生物质发电技术分析比较
生物质能源开发与利用的技术及成本分析

生物质能源开发与利用的技术及成本分析随着能源需求不断增长,世界各地的关注点不再局限于寻找传统的化石燃料,而是更加专注于研究生物质能源的开发与利用。
生物质能源是指从植物、动物或微生物如藻类、真菌和微生物等生物材料中获得的能源。
生物质能源具有广泛的应用前景,因为它们是可再生的、绿色的且能够帮助解决世界各地能源供应不足的问题。
在本文中,我们将介绍生物质能源开发与利用的技术及其成本分析。
一、生物质能源开发技术生物质能源开发主要有两种方式:生物质直接燃烧和生物质通过化学过程转化为有用的能源。
下面是这两种方式的详细介绍:1. 生物质直接燃烧这种方法是利用生物质材料(例如:木材、竹子、废弃物等)直接燃烧来产生热量、电力或燃料。
生物质直接燃烧的主要优点是使用过程中不会排放任何有害气体,因此不会产生污染物。
此外,这种方法还可以利用许多不需要的生物质废物,减少浪费并使之变成有价值的资源。
2. 生物质通过化学过程转化为有用的能源这种方法可以转化成各种形式的能源,例如生物柴油、生物燃料、乙醇等。
生物质通过化学转化的过程包括物理化学、热化学、生物化学和生物转化等。
该过程通常涉及许多各种类型的反应和处理技术,例如:(1) 物理化学过程:物理化学过程是将生物质材料加工成为可以转化为有用能源的形式,通常的方法是使用机械方法,如磨碎、打碎、压缩等来处理生物质。
(2) 热化学过程:热化学转化是将生物质材料转变为有用能源的一种方法。
这种方法包括水解、气化、炭化和燃烧等。
(3) 生物化学过程:生物化学过程是将生物质材料转化为有用的燃料时,使用生物体内处理生物质的技术。
例如,利用微生物发酵转化木质纤维素和淀粉等为乙醇和乳酸等。
(4) 生物转化过程:生物转化过程使用微生物和其他生物体来将生物质转化为有用的燃料,如生物柴油和生物天然气等。
二、生物质能源利用技术生物质能源利用主要有三种方式,分别是生产热能、生产电力和生产燃料。
下面是这三种方式的详细介绍:1. 生产热能将生物质直接燃烧或通过热化学转化得到的燃料进行燃烧,产生热量以供生产用途。
生物质能源发电项目技术与经济可行性分析

生物质能源发电项目技术与经济可行性分析一、引言生物质能源发电是一种可持续发展的能源形式,通过利用农作物秸秆、木屑、废弃物等可再生生物质资源来发电,既能减少对传统化石能源的依赖,又能有效降低温室气体排放,对于解决能源供应和环境保护问题具有重要意义。
本文将对生物质能源发电项目的技术与经济可行性进行深入分析。
二、技术可行性1. 生物质能源发电技术生物质能源发电主要采用燃烧和气化两种主要技术路线。
燃烧技术是将生物质燃烧产生的热能直接转化为电能,操作简便,效率较高;气化技术是将生物质转化为可燃气体后再发电,能够充分利用生物质资源,降低排放物含量。
根据具体项目情况和资源条件,选择适合的技术路线对于实现生物质能源发电项目的可行性至关重要。
2. 生物质资源供应生物质能源发电项目的可行性首先要考虑生物质资源的供应情况。
生物质资源主要包括农作物秸秆、木屑、废弃物等。
通过与农户、农业合作社、木材加工企业等建立稳定的合作关系,确保生物质资源供应的可持续性和稳定性,对于项目的可行性具有重要影响。
3. 发电技术成熟度生物质能源发电技术成熟度直接影响项目的可行性。
成熟的技术具备稳定的发电效率、可靠的设备性能和先进的排放控制技术,能够满足环境保护要求。
在选择技术供应商时,要考虑其技术实力和过往案例,确保项目能够稳定高效地运行。
三、经济可行性1. 投资成本生物质能源发电项目的投资成本主要包括土地购买、设备采购、建设和运营费用等。
根据项目规模和技术路线的不同,投资成本会有所差异。
