工程流体力学原理介绍

合集下载

流体力学的基本原理

流体力学的基本原理

流体力学的基本原理引言流体力学是研究流体运动规律和性质的学科。

它是物理学的一个重要分支,广泛应用于工程、天气预报、海洋科学等领域。

本文将介绍流体力学的基本原理,包括流体的性质、运动方程和流体力学的应用等内容。

流体的性质流体是一种特殊的物质状态,其主要特点是能够流动而不保持固定的形状。

流体包括液体和气体两种形态。

液体具有一定的体积,可被容器所约束;而气体则没有固定的体积,在给定的容器中可自由膨胀和收缩。

流体具有一些独特的性质,如压力、密度、粘性等,这些性质对于流体力学的研究至关重要。

压力压力是流体力学中一个重要的物理量,它定义为单位面积上的垂直力的大小。

在静止的流体中,压力是均匀分布的;而在运动的流体中,压力的分布则会随着速度的变化而改变。

压力可以用公式 $P = \\frac{F}{A}$ 来计算,其中P为压力,F为垂直力,A为垂直面积。

密度密度是流体的另一个重要性质,它定义为单位体积中的质量。

密度的大小与流体的分子结构和温度有关。

一般来说,液体的密度比气体的密度要大。

密度可以用公式 $\\rho = \\frac{m}{V}$ 来计算,其中 $\\rho$ 为密度,m为质量,V为体积。

粘性粘性是流体的一种特性,它决定了流体流动的阻力大小。

一般来说,液体的粘性比气体的粘性要大。

粘性的大小与流体的温度有关,温度越高,流体的粘性越小。

粘性可以用公式 $\\mu = \\frac{F}{A \\cdot v}$ 来计算,其中 $\\mu$ 为粘性,F为垂直力,A为垂直面积,v为速度。

流体运动方程流体运动方程描述了流体在运动中的行为。

它包括质量守恒方程、动量守恒方程和能量守恒方程。

质量守恒方程质量守恒方程是描述流体质量守恒的基本原理。

它表达了流体质量在空间和时间上的守恒。

在不考虑流体流动的交换作用时,质量守恒方程可以简化为以下形式:$$ \\frac{\\partial \\rho}{\\partial t} + \ abla \\cdot (\\rho \\mathbf{v}) = 0 $$其中 $\\rho$ 为密度,t为时间,$\\mathbf{v}$ 为速度矢量。

