(b+2)(b﹣2).故答案为:ab(b+2)(b﹣2).考点:提公因式法与公式法的综合运用.13. 2016年我国大学毕业生将达到7650000人,该数据用科学记数法可表示为.【答案】7.65×106.【解析】试题分析:将7650000用科学记数法表示为:7.65×106.故答案为:7.65×106.考点:科学记数法—表示较大的数.14. 一个扇形的圆心角为60°半径为6cm,则这个扇形的弧长为cm.(结果保留π)【答案】2π.【解析】试题分析:弧长是606180π⨯=2πcm.故答案为:2π.考点:圆锥的计算.15. 已知反比例函数的图象经过点(m,4)和点(8,﹣2),则m的值为.【答案】﹣4.【解析】试题分析:根据反比例函数图象上点的坐标特征得到4×m=8×(﹣2),解得m=﹣4.故答案为﹣4.考点:反比例函数图象上点的坐标特征.16. 如图,△ABC中,D为BC上一点,∠BAD=∠C,AB=6,BD=4,则CD的长为.【答案】5【解析】试题分析:∵∠BAD=∠C,∠B=∠B,∴△BAD∽△BCA,∴BA BD BC BA=.∵AB=6,BD=4,∴646 BC=,∴BC=9,∴CD=BC﹣BD=9﹣4=5.故答案为5.考点:相似三角形的判定与性质.17. 如图,C、D是线段AB上两点,且AC=BD=16AB=1,点P是线段CD上一个动点,在AB同侧分别作等边△PAE和等边△P BF,M为线段EF的中点.在点P从点C移动到点D时,点M运动的路径长度为.【答案】2【解析】试题分析:如图,分别延长AE、BF交于点H,∵∠A=∠FPB=60°,∴AH∥PF,∵∠B=∠EPA=60°,∴BH∥PE,∴四边形EPFH为平行四边形,∴EF与HP互相平分.∵M为EF的中点,∴M正好为PH中点,即在P的运动过程中,M始终为PH的中点,所以M的运行轨迹为三角形HCD的中位线GN.∵CD=6﹣1﹣1=4,∴GN=12CD=2,即M的移动路径长为2.故答案为:2.考点:平行四边形的性质与判定;三角形的中位线18. 如图坐标系中,O(0,0),A(6,),B(12,0),将△OAB沿直线线CD折叠,使点A恰好落在线段OB上的点E处,若OE=245,则CE:DE的值是.【答案】7 8【解析】试题分析:过A作AF⊥OB于F,∵A(6,,B(12,0),,OF=6,OB=12,∴BF=6,∴OF=BF,∴AO=AB,,∴∠AOB=60°,∴△AOB是等边三角形,∴∠AOB=∠ABO=60°,∵将△OAB沿直线线CD折叠,使点A恰好落在线段OB上的点E处,∴∠CED=∠OAB=60°,∴∠OCE=∠DEB,∴△CEO∽△DBE,∴OE CE CD BD ED EB==,设CE=a,则CA=a,CO=12﹣a,ED=b,则AD=b,OB=12﹣b,245 12a b b =-,∴24b=60a﹣5ab ①,12 24 5b ab-=,∴36a=60b﹣5ab ②,②﹣①得:36a﹣24b=60b﹣60a,∴78ab=,即CE:DE=78.故答案为:78.考点:翻折变换(折叠问题);坐标与图形性质.三、解答题(本大题共10小题,共计84分.解答需写出必要的文字说明或演算步骤.)19. (1(3)⨯-;(2)化简:211 1aa a-⎛⎫+÷⎪⎝⎭.【答案】(1)﹣4;(2)11 a-【解析】试题分析:(1)根据算术平方根的概念、绝对值的性质以及有理数的乘法法则计算即可;(2)根据分式的通分和约分法则计算.试题解析:(1(3)⨯-=4﹣2﹣6=﹣4;(2)211111(1)(1)1a a aa a a a a a-+⎛⎫+÷=⋅=⎪+--⎝⎭.考点:分式的混合运算;实数的运算.20. (1)解方程:36122xx x+=--;(2)解不等式组:12131 2x xx->⎧⎪⎨+≤-⎪⎩.【答案】(1)x=2;(2)x≤﹣8.【解析】试题分析:(1)分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解;(2)分别求出不等式组中两不等式的解集,找出解集的公共部分即可.试题解析:(1)去分母,x﹣2+3x=6,解得:x=2,经检验:x=2是原方程的增根, ∴原方程无解;(2)121312x x x ->⎧⎪⎨+≤-⎪⎩①②,由①得,x <﹣1, 由②得,x≤﹣8,∴原不等式组的解集是x≤﹣8.考点:解分式方程;解一元一次不等式组.21. 如图,在▱ABCD 中,点E ,F 在AC 上,且∠ABE=∠CDF,求证:BE=DF .【答案】BE=DF . 【解析】试题分析:根据平行四边形的性质,证明AB=CD ,AB∥CD,进而证明∠BAC=∠CDF,根据ASA 即可证明△ABE≌△CDF,根据全等三角形的对应边相等即可证明. 试题解析:∵四边形ABCD 是平行四边形, ∴AB=CD,AB∥CD, ∴∠BAC=∠DCF , ∴△ABE 和△CDF 中,ABE CDFAB CDBAC DCF ∠=∠⎧⎪=⎨⎪∠=∠⎩, ∴△ABE≌△CDF, ∴BE=DF.考点:全等三角形的判定与性质;平行四边形的性质.22. 一个不透明的口袋中装有2个红球(记为红球1、红球2),1个白球、1个黑球,这些球除颜色外都相同,将球搅匀.(1)从中任意摸出1个球,恰好摸到红球的概率是(2)先从中任意摸出一个球,再从余下的3个球中任意摸出1个球,请用列举法(画树状图或列表),求两次都摸到红球的概率.【答案】(1)12;(2)两次都摸到红球的概率是16.【解析】试题分析:(1)根据4个小球中红球的个数,即可确定出从中任意摸出1个球,恰好摸到红球的概率;(2)列表得出所有等可能的情况数,找出两次都摸到红球的情况数,即可求出所求的概率.试题解析:(1)4个小球中有2个红球,则任意摸出1个球,恰好摸到红球的概率是12;故答案为:12;(2)列表如下:所有等可能的情况有12种,其中两次都摸到红球有2种可能,则P(两次摸到红球)=21 126.考点:列表法与树状图法;概率公式.23. 图1、图2是两张形状、大小完全相同的方格纸,方格纸中的每个小正方形的边长均为1,每个小正方形的顶点叫做格点.(1)在图1中画出等腰直角三角形MON,使点N在格点上,且∠MON=90°;(2)在图2中以格点为顶点画一个正方形ABCD,使正方形ABCD面积等于(1)中等腰直角三角形MON面积的4倍,并将正方形ABCD分割成以格点为顶点的四个全等的直角三角形和一个正方形,且正方形ABCD面积没有剩余(画出一种即可).【答案】见解析【解析】试题分析:(1)过点O向线段OM作垂线,此直线与格点的交点为N,连接MN即可;(2)根据勾股定理画出图形即可.试题解析:(1)如图1所示;(2)如图2、3所示;考点:作图—应用与设计作图.24. 某厂生产A,B两种产品,其单价随市场变化而做相应调整.营销人员根据前三次单价变化的情况,绘制了如表统计表及不完整的折线图.A,B产品单价变化统计表并求得了A 产品三次单价的平均数和方差:A x =5.9,s A 2=13 [(6﹣5.9)2+(5.2﹣5.9)2+(6.5﹣5.9)2]=43150(1)补全如图中B 产品单价变化的折线图.B 产品第三次的单价比上一次的单价降低了 %(2)求B 产品三次单价的方差,并比较哪种产品的单价波动小;(3)该厂决定第四次调价,A 产品的单价仍为6.5元/件,B 产品的单价比3元/件上调m%(m >0),使得A 产品这四次单价的中位数是B 产品四次单价中位数的2倍少1,求m 的值.【答案】(1)25;(2)B 产品的单价波动小;(3)m=25. 【解析】试题分析:(1)根据题目提供数据补充折线统计图即可; (2)分别计算平均数及方差即可;(3)首先确定这四次单价的中位数,然后确定第四次调价的范围,根据“A 产品这四次单价的中位数是B 产品四次单价中位数的2倍少1”列式求m 即可. 试题解析:(1)如图2所示:B 产品第三次的单价比上一次的单价降低了434=25%,(2)B x =13(3.5+4+3)=3.5, 2222(3.5 3.5)(4 3.5)(3 3.5)136BS -+-+-==,∵B 产品的方差小, ∴B 产品的单价波动小;(3)第四次调价后,对于A 产品,这四次单价的中位数为6 6.52524+=; 对于B 产品,∵m>0, ∴第四次单价大于3, ∵3.5+4252124⨯-> ∴第四次单价小于4, ∴3(1%)+3.5252124m +⨯-=∴m=25.考点:方差;统计表;折线统计图;算术平均数;中位数.25. 某工厂接受了20天内生产1200台GH 型电子产品的总任务.已知每台GH 型产品由4个G 型装置和3个H 型装置配套组成.工厂现有80名工人,每个工人每天能加工6个G 型装置或3个H 型装置.工厂将所有工人分成两组同时开始加工,每组分别加工一种装置,并要求每天加工的G 、H 型装置数量正好全部配套组成GH 型产品.(1)按照这样的生产方式,工厂每天能配套组成多少套GH 型电子产品?(2)为了在规定期限内完成总任务,工厂决定补充一些新工人,这些新工人只能独立进行G 型装置的加工,且每人每天只能加工4个G 型装置.请问至少需要补充多少名新工人? 【答案】(1)每天能组装48套GH 型电子产品; (2)至少应招聘30名新工人. 【解析】试题分析:(1)设有x 名工人加工G 型装置,则有(80﹣x )名工人加工H 型装置,利用每台GH 型产品由4个G 型装置和3个H 型装置配套组成得出等式求出答案;(2)设招聘a名新工人加工G型装置,设x名工人加工G型装置,(80﹣x)名工人加工H型装置,进而利用每天加工的G、H型装置数量正好全部配套组成GH型产品得出等式表示出x的值,进而利用不等式解法得出答案.试题解析:(1)设有x名工人加工G型装置,则有(80﹣x)名工人加工H型装置,根据题意,63(80) 43x x-=,解得x=32,则80﹣32=48(套),答:每天能组装48套GH型电子产品;(2)设招聘a名新工人加工G型装置仍设x名工人加工G型装置,(80﹣x)名工人加工H型装置,根据题意,643(80)43x a x+-=,整理可得,16025ax-=,另外,注意到80﹣x≥120020,即x≤20,于是16025ax-=≤20,解得:a≥30,答:至少应招聘30名新工人.考点:一元一次不等式的应用;一元一次方程的应用.26. 已知边长为3的正方形ABCD中,点E在射线BC上,且BE=2CE,连接AE交射线DC于点F,若△ABE沿直线AE翻折,点B落在点B1处.(1)如图1,若点E在线段BC上,求CF的长;(2)求sin∠DAB1的值;(3)如果题设中“BE=2CE”改为“BExCE==x”,其它条件都不变,试写出△ABE翻折后与正方形ABCD公共部分的面积y与x的关系式及自变量x的取值范围(只要写出结论,不需写出解题过程).【答案】(1)CF=32;(2)513或【解析】试题分析:(1)利用平行线性质以及线段比求出CF的值;(2)本题要分两种方法讨论:①若点E在线段BC上;②若点E在边BC的延长线上.需运用勾股定理求出与之相联的线段;(3)本题分两种情况讨论:若点E在线段BC上,922xyx=+, x的取值范围为x>0;若点E在边BC的延长线上,992xyx-=,x的取值范围为x>1.试题解析:(1)∵AB∥DF,∴AB BE CF CE=,∵BE=2CE,AB=3,∴32CE CF CE=,∴CF=32;(2)①若点E在线段BC上,如图1,设直线AB1与DC相交于点M.由题意翻折得:∠1=∠2.∵AB∥DF,∴∠1=∠F,∴∠2=∠F,∴AM=MF.设DM=x,则CM=3﹣x.又∵CF=1.5,∴AM=MF=92﹣x,在Rt△ADM中,AD2+DM2=AM2,∴32+x2=(92﹣x)2,∴x=54,∴DM=54,AM=134,∴sin∠DAB1=513 DMAM=;②若点E在边BC的延长线上,如图2,设直线AB1与CD延长线相交于点N.同理可得:AN=NF.∵BE=2CE,∴BC=CE=AD.∵AD∥BE,∴AD DF CE FC=,∴DF=FC=32,设DN=x,则AN=NF=x+32,在Rt△ADN中,AD2+DN2=AN2,∴32+x2=(x+32)2,∴x=94.∴DN=94,AN=154,sin∠DAB1=35;(3)若点E在线段BC上,922xyx=+,x的取值范围为x>0;若点E在边BC的延长线上,992xyx-=,x的取值范围为x>1.考点:翻折变换(折叠问题);勾股定理;正方形的性质;锐角三角函数的定义.27. 如图,抛物线y=﹣x2+bx+c与x轴交于A、B两点,且B点的坐标为(3,0),经过A点的直线交抛物线于点D(2,3).(1)求抛物线的解析式和直线AD的解析式;(2)过x轴上的点(a,0)作直线EF∥AD,交抛物线于点F,是否存在实数a,使得以A、D、E、F为顶点的四边形是平行四边形?如果存在,求出满足条件的a;如果不存在,请说明理由.【答案】(1)抛物线的解析式为y=﹣x2+2x+3,直线AD的解析式为y=x+1;(2)a的值为﹣3或4.【解析】试题分析:(1)把点B和D的坐标代入抛物线y=﹣x2+bx+c得出方程组,解方程组即可;由抛物线解析式求出点A的坐标,设直线AD的解析式为y=kx+a,把A和D的坐标代入得出方程组,解方程组即可;(2)分两种情况:①当a<﹣1时,DF∥AE且DF=AE,得出F(0,3),由AE=﹣1﹣a=2,求出a的值;②当a>﹣1时,显然F应在x轴下方,EF∥AD且EF=AD,设F (a﹣3,﹣3),代入抛物线解析式,即可得出结果.试题解析:(1)把点B和D的坐标代入抛物线y=﹣x2+bx+c得:930 423b cb c-++=⎧⎨-++=⎩,解得:b=2,c=3,∴抛物线的解析式为y=﹣x2+2x+3;当y=0时,﹣x2+2x+3=0,解得:x=3,或x=﹣1,∵B(3,0),∴A(﹣1,0);设直线AD的解析式为y=kx+a,把A和D的坐标代入得:0 23k ak a-+=⎧⎨+=⎩,解得:k=1,a=1,∴直线AD的解析式为y=x+1;(2)分两种情况:如图所示:①当a<﹣1时,DF∥AE且DF=AE,则F点即为(0,3),∵AE=﹣1﹣a=2,∴a=﹣3;②当a>﹣1时,显然F应在x轴下方,EF∥AD且EF=AD,设F (a﹣3,﹣3),由﹣(a﹣3)2+2(a﹣3)+3=﹣3,解得:a=4综上所述,满足条件的a的值为﹣3或4.考点:抛物线与x 轴的交点;二次函数的性质;待定系数法求二次函数解析式;平行四边形的判定.28. 如图,Rt△ABC 中,M 为斜边AB 上一点,且MB=MC=AC=8cm ,平行于BC 的直线l 从BC 的位置出发以每秒1cm 的速度向上平移,运动到经过点M 时停止.直线l 分别交线段MB 、MC 、AC 于点D 、E 、P ,以DE 为边向下作等边△DEF,设△DEF 与△MBC 重叠部分的面积为S (cm 2),直线l 的运动时间为t (秒).(1)求边BC 的长度;(2)求S 与t 的函数关系式;(3)在整个运动过程中,是否存在这样的时刻t ,使得以P 、C 、F 为顶点的三角形为等腰三角形?若存在,请求出t 的值;若不存在,请说明理由.(4)在整个运动过程中,是否存在这样的时刻t ,使得以点D 为圆心、BD 为半径的圆与直线EF 相切?若存在,请求出t 的值;若不存在,请说明理由.【答案】(1);(2)当0<t≤3时,2S =+,当3<t≤4时,2S =- (3)247t =;(4)125t = 【解析】试题分析:(1)利用直角三角形的性质和锐角三角函数即可,(2)分两段求出函数关系式:当0<t≤3时,2S =+,当3<t≤4时,2S =-(3)当0<t≤3时,∠FCP≥90°,故△PCF 不可能为等腰三角形当3<t≤4时,若△PCF 为等腰三角形,也只能FC=FP ,3(4)2t t =-,得247t =. (4)若相切,利用点到圆心的距离等于半径列出方程即可.试题解析:(1)∵M 为斜边中点,∴∠B=MCB=α,∴∠AMC=2α,∵MC=MA,∴∠A=∠AMC=2α,∴∠B+∠A=90°,∴α+2α=90°,∴α=30°,∴∠B=30°,∴BC=AC÷(2)由题意,若点F 恰好落在BC 上,∴MF=4(4﹣t )=4,∴t=3.当0<t≤3时,如图,∴BD=2t,DM=8﹣2t ,∵l∥BC, ∴DE DM BC BM=,8=,∴2)DE t =-.∴点D 到EF 的距离为3(4)t =-, ∵l∥BC, ∴HG FN DE FJ=, ∵FN=FJ﹣JN=3(4﹣t )﹣t=12﹣4t ,∴)HG t =-,S=S 梯形DHGE =12(HG+DE )×FN=2S =+ 当3<t≤4时,重叠部分就是△DEF,S=S △DEF DE 2=2S =- (3)当0<t≤3时,∠FCP≥90°, ∴FC>CP ,∴△PCF 不可能为等腰三角形当3<t≤4时,若△PCF 为等腰三角形, ∴只能FC=FP , ∴3(4)2t t =-, ∴247t =. (4)若相切,∵∠B=30°,∴BD=2t,DM=8﹣2t ,∵l∥BC, ∴DE DM BC BM=,8=,∴2)DE t =-.∴点D 到EF 3(4)DE t =- ∴2t=3(4﹣t ), 解得125t =. 考点:几何变换综合题.。
专题11 圆-2017版[中考15年]无锡市2002-2016年中考数学试题分项解析(解析版)
![专题11 圆-2017版[中考15年]无锡市2002-2016年中考数学试题分项解析(解析版)](https://img.taocdn.com/s3/m/7bb0f1c06f1aff00bed51eb8.png)