需要综合考虑资金来源和回报周期,确保项目的经济可行性。
2. 发电收益生物质能源发电项目的发电收益主要来自于售电收入和可再生能源补贴。
合理制定电价政策、与电力公司签订长期稳定的电力购买协议,同时申请国家和地方对可再生能源发电项目的补贴政策,能够提高项目的盈利能力。
3. 环境效益生物质能源发电项目具备明显的环境效益,如减少二氧化碳和硫氧化物排放,改善空气质量等。
生物质发电

生物质发电随着全球能源需求的不断增长和石化能源的日益枯竭,人类已经开始寻找更加可持续和环保的能源替代品。
生物质发电是一种新型的能源发电方式,在国内外均已引起了广泛关注和研究。
本文将对生物质发电进行介绍和分析。
一、生物质的基本概念生物质是指来自于动植物,微生物和其它有机物经过降解和转化后形成的可再生生物物质。
这些生物物质包括木材、农作物秸秆、沼气、食品废弃物、动物粪便等。
在能源利用方面,生物质是一种广泛应用的可再生能源,也是一种较为理想的绿色能源。
二、生物质发电的原理生物质发电是把生物质转化为电能的一种新型技术,主要通过热力发电和有机物发酵两种方式来实现。
一、热力发电:生物质被燃烧后产生高温高压蒸汽,推动汽轮机旋转,产生电能。
热力发电是目前生物质发电中使用最为广泛的一种方式,主要适用于城市生活垃圾、农业废弃物、工业废渣等大量产生的生物质能源。
二、有机物发酵:把生物质制成发酵料后,通过微生物发酵得到的生物气体可以用于发电,也可以用于城市天然气,汽车燃料等方面。
这种方法适用于沼气、动物粪便、废料等有机物质。
三、生物质发电的优点1. 显著减少温室气体和环境污染物的排放,保护环境和地球。
2. 生物质作为可再生能源,可以有效解决能源需求供给的问题。
3. 生物质在储量和分布上都更加广泛,可以有效避免由于石化能源的有限性所带来的风险问题。
4. 生物质发电设备建设和运维成本相对较低,节能效益很大,对于缓解能源供需矛盾和促进可持续发展非常有利。
4、生物质发电的局限性1. 生物质资源严重浪费,尚未得到很好的合理利用。
2. 生物质发电需要庞大的投资和技术支持,建设周期较长。
3. 不同生物质的成分不同,在燃料特性、含水率、卡路里等多个方面有所不同,对于生物质的选用和处理成本有较大影响。
4. 生物质发电的效率和稳定性需进一步提高。
五、生物质发电在全球的应用生物质发电技术已经在全球得到了广泛应用,包括欧洲、北美洲、日本、澳大利亚等地,其中欧洲是世界上最先进的生物质发电技术应用地区。
生物质能发电

====Word行业资料分享--可编辑版本--双击可删====生物质能发电一、生物质能发电的原理及其范围:生物质发电是利用生物质所具有的生物质能进行的发电,是可再生能源发电的一种,包括农林废弃物直接燃烧发电、农林废弃物气化发电、垃圾焚烧发电、垃圾填埋气发电、沼气发电等。
二、生物质能发电的优点和缺点:优点:首先,与风能、太阳能比较,生物质能是优质能源商品,与风能的不稳定性以及夜间后半夜风力强等特点导致对电网的负荷冲击等缺点相比,具有发电稳定的优势。
其二,生物质能发电厂基本上都可以建设在县城经济的工业园区内。
因此生物质能发电厂可以直接利用进行上网供电。
其三,生物质能发电厂由于是建设在县城经济工业园区,是在大电网的末端,又是县城经济电量消费的负荷中心。
这样生物质的电厂的建设有利于电源合理布局,支撑整个电网的安全稳定,有利于降低电网的线损。
这样生物质能电厂的建设有利于电网的科学调配电量,有利于电网的节能增效。
其四,生物质能发电厂能够实现拉动内需带动就业,加快社会主义新农村建设,以及工业反补农业和林业。
其五,生物质能发电厂的建设能够帮助县城经济工业园区建设成循环经济园区。
其六,生物质能发电厂的灰渣是很好的复合肥料。