工程流体力学中的流体力学理论解析

工程流体力学中的流体力学理论解析

工程流体力学中的流体力学理论解析工程流体力学是研究流体在工程领域中的运动和相互作用的学科。

它在各个工程领域中都有着广泛的应用,包括航空航天、汽车工程、水利工程、化工工程以及能源等领域。

在进行工程流体力学研究和实践中,流体力学理论的解析是十分重要的,它可以帮助我们深入理解流体的运动规律和特性,从而指导我们进行相应的工程设计和优化。

在工程流体力学中,流体力学理论解析主要涉及以下几个方面:1. 流体运动方程:流体力学理论解析的基础是流体运动方程,这包括连续性方程、动量方程和能量方程。

连续性方程描述了流体的质量守恒,动量方程描述了流体的运动规律,能量方程描述了流体的能量传递和转化过程。

通过对这些方程进行解析,可以得到流体的速度场、压力分布等重要的运动特性。

2. 边界条件和初值条件:在流体力学理论解析中,边界条件和初值条件的选择和设定对于结果的准确性具有重要影响。

边界条件包括流体与固体边界的速度和压力等参数,而初值条件则是描述流体在初始时刻的状态。

通过选择合适的边界条件和初值条件,并结合流体运动方程进行解析,可以得到更加准确的结果。

3. 流体力学模型:在工程流体力学中,流体的运动可分为层流和湍流两种模式。

层流是流体分子按照规则的轨迹运动,而湍流则是流体分子的运动具有混乱的、随机的特性。

不同的流体力学模型适用于不同的流动条件。

在流体力学理论解析中,根据具体的工程问题,选择合适的流体力学模型进行解析是非常重要的。

4. 数值方法:在实际的工程流体力学研究和设计中,往往需要利用计算机进行数值模拟和解析。

数值方法可以通过将流体力学方程离散化和求解,来得到流体的运动和特性。

常用的数值方法包括有限差分法、有限元法和计算流体动力学(CFD)等。

在应用数值方法进行流体力学理论解析时,需要注意网格剖分、时间步长的选择以及数值稳定性等问题。

总之,工程流体力学中的流体力学理论解析是十分重要的,它可以帮助工程师和研究人员深入理解流体的运动规律和特性,指导工程设计和优化。

工程流体力学

工程流体力学

详细描述
随着智能化技术的发展,智能流体控制与调节系统的研 究逐渐成为工程流体力学的前沿领域。通过引入人工智 能、大数据等技术,实现对流体系统的实时监测、预测 和控制,提高流体系统的稳定性和可靠性,为工程实际 提供更好的技术支持。
THANKS FOR WA点一
实验设备
风洞、水槽、压力容器等,用于模拟流体流动和测试流体 动力性能。
要点二
测量技术
压力传感器、流量计、速度计等,用于测量流体的压力、 流量和速度等参数。
数值模拟方法与软件
数值模拟方法
有限元法、有限差分法、边界元法等,通过数值计算 来模拟流体流动。
数值模拟软件
ANSYS Fluent、CFX、SolidWorks Flow Simulation等,用于进行流体动力学分析和模拟。
流体流动的动量方程
一维动量方程
描述流体在一维流动过程中的动量守恒,包括流体的速度、压力 和阻力等。
二维动量方程
描述流体在二维流动过程中的动量守恒,包括流体的速度、压力 和阻力等。
三维动量方程
描述流体在三维流动过程中的动量守恒,包括流体的速度、压力 和阻力等。
流体流动的湍流模型
雷诺平均模型
通过引入雷诺应力来描述湍流中流体的动量交换, 用于模拟湍流流动。
工程流体力学实验与模拟的应用
航空航天
飞机和航天器的空气动力学性能测试和优化 设计。
汽车工程
汽车车身和发动机的流体动力学性能测试和 优化设计。
能源工程
风力发电机叶片和核反应堆冷却系统的流体 动力学性能测试和优化设计。
环境工程
污水处理和排放系统的流体动力学性能测试 和优化设计。
06 工程流体力学前沿研究与 展望

工程流体力学

工程流体力学
τ
我们将会看到,是否忽略粘性影响将对流动问题的处理带来很大的区别,理想流体假设可以大大简化理论分析过程。 而 是流体的客观属性,所以往往是在变形速率不大的区域将实际流体简化为理想流体。
ΔV
流体的压缩性
V
流体能承受压力,在受外力压缩变形时,产生内力(弹性力)予以抵抗,并在撤除外力后恢复原形,流体的这种性质称为压缩性。
长度单位:m(米)
质量单位:kg(公斤)
时间单位:s(秒)
流体力学课程中使用的单位制
SI 国际单位制(米、公斤、秒制)
三个基本单位
导出单位,如:
01
密度 单位:kg/m3
02
力的单位:N(牛顿),1 N=1 kgm/s2
03
应力、压强单位:Pa(帕斯卡),1Pa=1N/m2
04
动力粘性系数 单位:Ns/m2 =Pas
05
运动粘性系数 单位:m2/s
06
体积弹性系数 K 单位: Pa
07
一般取海水密度为
常压常温下,空气的密度是水的 1/800 与水和空气有关的一些重要物理量的数值 1大气压,40C 1大气压,100C
空气的密度随温度变化相当大,温度高,密
度低。
水的密度随温度变化很小。 1大气压,00C 1大气压,800C
04
流体不能承受集中力,只能承受分布力。
02
一般情况下流体可看成是连续介质。
03
力学
§1-1 课程概述
工程流体力学的学科性质
研究对象 力学问题载体
宏观力学分支 遵循三大守恒原理
流体力学
水力学
流体