1.【2016中考江苏省无锡市3分】如图,AB是⊙O的直径,AC切⊙O于A,BC交⊙O于点D,若∠C=70°,则∠AOD的度数为()A.70°B.35°C.20°D.40°【答案】D.考点:切线的性质;圆周角定理.2.【2016中考江苏省无锡市3分】已知圆锥的底面半径为4cm,母线长为6cm,则它的侧面展开图的面积等于()A.24cm2B.48cm2C.24πcm2D.12πcm2【答案】C.【解析】试题分析:底面半径为4cm,则底面周长=8πcm,侧面面积=12×8π×6=24π(cm2).故选C.考点:圆锥的计算.3.【2014中考江苏省无锡市3分】已知圆锥的底面半径为4cm,母线长为5cm,则这个圆锥的侧面积是()A.20πcm2B.20cm2C.40πcm2D.40cm2【答案】A.【解析】试题分析:圆锥的侧面积=2π×4×5÷2=20π.故选A.考点:圆锥的计算.4.【2014中考江苏省无锡市3分】如图,AB是⊙O的直径,CD是⊙O的切线,切点为D,CD与AB的延长线交于点C,∠A=30°,给出下面3个结论:①AD=CD;②BD=BC;③AB=2BC,其中正确结论的个数是()A.3B.2C.1D.0【答案】A.考点:切线的性质.5.【2002中考江苏省无锡市3分】已知⊙O1与⊙O2的圆心距是9cm,它们的半径分别为3cm和6cm,则这两圆的位置关系是【】A.外切B.内切C.相交D.外离6.【2003中考江苏省无锡市3分】已知⊙O1的半径为5cm,⊙O2的半径为3cm,且圆心距O1O2=7cm,则⊙O1与⊙O2的位置关系是【】A.外离B.外切C.相交D.内含7.【2004中考江苏省无锡市3分】已知⊙O1与⊙O2内切,它们的半径分别为2和3,则这两圆的圆心距d 满足【】A、d=5B、d=1C、1<d<5D、d>5【答案】B.8.【2005中考江苏省无锡市3分】已知⊙O1与⊙O2的半经分别为2和4,圆心距O1O2=6,则这两圆的位置关系是【】A、相离B、外切C、相交D、内切9.【2006中考江苏省无锡市3分】已知⊙O1和⊙O2的半径分别为2和5,圆心距O l O2=3,则这两圆的位置关系是【】A.相离B.外切C.相交D.内切10.【2007中考江苏省无锡市3分】圆锥的底面半径为2,母线长为4,则它的侧面积为【】A.8πB.16πC.D.4π11.【2010中考江苏省无锡市3分】已知圆锥的底面半径为2cm,母线长为5cm,则圆锥的侧面积是【】A.20cm2B.20πcm2C.10πcm2D.5πcm212.【2010中考江苏省无锡市3分】已知两圆内切,它们的半径分别为3和6,则这两圆的圆心距d 的取值满足【 】A . d >9B . d=9C . 3<d <9D .d=313.【2011中考江苏省无锡市3分】已知圆柱的底面半径为2cm ,高为5cm ,则圆柱的侧面积是【 】 A .20 cm 2 8.20πcm 2 C .10πcm 2 D .5πcm 2 【答案】B .【考点】图形的展开.【分析】把圆柱的侧面展开,利用圆的周长和长方形面积公式得出结果.:圆的周长=24R ππ=,圆柱的侧面积=圆的周长×高=4520ππ⋅=.故选B .14.【2012中考江苏省无锡市3分】已知圆锥的底面半径为3cm ,母线长为5cm ,则圆锥的侧面积是【 】 A .20cm 2B . 20πcm 2C . 15cm 2D . 15πcm 215.【2012中考江苏省无锡市3分】已知⊙O 的半径为2,直线l 上有一点P 满足PO=2,则直线l 与⊙O 的位置关系是【 】 A .相切B . 相离C . 相离或相切D . 相切或相交16.【2002中考江苏省无锡市3分】如图,A、B、C是⊙O上的三点,且∠ABC=70°,则∠AOC的度数是【】A.35° B.140° C.70° D.70°或140°17.【2016中考江苏省无锡市2分】如图,△AOB中,∠O=90°,AO=8cm,BO=6cm,点C从A点出发,在边AO上以2cm/s的速度向O点运动,与此同时,点D从点B出发,在边BO上以1.5cm/s的速度向O点运动,过OC的中点E作CD的垂线EF,则当点C运动了s时,以C点为圆心,1.5cm为半径的圆与直线EF相切.【答案】178.考点:直线与圆的位置关系.18.【2014中考江苏省无锡市2分】如图,已知点P 是半径为1的⊙A 上一点,延长AP 到C ,使PC =AP ,以AC 为对角线作▱ABCD .若AB ▱ABCD 面积的最大值为 .【答案】 【解析】试题分析:由已知条件可知,当AB ⊥AC 时▱ABCD 的面积最大,∵AB AC =2,∴S △ABC =12AB •AC ,∴S▱ABCD =2S △ABC =▱ABCD 面积的最大值为考点:平行四边形的性质;勾股定理;切线的性质;最值问题.19.【2014中考江苏省无锡市2分】如图,菱形ABCD 中,∠A =60°,AB =3,⊙A .⊙B 的半径分别为2和1,P 、E 、F 分别是边CD 、⊙A 和⊙B 上的动点,则PE +PF 的最小值是 .【答案】3.考点:轴对称-最短路线问题;菱形的性质;相切两圆的性质;最值问题.20.【2002中考江苏省无锡市3分】如图,四边形ABED内接于⊙O,E是AD延长线上的一点,若∠AOC=122°,则∠B=▲ 度,∠EDC=▲ 度.21.【2002中考江苏省无锡市3分】已知圆柱的母线长是5cm,底面半径是2cm,则这个圆柱的侧面积是▲ cm2.22.【2003中考江苏省无锡市4分】如图,四边形ABCD内接于⊙O,∠AOC=100°,则∠B=▲ °,∠D=▲ °.【答案】50;130.【考点】圆周角定理,圆内接四边形的性质.【分析】已知了圆心角∠AOC的度数,欲求∠B的度数,可利用圆周角和圆心角的关系求解;从而可根据圆内接四边形的对角互补,求得∠D的度数:由圆周角定理得:∠B=12∠AOB=12×100=50°;又∵四边形ABCD内接于⊙O,∴∠B+∠D=180°.∴∠D=180°-∠B=180°-50°=130°.23.【2003中考江苏省无锡市2分】已知圆柱的母线长是10cm,侧面积是40πcm2,则这个圆柱的底面半径是▲ cm.24.【2004中考江苏省无锡市3分】已知圆锥的母线长是5㎝,底面半径是2㎝,则这个圆锥的侧面积是▲ ㎝2.25.【2005中考江苏省无锡市4分】如图,AB是⊙O的直径,若AB=4㎝,∠D=30°,则∠B=▲ °,AC= ▲ ㎝.26.【2006中考江苏省无锡市4分】如图,点A、B、C、D在⊙O上,若∠C=60º,则∠D=▲ _º,∠O=▲ _º.27.【2006中考江苏省无锡市2分】已知∠AOB=30º,C是射线OB上的一点,且OC=4.若以C为圆心,r 为半径的圆与射线OA有两个不同的交点,则r的取值范围是▲ _.【答案】2<r≤4.【考点】直线与圆的位置关系,含30度角的直角三角形的性质.【分析】根据直线与圆的位置关系及直角三角形的性质解答,若d <r ,则直线与圆相交;若d=r ,则直线于圆相切;若d >r ,则直线与圆相离:由图可知,r 的取值范围在OC 和CD 之间. 在直角三角形OCD 中,∠AOB=30°,OC=4,则CD=12 OC=12×4=2; 则r 的取值范围是2<r≤4.28.【2007中考江苏省无锡市2分】如图,AB 是⊙O 的弦,OC⊥AB 于C ,若AB =,OC 1cm =,则⊙O 的半径长为 ▲ cm .29.【2008中考江苏省无锡市2分】如图,CD AB ⊥于E ,若60B ∠=,则A ∠= ▲ .30.【2009中考江苏省3分】如图,AB是⊙O的直径,弦CD∥AB.若∠ABD=65°,则∠ADC=▲ .【答案】25°.【考点】圆周角定理,平行线的性质,直角三角形两锐角的关系.【分析】∵CD∥AB,∴∠ADC=∠BAD.又∵AB是⊙O的直径,∴∠ADB=90°.又∵∠ABD=65°,∴∠ADC=∠BAD=90°-∠ABD=25°.31.【2009中考江苏省3分】已知正六边形的边长为1cm,分别以它的三个不相邻的顶点为圆心,1cm长为半径画弧(如图),则所得到的三条弧的长度之和为▲ cm(结果保留π).32.【2010中考江苏省无锡市2分】如图,AB是O的直径,点D在O上∠AOD=130°,BC∥OD交O于C ,则∠A= ▲ .33.【2011中考江苏省无锡市2分】如图,以原点O 为圆心的圆交X 轴于A 、B 两点,交y 轴的正半轴于点C ,D 为第一象限内⊙O 上的一点,若∠DAB=20°,则∠OCD= ▲ °.xy B COAD34.【2016中考江苏省无锡市8分】如图1是一个用铁丝围成的篮框,我们来仿制一个类似的柱体形篮框.如图2,它是由一个半径为r 、圆心角90°的扇形A 2OB 2,矩形A 2C 2EO 、B 2D 2EO ,及若干个缺一边的矩形状框A 1C 1D 1B 1、A 2C 2D 2B 2、…、A n B nC nD n ,OEFG 围成,其中A 1、G 、B 1在22A B 上,A 2、A 3…、A n 与B 2、B 3、…B n 分别在半径OA 2和OB 2上,C 2、C 3、…、C n 和D 2、D 3…D n 分别在EC 2和ED 2上,EF ⊥C 2D 2于H 2,C 1D 1⊥EF 于H 1,FH 1=H 1H 2=d ,C 1D 1、C 2D 2、C 3D 3、C n D n 依次等距离平行排放(最后一个矩形状框的边C n D n 与点E 间的距离应不超过d ),A 1C 1∥A 2C 2∥A 3C 3∥…∥A n C n .(1)求d 的值;(2)问:C n D n 与点E 间的距离能否等于d ?如果能,求出这样的n 的值,如果不能,那么它们之间的距离是多少?【答案】(1;(2.试题解析:(1)在RT △D 2EC 2中,∵∠D 2EC 2=90°,EC 2=ED 2=r ,EF ⊥C 2D 2,∴EH 1=r ,FH 1=r ﹣r ,∴d =1()2r ;(2)假设C n D n 与点E 间的距离能等于d ,由题意11n =-,这个方程n 没有整数解,所以假设不成立.=2+≈4.8,∴n =6,此时C n D n 与点E 间的距离4r -.考点:垂径定理;存在型;规律型.35.【2015中考江苏省无锡市8分】已知:如图,AB为⊙O的直径,点C、D在⊙O上,且BC=6cm,AC=8cm,∠ABD=45°.(1)求BD的长;(2)求图中阴影部分的面积.【答案】(1)(2)25504π-.试题解析:(1)∵AB为⊙O的直径,∴∠ACB=90°,∵BC=6cm,AC=8cm,∴AB=10cm,∴OB=5cm.连OD,∵OD=OB,∴∠ODB=∠ABD=45°,∴∠BOD=90°,∴BD=;(2)S阴影=S扇形﹣S△OBD=29051553602π⨯-⨯⨯=25504π-cm2.考点:圆周角定理;勾股定理;扇形面积的计算.36.【2014中考江苏省无锡市8分】如图,AB是半圆O的直径,C、D是半圆O上的两点,且OD∥BC,OD与AC交于点E.(1)若∠B=70°,求∠CAD的度数;(2)若AB=4,AC=3,求DE的长.【答案】(1)35°;(2)2-(2)易证OE 是△ABC 的中位线,利用中位线定理求得OE 的长,则DE 即可求得.试题解析:(1)∵AB 是半圆O 的直径,∴∠ACB =90°,又∵OD ∥BC ,∴∠AEO =90°,即OE ⊥AC ,∠CAB =90°﹣∠B =90°﹣70°=20°. ∵OA =OD ,∴∠DAO =∠ADO =1(180)2AOD -∠=1(18070)2-=55°,∴∠CAD =∠DAO ﹣∠CAB =55°﹣20°=35°;(2)在直角△ABC 中,BC .∵OE ⊥AC ,∴AE =EC ,又∵OA =OB ,∴OE =12BC .又∵OD =12AB =2,∴DE =OD ﹣OE =2. 考点:圆周角定理;平行线的性质;三角形中位线定理.37.【2003中考江苏省无锡市10分】已知:如图,四边形ABCD 为正方形,以AB 为直径的半圆O 1和以O 1C 为直径的⊙O 2交于点F ,连CF 并延长交AD 于点H ,FE⊥AB 于点E ,BG⊥CH 于点G .(1)求证:BC =AE +BG ;(2)连AF ,当正方形ABCD 的边长为6时,求四边形ABGF 的面积.【答案】解:(1)证明:连O 1F 、BF ,∵O 1C 为⊙O 2的直径,∴O 1F⊥CH.∴CF 为⊙O1的切线.∵∠ABC=90°,∴BC 为⊙O 1的切线.∴CB=CF. ∴∠BFC=∠FBC.∵EF⊥AB,∴EF∥BC.∴∠EFB=∠FBC=∠BFC.又∵∠BGF=∠BEF=90°,BF=BF ,∴△BGF≌△BEF(AAS ).∴BG=BE. ∴AE+BG= AE +BE =AB.∵正方形ABCD ,∴BC=AB= AE +BG.(2)∵正方形ABCD 的边长为6,∴BC=6,AO 1=BO 1=3.又∵BC、CF 为⊙O 1的切线,∴BC=CF,∠BCO 1=∠FCO 1.∴CO 1⊥BF. ∵∠O 1BC=90°,∴∠O 1BF=∠O 1CB . ∵∠O 1BC=∠AFB=90°,∴△O 1BC∽△AFB. ∴1O B AF 1FB BC 2==. ∵在Rt△AFB 中,222AB =AF +FB ,AB=6, ∴()2226=AF +2AF,解得AF BF ==. 在Rt△AFB 中,EF⊥AB,∴△AEF∽△AFB.∴AE EF AF AF FB AB ====,解得AE=65,EF=125.∴BE =6-65=245. ∴ABF BFG BEF 111236112412144S AB EF=6=S S BE EF==2255225525∆∆∆=⋅⋅⋅⋅==⋅⋅⋅⋅,. ∴ABF BFG AFGB 36144324S =S S 52525∆∆+=+=四边形.38.【2002中考江苏省无锡市9分】已知:如图,⊙O 的半径为r ,CE 切⊙O 于C ,且与弦AB 的延长线交于点E ,CD⊥AB 于D .如果CE=2BE ,且AC 、BC 的长是关于x 的方程()22x 3r 2x r 40--+-=的两个实数根. 求:(1)AC 、BC 的长;(2)CD 的长.39.【2003中考江苏省无锡市9分】已知:如图,△ABC内接于⊙O1,以AC为直径的⊙O2交BC于点D,AE切⊙O1于点A,交⊙O2于点E.连AD、CE,若AC=7,AD=tanB.求:(1)BC的长;(2)CE的长.40.【2004中考江苏省无锡市6分】已知:如图,四边形ABCD内接于⊙O,过点A的切线与CD的延长线交于E,且∠ADE=∠BDC.(1)求证:△ABC为等腰三角形;(2)若AE=6,BC=12,CD=5,求AD的长.【答案】解:(1)证明:∵四边形ABCD内接于⊙O,∴∠ADE=∠ABC.∵∠BDC=∠ADE,∠BAC=∠BDC,∴∠ABC=∠BAC.∴BC=AC.∴△ABC为等腰三角形.(2)∵AE切⊙O于点A,∴∠EAD=∠ACE.∵∠AED=∠CEA,∴△AED∽△CEA.∴AE ED=CE AE,.又∵AE=6, CD=5,EC= ED+CD,∴6ED=5+ED6,解得ED=4或ED=-9(舍去).又∵△ADE∽△CAE,∴AD AE AC CE=.∵AE=6,AC=BC=12 ,CE= ED+CD=9,∴AD6129=.∴AD=8.答:AD的长为8.41.【2007中考江苏省无锡市6分】如图,AB是O的直径,PA切O于A,OP交O于C,连BC.若30P∠=,求B∠的度数.。
2017江苏无锡市中考数学试题[含答案解析]
![2017江苏无锡市中考数学试题[含答案解析]](https://img.taocdn.com/s3/m/ef7e4825f18583d04964597b.png)