其七,一个生物质电厂(30MW高温超高压中间再热的循环流化床热电厂)一年利用的20万吨农业、林业废弃物减排的二氧化碳温室气体约为18万吨,节约标准煤约为8万吨,生产的复合肥约为4万吨,生态环境意义是显而易见的。
其八,目前我国已经有企业成功的将自主创新的先进循环流化床燃烧技术应用于生物质发电厂。
缺点:1 技术不成熟2 发电成本高三、我省的现状及发展趋势我国政府十分重视包括生物质直燃发电在内的可再生能源产业发展。
《可再生能源法》等法律法规的颁布实施,推动了生物质直燃发电设备的研发、制造,利好政策使生物质能发电项目在中国日益呈现星火燎原之势,促进了相关产业的快速健康发展。
国家先后核准批复了河北晋州、山东单县和江苏如东3个秸秆发电示范项目,颁布了《可再生能源法》,并实施了生物质发电优惠上网电价等有关配套政策,从而使生物质发电,特别是秸秆发电迅速发展。
2024年高效生物质气化发电市场前景分析

高效生物质气化发电市场前景分析1. 引言随着全球能源需求的不断增长和可再生能源的发展,生物质气化发电作为一种环保且高效的能源转化技术逐渐受到关注。
本文将对高效生物质气化发电市场前景进行分析。
2. 市场概述在过去的几年中,高效生物质气化发电市场取得了显著的增长。
这种技术能够将生物质转化为可再生能源,如生物质气体或合成气体,用于发电和热能生产。
高效生物质气化发电可以利用农作物秸秆、森林剩余物、园林废弃物等各种生物质资源,减少对传统能源的依赖,促进可持续发展。
3. 市场驱动因素3.1 环保政策的支持在减少碳排放和应对气候变化的背景下,许多国家纷纷推出支持生物质气化发电的环保政策。
这些政策包括提供补贴和税收优惠等激励措施,推动了高效生物质气化发电市场的发展。
3.2 能源安全和可持续发展需求传统能源的供应面临着不断减少的资源和供应不稳定的问题。
高效生物质气化发电作为一种可再生能源,能够提供持续稳定的能源供应,减轻对传统能源的依赖。
3.3 技术发展和成本下降随着技术的不断进步和成本的降低,高效生物质气化发电技术逐渐变得更加成熟和经济可行。
这促使了更多投资者和能源公司对该市场的关注和投入。
4. 市场挑战和限制4.1 生物质资源供给不稳定生物质气化发电的一个主要挑战是生物质资源供给的不稳定性。
受季节、天气和地理条件等因素的影响,生物质资源的供应可能不足或不稳定,这给生产和运营带来了一定的困难。
4.2 高效气化技术的复杂性高效生物质气化发电技术相对复杂,需要高水平的技术和设备支持。
这对技术人员的要求较高,并增加了项目建设和运营的难度。
4.3 地方政策和管理的不完善地方政府在生物质气化发电项目审批和管理方面的不完善,可能导致项目推进缓慢和不确定性。
5. 市场前景高效生物质气化发电市场在未来有望继续保持快速增长的势头。
以下是市场前景的一些关键因素:5.1 增加生物质供应随着对生物质资源需求的增加,生物质供应链将进一步完善并扩大规模。
生物质能发电技术经济性与环境效益分析

生物质能发电技术经济性与环境效益分析引言:随着能源需求的不断增加和对可再生能源的关注度提高,生物质能作为一种可再生能源,受到了广泛的关注。
生物质能发电技术是一种将各种有机废弃物转化为电能的过程,具有潜力在减少碳排放、降低温室气体排放、减少对化石燃料的依赖等方面产生积极影响。
本文将对生物质能发电技术的经济性和环境效益进行分析。
一、生物质能发电技术的经济性分析1. 成本分析生物质能发电的成本主要包括原材料成本、设备成本、运行维护成本等方面。
生物质能发电原材料主要来源于农作物秸秆、木屑、餐厨垃圾等。
与传统燃煤发电相比,生物质能发电消耗的原材料成本更低,且原材料更为丰富,可以有效降低能源成本。
2. 发电效率分析生物质能发电的发电效率受到多种因素的影响,包括燃料种类、发电设备效率等。