力学
强调水是主要研究对象 偏重于工程应用,水利工程、流体动力工程专业常用

流体力学的基本原理

流体力学的基本原理

流体力学的基本原理流体力学是研究流体静力学和流体动力学的学科,旨在了解和分析流体的行为和特征。

它的研究对象包括气体和液体,在工程学、物理学和地球科学等领域都有着广泛的应用。

本文将探讨流体力学的基本原理,以期帮助读者全面了解这一领域的知识。

一、流体力学的基本概念流体力学研究的是流体的运动,而流体的运动可以分为两种情况:一种是静态流体,即流体处于静止状态;另一种是动态流体,即流体具有速度场分布的运动状态。

流体力学通过数学方法和实验研究对流体的运动行为进行预测和描述。

二、连续介质假设在进行流体力学的研究中,我们通常采用连续介质假设。

连续介质假设认为流体是由无数微观粒子组成的,这些粒子之间的相互作用力可以忽略不计。

基于这个假设,我们可以应用微分方程和积分方程进行流体的运动描述和分析。

三、质量守恒定律质量守恒定律是流体力学中的基本原理之一。

根据这一定律,一个封闭系统内的质量总是不变的。

换句话说,对于一个流体流动系统来说,流入系统的质量必须等于流出系统的质量。

这个原理被广泛应用于流体力学中的流量分析和控制。

四、动量守恒定律动量守恒定律是另一个重要的流体力学基本原理。

它描述了流体中动量的守恒关系。

根据动量守恒定律,流体在受到外力作用时会产生加速度,并且流体内各点之间的压力差会引起流体的运动。

这个原理在研究流体力学中的压力分布、速度场和流体流动方向等方面起着重要作用。

五、能量守恒定律能量守恒定律是流体力学的另一个基本原理。

根据这一定律,流体在运动过程中能量总是守恒的。

能量守恒定律可以用来描述流体在不同状态中的能量变化和转化。

例如,在研究流体的产热和传热过程中,我们可以利用能量守恒定律来分析和计算。

六、流体力学的应用流体力学的研究不仅仅是理论分析,还有着广泛的应用价值。

在建筑工程中,流体力学可以用于分析和设计水力结构,例如水坝和水渠。

在航空航天工程中,流体力学可以用于研究和改进飞机和火箭的气动性能。

在地球科学中,流体力学可以用来模拟大气和海洋的环流系统,以及地球内部的岩浆运动。

工程流体力学原理介绍

工程流体力学原理介绍
流体力学
如果孔口直径d远小于管道直径D,则称为小孔口,(d/D)4≈0 于是从上式可得小孔口的出流速度以及所有的孔口出流系 数根据:孔口出流射入大气后即成为平抛运动,通过分析这 种运动规律可得与雷诺数有关的各种出流系数曲线图
流体力学
大孔口出流常常用于孔板流量计中,小孔口出流常常用于 小孔阻尼器或小空节流中; 孔板、喷嘴和文丘里管流量计原理:静压能转变成动能, 流量大小表现为压力降的大小。当d并非远小于D时,
流体力学
局部阻力:管路的功用是输送流体,为了保证流体输送 中可能遇到的转向、调节、加速、升压、过滤、测量 等需要,在管路上必须要装管路附件。例如常见的弯 头、三通、检测表、变径段、进出口、过滤器、溢流 阀、节流阀、换向阀等。
流体力学
经过这些装置时,流体运动受到扰乱,必然产生压强(或水 头、能量)损失,这种在管路局部范围内产生损失的原因 统称为局部阻力。 局部水头损失:hf=ξv2/2g ξ为局部阻力系数
流体力学
雷诺通过实验测定得知: 当Re>13800时,管中流动状态是紊流; Re<2320时,管中流动状态是层流; 2320<Re<13800时,层流紊流的可能性都存在,不过紊流 的情况居多。因为雷诺数较高时层流结构极不稳定,(实验 表明)遇有外界振动干扰就容易变为紊流。
流体力学
管路计算的基础知识 流体在管路中所受的阻力包括沿程阻力和局部阻力 沿程阻力:在等径管路中,由于流体与管壁以及流体本身的 内部摩擦,使得流体能量沿流动方向逐渐降低,这种引起能 量损失的原因叫作沿程阻力。用压强损失、水头损失、或 功率损失三种形式表示。 压强损失:∆p=32 µ lv/d2 水头损失:hf=32 ‫ ע‬lv/gd2=λlv2/2gd 功率损失:N=128 µlQ2/πd4