2016年江苏省无锡市中考数学试卷一、选择题:本大题共10小题,每小题3分,共30分1.(3分)﹣2的相反数是()A.B.±2 C.2 D.﹣2.(3分)函数y=中自变量x的取值范围是()A.x>2 B.x≥2 C.x≤2 D.x≠23.(3分)sin30°的值为()A.B. C. D.4.(3分)初三(1)班12名同学练习定点投篮,每人各投10次,进球数统计如下:这12名同学进球数的众数是()A.3.75 B.3 C.3.5 D.75.(3分)下列图案中,是轴对称图形但不是中心对称图形的是()A.B.C.D.6.(3分)如图,AB是⊙O的直径,AC切⊙O于A,BC交⊙O于点D,若∠C=70°,则∠AOD的度数为()A.70°B.35°C.20°D.40°7.(3分)已知圆锥的底面半径为4cm,母线长为6cm,则它的侧面展开图的面积等于()A.24cm2B.48cm2C.24πcm2 D.12πcm28.(3分)下列性质中,菱形具有而矩形不一定具有的是()A.对角线相等 B.对角线互相平分C.对角线互相垂直D.邻边互相垂直9.(3分)一次函数y=x﹣b与y=x﹣1的图象之间的距离等于3,则b的值为()A.﹣2或4 B.2或﹣4 C.4或﹣6 D.﹣4或610.(3分)如图,Rt△ABC中,∠C=90°,∠ABC=30°,AC=2,△ABC绕点C顺时针旋转得△A1B1C,当A1落在AB边上时,连接B1B,取BB1的中点D,连接A1D,则A1D的长度是()A.B.2C.3 D.2二、填空题:本大题共8小题,每小题2分,共16分11.(2分)分解因式:ab﹣a2= .12.(2分)某公司在埃及新投产一座鸡饲料厂,年生产饲料可饲养57000000只肉鸡,这个数据用科学记数法可表示为.13.(2分)分式方程=的解是.14.(2分)若点A(1,﹣3),B(m,3)在同一反比例函数的图象上,则m的值为.15.(2分)写出命题“如果a=b”,那么“3a=3b”的逆命题.16.(2分)如图,矩形ABCD的面积是15,边AB的长比AD的长大2,则AD的长是.17.(2分)如图,已知▱OABC的顶点A、C分别在直线x=1和x=4上,O是坐标原点,则对角线OB长的最小值为.18.(2分)如图,△AOB中,∠O=90°,AO=8cm,BO=6cm,点C从A点出发,在边AO上以2cm/s的速度向O点运动,与此同时,点D从点B出发,在边BO上以1.5cm/s的速度向O点运动,过OC的中点E作CD的垂线EF,则当点C运动了s时,以C点为圆心,1.5cm为半径的圆与直线EF相切.三、解答题:本大题共10小题,共84分19.(8分)(1)|﹣5|﹣(﹣3)2﹣()0(2)(a﹣b)2﹣a(a﹣2b)20.(8分)(1)解不等式:2x﹣3≤(x+2)(2)解方程组:.21.(8分)已知,如图,正方形ABCD中,E为BC边上一点,F为BA延长线上一点,且CE=AF.连接DE、DF.求证:DE=DF.22.(8分)如图,OA=2,以点A为圆心,1为半径画⊙A与OA的延长线交于点C,过点A画OA的垂线,垂线与⊙A的一个交点为B,连接BC(1)线段BC的长等于;(2)请在图中按下列要求逐一操作,并回答问题:①以点为圆心,以线段的长为半径画弧,与射线BA交于点D,使线段OD的长等于②连OD,在OD上画出点P,使OP的长等于,请写出画法,并说明理由.23.(6分)某校为了解全校学生上学期参加社区活动的情况,学校随机调查了本校50名学生参加社区活动的次数,并将调查所得的数据整理如下:参加社区活动次数的频数、频率分布表根据以上图表信息,解答下列问题:(1)表中a= ,b= ;(2)请把频数分布直方图补充完整(画图后请标注相应的数据);(3)若该校共有1200名学生,请估计该校在上学期参加社区活动超过6次的学生有多少人?24.(8分)甲、乙两队进行打乒乓球团体赛,比赛规则规定:两队之间进行3局比赛,3局比赛必须全部打完,只要赢满2局的队为获胜队,假如甲、乙两队之间每局比赛输赢的机会相同,且甲队已经赢得了第1局比赛,那么甲队最终获胜的概率是多少?(请用“画树状图”或“列表”等方法写出分析过程)25.(10分)某公司今年如果用原线下销售方式销售一产品,每月的销售额可达100万元.由于该产品供不应求,公司计划于3月份开始全部改为线上销售,这样,预计今年每月的销售额y(万元)与月份x(月)之间的函数关系的图象如图1中的点状图所示(5月及以后每月的销售额都相同),而经销成本p(万元)与销售额y(万元)之间函数关系的图象图2中线段AB所示.(1)求经销成本p(万元)与销售额y(万元)之间的函数关系式;(2)分别求该公司3月,4月的利润;(3)问:把3月作为第一个月开始往后算,最早到第几个月止,该公司改用线上销售后所获得利润总额比同期用线下方式销售所能获得的利润总额至少多出200万元?(利润=销售额﹣经销成本)26.(10分)已知二次函数y=ax2﹣2ax+c(a>0)的图象与x轴的负半轴和正半轴分别交于A、B两点,与y轴交于点C,它的顶点为P,直线CP与过点B且垂直于x轴的直线交于点D,且CP:PD=2:3(1)求A、B两点的坐标;(2)若tan∠PDB=,求这个二次函数的关系式.27.(10分)如图,已知▱ABCD的三个顶点A(n,0)、B(m,0)、D(0,2n)(m>n>0),作▱ABCD关于直线AD的对称图形AB1C 1 D(1)若m=3,试求四边形CC1B1B面积S的最大值;(2)若点B1恰好落在y轴上,试求的值.28.(8分)如图1是一个用铁丝围成的篮框,我们来仿制一个类似的柱体形篮框.如图2,它是由一个半径为r、圆心角90°的扇形A2OB2,矩形A2C2EO、B2D2EO,及若干个缺一边的矩形状框A1C1D1B1、A2C2D2B2、…、AnBnCnDn,OEFG围成,其中A1、G、B1在上,A2、A3…、An与B2、B3、…Bn分别在半径OA2和OB2上,C2、C3、…、C n 和D2、D3…Dn分别在EC2和ED2上,EF⊥C2D2于H2,C1D1⊥EF于H1,FH1=H1H2=d,C 1D1、C2D2、C3D3、CnDn依次等距离平行排放(最后一个矩形状框的边CnDn与点E间的距离应不超过d),A1C1∥A2C2∥A3C3∥…∥AnCn(1)求d的值;(2)问:Cn Dn与点E间的距离能否等于d?如果能,求出这样的n的值,如果不能,那么它们之间的距离是多少?2016年江苏省无锡市中考数学试卷参考答案与试题解析一、选择题:本大题共10小题,每小题3分,共30分1.(3分)﹣2的相反数是()A.B.±2 C.2 D.﹣【分析】根据一个数的相反数就是在这个数前面添上“﹣”号,求解即可.【解答】解:﹣2的相反数是2;故选C.【点评】本题考查了相反数的意义,一个数的相反数就是在这个数前面添上“﹣”号:一个正数的相反数是负数,一个负数的相反数是正数,0的相反数是0.不要把相反数的意义与倒数的意义混淆.2.(3分)函数y=中自变量x的取值范围是()A.x>2 B.x≥2 C.x≤2 D.x≠2【分析】因为当函数表达式是二次根式时,被开方数为非负数,所以2x﹣4≥0,可求x的范围.【解答】解:依题意有:2x﹣4≥0,解得x≥2.故选:B.【点评】此题主要考查函数自变量的取值范围:当函数表达式是二次根式时,被开方数为非负数.3.(3分)sin30°的值为()A.B. C. D.【分析】根据特殊角的三角函数值,可以求得sin30°的值.【解答】解:sin30°=,故选A.【点评】本题考查特殊角的三角函数值,解题的关键是明确特殊角的三角函数值分别等于多少.4.(3分)初三(1)班12名同学练习定点投篮,每人各投10次,进球数统计如下:这12名同学进球数的众数是()A.3.75 B.3 C.3.5 D.7【分析】根据统计表找出各进球数出现的次数,根据众数的定义即可得出结论.【解答】解:观察统计表发现:1出现1次,2出现1次,3出现4次,4出现2次,5出现3次,7出现1次,故这12名同学进球数的众数是3.故选B.【点评】本题考查了众数的定义以及统计表,解题的关键是找出哪个进球数出现的次数最多.本题属于基础题,难度不大,解决该题型题目时,根据统计表中得数据,结合众数的定义找出该组数据的众数是关键.5.(3分)下列图案中,是轴对称图形但不是中心对称图形的是()A.B.C.D.【分析】根据轴对称图形与中心对称图形的性质对各选项进行逐一分析即可.【解答】解:A、是轴对称图形,但不是中心对称图形,故本选项正确;B、既是轴对称图形,又是中心对称图形,故本选项错误;C、既不是轴对称图形,又不是中心对称图形,故本选项错误;D、不是轴对称图形,但是中心对称图形,故本选项错误.故选A.【点评】本题考查的是中心对称图形,熟知轴对称图形与中心对称图形的性质是解答此题的关键.6.(3分)如图,AB是⊙O的直径,AC切⊙O于A,BC交⊙O于点D,若∠C=70°,则∠AOD的度数为()A.70°B.35°C.20°D.40°【分析】先依据切线的性质求得∠CAB的度数,然后依据直角三角形两锐角互余的性质得到∠CBA的度数,然后由圆周角定理可求得∠AOD的度数.【解答】解:∵AC是圆O的切线,AB是圆O的直径,∴AB⊥AC.∴∠CAB=90°.又∵∠C=70°,∴∠CBA=20°.∴∠DOA=40°.故选:D.【点评】本题主要考查的是切线的性质、圆周角定理、直角三角形的性质,求得∠CBA=20°是解题的关键.7.(3分)已知圆锥的底面半径为4cm,母线长为6cm,则它的侧面展开图的面积等于()A.24cm2B.48cm2C.24πcm2 D.12πcm2【分析】根据圆锥的侧面积=×底面圆的周长×母线长即可求解.【解答】解:底面半径为4cm,则底面周长=8πcm,侧面面积=×8π×6=24π(cm2).故选:C.【点评】本题考查了圆锥的有关计算,解题的关键是了解圆锥的有关元素与扇形的有关元素的对应关系.8.(3分)下列性质中,菱形具有而矩形不一定具有的是()A.对角线相等 B.对角线互相平分C.对角线互相垂直D.邻边互相垂直【分析】菱形的性质有:四边形相等,两组对边分别平行,对角相等,邻角互补,对角线互相垂直且平分,且每一组对角线平分一组对角.矩形的性质有:两组对边分别相等,两组对边分别平行,四个内角都是直角,对角线相等且平分.【解答】解:(A)对角线相等是矩形具有的性质,菱形不一定具有;(B)对角线互相平分是菱形和矩形共有的性质;(C)对角线互相垂直是菱形具有的性质,矩形不一定具有;(D)邻边互相垂直是矩形具有的性质,菱形不一定具有.故选:C.【点评】本题考查菱形与矩形的性质,需要同学们对各种平行四边形的性质熟练掌握并区分.9.(3分)一次函数y=x﹣b与y=x﹣1的图象之间的距离等于3,则b的值为()A.﹣2或4 B.2或﹣4 C.4或﹣6 D.﹣4或6【分析】设直线y=x﹣1与x轴交点为C,与y轴交点为A,过点A作AD⊥直线y=x﹣b于点D,根据直线的解析式找出点A、B、C的坐标,通过同角的余角相等可得出∠BAD=∠ACO,再利用∠ACO的余弦值即可求出直线AB的长度,从而得出关于b的含绝对值符号的方程,解方程即可得出结论.【解答】解:设直线y=x﹣1与x轴交点为C,与y轴交点为A,过点A作AD ⊥直线y=x﹣b于点D,如图所示.∵直线y=x﹣1与x轴交点为C,与y轴交点为A,∴点A(0,﹣1),点C(,0),∴OA=1,OC=,AC==,∴cos∠ACO==.∵∠BAD与∠CAO互余,∠ACO与∠CAO互余,∴∠BAD=∠ACO.∵AD=3,cos∠BAD==,∴AB=5.∵直线y=x﹣b与y轴的交点为B(0,﹣b),∴AB=|﹣b﹣(﹣1)|=5,解得:b=﹣4或b=6.故选D.【点评】本题考查了一次函数的性质以及含绝对值符合的一元一次方程,解题的关键是找出线段AB=|﹣b﹣(﹣1)|=5.本题属于基础题,难度不大,解决该题型题目时,巧妙的借用角的余弦值求出线段AB的长度,再根据线段的长度得出关于b的含绝对值符号的方程是关键.10.(3分)如图,Rt△ABC中,∠C=90°,∠ABC=30°,AC=2,△ABC绕点C顺时针旋转得△A1B1C,当A1落在AB边上时,连接B1B,取BB1的中点D,连接A1D,则A1D的长度是()A.B.2C.3 D.2【分析】首先证明△ACA1,△BCB1是等边三角形,推出△A1BD是直角三角形即可解决问题.【解答】解:∵∠ACB=90°,∠ABC=30°,AC=2,∴∠A=90°﹣∠ABC=60°,AB=4,BC=2,∵CA=CA1,∴△ACA1是等边三角形,AA1=AC=BA1=2,∴∠BCB1=∠ACA1=60°,∵CB=CB1,∴△BCB1是等边三角形,∴BB1=2,BA1=2,∠A1BB1=90°,∴BD=DB1=,∴A1D==.故选A.【点评】本题考查旋转的性质、30度角的直角三角形性质、等边三角形的判定和性质、勾股定理等知识,解题的关键是证明△ACA1,△BCB1是等边三角形,属于中考常考题型.二、填空题:本大题共8小题,每小题2分,共16分11.(2分)分解因式:ab﹣a2= a(b﹣a).【分析】直接把公因式a提出来即可.【解答】解:ab﹣a2=a(b﹣a).故答案为:a(b﹣a).【点评】本题主要考查提公因式法分解因式,准确找出公因式是a是解题的关键.12.(2分)某公司在埃及新投产一座鸡饲料厂,年生产饲料可饲养57000000只肉鸡,这个数据用科学记数法可表示为 5.7×107.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n 是负数.【解答】解:将57000000用科学记数法表示为:5.7×107.故答案为:5.7×107.【点评】此题主要考查了科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n 的值.13.(2分)分式方程=的解是x=4 .【分析】首先把分式方程=的两边同时乘x(x﹣1),把化分式方程为整式方程;然后根据整式方程的求解方法,求出分式方程=的解是多少即可.【解答】解:分式方程的两边同时乘x(x﹣1),可得4(x﹣1)=3x解得x=4,经检验x=4是分式方程的解.故答案为:x=4.【点评】此题主要考查了分式方程的解,要熟练掌握,解答此题的关键是要明确:(1)解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.(2)解分式方程一定注意要验根.14.(2分)若点A(1,﹣3),B(m,3)在同一反比例函数的图象上,则m的值为﹣1 .【分析】由A、B点的坐标结合反比例函数图象上点的坐标特征即可得出关于m 的一元一次方程,解方程即可得出结论.【解答】解:∵点A(1,﹣3),B(m,3)在同一反比例函数的图象上,∴1×(﹣3)=3m,解得:m=﹣1.故答案为:﹣1.【点评】本题考查了反比例函数图象上点的坐标特征以及解一元一次方程,解题的关键是得出关于m的一元一次方程.本题属于基础题,难度不大,解决该题型题目时,根据反比例函数图象上点的坐标特征得出与点的坐标有关的方程是关键.15.(2分)写出命题“如果a=b”,那么“3a=3b”的逆命题如果3a=3b,那么a=b .【分析】先找出命题的题设和结论,再说出即可.【解答】解:命题“如果a=b”,那么“3a=3b”的逆命题是:如果3a=3b,那么a=b,故答案为:如果3a=3b,那么a=b.【点评】本题考查了命题与定理的应用,能理解命题的有关内容是解此题的关键.16.(2分)如图,矩形ABCD的面积是15,边AB的长比AD的长大2,则AD的长是 3 .【分析】根据矩形的面积公式,可得关于AD的方程,根据解方程,可得答案.【解答】解:由边AB的长比AD的长大2,得AB=AD+2.由矩形的面积,得AD(AD+2)=15.解得AD=3,AD=﹣5(舍),故答案为:3.【点评】本题考查了矩形的性质,利用矩形的面积公式得出关于AD的方程是解题关键.17.(2分)如图,已知▱OABC的顶点A、C分别在直线x=1和x=4上,O是坐标原点,则对角线OB长的最小值为 5 .【分析】过点B作BD⊥直线x=4,交直线x=4于点D,过点B作BE⊥x轴,交x轴于点E.则OB=.由于四边形OABC是平行四边形,所以OA=BC,又由平行四边形的性质可推得∠OAF=∠BCD,则可证明△OAF≌△BCD,所以OE的长固定不变,当BE最小时,OB取得最小值,从而可求.【解答】解:过点B作BD⊥直线x=4,交直线x=4于点D,过点B作BE⊥x轴,交x轴于点E,直线x=1与OC交于点M,与x轴交于点F,直线x=4与AB交于点N,如图:∵四边形OABC是平行四边形,∴∠OAB=∠BCO,OC∥AB,OA=BC,∵直线x=1与直线x=4均垂直于x轴,∴AM∥CN,∴四边形ANCM是平行四边形,∴∠MAN=∠NCM,∴∠OAF=∠BCD,∵∠OFA=∠BDC=90°,∴∠FOA=∠DBC,在△OAF和△BCD中,,∴△OAF≌△BCD.∴BD=OF=1,∴OE=4+1=5,∴OB=.由于OE的长不变,所以当BE最小时(即B点在x轴上),OB取得最小值,最小值为OB=OE=5.故答案为:5.【点评】本题考查了平行四边形的性质、坐标与图形性质、全等三角形的判定与性质;熟练掌握平行四边形的性质,证明三角形全等是解决问题的关键.18.(2分)如图,△AOB中,∠O=90°,AO=8cm,BO=6cm,点C从A点出发,在边AO上以2cm/s的速度向O点运动,与此同时,点D从点B出发,在边BO上以1.5cm/s的速度向O点运动,过OC的中点E作CD的垂线EF,则当点C运动了s时,以C点为圆心,1.5cm为半径的圆与直线EF相切.【分析】当以点C为圆心,1.5cm为半径的圆与直线EF相切时,即CF=1.5cm,又因为∠EFC=∠O=90°,所以△EFC∽△DCO,利用对应边的比相等即可求出EF 的长度,再利用勾股定理列出方程即可求出t的值,要注意t的取值范围为0≤t≤4.【解答】解:当以点C为圆心,1.5cm为半径的圆与直线EF相切时,此时,CF=1.5,∵AC=2t,BD=t,∴OC=8﹣2t,OD=6﹣t,∵点E是OC的中点,∴CE=OC=4﹣t,∵∠EFC=∠O=90°,∠FCE=∠DCO∴△EFC∽△DCO∴=∴EF===由勾股定理可知:CE2=CF2+EF2,∴(4﹣t)2=+,解得:t=或t=,∵0≤t≤4,∴t=.故答案为:【点评】本题考查圆的切线性质,主要涉及相似三角形的判定与性质,勾股定理,切线的性质等知识,题目综合程度较高,很好地考查学生综合运用知识的能力.三、解答题:本大题共10小题,共84分19.(8分)(1)|﹣5|﹣(﹣3)2﹣()0(2)(a﹣b)2﹣a(a﹣2b)【分析】(1)原式利用绝对值的代数意义,乘方的意义,以及零指数幂法则计算即可得到结果;(2)原式利用完全平方公式,单项式乘以多项式法则计算,去括号合并即可得到结果.【解答】解:(1)原式=5﹣9﹣1=﹣5;(2)a2﹣2ab+b2﹣a2+2ab=b2.【点评】此题考查了单项式乘多项式,完全平方公式,以及零指数幂,熟练掌握运算法则是解本题的关键.20.(8分)(1)解不等式:2x﹣3≤(x+2)(2)解方程组:.【分析】(1)根据解一元一次不等式的步骤,去分母、移项、合并同类项、系数化为1,即可得出结果;(2)用加减法消去未知数y求出x的值,再代入求出y的值即可.【解答】解:(1)2x﹣3≤(x+2)去分母得:4x﹣6≤x+2,移项,合并同类项得:3x≤8,系数化为1得:x≤;(2).