不同种类的生物质能源在转化为电能时有不同的效率,例如,废弃农作物秸秆利用效率可以达到30%左右,而纤维素能源的利用效率更高。
此外,改善发电设备效率也可以提高生物质能发电的经济性。
3. 政策支持分析政府对于生物质能发电技术的政策支持也是影响其经济性的重要因素。
政府可以通过制定优惠政策,如降低生物质能发电企业的税收、提供财政补贴等,来降低生物质能发电技术的成本,并提高其经济性。
二、生物质能发电技术的环境效益分析1. 减少温室气体排放生物质能发电技术利用的原材料主要是有机废弃物,其燃烧过程中所释放的二氧化碳与植物在生长过程中吸收的二氧化碳相近。
相比传统的化石燃料发电,生物质能发电可以显著减少温室气体排放,有助于应对气候变化。
2. 降低空气污染生物质能发电的燃烧过程中产生的排放物主要是二氧化碳、水蒸气和少量的颗粒物。
相比于燃煤发电,生物质能发电技术几乎不会产生硫化物、氮氧化物等有害气体,有效降低了大气污染物的排放,改善了环境空气质量。
3. 促进可持续发展生物质能发电技术利用的原材料来自农作物秸秆、木屑等,可以解决废弃物处理和农田秸秆的问题,有效促进农业废弃物的资源化利用。
中国生物质能行业发展现状和趋势分析

中国生物质能行业发展现状和趋势分析一、生物质发电方式1、直接燃烧发电在国内,直燃发电技术已经趋近完善,单机可达15MW。
由于我国的生物质能主要是以秸秆等农作物为材料,因此国内的生物质燃烧技术大多以秸秆燃烧技术为主。
秸秆直燃发电技术,是将农作物原料(如秸秆等)经过输送系统投入锅炉,在炉内直接燃烧产生大量的热,产生的高温高压蒸汽在汽轮机内膨胀做功,驱动发电机发电。
2、混合燃烧发电生物质原料与煤混合作为燃料进行发电的技术被称作生物质混合燃烧发电技术。
其燃烧方式主要有两种:一种方式对于燃料处理和燃烧设备要求很高,是将生物质原料直接与煤混合后投入炉内燃烧:另一种是先气化生物质原料,将燃气与煤混合燃烧产生的蒸汽送入汽轮机发电机组。
3、气化发电经过气化炉的生物质原料转变为气体燃料,净化后直接在燃气机中燃烧发电或者在燃料电池中发电的技术被叫作生物质气化发电技术。
二、生物质发电现状生物智能形式多样、应用广泛,涵盖了电力、热力、交通、建筑等多个领域。
生物质能是体系中重要的组成部分,国际能源署在2018年提出,生物质能是可再生能源中被忽视的“巨人”,生物质能将引领未来五年可再生能源消费的增长。
根据IRENA最新发布的《RENEWABLE CACITY STATISTICS 20202019年,全球可再生能源装机容量达到253700万千瓦,比2018年增长了17600万千瓦。
其中全球生物质能发电装机达到124GW,约占整个可再生能源发电装机容量的4.9%。
中国生物质能发电行业现已进入产能扩张时期,盈利模式具备可复制性。
中国能源局数据显示,中国生物质发电累计装机容量由2015年的1030万千瓦迅速上升至2020年的2952万千瓦,到2021年第一季度,中国生物质发电累计装机容量增长至3149万千瓦。
生物质发电累计装机容量的增长,主要得益于政府出台的多项行业配套政策为生物质发电的发展提供了强有力支持。
其次,生物质发电技术成熟度逐步上升促进了生物质发电厂的扩张建设。
生物质电厂接入主电网电力技术分析

长期以来,我国能源消费主要以煤炭、石油等传统能源为主,对环境的污染较为严重。
随着近几年国家对于环保的重视,新能源行业得以长足发展。
这期中生物质电厂作为可再生能源代表在全国如雨后春笋般相继投产并网。
但伴随着生物质电厂的蓬勃发展,部分电厂与主电网发展不协调的问题逐渐暴露出来,本文就生物质电厂接入主电网进行电力技术分析,为其他生物质电厂的选址能够更加适应电网未来发展提供参考。