工程流体力学

工程流体力学

工程流体力学引言工程流体力学是研究流体在工程应用中行为的科学和技术领域。

它涉及流体的运动、压力、力学特性、流动的稳定性等问题。

工程流体力学是许多工程领域的基础,如航空航天、能源、建筑等。

本文将介绍工程流体力学的基本原理、应用以及相关的数学模型和实验技术。

基本概念流体的特性流体是一种物质的形态,其特点是可以流动。

流体包括气体和液体。

相比固体,流体在外力作用下可以流动,具有较高的分子间自由度。

流体的主要特性包括密度、压力、速度等。

流体力学基本方程工程流体力学研究流体的运动和相互作用。

在研究中,以下几个基本方程是非常重要的:•质量守恒方程:描述了流体质量的守恒原理,表示流体质量的变化率与流体的进出和积累有关。

•动量守恒方程:描述了流体的动量守恒原理,表示流体的动量变化率与外力和内力有关。

•能量守恒方程:描述了流体的能量守恒原理,表示流体的能量变化率与外界的热流和功有关。

•热力学状态方程:描述了流体在热平衡状态下的物态关系,如理想气体状态方程等。

流体的流动性质流体的流动性质是工程流体力学的核心内容之一。

流动性质包括速度场、压力场、流线和湍流等。

流体的流动性质受到流体的物理性质、边界条件和流动过程中的各种相互作用的影响。

数学模型和实验技术为了研究流体的行为和特性,工程流体力学采用了数学模型和实验技术。

数学模型数学模型是通过建立流体运动的数学方程来描述和预测流体行为的工具。

常用的数学模型包括流体运动的偏微分方程,如Navier-Stokes方程,以及一些简化的模型,如边界层理论、湍流模型等。

数学模型的选择和建立要考虑流体的性质和问题的复杂程度。

实验技术实验技术是验证和研究数学模型的重要手段。

工程流体力学中常用的实验技术包括水槽试验、风洞试验、流速测量技术等。

实验技术可以帮助研究者观察流体的实际行为,获取流体的相关参数,并与数学模型的预测结果进行比较。

应用领域工程流体力学广泛应用于各个工程领域。

以下是一些常见的应用领域:航空航天工程航空航天工程是工程流体力学的重要应用领域。

流体力学的基本概念与原理

流体力学的基本概念与原理

流体力学的基本概念与原理引言:流体力学是研究流体运动规律的学科,涉及广泛且应用领域广泛。

本文将介绍流体力学的基本概念与原理,包括流体、流体静力学、流体动力学以及相关应用等方面的内容。

一、流体的基本特性流体是指能够流动的物质,主要包括液态流体和气态流体。

相较于固体,流体具有以下基本特性:1. 流动性:流体能够在物体表面滑动或流动。

2. 不可压缩性:理想流体在正常条件下几乎不可压缩,而实际流体也只在极高压力下才会发生明显的压缩。

3. 连续性:流体不存在间断,可以填充空间。

4. 流体内部分子间力的相对较小:流体分子间的相互作用力相对较弱,以致于在外力作用下,流体分子会相对较快地改变位置。

二、流体静力学流体静力学研究的是处于静止状态的流体,主要涉及以下概念与原理:1. 压强:压强是流体对单位面积上的压力。

根据帕斯卡原理,流体中的压强在各个方向上都是相等的。

2. 大气压:大气压是指大气对物体单位面积上的压力,通常用标准大气压作为基准。

3. 浮力:根据阿基米德原理,浸在液体中的物体会受到一个向上的浮力,其大小等于物体排斥液体的重量。

4. 斯托克斯定律:斯托克斯定律描述了粘性流体中小球的受力情况,根据该定律,小球的阻力与小球半径、流体黏度以及小球速度有关。

三、流体动力学流体动力学研究的是流体在运动过程中的行为,主要涉及以下概念与原理:1. 流速与流量:流速是单位时间内通过某个截面的流体体积,流量是单位时间内通过某个截面的流体质量或体积。