由①得:2x+y=3③,③×2﹣②得:x=4,把x=4代入③得:y=﹣5,故原方程组的解为.【点评】本题考查了一元一次不等式的解法、二元一次方程组的解法;熟练掌握一元一次不等式和二元一次方程组的解法是解决问题的关键.21.(8分)已知,如图,正方形ABCD中,E为BC边上一点,F为BA延长线上一点,且CE=AF.连接DE、DF.求证:DE=DF.【分析】根据正方形的性质可得AD=CD,∠C=∠DAF=90°,然后利用“边角边”证明△DCE和△DAF全等,再根据全等三角形对应边相等证明即可.【解答】证明:∵四边形ABCD是正方形,∴AD=CD,∠DAB=∠C=90°,∴∠FAD=180°﹣∠DAB=90°.在△DCE和△DAF中,,∴△DCE≌△DAF(SAS),∴DE=DF.【点评】本题考查了正方形的性质,全等三角形的判定与性质,利用全等三角形对应边相等证明线段相等是常用的方法之一,一定要熟练掌握并灵活运用.22.(8分)如图,OA=2,以点A为圆心,1为半径画⊙A与OA的延长线交于点C,过点A画OA的垂线,垂线与⊙A的一个交点为B,连接BC(1)线段BC的长等于;(2)请在图中按下列要求逐一操作,并回答问题:①以点 A 为圆心,以线段BC 的长为半径画弧,与射线BA交于点D,使线段OD的长等于②连OD,在OD上画出点P,使OP的长等于,请写出画法,并说明理由.【分析】(1)由圆的半径为1,可得出AB=AC=1,结合勾股定理即可得出结论;(2)①结合勾股定理求出AD的长度,从而找出点D的位置,根据画图的步骤,完成图形即可;②根据线段的三等分点的画法,结合OA=2AC,即可得出结论.【解答】解:(1)在Rt△BAC中,AB=AC=1,∠BAC=90°,∴BC==.故答案为:.(2)①在Rt△OAD中,OA=2,OD=,∠OAD=90°,∴AD===BC.∴以点A为圆心,以线段BC的长为半径画弧,与射线BA交于点D,使线段OD 的长等于.依此画出图形,如图1所示.故答案为:A;BC.②∵OD=,OP=,OC=OA+AC=3,OA=2,∴.故作法如下:连接CD,过点A作AP∥CD交OD于点P,P点即是所要找的点.依此画出图形,如图2所示.【点评】本题考查了作图中的寻找线段的三等分点以及勾股定理,解题的关键是:(1)利用勾股定理求出BC的长;(2)①利用勾股定理求出AD的长;②会画线段的三等分点.本题属于中档题,难度不大,(2)中巧妙的借助了OA=2AC,从而利用比例找出了点P的位置.23.(6分)某校为了解全校学生上学期参加社区活动的情况,学校随机调查了本校50名学生参加社区活动的次数,并将调查所得的数据整理如下:参加社区活动次数的频数、频率分布表根据以上图表信息,解答下列问题:(1)表中a= 12 ,b= 0.08 ;(2)请把频数分布直方图补充完整(画图后请标注相应的数据);(3)若该校共有1200名学生,请估计该校在上学期参加社区活动超过6次的学生有多少人?【分析】(1)直接利用已知表格中3<x≤6范围的频率求出频数a即可,再求出m的值,即可得出b的值;(2)利用(1)中所求补全条形统计图即可;(3)直接利用参加社区活动超过6次的学生所占频率乘以总人数进而求出答案.【解答】解:(1)由题意可得:a=50×0.24=12(人),∵m=50﹣10﹣12﹣16﹣6﹣2=4,∴b==0.08;故答案为:12,0.08;(2)如图所示:;(3)由题意可得,该校在上学期参加社区活动超过6次的学生有:1200×(1﹣0.20﹣0.24)=672(人),答:该校在上学期参加社区活动超过6次的学生有672人.【点评】此题主要考查了频数分布直方图以及利用样本估计总体,正确将条形统计图和表格中数据相联系是解题关键.24.(8分)甲、乙两队进行打乒乓球团体赛,比赛规则规定:两队之间进行3局比赛,3局比赛必须全部打完,只要赢满2局的队为获胜队,假如甲、乙两队之间每局比赛输赢的机会相同,且甲队已经赢得了第1局比赛,那么甲队最终获胜的概率是多少?(请用“画树状图”或“列表”等方法写出分析过程)【分析】根据甲队第1局胜画出第2局和第3局的树状图,然后根据概率公式列式计算即可得解.【解答】解:根据题意画出树状图如下:一共有4种情况,确保两局胜的有3种,所以,P=.【点评】本题考查了用树状图列举随机事件出现的所有情况,并求出某些事件的概率,但应注意在求概率时各种情况出现的可能性务必相同.用到的知识点为:概率=所求情况数与总情况数之比.25.(10分)某公司今年如果用原线下销售方式销售一产品,每月的销售额可达100万元.由于该产品供不应求,公司计划于3月份开始全部改为线上销售,这样,预计今年每月的销售额y(万元)与月份x(月)之间的函数关系的图象如图1中的点状图所示(5月及以后每月的销售额都相同),而经销成本p(万元)与销售额y(万元)之间函数关系的图象图2中线段AB所示.(1)求经销成本p(万元)与销售额y(万元)之间的函数关系式;(2)分别求该公司3月,4月的利润;(3)问:把3月作为第一个月开始往后算,最早到第几个月止,该公司改用线上销售后所获得利润总额比同期用线下方式销售所能获得的利润总额至少多出200万元?(利润=销售额﹣经销成本)【分析】(1)设p=ky+b,(100,60),(200,110)代入即可解决问题.(2)根据利润=销售额﹣经销成本,即可解决问题.(3)设最早到第x个月止,该公司改用线上销售后所获得利润总额比同期用线下方式销售所能获得的利润总额至少多出200万元,列出不等式即可解决问题.【解答】解:(1)设p=ky+b,(100,60),(200,110)代入得解得,∴p=y+10.(2)∵y=150时,p=85,∴三月份利润为150﹣85=65万元.∵y=175时,p=97.5,∴四月份的利润为175﹣97.5=77.5万元.(3)设最早到第x个月止,该公司改用线上销售后所获得利润总额比同期用线下方式销售所能获得的利润总额至少多出200万元∵5月份以后的每月利润为90万元(y=200,求得p=110,200﹣110=90),∴65+77.5+90(x﹣2)﹣40x≥200,∴x≥4.75,∴最早到第5个月止,该公司改用线上销售后所获得利润总额比同期用线下方式销售所能获得的利润总额至少多出200万元.【点评】本题考查一次函数的应用、待定系数法、不等式等知识,解题的关键是构建一次函数解决问题,搞清楚利润=销售额﹣经销成本,属于中考常考题型.26.(10分)已知二次函数y=ax2﹣2ax+c(a>0)的图象与x轴的负半轴和正半轴分别交于A、B两点,与y轴交于点C,它的顶点为P,直线CP与过点B且垂直于x轴的直线交于点D,且CP:PD=2:3(1)求A、B两点的坐标;(2)若tan∠PDB=,求这个二次函数的关系式.【分析】(1)由二次函数的解析式可求出对称轴为x=1,过点P作PE⊥x轴于点E,所以OE:EB=CP:PD;(2)过点C作CF⊥BD于点F,交PE于点G,构造直角三角形CDF,利用tan∠PDB=即可求出FD,由于△CPG∽△CDF,所以可求出PG的长度,进而求出a的值,最后将A(或B)的坐标代入解析式即可求出c的值.【解答】解:(1)过点P作PE⊥x轴于点E,∵y=ax2﹣2ax+c,∴该二次函数的对称轴为:x=1,∴OE=1∵OC∥BD,∴CP:PD=OE:EB,∴OE:EB=2:3,∴EB=,∴OB=OE+EB=,∴B(,0)∵A与B关于直线x=1对称,∴A(﹣,0);(2)过点C作CF⊥BD于点F,交PE于点G,令x=1代入y=ax2﹣2ax+c,∴y=c﹣a,令x=0代入y=ax2﹣2ax+c,∴y=c∴PG=a,∵CF=OB=,∴tan∠PDB=,∴FD=2,∵PG∥BD∴△CPG∽△CDF,∴==∴PG=,∴a=,∴y=x2﹣x+c,把A(﹣,0)代入y=x2﹣x+c,∴解得:c=﹣1,∴该二次函数解析式为:y=x2﹣x﹣1.【点评】本题考查二次函数,涉及待定系数法求出二次函数解析式,相似三角形的性质与判定,锐角三角函数等知识内容,解题的关键是利用作垂线构造直角三角形,再利用相似三角形的对应边的比相等即可得出答案.27.(10分)如图,已知▱ABCD的三个顶点A(n,0)、B(m,0)、D(0,2n)(m>n>0),作▱ABCD关于直线AD的对称图形AB1C 1 D(1)若m=3,试求四边形CC1B1B面积S的最大值;(2)若点B1恰好落在y轴上,试求的值.【分析】(1)如图1,易证S▱BCEF =S▱BCDA=S▱B1C1DA=S▱B1C1EF,从而可得S▱BCC1B1=2S▱BCDA=﹣4(n﹣)2+9,根据二次函数的最值性就可解决问题;(2)如图2,易证△AOD∽△B1OB,根据相似三角形的性质可得OB1=,然后在Rt△AOB1中运用勾股定理就可解决问题.【解答】解:(1)如图1,∵▱ABCD与四边形AB1C1D关于直线AD对称,∴四边形AB1C1D是平行四边形,CC1⊥EF,BB1⊥EF,∴BC∥AD∥B1C1,CC1∥BB1,∴四边形BCEF、B1C1EF是平行四边形,∴S▱BCEF =S▱BCDA=S▱B1C1DA=S▱B1C1EF,∴S▱BCC1B1=2S▱BCDA.∵A(n,0)、B(m,0)、D(0,2n)、m=3,∴AB=m﹣n=3﹣n,OD=2n,∴S▱BCDA=AB•OD=(3﹣n)•2n=﹣2(n2﹣3n)=﹣2(n﹣)2+,∴S▱BCC1B1=2S▱BCDA=﹣4(n﹣)2+9.∵﹣4<0,∴当n=时,S▱BCC1B1最大值为9;(2)当点B1恰好落在y轴上,如图2,∵DF⊥BB1,DB1⊥OB,∴∠B1DF+∠DB1F=90°,∠B1BO+∠OB1B=90°,∴∠B1DF=∠OBB1.∵∠DOA=∠BOB1=90°,∴△AOD∽△B1OB,∴=,∴=,∴OB1=.由轴对称的性质可得AB1=AB=m﹣n.在Rt△AOB1中,n2+()2=(m﹣n)2,整理得3m2﹣8mn=0.∵m>0,∴3m﹣8n=0,∴=.【点评】本题主要考查了轴对称的性质、相似三角形的判定与性质、二次函数的最值性、勾股定理等知识,得到S▱BCC1B1=2S▱BCDA是解决第(1)小题的关键,在Rt△AOB1中运用勾股定理是解决第(2)小题.28.(8分)如图1是一个用铁丝围成的篮框,我们来仿制一个类似的柱体形篮框.如图2,它是由一个半径为r、圆心角90°的扇形A2OB2,矩形A2C2EO、B2D2EO,及若干个缺一边的矩形状框A 1C 1D 1B 1、A 2C 2D 2B 2、…、A n B n C n D n ,OEFG 围成,其中A 1、G 、B 1在上,A 2、A 3…、A n 与B 2、B 3、…B n 分别在半径OA 2和OB 2上,C 2、C 3、…、C n 和D 2、D 3…D n 分别在EC 2和ED 2上,EF ⊥C 2D 2于H 2,C 1D 1⊥EF 于H 1,FH 1=H 1H 2=d ,C 1D 1、C 2D 2、C 3D 3、C n D n 依次等距离平行排放(最后一个矩形状框的边C n D n 与点E 间的距离应不超过d ),A 1C 1∥A 2C 2∥A 3C 3∥…∥A n C n (1)求d 的值;(2)问:C n D n 与点E 间的距离能否等于d ?如果能,求出这样的n 的值,如果不能,那么它们之间的距离是多少?【分析】(1)根据d=FH 2,求出EH 2即可解决问题.(2)假设C n D n 与点E 间的距离能等于d ,列出关于n 的方程求解,发现n 没有整数解,由r ÷r=2+2≈4.8,求出n 即可解决问题.【解答】解:(1)在Rt △D 2EC 2中,∵∠D 2EC 2=90°,EC 2=ED 2=r ,EF ⊥C 2D 2, ∴EH 2=r ,FH 2=r ﹣r , ∴d=(r ﹣r )=r ,(2)假设C n D n 与点E 间的距离能等于d ,由题意•r=r ,这个方程n 没有整数解, 所以假设不成立. ∵r ÷r=2+2≈4.8,∴直角三角形△C 2ED 2最多分成5份,。
专题07 统计与概率-2017版[中考15年]无锡市2002-2016年中考数学试题分项解析(解析版)
![专题07 统计与概率-2017版[中考15年]无锡市2002-2016年中考数学试题分项解析(解析版)](https://img.taocdn.com/s3/m/d7ae26166c85ec3a87c2c5be.png)
1.【2016中考江苏省无锡市3分】初三(1)班12名同学练习定点投篮,每人各投10次,进球数统计如下:这12名同学进球数的众数是()A.3.75B.3C.3.5D.7【答案】B.【解析】试题分析:观察统计表发现:1出现1次,2出现1次,3出现4次,4出现2次,5出现3次,7出现1次,故这12名同学进球数的众数是3.故选B.考点:众数.2.【2014中考江苏省无锡市3分】已知A样本的数据如下:72,73,76,76,77,78,78,78,B样本的数据恰好是A样本数据每个都加2,则A,B两个样本的下列统计量对应相同的是()A.平均数B.标准差C.中位数D.众数【答案】B.考点:统计量的选择.3.【2005中考江苏省无锡市3分】下列调查中,适合用普查方法的是【】A、电视机厂要了解一批显象管的使用寿命B、要了解我市居民的环保意识C、要了解我市“阳山水蜜桃”的甜度和含水量D、要了解你校数学教师的年龄状况4.【2005中考江苏省无锡市3分】下列事件中,属于必然事件的是【】A、明天我市下雨B、我走出校门,看到的第一辆汽车的牌照的末位数字是偶数C、抛一枚硬币,正面朝上D、一口袋中装有2个红球和1个白球,从中摸出2个球,其中有红球5.【2008中考江苏省无锡市3分】下列事件中的必然事件是【】A.2008年奥运会在北京举行B.一打开电视机就看到奥运圣火传递的画面C.2008年奥运会开幕式当天,北京的天气晴朗D.全世界均在白天看到北京奥运会开幕式的实况直播6.【2009中考江苏省3分】某商场试销一种新款衬衫,一周内销售情况如下表所示:商场经理要了解哪种型号最畅销,则上述数据的统计量中,对商场经理来说最有意义的是【】A.平均数B.众数C.中位数D.方差7.【2010中考江苏省无锡市3分】某校体育节有13名同学参加女子百米赛跑,它们预赛的成绩各不相同,取前6名参加决赛.小颖已经知道了自己的成绩,她想知道自己能否进入决赛,还需要知道这13名同学成绩的【】A.方差B.极差C.中位数D.平均数8.【2011中考江苏省无锡市3分】100名学生进行20秒钟跳绳测试,测试成绩统计如下表:则这次测试成绩的中位数m满足【】A.40<m≤50 B.50<m≤60 C.60<m≤70 D.m>709.【2012中考江苏省无锡市3分】下列调查中,须用普查的是【】A.了解某市学生的视力情况B.了解某市中学生课外阅读的情况C.了解某市百岁以上老人的健康情况D.了解某市老年人参加晨练的情况【答案】C.【考点】调查方法的选择,【分析】由普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似,对各选项分析判断后利用排除法求解:A.了解某市学生的视力情况,适合采用抽样调查,故本选项错误;B.了解某市中学生课外阅读的情况,适合采用抽样调查,故本选项错误;C.了解某市百岁以上老人的健康情况,人数比较少,适合采用普查,故本选项正确;D.了解某市老年人参加晨练的情况,老年人的标准没有限定,人群范围可能够较大,适合采用抽样调查,故本选项错误.故选C.10.【2013中考江苏省无锡市3分】已知一组数据:15,13,15,16,17,16,14,15,则这组数据的极差与众数分别是【】A.4,15 B.3,15 C.4,16 D.3,1611.【2015中考江苏省无锡市2分】某种蔬菜按品质分成三个等级销售,销售情况如表:则售出蔬菜的平均单价为元/千克.【答案】4.4.【解析】试题分析:(5×20+4.5×40+4×40)÷(20+40+40)=(100+180+160)÷100=440÷100=4.4(元/千克).故答案为:4.4.考点:加权平均数.12.【2003中考江苏省无锡市4分】检查5个篮球的质量,把超过标准质量的克数记为正数,不足标准质量的克数记为负数,检查的结果如下表:(1)最接近标准质量的是▲ 号篮球;(2)质量最大的篮球比质量最小的篮球重▲ 克.【答案】3;17.【考点】绝对值,极差.【分析】最接近标准的就是与标准质量差的绝对值最小的数,因而最接近标准质量的是3号篮球;测试结果的极差就是最大值与最小值的差,因而这次测试结果的极差=9-(-8)=17(g).13.【2003中考江苏省无锡市4分】某校初三(1)班全体同学在“支援灾区献爱心”活动中都捐了款,具体捐款情况如下表,则该班学生捐款的平均数是▲ 元,中位数是▲ 元.【答案】2.5,2.【考点】加权平均数,中位数14.【2004中考江苏省无锡市4分】根据某市去年7月份中某21天的各天最高气温(℃)记录,制作了如图的统计图,由图中信息可知,记录的这些最高气温的众数是▲ ℃,其中最高气温达到35℃以上(包括35℃)的天数有▲ 天.15.【2005中考江苏省无锡市2分】一射击运动员在一次射击练习中打出的成绩是(单位:环):7,8,9,8,6,8,10,7,这组数据的众数是▲ _.【答案】8.【考点】众数.【分析】众数是在一组数据中,出现次数最多的数据,这组数据中,出现次数最多的是8,故这组数据的众数为8.16.【2005中考江苏省无锡市2分】某商场为了解本商场的服务质量,随机调查了本商场的100名顾客,调查的结果如图所示.根据图中给出的信息,这100名顾客中对该商场的服务质量表示不满意的有▲ 人.17.