生物质作为一种新型燃料,主要是农作物的秸秆、果树枝条和灌木枝条等。
集中高效地利用这些生物质能,既可以减少煤炭的消耗量,又可以减少由原来传统利用方式带来的污染。
由于受到国家政策的鼓励扶持,生物质电厂发展迅速。
但生物质电厂的建设往往着重考虑生物质原料的丰富程度及交通运输的便利性,而经常忽视当地电网的建设发展及相关规划,本文以某30MW生物质电厂为例,就其接入主电网进行电力技术分析。
1、生物质电厂接入主电网电力技术分析对生物质电厂周边主电网进项电力技术分析主要包括:生物质电厂接入站点分析、周边区域电源及用电情况分析、周边电网发展规划分析、送出线路导线截面选择、潮流计算、稳定性校核。
1.1生物质电厂接入站点分析通过对拟接入站点分析,以确认站点是否满足接纳生物质电厂的条件。
拟接入变电站距离本生物质电厂项目厂址位置直线距离约2.2km,2015年6月投运,是一座220kV智能变电站。
拟接入变电站规划为3台主变(1×120MVA+2×180MVA),电压等级220/110/10kV,现有主变2台(1×120MVA+1×180MVA)。
220kV出线规划4回,现有2回,备用2回;220kV采用双母线接线方式,户外敞开式布置。
110kV主接线为双母线接线方式,采用户外敞开式布置,出线规模为10回。
现有出线5回,备用5回。
2017年拟接入变电站年最大负荷为99.89MW。
参考本县负荷增长率,结合拟接入变电站周边现实情况,对拟接入变电站负荷增长做出负荷增长预测。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
化发电2种模式。小型气化发电采用简单的气
化一内燃机发电工艺,发电效率一般在14%一 20%,规模一般小于3 MW。中型气化发电除了采
用气化一内燃机(或燃气轮机)发电王艺外,同时 增加余热回收和发电系统。气化发电系统的总效
率可达到25%~35%。另外,大规模的气化一燃气 轮机联合循环发电系统作为先进的生物质气化发
于流化的粒度。其燃烧效率和强度都比固定床高。
另外.由于我国的生物质种类多,成分复杂,收集
运输困难。而且主要的农业废弃物受到农业生产
和季节性的影响不能保证全年供应,所以与燃煤
锅炉对燃料单一性的要求不同,生物质锅炉要求
能适应多种生物质原料。以保证燃料供应的稳定
性。我国的生物质锅炉和小型蒸汽轮机技术已基
本成熟,但设备规模较小,参数较低,与进口设备
power generation
指标
1—3MW
6MW
Hale Waihona Puke 气化效率,%7578
厂自用电率/%
10
10
电站发电效率,%
17~20
:8
年运行时间/lI·一
6000
6500
生物质用量(干)/kg·kWh。1
13一1.8
1.1
1.3生物质混合燃烧发电 生物质混合燃烧发电是指将生物质原料应用
于燃煤电厂中.和煤一起作为燃料发电。生物质与 煤有2种混合燃烧方式:①生物质直接与煤混合燃 烧.产生蒸汽.带动蒸汽轮机发电。生物质要进行预 处理。生物质预先与煤混合后再经磨煤机粉碎。或 生物质与煤分别计量、粉碎。生物质直接与煤混合 燃烧要求较高,并非适用于所有燃煤发电厂,而且 生物质与煤直接混合燃烧可能会降低原发电厂的 效率。②将生物质在气化炉中气化产生的燃气与煤 混合燃烧.产生蒸汽,带动蒸汽轮机发电,即在小型 燃煤电厂的基础上增加一套生物质气化设备,将生 物质燃气直接通到锅炉中燃烧。生物质燃气的温 度为800℃左右,无须净化和冷却,在锅炉内完全