2. 流体动能:流体动能是流体由于运动而具有的能量,与流体的质量和速度有关。

3. 费诺特定律:费诺特定律是描述粘性流体内摩擦力与流速梯度之间关系的定律,根据该定律,粘性流体内部存在着滑动摩擦和黏滞摩擦。

4. 贝努利定律:贝努利定律描述了在不可压缩、稳定流动的流体中,沿着流线速度增大的地方,压强会减小;反之,速度减小的地方,压强会增大。

四、流体力学的应用流体力学的研究内容和应用广泛,常见的应用领域包括但不限于:1. 水力学:研究水的流动、水耗等问题,广泛应用于水利工程、水电站等领域。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
概念
*定义:可以流动的物体叫流体 *流体包括液体和气体,液体及低速运动的气体表现为有一 定的体积而无一定的形状,宏观上/工程上称为不可压缩流 体;气体表现为既无一定的体积也无一定的形状,宏观上/ 工程上称为可压缩流体。 *流体的基本特征:易流动性,易流动性既是流体命名的由 来,也是流体区别于固体的根本标志
流体力学
孔口出流
应用领域:大到水利工程上的闸孔,小如粘度计上的针孔;常 见的水枪、龙头、喷嘴等;机械制造的液压技术中不止经 过换向阀、减压阀、节流阀、溢流阀等处都是孔口出流, 在自动控制的喷嘴、挡板等处也同样会遇到孔口出流的问 题。 薄壁孔口出流:当孔口厚度与孔径之比≤2时称为薄壁孔口。 孔口出流性能的主要标志是它的流速系数、流量系数、收 缩系数与阻力系数,统称为孔口的出流系数。 孔口出流的相关公式如下:
流体力学
流体力学
流体比重、密度、重度、比体积随温度与压强变化,其 原因是由于流体内部分子间存在着间隙,压强增大,分 子间距减少,体积压缩; 温度升高,分子间距增大,体积膨胀。流体都具有这种可 压缩能膨胀的性质,不过气体的压缩性和膨胀性较液体 更为显著。 压缩性:流体在承受正压力时宏观体积缩小,密度增大, 同时内部产生压应力来抵抗压缩变形,这种抵抗称为压 缩性。 膨胀性:当温度升高时,流体体积膨胀,密度将减少,这种 特性称为膨胀性。
流体力学
液体在压强差∆p=p1-p2的作用下经过薄壁孔口出流时,由 于流线不能突然转折,故从孔口流出后形成一个流束直径 最小的收缩断面,收缩断面的面积与孔口断面面积之比称 为孔口的收缩系数:Cc=Ac/A。 也可写作: vc=Cv√2 ∆p/ ρ
经过孔口出流的流量: Q=Acvc=CdA√2 ∆p/ ρ ξ 称为阻力系数 Cv称为孔口的流速系数, Cd称为孔口的流量系数
流体力学
雷诺通过实验测定得知: 当Re>13800时,管中流动状态是紊流; Re<2320时,管中流动状态是层流; 2320<Re<13800时,层流紊流的可能性都存在,不过紊流 的情况居多。因为雷诺数较高时层流结构极不稳定,(实验 表明)遇有外界振动干扰就容易变为紊流。
流体力学
管路计算的基础知识 流体在管路中所受的阻力包括沿程阻力和局部阻力 沿程阻力:在等径管路中,由于流体与管壁以及流体本身的 内部摩擦,使得流体能量沿流动方向逐渐降低,这种引起能 量损失的原因叫作沿程阻力。用压强损失、水头损失、或 功率损失三种形式表示。 压强损失:∆p=32 µ lv/d2 水头损失:hf=32 ‫ ע‬lv/gd2=λlv2/2gd 功率损失:N=128 µlQ2/πd4
流体力学
实现音速转变的典型应用:拉伐尔喷管 实现音速转变的典型应用 拉伐尔喷管
收缩段
喉部
扩张段
流体力学
亚音速加速管 超音速扩压管
亚音速扩压管 超音速加速管