【2006中考江苏省无锡市2分】在一个不透明的口袋中装有3个红球、1个白球,它们除颜色不相同外,其余均相同.若把它们搅匀后从中任意摸出1个球,则摸到红球的概率是▲ _.18.【2006中考江苏省无锡市2分】据国家统计局5月23日发布的公告显示,2006年一季度GDP值为43390 亿元,其中,第一、第二、第三产业所占比例如图所示.根据图中数据可知,今年一季度第—产业的GDP 值约为▲ _亿元(结果精确到0.01).【答案】3241.23.【考点】扇形统计图,频数、频率和总量的关系.【分析】根据扇形统计图的定义,各部分占总体的百分比之和为1,先求出第一产业的DGP值占总体的百分比即可解决问题:∵第一产业的DGP值占总体的百分比为:1-49.81%-42.72%=7.47%,∴今年一季度第一产业的DGP值约为43390×7.47%≈3241.23亿元.19.【2007中考江苏省无锡市2分】写出生活中的一个随机事件:▲ .20.【2008中考江苏省无锡市2分】一射击运动员一次射击练习的成绩是(单位:环):7,10,9,9,10,这位运动员这次射击成绩的平均数是▲ 环.21.【2009中考江苏省3分】如图,一个圆形转盘被等分成五个扇形区域,上面分别标有数字1、2、3、4、5,转盘指针的位置固定,转动转盘后任其自由停止.转动转盘一次,当转盘停止转动时,记指针指向标有偶数所在区域的概率为P(偶数),指针指向标有奇数所在区域的概率为P(奇数),则P(偶数)▲ P(奇数)(填“>”“<”或“=”).22.【2016中考江苏省无锡市6分】某校为了解全校学生上学期参加社区活动的情况,学校随机调查了本校50名学生参加社区活动的次数,并将调查所得的数据整理如下:参加社区活动次数的频数、频率分布表根据以上图表信息,解答下列问题:(1)表中a= ,b= ;(2)请把频数分布直方图补充完整(画图后请标注相应的数据);(3)若该校共有1200名学生,请估计该校在上学期参加社区活动超过6次的学生有多少人?【答案】(1)12,0.08;(2)答案见解析;(3)648.(2)如图所示:;(3)由题意可得,该校在上学期参加社区活动超过6次的学生有:1200×(1﹣0.20﹣0.24)=648(人),答:该校在上学期参加社区活动超过6次的学生有648人.考点:频数(率)分布直方图;用样本估计总体;频数(率)分布表.23.【2016中考江苏省无锡市8分】甲、乙两队进行打乒乓球团体赛,比赛规则规定:两队之间进行3局比赛,3局比赛必须全部打完,只要赢满2局的队为获胜队,假如甲、乙两队之间每局比赛输赢的机会相同,且甲队已经赢得了第1局比赛,那么甲队最终获胜的概率是多少?(请用“画树状图”或“列表”等方法写出分析过程)【答案】34.考点:列表法与树状图法.24.【2015中考江苏省无锡市6分】某区教研部门对本区初二年级的学生进行了一次随机抽样问卷调查,其中有这样一个问题:老师在课堂上放手让学生提问和表达A.从不B.很少C.有时D.常常E.总是答题的学生在这五个选项中只能选择一项.如图是根据学生对该问题的答卷情况绘制的两幅不完整的统计图.根据以上信息,解答下列问题:(1)该区共有名初二年级的学生参加了本次问卷调查;(2)请把这幅条形统计图补充完整;(3)在扇形统计图中,“总是”所占的百分比为.【答案】(1)3200;(2)作图见试题解析;(3)42%.如图所示:(3)“总是”所占的百分比=13443200×100%=42%,故答案为:42%.考点:条形统计图;扇形统计图.25.【2015中考江苏省无锡市8分】(1)甲、乙、丙、丁四人做传球游戏:第一次由甲将球随机传给乙、丙、丁中的某一人,从第二次起,每一次都由持球者将球再随机传给其他三人中的某一人.求第二次传球后球回到甲手里的概率.(请用“画树状图”或“列表”等方式给出分析过程)(2)如果甲跟另外n(n≥2)个人做(1)中同样的游戏,那么,第三次传球后球回到甲手里的概率是(请直接写出结果).【答案】(1)13;(2)21nn.共有9种等可能的结果,其中符合要求的结果有3种,∴P(第2次传球后球回到甲手里)=39=13;(2)第三步传的结果是总结过是3n ,传给甲的结果是n (n ﹣1),第三次传球后球回到甲手里的概率是3(1)n n n -=21n n -,故答案为:21n n-. 考点:列表法与树状图法.26.【2014中考江苏省无锡市6分】为了解“数学思想作文对学习数学帮助有多大?”一研究员随机抽取了一定数量的高校大一学生进行了问卷调查,并将调查得到的数据用下面的扇形图和表来表示(图、表都没制作完成).根据图、表提供的信息.(1)请问:这次共有多少名学生参与了问卷调查? (2)算出表中a 、b 的值.(注:计算中涉及到的“人数”均精确到1)【答案】(1)1244;(2)a =316,b =116.试题解析:(1)参与问卷调查的学生人数=543÷43.65%≈1244; (2)a =1244×25.40%=316,b =1244﹣316﹣543﹣269=1244﹣1128=116. 考点:扇形统计图;统计表.27.【2014中考江苏省无锡市10分】三个小球分别标有﹣2,0,1三个数,这三个球除了标的数不同外,其余均相同,将小球放入一个不透明的布袋中搅匀.(1)从布袋中任意摸出一个小球,将小球上所标之数记下,然后将小球放回袋中,搅匀后再任意摸出一个小球,再记下小球上所标之数,求两次记下之数的和大于0的概率.(请用“画树状图”或“列表”等方法给出分析过程,并求出结果)(2)从布袋中任意摸出一个小球,将小球上所标之数记下,然后将小球放回袋中,搅匀后再任意摸出一个小球,将小球上所标之数再记下,…,这样一共摸了13次.若记下的13个数之和等于﹣4,平方和等于14.求:这13次摸球中,摸到球上所标之数是0的次数. 【答案】(1)13;(2)8.所有等可能的情况数有9种,其中两次记下之数的和大于0的情况有3种,则P =39=13; (2)设摸出﹣2、0、1的次数分别为x 、y 、z ,由题意得:21324(2)14x y z x z x z ++=⎧⎪-+=-⎨⎪-+=⎩①②③,③﹣②得,6x =18,解得x =3,把x =3代入②得,﹣2×3+z =﹣4,解得z =2,把x =3,z =2代入①得,y =8,所以,方程组的解是382x y z =⎧⎪=⎨⎪=⎩,故摸到球上所标之数是0的次数为8. 考点:列表法与树状图法;图表型.28.【2002中考江苏省无锡市5分】根据题意,完成下列填空:某装配班组为提高工作效率,准备采取每天生产定额、超产有奖的措施.下面是该班组13名工人在一天内各自完成装配的产量情况(单位:台), 6,7,7,8,8,8,9,9,10,12,14,14,15①这组数据的众数是 ▲ ,中位数是 ▲ ,平均数是 ▲ (结果精确到个位).②每人每天生产定额的确定,既要考虑到能促进生产,又要考虑到能调动生产者的积极性;根据你学过的统计知识及①中的结果,把生产定额定为每人每天完成装配 ▲ 台较为恰当.29.【2005中考江苏省无锡市6分】四张大小、质地均相同的卡片上分别标有数字1,2,3,4,现将标有数字的一面朝下扣在桌子上,从中随机抽取一张(不放回),再从桌子上剩下的3张中随机抽取第二张.(1)用画树状图的方法,列出前后两次抽得的卡片上所标数字的所有可能情况; (2)计算抽得的两张卡片上的数字之积为奇数的概率是多少? 【答案】解:(1)画树状图如下:123423423124第一次第二次∴前后两次抽得的卡片上所标数字的所有可能情况如下:(1,2),(1,3),(1,4),(2,1),(2,3),(2,4),(3,1),(3,2),(3,4), (4,1),(4,2),(4,3).(2)由(1)知前后两次抽得的卡片上所标数字的所有可能情况为12种,抽得的两张卡片上的数字之积为奇数的情况有(1,3),(3,1)两种, ∴P (积为奇数)=21=126. 【考点】树状图法,概率.【分析】依据题意画树状图法分析所有等可能的出现结果,然后根据概率公式求出该事件的概率. 30.【2005中考江苏省无锡市6分】甲、乙两人在某公司做见习推销员,推销“小天鹅”洗衣机,他们在1~8月份的销售情况如下表所示:(1)在右边给出的坐标系中,绘制甲、乙两人这8个月的月销售量的折线图:(甲用实线;乙用虚线)(2)请根据(1)中的折线图,写出2条关于甲、乙两人在这8个月中的销售状况的信息.①;②.【答案】解:(1)画折线图如下:甲用实线;乙用虚线.(2)①乙的月销售量总体上呈上升趋势;②甲最多销售8台/月,乙最多9台/月.【考点】折线统计图.31.【2006中考江苏省无锡市7分】甲、乙两人都想去买一本某种辞典,到书店后,发现书架上只有一本该辞典,于是两人都想把书让给对方先买,为此两人发生了“争执”.最后两人商定,用掷一枚各面分别标有数字1,2,3,4的正四面体骰子来决定谁先买.若甲赢,则乙买;若乙赢,则甲买.具体规则是:“每人各掷一次,若甲掷得的数字比乙大,则甲赢;若甲掷得的数字不比乙大,则乙赢”.请你用“画树状图”的方法帮他们分析一下,这个规则对甲、乙双方是否公平?【答案】解:画树状图如下:掷正四面体骰子的结果共有16种等可能结果,甲掷得的数字比乙大的结果有6种,甲掷得的数字不比乙大的结果有8种,∴P(甲赢)38=,P(乙赢)58=.∵P(甲赢)<P(乙赢),∴这个规则对甲、乙双方不公平.【考点】树状图法,概率,游戏公平性.32.【2006中考江苏省无锡市8分】姚明是我国著名的篮球运动员,他在2005-2006赛季NBA常规赛中表现非常优异.下面是他在这个赛季中,分期与“超音速队”和“快船队”各四场比赛中的技术统计.(1)请分别计算姚明在对阵“超音速”和“快船”两队的各四场比赛中,平均每场得多少分?(2)请你从得分的角度分析,姚明在与“超音速”和“快船”的比赛中,对阵哪一个队的发挥更稳定?(3)如果规定“综合得分”为:平均每场得分×1+平均每场篮板×1.5十平均每场失误×(-1.5),且综合得分越高表现越好,那么请你利用这种评价方法,来比较姚明在分别与“超音速”和“快船”的各四场比赛中,对阵哪一个队表现更好?【答案】解:(1)姚明在对阵“超音速”队的四场比赛中,平均每场得分为125.25x =,姚明在对阵“快船”队的四场比赛中,平均每场是分为223.25x =. (2)姚明在对阵“超音速”队的四场比赛中得分的方差为21 6.6875s =,姚明在对阵“快船”队的四场比赛中得分的方差为2219.1875s =,∵2212s s <,∴姚明在对阵“超音速”的比赛中发挥更稳定.(3)姚明在对阵“超音速”队的四场比赛中的综合得分为11125.2511 1.5( 1.5)37.6254p =+⨯+⨯-=, 姚明在对阵“快船”队的四场比赛中的综合得分为25123.25 1.52( 1.5)39.3754p =+⨯+⨯-=, ∵12p p <,∴姚明在对阵“快船”队的比赛中表现更好.【考点】加权平均数,方差.33.【2007中考江苏省无锡市8分】如图是甲、乙两人在一次射击比赛中击中靶的情况(击中靶中心的圆面为10环,靶中各数字表示该数所在圆环被击中所得的环数)每人射击了6次. (1)请用列表法将他俩的射击成绩统计出来;(2)请你用学过的统计知识,对他俩的这次射击情况进行比较.【答案】(1)解:(2)9x =甲环,9x =乙环,22213S S ==乙甲,. ∵x x =乙甲,22S S <乙甲,∴甲与乙的平均成绩相同,但甲发挥的比乙稳定.【考点】算术平均数,方差.34.【2007中考江苏省无锡市6分】某商场搞摸奖促销活动:商场在一只不透明的箱子里放了三个相同的小球,球上分别写有“10元”、“20元”、“30元”的字样.规定:顾客在本商场同一日内,每消费满100元,就可以在这只箱子里摸出一个小球(顾客每次摸出小球看过后仍然放回箱内搅匀),商场根据顾客摸出小球上所标金额就送上一份相应的奖品.现有一顾客在该商场一次性消费了235元,按规定,该顾客可以摸奖两次,求该顾客两次摸奖所获奖品的价格之和超过40元的概率.35.【2008中考江苏省无锡市6分】小晶和小红玩掷骰子游戏,每人将一个各面分别标有1,2,3,4,5,6的正方体骰子掷一次,把两人掷得的点数相加,并约定:点数之和等于6,小晶赢;点数之和等于7.小红赢;点数之和是其它数,两人不分胜负.问他们两人谁获胜的概率大?请你用“画树状图”或“列表”的方法加以分析说明.【答案】解: 画树状图如下:由表或图可知,点数之和共有36种可能的结果,其中6出现5次,7出现6次,∴故P(和为6)536=,P(和为7)636=.∵P(和为6)P<(和为7),∴小红获胜的概率大.【考点】列表法或树状图法,概率.36.【2008中考江苏省无锡市6分】小明所在学校初三学生综合素质评定分A,B,C,D四个等第,为了了解评定情况,小明随机调查了初三30名学生的学号及他们的评定等第,结果整理如下:注:等第A,B,C,D分别代表优秀、良好、合格、不合格.(1)请在下面给出的图中画出这30名学生综合素质评定等第的频数条形统计图,并计算其中等第达到良好以上(含良好)的频率.(2)已知初三学生学号是从3001开始,按由小到大顺序排列的连续整数,请你计算这30名学生学号的中位数,并运用中位数的知识来估计这次初三学生评定等第达到良好以上(含良好)的人数.【答案】解:(1)评定等第为A的有8人,等第为B的有14人,等第为C的有7人,等第为D的有1人,频数条形统计图如图所示:∴等第达到良好以上的有22人,其频率为2211 3015=.(2)这30个学生学号的中位数是第15个和第16个学生学号的平均数3117,∴初三年级约有学生(31173001)21233-⨯+=人,∵11233170.915⨯≈,∴该校初三年级综合素质评定达到良好以上的人数估计有171人.37.【2009中考江苏省8分】某市对九年级学生进行了一次学业水平测试,成绩评定分A、B、C、D四个等第.为了解这次数学测试成绩情况,相关部门从该市的农村、县镇、城市三类群体的学生中共抽取2 000名学生的数学成绩进行统计分析,相应数据的统计图表如下:(1)请将上面表格中缺少的三个数据补充完整;(2)若该市九年级共有60 000名学生参加测试,试估计该市学生成绩合格以上(含合格)的人数.38.【2009中考江苏省8分】一家医院某天出生了3个婴儿,假设生男生女的机会相同,那么这3个婴儿中,出现1个男婴、2个女婴的概率是多少?【答案】解:用树状图分析如下:∵这3个婴儿中,性别出现的等可能情况有8种,出现1个男婴、2个女婴的可能有3种,∴P(1个男婴,2个女婴)3 8 .答:出现1个男婴,2个女婴的概率是38.【考点】概率,列表法或树状图法.39.【2010中考江苏省无锡市6分】小刚参观上海世博会,由于仅有一天的时间,他上午从A—中国馆、B—日本馆、C—美国馆中任意选择一处参观,下午从D—韩国馆、E—英国馆、F—德国馆中任意选择一处参观.(1)请用画树状图或列表的方法,分析并写出小刚所有可能的参观方式(用字母表示即可);(2)求小刚上午和下午恰好都参观亚洲国家展馆的概率.【答案】解:(1)树状图:列表法:∴小刚所有可能选择参观的方式有:(A,D),(A,E),(A,F),(B,D),(B,E),(B,F),(C,D),(C,E),(C,F).(2)小刚上午和下午都选择参观亚洲国家展馆的可能有(A,D),(B,D)两种,∴小刚上午和下午恰好都参观亚洲国家展馆的概率=29.【考点】树状图或列表,概率.40.【2010中考江苏省无锡市6分】学校为了解全校1600名学生到校上学的方式,在全校随机抽取了若干名学生进行问卷调查.问卷给出了五种上学方式供学生选择,每人只能选一项,且不能不选.将调查得到的结果绘制成如图所示的频数分布直方图和扇形统计图(均不完整).(1)问:在这次调查中,一共抽取了多少名学生?(2)补全频数分布直方图;(3)估计全校所有学生中有多少人乘坐公交车上学.【答案】解:(1)∵被抽到的学生中,骑自行车上学的学生有24人,占整个被抽到学生总数的30%,∴抽取学生的总数为24÷30%=80(人).(2)被抽到的学生中,步行的人数为80×20%=16人,据此补全频数分布直方图:(3)被抽到的学生中,乘公交车的人数为80—(24+16+10+4)=26,∴全校所有学生中乘坐公交车上学的人数约为26160052060⨯=人.41.【2011中考江苏省无锡市7分】一不透明的袋子中装有4个球,它们除了上面分别标有的号码l、2、3、4不同外,其余均相同.将小球搅匀,并从袋中任意取出一球后放回;再将小球搅匀,并从袋中再任意取出一球.求第二次取出球的号码比第一次的大的概率.(请用“画树状图”或“列表”的方法给出分析过程,并写出结果)【答案】解:列表如下共有16种等可能情况,其中第二次取出球的号码比第一次大的有6种情况(1,2),(1,3),(1,4),(2,3),(2,4),(3,4).∴第二次取出球的号码比第一次的大的概率是63= 168.【考点】画树状图或列表,概率.【分析】根据概率的求法,找准两点:①全部等可能情况的总数;②符合条件的情况数目;二者的比值就是其发生的概率.42.【2011中考江苏省无锡市8分】某区共有甲、乙、丙三所高中,所有高二学生参加了一次数学测试.老师们对其中的一道题进行了分析,把每个学生的解答情况归结为下列四类情况之一:A——概念错误;B——计算错误;C——解答基本正确,但不完整;D——解答完全正确.各校出现这四类情况的人数分别占本校高二学生数的百分比如下表所示.已知甲校高二有400名学生,这三所学校高二学生人数的扇形统计图如图.根据以上信息,解答下列问题:(1)求全区高二学生总数;(2)求全区解答完全正确的学生数占全区高二学生总数的百分比m(精确到0.01%);(3)请你对表中三校的数据进行对比分析,给丙校高二数学老师提一个值得关注的问题,并说明理由.43.【2011中考江苏省无锡市10分】十一届全国人大常委会第二十次会议审议的个人所得税法修正案草案(简称“个税法草案”),拟将现行个人所得税的起征点由每月2000元提高到3000元,并将9级超额累进税率修改为7级,两种征税方法的1~5级税率情况见下表:注:“月应纳税额”为个人每月收入中超出起征点应该纳税部分的金额.“速算扣除数”是为快捷简便计算个人所得税而设定的一个数.例如:按现行个人所得税法的规定,某人今年3月的应纳税额为2600元,他应缴税款可以用下面两种方法之一来计算:方法一:按1~3级超额累进税率计算,即500×5%+1500×10%十600×15%=265(元).方法二:用“月应纳税额x适用税率一速算扣除数”计算,即2600×15%一l25=265(元).(1)请把表中空缺的“速算扣除数”填写完整;(2)甲今年3月缴了个人所得税1060元,若按“个税法草案”计算,则他应缴税款多少元?(3)乙今年3月缴了个人所得税3千多元,若按“个税法草案”计算,他应缴的税款恰好不变,那么乙今年3月所缴税款的具体数额为多少元?【答案】解:(1)75,525.(2)列出现行征税方法和草案征税方法月税额缴个人所得税y:因为1060元在第3税级,所以有20%x-525=1060,x=7925(元).答:他应缴税款7925元.(3)缴个人所得税3千多元的应缴税款适用第4级,假设个人收入为k,则有20%(k-2000)-375=25%(k-3000)-975 ,k=19000.所以乙今年3月所缴税款的具体数额为(19000-2000)×20%-375=3025(元).44.【2012中考江苏省无锡市8分】在1,2,3,4,5这五个数中,先任意选出一个数a,然后在余下的数中任意取出一个数b,组成一个点(a,b),求组成的点(a,b)恰好横坐标为偶数且纵坐标为奇数的概率.(请用“画树状图”或“列表”等方法写出分析过程)45.【2012中考江苏省无锡市8分】初三(1)班共有40名同学,在一次30秒打字速度测试中他们的成绩统计如表:(1)将表中空缺的数据填写完整,并补全频数分布直方图;(2)这个班同学这次打字成绩的众数是个,平均数是个.。