ered to be the most economic technology with relatively low investment,but the addition of biomass may reduce the efficiency of the existing power plant.Biomass gasification and power generation technology are econgmically feasible if the capacity of plant is less than 10 MW,due to gas turbine fueled with low heating value fuel gases is not available at present,while biomass gasification—ex— hansted heat power generation technology with relatively high efficiency is more suitable for power plants with capacities of 5--6 MW at present.Biomass direct combustion and power generation tech- nology is mature in technology,but it is only feasible for the power capacity of more than 10 MW, due to steam parameters of biomass boiler of small scale are difficult to be increased.
第26卷第3期 2008年6月
可再生能源
Renewable Energy Resources
V01.26 No.3 Jun.2008
生物质发电技术分析此较
吴创之,周肇秋,马隆龙,阴秀丽 (中国科学院广州能源研究所中国科学院可再生能源与天然气水合物重点实验室,广东广州 510640)
摘 要:文章主要对三类生物质发电技术进行了分析比较。生物质混烧发电技术在已有燃煤电站的基础上将 生物质与煤混烧发电。投资成本是三类技术中最少的,但可能降低原燃煤电站效率。由于低热值燃气轮机技术 尚未成熟,因此生物质气化发电技术仅适用于10MW以下中小规模发电系统,气化一余热发电系统效率较高, 特别适用于5-6 MW的发电系统。生物质直接燃烧发电技术比较成熟,但在小规模发电系统中蒸汽参数难以提 高,只有在大规模利用时才具有较好的经济性。比较适合于10 MW以上的发电系统。 关键词:生物质;发电;分析
注:25MW参数为进口设备。
1.2生物质气化发电 生物质气化发电是指生物质在气化炉中气化
生成可燃气体,经过净化后驱动内燃机或小型燃气 轮机发电。气化炉应对不同种类的生物质原料有较强
的适应性。内燃机一般由柴油机或天然气机改造而 成,以适应生物质燃气热值较低的要求;燃气轮机要 求容量小,适于燃烧高杂质、低热值的生物质燃气。
相比效率较低。生物质直接燃烧发电技术比较成
熟,在大规模生产条件下具有较高的效率。该技术
在我国应用较少,因为它要求生物质资源集中,数
量巨大.如果大规模收集或运输生物质.将提高原
料成本.因此该技术比较适于现代化大农场或大
型加工厂的废物处理。表1所示为6MW和25MW
生物质直接燃烧发电技术指标。
衰1 6 MW和25 MW生物质直接燃烧发电技术指标 Table 1 Technological indexes of 6 MW and 25 MW biomass
2.2生物质气化发电项目投资 表5所示为l。3 MW生物质气化电站投资概
算。在新建小型MW级生物质气化电站的投资 中,主体设备投资约占总投资的60%左右,单位
表5 10 MW生物质气化电站投资概算