要想完成气流从亚音速向超音速转变,或者从 超音速向亚音速转变,用一种单纯收缩管或单 纯扩张管都是无法实现的.
流体力学
逐渐收缩管道充其量只能在出口处达到音速,想超过这个 界限,必须不失时机地在音速断面之后立即改变管道形状。 这种能够从亚音速连续加速到超音速的管道,称为拉伐尔 喷管。由收缩段、喉部及扩张段组成。 拉伐尔喷管的收缩段按照固定的公式绘制,扩张段一般可 , 用6°--12°的扩张锥形,以避免流体从管壁分离。喉部断 面与出口断面大小需按所要求的流量和马赫数计算。拉伐 尔喷管在工程技术中有很多应用,如喷气发动机、超音速 风洞等。
流体力学
如果孔口直径d远小于管道直径D,则称为小孔口,(d/D)4≈0 于是从上式可得小孔口的出流速度以及所有的孔口出流系 数根据:孔口出流射入大气后即成为平抛运动,通过分析这 种运动规律可得与雷诺数有关的各种出流系数曲线图
流体力学
大孔口出流常常用于孔板流量计中,小孔口出流常常用于 小孔阻尼器或小空节流中; 孔板、喷嘴和文丘里管流量计原理:静压能转变成动能, 流量大小表现为压力降的大小。当d并非远小于D时,
流体力学
气体的一元流动
气体由于其大的可压缩性和可膨胀性,与液体在研究特 性上有很大的区别,故有了气体动力学的研究领域。而 气体一元流动只是气体动力学中最初步的基本知识,它 只讨论气体流动参数(如速度、压强、密度、温度等)在 断流面上的平均值的变化规律。
流体力学
专用术语:音速和马赫数 音速:微弱扰动波在介质中的传播速度。例如弹拨琴弦,振 动了空气,空气的压强、密度发生了微弱的变化,这种状态 变化在空气中形成一种不平衡的扰动,扰动又以波的形式 迅速外传。 人耳所能接收的振动频率有一定的范围,气体动力学中的 音速概念,则不仅限于人耳收听范围,只要是介质中的扰动 传播速度皆称为音速。这里是把它作为压强、密度状态变 化在流体中的传播过程来看待的。
能量发生相互转换 与外界发生功和热的交换
流体力学
连续介质假定的重要作用:可以顺利地运用连续函 数和场论等数学工具研究流体运动和平衡/静止的问 题(流体质点所有的物理量都是时间的单值、连续、 可微函数)。
流体力学
常用物理量及其关系 密度: 流体质点质量(所包含分子的质量之和)与体积 之比 ρ=M/V 重度: 流体质点重量与体积之比 ‫=ג‬G/V 比体积: 流体质点体积与质量之比 v=V/M 比重: 流体重量与同样体积4 ℃蒸馏水重量之比,这是 一个无量纲数 D=G/Gw= M/Mw … = vw/v 温度:就是流体质点所包含分子热运动动能的统计平均 值。 压强:就是流体质点所包含分子热运动互相碰撞从而在 单位面积上产生的压力的统计平均值。
流体力学
马赫数:流动运动速度/振动源运动速度与介质中音速之 比:M=u/a 当u<a,M<1时称为亚音速流动;当u=a,M=1时称为音速流动; 当u>a,M>1时称为超音速流动;一般M>3称为高超音速流 动。 马赫数是反映动态气流的气体状态参数,因而比反映静态 气体可压缩性大小的音速概念更有实用价值。
流体力学
功率损失: 用泵在管路中输送流体,常常要求计算用来克 服沿程阻力所消耗的功率,这种所谓的功率/能量损失往 往就是液压传动或远程输送选择泵功率大小的主要依据。 从公式可知,为输送一定流量的流体,适当降低粘度或者适 当加大管径都可降低功率损耗,不过应以Re<2320为界,否 则变成紊流就出现另外的情况了。
则管道侧壁与孔口外圆周靠近,这时从孔口流出时, 其收缩程度大为减轻。或者说大孔口的收缩系数 较大。大孔口收缩系数取决于孔口直径与管道直 径之比,其经验公式为:
Cc=0.63+0.37(d/D)4 大孔口出流公式表面上看起来与小孔口公式的形式是完全 相同的,但大孔口的流速系数、流量系数以及收缩系数均 与小孔牛顿流体:不符合切应力与速度梯度成正比的流体,组成 非牛顿流体 成分复杂,有三种不同的类型: (1) 塑性流体,如凝胶、牙膏等 ; (2) 假塑性流体,如泥浆、纸浆、高分子溶液等(大 小); (3) 胀塑性流体,如乳化液、油漆、油墨等(小大),非牛顿 流体多数用在化工、轻工、食品等工业方面,表现为一种 复杂的流动过程,具有初始切应力或切应力的变化速率 随着流动过程而改变。 在特定温度下,无单一粘度值的物质称为非牛顿流体。 这些物质的粘度必须用对应的温度和剪切率一起来表 示。如果剪切率改变,那么粘度也改变。一般而言, 高浓度和低浓度引起或增强非牛顿流体的特性。
流体力学
沿程水头损失:hf=λlv2/2gd λ为沿程阻力系数 在计算一条管道上的总水头(压强、能量)损失时,只能将管 道上的所有沿程损失与局部损失按算术加法求和,这就是 所谓的水头损失的叠加原则。 据此有: hf=(λ l/d+∑ ξ )v2/2g
流体力学
实例简介:图示给出水泵管路 ,铸铁管直径,长度,管路上装 有滤水网一个,全开截止阀一个,管半径与曲率半径之比已 知的弯头三个,高程,流量,水温,试求水泵输出功率。 解题过程:首先判断流动状态以便确定沿程阻力系数(通 过查表和计算); 从局部阻力系数表及题给数据可得局部阻力的当量管长 (le= ξd/ λ)及管路总阻力长度; 套入公式计算水头损失以便进一步计算水泵扬程,最后得 到水泵输出功率:N= ‫ג‬QH(重量流量*扬程)。
流体力学
质点:所谓流体质点就是流体中宏观尺寸非常小而微 观尺寸又足够大的任意一个物理实体。
任意:是指流体质点的形状可以任意划定,因而质点和质点 之间可以完全没有间隙,流体所在的空间中,质点紧密毗邻、 连绵不断、无往不在,于是就有了连续介质的概念。
流体力学
流体的研究方向:宏观机械运动由质点组成 的连续介质。
流体力学
流体分类 流体主要分为牛顿流体和非牛顿流体
牛顿流体:凡是符合切应力与速度梯度成正比,可以用一条 牛顿流体 通过原点而非坐标轴的直线(斜率为粘度)所表示的流 体,比如空气、水、石油等绝大多数机械工业中常用的流 体, 通常表现为单一流动状态。 牛顿流体有固定的粘度,它根据温度不同而变化,但与 剪切率无关
流体力学
管中流动
层流:整个管中的流体都是沿轴向流动,流体质点没有 横向运动,不互相混杂。 紊流:管中流体质点有剧烈的互相混杂,质点运动速度 不仅在轴向而且在纵向均有不规则的脉动现象,也叫 湍流状态。
流体力学
雷诺数的引入--1883年,雷诺的著名文章表明,他是第 一个引入运动粘度组成一个无量纲参数vd/‫,ע‬并用它 (Re)来划分圆管内层流与湍流状态的人。 这里仅从雷诺数的物理意义方面作粗浅说明:雷诺数代表 惯性力与粘性力之比,当Re数较小而不超过其临界值时, 支配流动的主要因素是粘性力。粘性力的方向与流体运 动方向可能相反也可能相同。
流体力学
局部阻力:管路的功用是输送流体,为了保证流体输送 中可能遇到的转向、调节、加速、升压、过滤、测量 等需要,在管路上必须要装管路附件。例如常见的弯 头、三通、检测表、变径段、进出口、过滤器、溢流 阀、节流阀、换向阀等。
流体力学
经过这些装置时,流体运动受到扰乱,必然产生压强(或水 头、能量)损失,这种在管路局部范围内产生损失的原因 统称为局部阻力。 局部水头损失:hf=ξv2/2g ξ为局部阻力系数
相关文档
最新文档