江苏无锡2016中考试题数学卷(解析版)

2016年江苏省无锡市中考数学试题一、选择题:本大题共10小题,每小题3分,共30分1.﹣2的相反数是()A.12B.±2C.2 D.12-【答案】C.【解析】试题分析:﹣2的相反数是2;故选C.考点:相反数.2.函数y=x的取值范围是()A.x>2 B.x≥2C.x≤2D.x≠2【答案】B.【解析】试题分析:依题意有:2x﹣4≥0,解得x≥2.故选B.考点:函数自变量的取值范围.3.sin30°的值为()A.12B.2C.2D.3【答案】A.考点:特殊角的三角函数值.这12名同学进球数的众数是()A.3.75 B.3 C.3.5 D.7【答案】B.【解析】试题分析:观察统计表发现:1出现1次,2出现1次,3出现4次,4出现2次,5出现3次,7出现1次,故这12名同学进球数的众数是3.故选B.考点:众数.5.下列图案中,是轴对称图形但不是中心对称图形的是()A.B.C.D.【答案】A.【解析】试题分析:A.是轴对称图形,但不是中心对称图形,故本选项正确;B.既是轴对称图形,又是中心对称图形,故本选项错误;C.既不是轴对称图形,又不是中心对称图形,故本选项错误;D.不是轴对称图形,但是中心对称图形,故本选项错误.故选A.考点:中心对称图形;轴对称图形.6.如图,AB是⊙O的直径,AC切⊙O于A,BC交⊙O于点D,若∠C=70°,则∠AOD的度数为()A.70°B.35°C.20°D.40°【答案】D.考点:切线的性质;圆周角定理.7.已知圆锥的底面半径为4cm,母线长为6cm,则它的侧面展开图的面积等于()A.24cm2 B.48cm2 C.24πcm2D.12πcm2【答案】C.【解析】试题分析:底面半径为4cm,则底面周长=8πcm,侧面面积=12×8π×6=24π(cm2).故选C.考点:圆锥的计算.8.下列性质中,菱形具有而矩形不一定具有的是()A.对角线相等B.对角线互相平分C.对角线互相垂直D.邻边互相垂直【答案】C.【点评】本题考查菱形与矩形的性质,需要同学们对各种平行四边形的性质熟练掌握并区分.考点:菱形的性质;矩形的性质.9.一次函数43y x b=-与413y x=-的图象之间的距离等于3,则b的值为()A.﹣2或4 B.2或﹣4 C.4或﹣6 D.﹣4或6 【答案】D.【解析】试题分析:一次函数43y x b =-可变形为:4x ﹣3y ﹣3b=0;一次函数413y x =-可变形为4x ﹣3y ﹣3=0.两平行线间的距离为:=3135b -=,解得:b=﹣4或b=6.故选D .考点:一次函数的性质;含绝对值符号的一元一次方程.10.如图,Rt△ABC 中,∠C=90°,∠ABC=30°,AC=2,△ABC 绕点C 顺时针旋转得△A1B1C,当A1落在AB 边上时,连接B1B ,取BB1的中点D ,连接A1D ,则A1D 的长度是( )AB. C .3 D.【答案】A .考点:旋转的性质;含30度角的直角三角形.二、填空题:本大题共8小题,每小题2分,共16分 11.分解因式:2ab a -= . 【答案】a (b ﹣a ). 【解析】试题分析:2ab a -=a (b ﹣a ).故答案为:a (b ﹣a ). 考点:因式分解-提公因式法.12.某公司在埃及新投产一座鸡饲料厂,年生产饲料可饲养57000000只肉鸡,这个数据用科学记数法可表示为 . 【答案】5.7×107. 【解析】试题分析:将57000000用科学记数法表示为:5.7×107.故答案为:5.7×107. 考点:科学记数法—表示较大的数.13.分式方程431x x=-的解是.【答案】x=4.【解析】试题分析:分式方程的两边同时乘x(x﹣1),可得:4(x﹣1)=3x,解得x=4,经检验x=4是分式方程的解.故答案为:x=4.考点:分式方程的解.14.若点A(1,﹣3),B(m,3)在同一反比例函数的图象上,则m的值为.【答案】﹣1.【解析】试题分析:∵点A(1,﹣3),B(m,3)在同一反比例函数的图象上,∴1×(﹣3)=3m,解得:m=﹣1.故答案为:﹣1.考点:反比例函数图象上点的坐标特征.15.写出命题“如果a=b”,那么“3a=3b”的逆命题.【答案】如果3a=3b,那么a=b.考点:命题与定理.16.如图,矩形ABCD的面积是15,边AB的长比AD的长大2,则AD的长是.【答案】3.【解析】试题分析:由边AB的长比AD的长大2,得:AB=AD+2.由矩形的面积,得:AD(AD+2)=15.解得AD=3,AD=﹣5(舍),故答案为:3.考点:矩形的性质.17.如图,已知▱OABC的顶点A、C分别在直线x=1和x=4上,O是坐标原点,则对角线OB 长的最小值为.【答案】5.考点:平行四边形的性质;坐标与图形性质.18.如图,△AOB 中,∠O=90°,AO=8cm ,BO=6cm ,点C 从A 点出发,在边AO 上以2cm/s 的速度向O 点运动,与此同时,点D 从点B 出发,在边BO 上以1.5cm/s 的速度向O 点运动,过OC 的中点E 作CD 的垂线EF ,则当点C 运动了 s 时,以C 点为圆心,1.5cm 为半径的圆与直线EF 相切.【答案】178.【解析】试题分析:当以点C 为圆心,1.5cm 为半径的圆与直线EF 相切时,此时,CF=1.5,∵AC=2t,BD=32t ,∴OC=8﹣2t ,OD=6﹣32t ,∵点E 是OC 的中点,∴CE=12OC=4﹣t ,∵∠EFC=∠O=90°,∠FCE=∠DCO,∴△EFC∽△DCO,∴EF CF OD OC =,∴EF=32OD OC =33(6)22(82)t t --=98.由勾股定理可知:222CE CF EF =+,∴22239(4)()()28t -=+,解得:t=178或t=478,∵0≤t≤4,∴t=178.故答案为:178.考点:直线与圆的位置关系.三、解答题:本大题共10小题,共84分19.(1)205(3)----;(2)2()(2)a b a a b---.【答案】(1)-5;(2)2b.【答案】(1)83x≤;(2)45xy=⎧⎨=-⎩.【解析】试题分析:(1)根据解一元一次不等式的步骤,去分母、移项、合并同类项、系数化为1,即可得出结果;(2)用加减法消去未知数y求出x的值,再代入求出y的值即可.试题解析:(1)去分母得:4x﹣6≤x+2,移项,合并同类项得:3x≤8,系数化为1得:8 3x≤;(2)2332 2x yx y=-⎧⎨+=⎩①②.由①得:2x+y=3③,③×2﹣②得:x=4,把x=4代入③得:y=﹣5,故原方程组的解为45 xy=⎧⎨=-⎩.考点:解一元一次不等式;解二元一次方程组.21.已知,如图,正方形ABCD中,E为BC边上一点,F为BA延长线上一点,且CE=AF.连接DE、DF.求证:DE=DF.【答案】证明见解析.考点:正方形的性质;全等三角形的判定与性质.22.如图,OA=2,以点A为圆心,1为半径画⊙A与OA的延长线交于点C,过点A画OA的垂线,垂线与⊙A的一个交点为B,连接BC(1)线段BC的长等于;(2)请在图中按下列要求逐一操作,并回答问题:①以点为圆心,以线段的长为半径画弧,与射线BA交于点D,使线段OD的;②连OD,在OD上画出点P,使OP得长等于3,请写出画法,并说明理由.【答案】(1(2)①A;BC;②答案见解析.(2)①在Rt△OAD中,OA=2,=BC,∴以点A为圆心,以线段BC的长为半径画弧,与射线BA交于点D,使线段OD.依此画出图形,如图1所示.故答案为:A;BC.,OP=3,OC=OA+AC=3,OA=2,∴23OA OP OC OD ==.故作法如下:连接CD ,过点A 作AP∥CD 交OD 于点P ,P 点即是所要找的点. 依此画出图形,如图2所示.考点:作图—复杂作图.23.某校为了解全校学生上学期参加社区活动的情况,学校随机调查了本校50名学生参加社区活动的次数,并将调查所得的数据整理如下:根据以上图表信息,解答下列问题:(1)表中a= ,b= ;(2)请把频数分布直方图补充完整(画图后请标注相应的数据);(3)若该校共有1200名学生,请估计该校在上学期参加社区活动超过6次的学生有多少人?【答案】(1)12,0.08;(2)答案见解析;(3)648.(2)利用(1)中所求补全条形统计图即可;(3)直接利用参加社区活动超过6次的学生所占频率乘以总人数进而求出答案.试题解析:(1)由题意可得:a=50×0.24=12(人),∵m=50﹣10﹣12﹣16﹣6﹣2=4,∴b=450=0.08;故答案为:12,0.08;(2)如图所示:;(3)由题意可得,该校在上学期参加社区活动超过6次的学生有:1200×(1﹣0.20﹣0.24)=648(人),答:该校在上学期参加社区活动超过6次的学生有648人.考点:频数(率)分布直方图;用样本估计总体;频数(率)分布表.24.甲、乙两队进行打乒乓球团体赛,比赛规则规定:两队之间进行3局比赛,3局比赛必须全部打完,只要赢满2局的队为获胜队,假如甲、乙两队之间每局比赛输赢的机会相同,且甲队已经赢得了第1局比赛,那么甲队最终获胜的概率是多少?(请用“画树状图”或“列表”等方法写出分析过程)【答案】3 4.考点:列表法与树状图法.25.某公司今年如果用原线下销售方式销售一产品,每月的销售额可达100万元.由于该产品供不应求,公司计划于3月份开始全部改为线上销售,这样,预计今年每月的销售额y (万元)与月份x(月)之间的函数关系的图象如图1中的点状图所示(5月及以后每月的销售额都相同),而经销成本p(万元)与销售额y(万元)之间函数关系的图象图2中线段AB所示.(1)求经销成本p(万元)与销售额y(万元)之间的函数关系式;(2)分别求该公司3月,4月的利润;(3)问:把3月作为第一个月开始往后算,最早到第几个月止,该公司改用线上销售后所获得利润总额比同期用线下方式销售所能获得的利润总额至少多出200万元?(利润=销售额﹣经销成本)【答案】(1)1102p x=+;(2)三月份利润为65万元,四月份的利润为77.5万元;(3)最早到第5个月.考点:一次函数的应用.26.已知二次函数22y ax ax c=-+(a>0)的图象与x轴的负半轴和正半轴分别交于A、B两点,与y轴交于点C,它的顶点为P,直线CP与过点B且垂直于x轴的直线交于点D,且CP:PD=2:3.(1)求A、B两点的坐标;(2)若tan∠PDB=54,求这个二次函数的关系式.【答案】(1)A(12-,0);(2)248155y x x=--.考点:抛物线与x轴的交点;二次函数的性质;待定系数法求二次函数解析式.27.如图,已知▱ABCD的三个顶点A(n,0)、B(m,0)、D(0,2n)(m>n>0),作▱ABCD关于直线AD 的对称图形AB1C1D .(1)若m=3,试求四边形CC1B1B 面积S 的最大值;(2)若点B1恰好落在y 轴上,试求nm 的值.【答案】(1)9;(2)38.(2)如图2,易证△AOD∽△B1OB,根据相似三角形的性质可得OB1=2m,然后在Rt△AOB1中运用勾股定理就可解决问题.试题解析:(1)如图1,∵▱ABCD 与四边形AB1C1D 关于直线AD 对称,∴四边形AB1C1D 是平行四边形,CC1⊥EF,BB1⊥EF,∴BC∥AD∥B1C1,CC1∥BB1,∴四边形BCEF 、B1C1EF 是平行四边形,∴S ▱BCEF=S ▱BCDA=S ▱B1C1DA=S ▱B1C1EF ,∴S ▱BCC1B1=2S ▱BCDA .∵A(n ,0)、B (m ,0)、D (0,2n )、m=3,∴AB=m﹣n=3﹣n ,OD=2n ,∴S ▱BCDA=AB •OD=(3﹣n )•2n=22(3)n n --=2392()22n --+,∴S ▱BCC1B1=2S ▱BCDA=234()92n --+.∵﹣4<0,∴当n=32时,S ▱BCC1B1最大值为9;考点:坐标与图形性质;勾股定理;相似三角形的判定与性质.28.如图1是一个用铁丝围成的篮框,我们来仿制一个类似的柱体形篮框.如图2,它是由一个半径为r 、圆心角90°的扇形A2OB2,矩形A2C2EO 、B2D2EO ,及若干个缺一边的矩形状框A1C1D1B1、A2C2D2B2、…、AnBnCnDn ,OEFG 围成,其中A1、G 、B1在22A B上,A2、A3…、An 与B2、B3、…Bn 分别在半径OA2和OB2上,C2、C3、…、Cn 和D2、D3…Dn 分别在EC2和ED2上,EF⊥C2D2于H2,C1D1⊥EF 于H1,FH1=H1H2=d ,C1D1、C2D2、C3D3、CnDn 依次等距离平行排放(最后一个矩形状框的边CnDn 与点E 间的距离应不超过d ),A1C1∥A2C2∥A3C3∥…∥AnCn.(1)求d 的值;(2)问:CnDn 与点E 间的距离能否等于d ?如果能,求出这样的n 的值,如果不能,那么它们之间的距离是多少?【答案】(1)24r -;(2)不能,42r .考点:垂径定理.。
江苏省无锡市滨湖区2016年中考数学模拟试卷含答案解析