Table 5 Investment budget of 1-3 MW biomass gasification
direct combustion for power generation
指标 蒸汽参数f MPB/℃ 长期运行负荷/% 年运行时间/ll·旷1 锅炉燃烧效率,% 蒸汽轮机效率,% 系统发电效率,%
6 MW
25MW
一一
铅
的
一唠瑚够抛m
5五
厂自用电率,%
燃料用景(干),妇·kWh。1
mⅢ
一贴嗍帅嬲;埠言m埘
(Key Laboratory of Renewable Energy and Gas Hydrate of CAS,Guangzhou Institute of Energy Conversion,Chinese Academy of Sciences,Guangzhou 510640,China)
电技术,能耗比常规系统低,总体效率高于40%, 但关键技术仍未成熟,尚处在示范和研究阶段f3】。
根据我国已完成的MW级生物质气化发电
技术的实际情况。将生物质气化发电技术经济指 标列于表2。
表2生物质气化发电技术指标
Table 2 Technological indexes of biomass gasification and
我国是农业大国,生物质资源种类多,主要分
布在广大农村地区,数量非常巨大,全国每年可利 用的生物质能资源总量估计可达7亿t标准煤以 上(11121。生物质能属于清洁能源,生物质能的利用可 实现CO:零排放131,是替代煤、石油和天然气等矿物 燃料的重要能源。通过各种能源转换技术,将生物质 转化为高品位的电能,既可以满足农村紧迫的电力 需求。提高农民生活水平,又可以改善农民居住环 境。所以,开发利用生物质能。对于国家能源安全、 CO:减排和社会可持续发展都具有重要意义。
for power generation project
工程或费用名称
3MW 2MW 1 MW
主体设备(气化炉、内燃发电机等),万元850
315
安装材料和配件,万元
35
18
建筑和基础,万元
140
80
设备安装与调试,万元
80
65
配套设备和配件,万元 其它及不可预见费/万元
∞
30
130 m∞m艿岱姗 50
原料预处理.生物质锅炉防腐。提高生物质锅炉的多
种原料适用性及燃烧效率、蒸汽轮机效率等技术。
生物质直接燃烧发电技术中的生物质燃烧方
式包括固定床燃烧或流化床燃烧等方式。固定床燃
烧对生物质原料的预处理要求较低,生物质经过简
单处理甚至无须处理就可投入炉排炉内燃烧。流
化床燃烧要求将大块的生物质原料预先粉碎至易
总投资,万元 投资成本/元·kW’1
l 315
560
Ⅲ姗 4 380
5600
投资随着发电规模的增大而减小。 6 MW中型生物质气化电站采用内燃机一蒸
汽轮机联合循环发电工艺,系统复杂,增加了余热 回收及汽轮机发电系统,并且电网接入项要求较 高,因而单位投资较小型气化电站高,达到6 500 元/kW。内燃机一蒸汽轮机发电部分的投资(表6 中前4项)约占总投资的55%。
2生物质发电技术投资分析 2.1生物质直接燃烧发电项目投资
生物质直接燃烧发电要求生物质资源集中. 数量巨大.在大规模利用下才有明显的经济效益。 小型生物质直接燃烧发电系统已在我国南方地区 的许多糖厂得到应用,但一般只在甘蔗收榨季节 运行;大型系统应用的较少,国内在建的几个大项 目所用设备均从发达国家引进,进口设备的投资 成本几乎是国产设备的2倍(表4)。
·35·
万方数据
可再生能源
燃烧所需时间短。这种混合燃烧方式通用性较好. 对原燃煤系统影响较小。表3所示为20 MW和 40 MW生物质气化混烧发电技术指标。 表3加MW和40MW生物质气化混烧发电技术指标