2016年江苏省无锡市滨湖区中考数学模拟试卷一、选择题(本大题共10题,每小题3分,共计30分.在每小题所给出的四个选项中,恰有一项是符合题目要求的,请用2B铅笔把答题卡上相应的答案涂黑.)1.的相反数是()A.﹣ B.3 C.﹣3 D.2.下列计算正确的是()A.a2+a2=a4B.(a2)3=a5C.a+2=2a D.(ab)3=a3b33.已知某种纸一张的厚度约为0.0089cm,用科学记数法表示这个数为()A.8.9×103B.8.9×10﹣4C.8.9×10﹣3D.89×10﹣24.已知一次函数y=kx﹣2k+3的图象与x轴交于点A(3,0),则该图象与y轴的交点的坐标为()A.(0,﹣3)B.(0,1) C.(0,3) D.(0,9)5.为调查某班学生每天使用零花钱的情况,张华随机调查了30名同学,结果如下表:每天使用零花钱(单位:元) 1 2 3 4 5人数 2 5 8 9 6则这30名同学每天使用的零花钱的众数和中位数分别是()A.4,3 B.4,3.5 C.3.5,3.5 D.3.5,46.下列命题中,是真命题的为()A.四个角相等的四边形是矩形B.四边相等的四边形是正方形C.对角线相等的四边形是菱形D.对角线互相垂直的四边形是平行四边形7.十边形的内角和为()A.360°B.1440°C.1800°D.2160°8.如图是一个由多个相同小正方体堆积而成的几何体的俯视图,图中所示数字为该位置小正方体的个数,则这个几何体的左视图是()A.B.C.D.9.如图,已知⊙O为△ABC的外接圆,且AB为⊙O的直径,若OC=5,AC=6,则BC长为()A.10 B.9 C.8 D.无法确定10.如图,A在O的正北方向,B在O的正东方向,且OA=OB.某一时刻,甲车从A出发,以60km/h的速度朝正东方向行驶,与此同时,乙车从B出发,以40km/h的速度朝正北方向行驶.1小时后,位于点O处的观察员发现甲、乙两车之间的夹角为45°,即∠COD=45°,此时,甲、乙两人相距的距离为()A.90km B.50km C.20km D.100km二、填空题(本大题共8小题,每小题2分,共计16分.请把答案直接填写在答题卡相应位置上.)11.若分式的值为0,则x= .12.分解因式:2x2﹣8= .13.某公司2月份的利润为160万元,4月份的利润250万元,若设平均每月的增长率x,则根据题意可得方程为.14.已知△ABC中,AC=BC,∠A=80°,则∠B= °.15.如图,已知A(4,0),B(3,3),以OA、AB为边作▱OABC,则若一个反比例函数的图象经过C点,则这个反比例函数的表达式为.16.如图,△ABC三个顶点的坐标分别为A(2,2),B(4,2),C(6,4),以原点O为位似中心,将△ABC 缩小为原来的一半,则线段AC的中点P变换后在第一象限对应点的坐标为.17.甲、乙两工程队分别同时开挖两条600米长的管道,所挖管道长度y(米)与挖掘时间x(天)之间的关系如图所示,则下列说法中:①甲队每天挖100米;②乙队开挖两天后,每天挖50米;③甲队比乙队提前3天完成任务;④当x=2或6时,甲乙两队所挖管道长度都相差100米.正确的有.(在横线上填写正确的序号)18.在平面直角坐标系中,点O为坐标原点,A、B、C三点的坐标为(,0)、(3,0)、(0,5),点D在第一象限,且∠ADB=60°,则线段CD的长的最小值为.三、解答题(本大题共10小题,共计84分.请在答题卡指定区域内作答,解答时应写出必要的文字说明、证明过程或演算步骤.)19.计算:()0+﹣|﹣3|+tan45°;(2)计算:(x+2)2﹣2(x﹣1).20.解方程组:(2)解不等式:<x.21.如图,在▱ABCD中,E是BC的中点,连接AE并延长交DC的延长线于点F.(1)求证:AB=CF;(2)连接DE,若AD=2AB,求证:DE⊥AF.22.某高校学生会发现同学们就餐时剩余饭菜较多,浪费严重,于是准备在校内倡导“光盘行动”,让同学们珍惜粮食,为了让同学们理解这次活动的重要性,校学生会在某天午餐后,随机调查了部分同学就餐饭菜的剩余情况,并将结果统计后绘制成了如图所示的不完整的统计图.(1)这次被调查的同学共有名;(2)补全条形统计图;(3)计算在扇形统计图中剩大量饭菜所对应扇形圆心角的度数;(4)校学生会通过数据分析,估计这次被调查的所有学生一餐浪费的食物可以供200人用一餐.据此估算,该校20000名学生一餐浪费的食物可供多少人食用一餐?23.某市今年的信息技术结业考试,采用学生抽签的方式决定自己的考试内容.规定:每位考生先在三个笔试题(题签分别用代码B1、B2、B3表示)中抽取一个,再在三个上机题(题签分别用代码J1、J2、J3表示)中抽取一个进行考试.小亮在看不到题签的情况下,分别从笔试题和上机题中随机地抽取一个题签.(1)用树状图或列表法表示出所有可能的结果;(2)求小亮抽到的笔试题和上机题的题签代码的下标(例如“B1”的下标为“1”)为一个奇数一个偶数的概率.24.如图,四边形ABCD 内接于⊙O,BD是⊙O的直径,过点A作⊙O的切线AE交CD的延长线于点E,DA平分∠BDE.(1)求证:AE⊥CD;(2)已知AE=4cm,CD=6cm,求⊙O的半径.25.旅行社为某旅游团包飞机去旅游,其中旅游社的包机费为15000元,旅游团中每人的飞机票按以下方式与旅行社结算;若旅游团的人数在30人或30人以下,飞机票每张收费900元;若旅游团的人数多于30人,则给予优惠,每多1人,机票费每张减少10元,但旅游团的人数最多有75人.设旅游团的人数为x人,每张飞机票价为y元,旅行社可获得的利润为W元.(1)写出y与x之间的函数关系式;(2)写出W与x之间的函数关系式;(3)当旅游团的人数为多少时,旅行社可获得的利润最大?最大利润为多少元?26.【问题】如图1、2是底面半径为1cm,母线长为2cm的圆柱体和圆锥体模型.现要用长为2πcm,宽为4cm的长方形彩纸(如图3)装饰圆柱、圆锥模型表面.已知一个圆柱和一个圆锥模型为一套,长方形彩纸共有122张,用这些纸最多能装饰多少套模型呢?【对话】老师:“长方形纸可以怎么裁剪呢?”学生甲:“可按图4方式裁剪出2张长方形.”学生乙:“可按图5方式裁剪出6个小圆.”学生丙:“可按图6方式裁剪出1个大圆和2个小圆.”老师:尽管还有其他裁剪方法,但为裁剪方便,我们就仅用这三位同学的裁剪方法!【解决】(1)计算:圆柱的侧面积是cm2,圆锥的侧面积是cm2.(2)1张长方形彩纸剪拼后最多能装饰个圆锥模型;5张长方形彩纸剪拼后最多能装饰个圆柱体模型.(3)求用122张彩纸对多能装饰的圆锥、圆柱模型套数.27.如图(1),∠AOB=45°,点P、Q分别是边OA,OB上的两点,且OP=2cm.将∠O沿PQ折叠,点O落在平面内点C处.(1)①当PC∥QB时,OQ= ;②当PC⊥QB时,求OQ的长.(2)当折叠后重叠部分为等腰三角形时,求OQ的长.28.如图,经过原点的抛物线y=﹣x2+2mx与x轴的另一个交点为A.点P在一次函数y=2x﹣2m的图象上,PH ⊥x轴于H,直线AP交y轴于点C,点P的横坐标为1.(点C不与点O重合)(1)如图1,当m=﹣1时,求点P的坐标.(2)如图2,当时,问m为何值时?(3)是否存在m,使?若存在,求出所有满足要求的m的值,并定出相对应的点P坐标;若不存在,请说明理由.2016年江苏省无锡市滨湖区中考数学模拟试卷参考答案与试题解析一、选择题(本大题共10题,每小题3分,共计30分.在每小题所给出的四个选项中,恰有一项是符合题目要求的,请用2B铅笔把答题卡上相应的答案涂黑.)1.的相反数是()A.﹣ B.3 C.﹣3 D.【考点】相反数.【专题】计算题.【分析】求一个数的相反数,即在这个数的前面加负号.【解答】解:根据相反数的定义,得的相反数是﹣.故选A.【点评】本题主要考查了相反数的求法,比较简单.2.下列计算正确的是()A.a2+a2=a4B.(a2)3=a5C.a+2=2a D.(ab)3=a3b3【考点】幂的乘方与积的乘方;合并同类项.【分析】分别利用幂的乘方运算法则以及合并同类项法则和积的乘方运算法则化简,进而求出答案.【解答】解:A、a2+a2=2a2,故此选项错误;B、(a2)3=a6,故此选项错误;C、a+2无法计算,故此选项错误;D、(ab)3=a3b3,正确.故选:D.【点评】此题主要考查了幂的乘方运算以及合并同类项和积的乘方运算等知识,正确应用运算法则是解题关键.3.已知某种纸一张的厚度约为0.0089cm,用科学记数法表示这个数为()A.8.9×103B.8.9×10﹣4C.8.9×10﹣3D.89×10﹣2【考点】科学记数法—表示较小的数.【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负整数指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【解答】解:0.0089=8.9×10﹣3;故选C.【点评】本题考查用科学记数法表示较小的数,一般形式为a×10﹣n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.4.已知一次函数y=kx﹣2k+3的图象与x轴交于点A(3,0),则该图象与y轴的交点的坐标为()A.(0,﹣3)B.(0,1) C.(0,3) D.(0,9)【考点】一次函数图象上点的坐标特征.【分析】先把点A(3,0)代入一次函数y=kx﹣2k+3求出k的值,故可得出函数解析式,再令x=0,求出y 的值即可.【解答】解:∵一次函数y=kx﹣2k+3的图象与x轴交于点A(3,0),∴3k﹣2k+3=0,解得k=﹣3,∴一次函数的解析式为y=﹣3x+9.∵令x=0,则y=9,∴该图象与y轴的交点的坐标为(0,9).故选D.【点评】本题考查的是一次函数的图象上点的坐标特点,熟知一次函数图象上各点的坐标一定适合此函数的解析式是解答此题的关键.5.为调查某班学生每天使用零花钱的情况,张华随机调查了30名同学,结果如下表:每天使用零花钱(单位:元) 1 2 3 4 5人数 2 5 8 9 6则这30名同学每天使用的零花钱的众数和中位数分别是()A.4,3 B.4,3.5 C.3.5,3.5 D.3.5,4【考点】众数;中位数.【分析】利用众数的定义可以确定众数在第三组,由于张华随机调查了20名同学,根据表格数据可以知道中位数是按从小到大排序,第15个与第16个数的平均数.【解答】解:∵4出现了9次,它的次数最多,∴众数为4.∵张华随机调查了30名同学,∴根据表格数据可以知道中位数=(3+4)÷2=3.5,即中位数为3.5.故选B.【点评】本题属于基础题,考查了确定一组数据的中位数和众数的能力.要明确定义,一些学生往往对这个概念掌握不清楚,计算方法不明确而误选其它选项,注意找中位数的时候一定要先排好顺序,然后再根据奇数和偶数个来确定中位数,如果数据有奇数个,则正中间的数字即为所求,如果是偶数个则找中间两位数的平均数.6.下列命题中,是真命题的为()A.四个角相等的四边形是矩形B.四边相等的四边形是正方形C.对角线相等的四边形是菱形D.对角线互相垂直的四边形是平行四边形【考点】命题与定理.【分析】利用矩形的判定定理、平行四边形的判定定理、菱形的判定定理及正方形的判定方法分别判断后即可确定正确的选项.【解答】解:A、四个角相等的四边形是矩形,正确,为真命题;B、四边相等的四边形是菱形,故错误,是假命题;C、对角线相等的平行四边形是菱形,故错误,是假命题;D、对角线互相平分的四边形是平行四边形,故错误,是假命题,故选A.【点评】本题考查了命题与定理的知识,解题的关键是了解矩形的判定定理、平行四边形的判定定理、菱形的判定定理及正方形的判定方法,难度不大.7.十边形的内角和为()A.360°B.1440°C.1800°D.2160°【考点】多边形内角与外角.【分析】根据多边形的内角和计算公式(n﹣2)×180°进行计算即可.【解答】解:十边形的内角和等于:(10﹣2)×180°=1440°.故选B.【点评】本题主要考查了多边形的内角和定理,关键是掌握多边形的内角和的计算公式.8.如图是一个由多个相同小正方体堆积而成的几何体的俯视图,图中所示数字为该位置小正方体的个数,则这个几何体的左视图是()A.B.C.D.【考点】简单组合体的三视图.【专题】压轴题.【分析】由俯视图易得此组合几何体有3层,三列,2行.找从左面看所得到的图形,应看俯视图有几行,每行上的小正方体最多有几个.【解答】解:从左面看可得到2列正方形从左往右的个数依次为2,3,故选D.【点评】本题考查了三视图的知识,左视图是从物体的左面看得到的视图.9.如图,已知⊙O为△ABC的外接圆,且AB为⊙O的直径,若OC=5,AC=6,则BC长为()A.10 B.9 C.8 D.无法确定【考点】三角形的外接圆与外心.【分析】先根据圆周角定理判断出△ABC是直角三角形,再由勾股定理即可得出结论.【解答】解:∵AB为⊙O的直径,∴∠ACB=90°.∵OC=5,AC=6,∴AB=2OC=10,∴BC===8.故选C.【点评】本题考查的是三角形的外接圆与外心,熟知直径所对的圆周角是直角是解答此题的关键.10.如图,A在O的正北方向,B在O的正东方向,且OA=OB.某一时刻,甲车从A出发,以60km/h的速度朝正东方向行驶,与此同时,乙车从B出发,以40km/h的速度朝正北方向行驶.1小时后,位于点O处的观察员发现甲、乙两车之间的夹角为45°,即∠COD=45°,此时,甲、乙两人相距的距离为()A.90km B.50km C.20km D.100km【考点】解直角三角形的应用-方向角问题.【分析】根据旋转的性质结合全等三角形的判定与性质得出△COD≌△B′OC(SAS),则B′C=DC进而求出即可.【解答】解:由题意可得:AB′=BD=40km,AC=60km,将△OBD顺时针旋转270°,则BO与AO重合,在△COD和△B′OC中,∵,∴△COD≌△B′OC(SAS),∴B′C=DC=40+60=100(km),∴甲、乙两人相距的距离为100km;故选:D.【点评】此题主要考查了解直角三角形的应用,用到的知识点是勾股定理的应用以及全等三角形的判定与性质,根据题意得出△COD≌△B′OC是解题关键.二、填空题(本大题共8小题,每小题2分,共计16分.请把答案直接填写在答题卡相应位置上.)11.若分式的值为0,则x= 1 .【考点】分式的值为零的条件.【分析】根据分式值为零的条件是分子等于零且分母不等于零列式计算即可.【解答】解:由题意得,x﹣1=0,解得,x=1,故答案为:1.【点评】本题考查的是分式为零的条件,分式值为零的条件是分子等于零且分母不等于零.12.分解因式:2x2﹣8= 2(x+2)(x﹣2).【考点】因式分解-提公因式法.【分析】观察原式,找到公因式2,提出即可得出答案.【解答】解:2x2﹣8=2(x+2)(x﹣2).【点评】本题考查提公因式法分解因式,是基础题.13.某公司2月份的利润为160万元,4月份的利润250万元,若设平均每月的增长率x,则根据题意可得方程为160(1+x)2=250 .【考点】由实际问题抽象出一元二次方程.【专题】增长率问题.【分析】根据2月份的利润为160万元,4月份的利润250万元,每月的平均增加率相等,可以列出相应的方程,本题得以解决.【解答】解:由题意可得,160(1+x)2=250,故答案为:160(1+x)2=250.【点评】本题考查由实际问题抽象出一元二次方程,解题的关键是明确题意,列出相应的方程.14.已知△ABC中,AC=BC,∠A=80°,则∠B= 80 °.【考点】等腰三角形的性质.【分析】根据等腰三角形两底角相等即可得解.【解答】解:∵△ABC中,AC=BC,∠A=80°,∴∠B=∠A=80°.故答案为:80.【点评】本题考查了等腰三角形两底角相等的性质,是基础题.15.如图,已知A(4,0),B(3,3),以OA、AB为边作▱OABC,则若一个反比例函数的图象经过C点,则这个反比例函数的表达式为y=﹣.【考点】待定系数法求反比例函数解析式;平行四边形的性质.【专题】计算题;反比例函数及其应用;多边形与平行四边形.【分析】过B作BE⊥x轴,过C作CD⊥x轴,可得∠BEA=∠CDO=90°,由四边形ABCO为平行四边形,得到对边平行且相等,利用两直线平行得到一对同位角相等,利用AAS得到三角形ABE与三角形OCD全等,利用全等三角形对应边相等得到AE=OD,BE=CD,确定出C坐标,利用待定系数法确定出反比例解析式即可.【解答】解:过B作BE⊥x轴,过C作CD⊥x轴,可得∠BEA=∠CDO=90°,∵四边形ABCO为平行四边形,∴AB∥OC,AB=OC,∴∠BAE=∠COD,在△ABE和△OCD中,,∴△ABE≌△OCD(AAS),∴BE=CD,AE=OD,∵A(4,0),B(3,3),∴OA=4,BE=OE=3,∴AE=OA﹣OE=4﹣3=1,∴OD=AE=1,CD=BE=3,∴C(﹣1,3),设过点C的反比例解析式为y=,把C(﹣1,3)代入得:k=﹣3,则反比例解析式为y=﹣.故答案为:y=﹣【点评】此题考查了待定系数法确定反比例函数解析式,坐标与图形性质,以及平行四边形的性质,熟练掌握待定系数法是解本题的关键.16.如图,△ABC三个顶点的坐标分别为A(2,2),B(4,2),C(6,4),以原点O为位似中心,将△ABC缩小为原来的一半,则线段AC的中点P变换后在第一象限对应点的坐标为(2,).【考点】位似变换;坐标与图形性质.【分析】位似变换中对应点的坐标的变化规律:在平面直角坐标系中,如果位似变换是以原点为位似中心,相似比为k,那么位似图形对应点的坐标的比等于k或﹣k,根据此题是线段AC的中点P变换后在第一象限对应点的坐标进而得出答案.【解答】解:∵△ABC三个顶点的坐标分别为A(2,2),B(4,2),C(6,4),∴AC的中点是(4,3),∵将△ABC缩小为原来的一半,∴线段AC的中点P变换后在第一象限对应点的坐标为:(2,).故答案为:(2,).【点评】本题主要考查位似变换中对应点的坐标的变化规律,利用图形得出AC的中点坐标是解题关键.17.甲、乙两工程队分别同时开挖两条600米长的管道,所挖管道长度y(米)与挖掘时间x(天)之间的关系如图所示,则下列说法中:①甲队每天挖100米;②乙队开挖两天后,每天挖50米;③甲队比乙队提前3天完成任务;④当x=2或6时,甲乙两队所挖管道长度都相差100米.正确的有①②④.(在横线上填写正确的序号)【考点】一次函数的应用.【分析】①根据函数图象由工作效率=工作总量÷工作时间就可以得出结论;②根据函数图象由工作效率=工作总量÷工作时间就可以得出结论;③根据函数图象求出乙队完成的时间就可以求出结论;④由甲的工作效率就可以求出2天时的工作量为200米,乙队是300米.6天时甲队是600米,乙队是500米得出300﹣200=600﹣500=100米故得出结论.【解答】解:①根据函数图象得:甲队的工作效率为:600÷6=100米/天,故正确;②根据函数图象,得乙队开挖两天后的工作效率为:(500﹣300)÷(6﹣2)=50米/天,故正确;③乙队完成任务的时间为:2+(600﹣300)÷50=8天,∴甲队提前的时间为:8﹣6=2天.∵2≠3,∴③错误;④当x=2时,甲队完成的工作量为:2×100=200米,乙队完成的工作量为:300米.当x=6时,甲队完成的工作量为600米,乙队完成的工作量为500米.∵300﹣200=600﹣500=100,∴当x=2或6时,甲乙两队所挖管道长度都相差100米.故正确.故答案为:①②④.【点评】本题考查了一次函数的图象的性质的运用,工程问题的数量关系:工作总量=工作效率×工作时间的运用,解答时分析清楚一次函数的图象的意义是关键.18.在平面直角坐标系中,点O为坐标原点,A、B、C三点的坐标为(,0)、(3,0)、(0,5),点D在第一象限,且∠ADB=60°,则线段CD的长的最小值为2﹣2 .【考点】点与圆的位置关系;坐标与图形性质;垂径定理;圆周角定理.【分析】作圆,求出半径和PC的长度,判出点D只有在CP上时CD最短,CD=CP﹣DP求解.【解答】解:作圆,使∠ADB=60°,设圆心为P,连结PA、PB、PC,PE⊥AB于E,如图所示:∵A(,0)、B(3,0),∴E(2,0)又∠ADB=60°,∴∠APB=120°,∴PE=1,PA=2PE=2,∴P(2,1),∵C(0,5),∴PC==2,又∵PD=PA=2,∴只有点D在线段PC上时,CD最短(点D在别的位置时构成△CDP)∴CD最小值为:2﹣2.故答案为:2﹣2.【点评】本题主要考查坐标与图形的性质,圆周角定理及勾股定理,解决本题的关键是判出点D只有在CP上时CD最短.三、解答题(本大题共10小题,共计84分.请在答题卡指定区域内作答,解答时应写出必要的文字说明、证明过程或演算步骤.)19.(1)计算:()0+﹣|﹣3|+tan45°;(2)计算:(x+2)2﹣2(x﹣1).【考点】实数的运算;去括号与添括号;完全平方公式;零指数幂;特殊角的三角函数值.【专题】计算题.【分析】(1)根据实数的运算顺序,首先计算乘方、开方,然后从左向右依次计算,求出算式()0+﹣|﹣3|+tan45°的值是多少即可.(2)根据实数的运算顺序,首先计算乘方、乘法,然后计算减法,求出算式(x+2)2﹣2(x﹣1)的值是多少即可.【解答】解:(1)()0+﹣|﹣3|+tan45°=1+3﹣3+1=3﹣1(2)(x+2)2﹣2(x﹣1)=x2+4x+4﹣2x+2=x2+2x+6【点评】(1)此题主要考查了实数的运算,要熟练掌握,解答此题的关键是要明确:在进行实数运算时,和有理数运算一样,要从高级到低级,即先算乘方、开方,再算乘除,最后算加减,有括号的要先算括号里面的,同级运算要按照从左到右的顺序进行.另外,有理数的运算律在实数范围内仍然适用.(2)此题还考查了零指数幂的运算,要熟练掌握,解答此题的关键是要明确:①a0=1(a≠0);②00≠1.(3)此题还考查了完全平方公式的应用,以及特殊角的三角函数值,要熟练掌握.20.(1)解方程组:(2)解不等式:<x.【考点】解一元一次不等式;解二元一次方程组.【专题】计算题.【分析】(1)先利用加减消元法求出x,然后利用代入法求出y,从而得到方程组的解;(2)先去分母得到2x﹣1<3x,然后移项、合并,然后把x的系数化为1即可.【解答】解:(1),①×3+②得9x+2x=3+8,解得x=1,把x=1代入①得3﹣y=1,解得y=2,所以方程组的解为;(2)去分母得2x﹣1<3x,移项得2x﹣3x<1,合并得﹣x<1,系数化为1得x>﹣1.【点评】本题考查了解一元一次不等式:根据不等式的性质解一元一次不等式基本操作方法与解一元一次方程基本相同,都有如下步骤:①去分母;②去括号;③移项;④合并同类项;⑤化系数为1.也考查了解二元一次方程组.21.如图,在▱ABCD中,E是BC的中点,连接AE并延长交DC的延长线于点F.(1)求证:AB=CF;(2)连接DE,若AD=2AB,求证:DE⊥AF.【考点】平行四边形的性质;全等三角形的判定与性质.【分析】(1)由在▱ABCD中,E是BC的中点,利用ASA,即可判定△ABE≌△FCE,继而证得结论;(2)由AD=2AB,AB=FC=CD,可得AD=DF,又由△ABE≌△FCE,可得AE=EF,然后利用三线合一,证得结论.【解答】证明:(1)∵四边形ABCD是平行四边形,∴AB∥DF,∴∠ABE=∠FCE,∵E为BC中点,∴BE=CE,在△ABE与△FCE中,,∴△ABE≌△FCE(ASA),∴AB=FC;(2)∵AD=2AB,AB=FC=CD,∴AD=DF,∵△ABE≌△FCE,∴AE=EF,∴DE⊥AF.【点评】此题考查了平行四边形的性质、全等三角形的判定与性质以及等腰三角形的判定与性质.此题难度适中,注意掌握数形结合思想的应用.22.某高校学生会发现同学们就餐时剩余饭菜较多,浪费严重,于是准备在校内倡导“光盘行动”,让同学们珍惜粮食,为了让同学们理解这次活动的重要性,校学生会在某天午餐后,随机调查了部分同学就餐饭菜的剩余情况,并将结果统计后绘制成了如图所示的不完整的统计图.(1)这次被调查的同学共有1000 名;(2)补全条形统计图;(3)计算在扇形统计图中剩大量饭菜所对应扇形圆心角的度数;(4)校学生会通过数据分析,估计这次被调查的所有学生一餐浪费的食物可以供200人用一餐.据此估算,该校20000名学生一餐浪费的食物可供多少人食用一餐?【考点】条形统计图;用样本估计总体;扇形统计图.【分析】(1)根据没有剩饭的人数是400人,所占的百分比是40%,据此即可求得调查的总人数;(2)利用(1)中求得结果减去其它组的人数即可求得剩少量饭的人数,从而补全直方图;(3)利用360°乘以对应的比例即可求解;(4)利用20000除以调查的总人数,然后乘以200即可求解.【解答】解:(1)被调查的同学的人数是400÷40%=1000(名);(2)剩少量的人数是1000﹣400﹣250﹣150=200(名),;(3)在扇形统计图中剩大量饭菜所对应扇形圆心角的度数是:360°×=54°;(4)×200=4000(人).答:校20000名学生一餐浪费的食物可供4000人食用一餐.【点评】本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.23.某市今年的信息技术结业考试,采用学生抽签的方式决定自己的考试内容.规定:每位考生先在三个笔试题(题签分别用代码B1、B2、B3表示)中抽取一个,再在三个上机题(题签分别用代码J1、J2、J3表示)中抽取一个进行考试.小亮在看不到题签的情况下,分别从笔试题和上机题中随机地抽取一个题签.(1)用树状图或列表法表示出所有可能的结果;(2)求小亮抽到的笔试题和上机题的题签代码的下标(例如“B1”的下标为“1”)为一个奇数一个偶数的概率.【考点】列表法与树状图法.【分析】(1)首先根据题意画出树状图,然后由树状图求得所有等可能的结果;(2)由(1)中的树状图可求得小亮抽到的笔试题和上机题的题签代码的下标(例如“B1”的下标为“1”)为一个奇数一个偶数的情况,然后直接利用概率公式求解即可求得答案.【解答】解:(1)画树状图:则共有9种等可能的结果;(2)∵由树状图或表可知,所有可能的结果共有9种,其中笔试题和上机题的题签代码下标为一奇一偶的有4种,∴题签代码下标为一奇一偶的概率是.【点评】此题考查了列表法或树状图法求概率.用到的知识点为:概率=所求情况数与总情况数之比.24.如图,四边形ABCD 内接于⊙O,BD是⊙O的直径,过点A作⊙O的切线AE交CD的延长线于点E,DA平分∠BDE.(1)求证:AE⊥CD;(2)已知AE=4cm,CD=6cm,求⊙O的半径.【考点】切线的性质.【分析】(1)欲证明AE⊥CD,只要证明∠EAD+∠ADE=90°即可;(2)过点O作OF⊥CD,垂足为点F.从而证得四边形AOFE是矩形,得出OF=AE,根据垂径定理得出DF=CD,在Rt△ODF中,根据勾股定理即可求得⊙O的半径.【解答】(1)证明:连接OA.∵AE是⊙O切线,∴OA⊥AE,∴∠OAE=90°,∴∠EAD+∠OAD=90°,∵∠ADO=∠ADE,OA=OD,∴∠OAD=∠ODA=∠ADE,∴∠EAD+∠ADE=90°,∴∠AED=90°,∴AE⊥CD;。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
)
A.70° B.35° C.20° D.40° 7.已知圆锥的底面半径为 4cm,母线长为 6cm,则它的侧面展开图的面积等于( A.24cm2 B.48cm2 C.24πcm2 D.12πcm2 8.下列性质中,菱形具有而矩形不一定具有的是( ) A.对角线相等 B.对角线互相平分 C.对角线互相垂直 D.邻边互相垂直 9.一次函数 y= x﹣b 与 y= x﹣1 的图象之间的距离等于 3,则 b 的值为( )
【考点】特殊角的三角函数值. 【分析】根据特殊角的三角函数值,可以求得 sin30°的值. 【解答】解:sin30°= , 故选 A. 4.初三(1)班 12 名同学练习定点投篮,每人各投 10 次,进球数统计如下: 进球数(个) 人数(人) 1 1 2 1 3 4 4 2 5 3 7 1
这 12 名同学进球数的众数是( ) A.3.75 B.3 C.3.5 D.7 【考点】众数. 【分析】根据统计表找出各进球数出现的次数,根据众数的定义即可得出结论. 【解答】解:观察统计表发现:1 出现 1 次,2 出现 1 次,3 出现 4 次,4 出现 2 次,5 出现 3 次,7 出现 1 次, 故这 12 名同学进球数的众数是 3. 故选 B. 5.下列图案中,是轴对称图形但不是中心对称图形的是( )
【解答】解: (A)对角线相等是矩形具有的性质,菱形不一定具有; (B)对角线互相平分是菱形和矩形共有的性质; (C)对角线互相垂直是菱形具有的性质,矩形不一定具有; (D)邻边互相垂直是矩形具有的性质,菱形不一定具有. 故选:C. 9.一次函数 y= x﹣b 与 y= x﹣1 的图象之间的距离等于 3,则 b 的值为(
)
A.﹣2 或 4 B.2 或﹣4 C.4 或﹣6 D.﹣4 或 6 【考点】一次函数的性质;含绝对值符号的一元一次方程. 【分析】将两个一次函数解析式进行变形,根据两平行线间的距离公式即可得出关于 b 的含绝对值符号的一 元一次方程,解方程即可得出结论. 【解答】解:一次函数 y= x﹣b 可变形为:4x﹣3y﹣3b=0; 一次函数 y= x﹣1 可变形为 4x﹣3y﹣3=0. 两平行线间的距离为:d= 解得:b=﹣4 或 b=6. 故选 D. 10.如图,Rt△ABC 中,∠C=90°,∠ABC=30°,AC=2,△ABC 绕点 C 顺时针旋转得△A1B1C,当 A1 落在 ) AB 边上时,连接 B1B,取 BB1 的中点 D,连接 A1D,则 A1D 的长度是( = |b﹣1|=3,
B. 2
C. 3
D.2
二、填空题:本大题共 8 小题,每小题 2 分,共 16 分 . 11.分解因式:ab﹣a2= 12.某公司在埃及新投产一座鸡饲料厂,年生产饲料可饲养 57000000 只肉鸡,这个数据用科学记数法可表示 为 . 13.分式方程 = 的解是 . . .
,B(m,3)在同一反比例函数的图象上,则 m 的值为 14.若点 A(1,﹣3) . 15.写出命题“如果 a=b”,那么“3a=3b”的逆命题 16.如图,矩形 ABCD 的面积是 15,边 AB 的长比 AD 的长大 2,则 AD 的长是
(1)求经销成本 p(万元)与销售额 y(万元)之间的函数关系式; (2)分别求该公司 3 月,4 月的利润; (3)问:把 3 月作为第一个月开始往后算,最早到第几个月止,该公司改用线上销售后所获得利润总额比同 期用线下方式销售所能获得的利润总额至少多出 200 万元?(利润=销售额﹣经销成本) 26.已知二次函数 y=ax2﹣2ax+c(a>0)的图象与 x 轴的负半轴和正半轴分别交于 A、B 两点,与 y 轴交于 点 C,它的顶点为 P,直线 CP 与过点 B 且垂直于 x 轴的直线交于点 D,且 CP:PD=2:3 (1)求 A、B 两点的坐标; (2)若 tan∠PDB= ,求这个二次函数的关系式.
22.如图,OA=2,以点 A 为圆心,1 为半径画⊙A 与 OA 的延长线交于点 C,过点 A 画 OA 的垂线,垂线与 ⊙A 的一个交点为 B,连接 BC (1)线段 BC 的长等于 ; (2)请在图中按下列要求逐一操作,并回答问题: ①以点 为圆心,以线段 的长为半径画弧,与射线 BA 交于点 D,使线段 OD 的长 等于 ②连 OD,在 OD 上画出点 P,使 OP 得长等于 ,请写出画法,并说明理由.
)
A.﹣2 或 4 B.2 或﹣4 C.4 或﹣6 D.﹣4 或 6 10.如图,Rt△ABC 中,∠C=90°,∠ABC=30°,AC=2,△ABC 绕点 C 顺时针旋转得△A1B1C,当 A1 落在 AB 边上时,连接 B1B,取 BB1 的中点 D,连接 A1D,则 A1D 的长度是( )
A.
、B(m,0) 、D(0,2n) (m>n>0) ,作▱ ABCD 关于直线 27.如图,已知▱ ABCD 的三个顶点 A(n,0) AD 的对称图形 AB1C1D (1)若 m=3,试求四边形 CC1B1B 面积 S 的最大值; (2)若点 B1 恰好落在 y 轴上,试求 的值.
28.如图 1 是一个用铁丝围成的篮框,我们来仿制一个类似的柱体形篮框.如图 2,它是由一个半径为 r、圆 心角 90°的扇形 A2OB2,矩形 A2C2EO、B2D2EO,及若干个缺一边的矩形状框 A1C1D1B1、A2C2D2B2、…、 AnBnCnDn,OEFG 围成,其中 A1、G、B1 在 上,A2、A3…、An 与 B2、B3、…Bn 分别在半径 OA2 和 OB2
A.
B.
C.
D.
【考点】中心对称图形;轴对称图形. 【分析】根据轴对称图形与中心对称图形的性质对各选项进行逐一分析即可. 【解答】解:A、是轴对称图形,但不是中心对称图形,故本选项正确; B、既是轴对称图形,又是中心对称图形,故本选项错误; C、既不是轴对称图形,又不是中心对称图形,故本选项错误; D、不是轴对称图形,但是中心对称图形,故本选项错误. 故选 A. 6.如图,AB 是⊙O 的直径,AC 切⊙O 于 A,BC 交⊙O 于点 D,若∠C=70°,则∠AOD 的度数为( )
A.70° B.35° C.20° D.40° 【考点】切线的性质;圆周角定理. 【分析】先依据切线的性质求得∠CAB 的度数,然后依据直角三角形两锐角互余的性质得到∠CBA 的度数, 然后由圆周角定理可求得∠AOD 的度数. 【解答】解:∵AC 是圆 O 的切线,AB 是圆 O 的直径, ∴AB⊥AC. ∴∠CAB=90°. 又∵∠C=70°, ∴∠CBA=20°. ∴∠DOA=40°. 故选:D. 7.已知圆锥的底面半径为 4cm,母线长为 6cm,则它的侧面展开图的面积等于( A.24cm2 B.48cm2 C.24πcm2 D.12πcm2 【考点】圆锥的计算. 【分析】根据圆锥的侧面积= ×底面圆的周长×母线长即可求解. 【解答】解:底面半径为 4cm,则底面周长=8πcm,侧面面积= ×8π×6=24π(cm2) . 故选:C. ) 8.下列性质中,菱形具有而矩形不一定具有的是( A.对角线相等 B.对角线互相平分 C.对角线互相垂直 D.邻边互相垂直 【考点】菱形的性质;矩形的性质. 【分析】菱形的性质有:四边形相等,两组对边分别平行,对角相等,邻角互补,对角线互相垂直且平分, 且每一组对角线平分一组对角. 矩形的性质有:两组对边分别相等,两组对边分别平行,四个内角都是直角,对角线相等且平分. )
17.如图,已知▱ OABC 的顶点 A、C 分别在直线 x=1 和 x=4 上,O 是坐标原点,则对角线 OB 长的最小值 为 .
18.如图,△AOB 中,∠O=90°,AO=8cm,BO=6cm,点 C 从 A 点出发,在边 AO 上以 2cm/s 的速度向 O 点 运动,与此同时,点 D 从点 B 出发,在边 BO 上以 1.5cm/s 的速度向 O 点运动,过 OC 的中点 E 作 CD 的垂 线 EF,则当点 C 运动了 s 时,以 C 点为圆心,1.5cm 为半径的圆与直线 EF 相切.
4.初三(1)班 12 名同学练习定点投篮,每人各投 10 次,进球数统计如下: 进球数(个) 人数(人) 4 2 5 3 7 1
这 12 名同学进球数的众数是( ) A.3.75 B.3 C.3.5 D.7 5.下列图案中,是轴对称图形但不是中心对称图形的是( A. B. C. D.
)ቤተ መጻሕፍቲ ባይዱ
6.如图,AB 是⊙O 的直径,AC 切⊙O 于 A,BC 交⊙O 于点 D,若∠C=70°,则∠AOD 的度数为(
2016 年江苏省无锡市中考数学试卷
一、选择题:本大题共 10 小题,每小题 3 分,共 30 分 ) 1.﹣2 的相反数是( A. B.±2 C. 2 D.﹣ )
中自变量 x 的取值范围是( 2.函数 y= A.x>2 B.x≥2 C.x≤2 D.x≠2 ) 3.sin30°的值为( A. B. C. 1 1 2 1 D. 3 4
2016 年江苏省无锡市中考数学试卷
参考答案与试题解析
一、选择题:本大题共 10 小题,每小题 3 分,共 30 分 ) 1.﹣2 的相反数是( A. B.±2 C. 2 D.﹣
【考点】相反数. 【分析】根据一个数的相反数就是在这个数前面添上“﹣”号,求解即可. 【解答】解:﹣2 的相反数是 2; 故选 C. 中自变量 x 的取值范围是( ) 2.函数 y= ≥ ≤ ≠ A.x>2 B.x 2 C.x 2 D.x 2 【考点】函数自变量的取值范围. 【分析】因为当函数表达式是二次根式时,被开方数为非负数,所以 2x﹣4≥0,可求 x 的范围. 【解答】解:依题意有: 2x﹣4≥0, 解得 x≥2. 故选:B. 3.sin30°的值为( A. B. C. ) D.
根据以上图表信息,解答下列问题: (1)表中 a= ,b= ; (2)请把频数分布直方图补充完整(画图后请标注相应的数据) ; (3)若该校共有 1200 名学生,请估计该校在上学期参加社区活动超过 6 次的学生有多少人?