八年级数学整式乘法公式
人教版八年级上册数学整式的乘除全章课件

3个10
通过观察可以发现1014、 103这两个因数是同底数 幂的形式,所以我们把 像1014×103的运算叫做
同底数幂的乘法 .
请同学们先根据自己的理解,解答下列各题. 103 ×102 =(10×10×10)×(10×10) = 10( 5 ) 23 ×22 =(2×2×2)×(2×2)=2×2×2×2×2 =2( 5 )
2.计算:(1)23×24×25
(2)y · y2 · y3
【解析】(1)23×24×25=23+4+5=212 (2)y · y2 · y3 = y1+2+3=y6
3.计算:(-a)2×a4
【解析】原式 = a2×a4 =a6
(-2)3×22 原式 = -23 ×22
= -25
当底数互为相反数时, 先化为同底数形式.
(an)3·(bm)3·b3=a9b15 a3n ·b3m·b3=a9b15 a3n ·b3m+3=a9b15 3n=9,3m+3=15
n=3,m=4.
通过本课时的学习,需要我们掌握:
积的乘方法则 (ab)n =anbn (n为正整数) 积的乘方等于把积的每个因式分别乘方,再把 所得的幂相乘.
通过本课时的学习,需要我们掌握: 1.am·an =am+n(m、n都是正整数) 2.am·an·ap = am+n+p (m、n、p都是正整数)
14.1.2 幂的乘方
1.经历探索幂的乘方运算性质的过程,进一步体会幂 的意义,发展推理能力和有条理的表达能力. 2.了解幂的乘方的运算性质,并能解决一些实际问题.
【解析】xm·x2m= x3m =2 x9m =(x3m)3 = 23 =8 6.若a3n=3,求(a3n)4的值.
整式乘法完全平方公式精品PPT课件

b
ab
a
(a−b)2 = a2 −ab −b(a−b) = a2−2ab+b2 .
差的完全平方公式: (a-b)2= a2-2ab+b2 .
问题4 观察下面两个完全平方式,比一比,回答下列
问题:
(a+b)2= a2+2ab+b2.
(a-b)2=a2-2ab+b2.
1.说一说积的次数和项数. 2.两个完全平方式的积有相同的项吗?与a,b有
问题3 你能根据下图中的面积说明完全平方公式吗?
设大正方形ABCD的面积为S.
S1
S2
S3
S4
S= (a+b)2 =S1+S2+S3+S4= a2+b2+2ab .
几何解释:
b
a
=
+
a
b
a2
ab
和的完全平方公式: (a+b)2= a2+2ab+b2 .
+
+
ab
b2
几何解释:
a−b
b
a−b (a−b)2 b(a−b)
当堂练习
1.运用乘法公式计算(a-2)2的结果是( A ) A.a2-4a+4 B.a2-2a+4
(a+b)2= a2+2ab+b2 . (a-b)2= a2-2ab+b2 .
知识要点 完全平方公式
(a+b)2= a2+2ab+b2 . (a-b)2= a2-2ab+b2 . 也就是说,两个数的和(或差)的平方,等于它们 的平方和,加上(或减去)它们的积的2倍.这两个 公式叫做(乘法的)完全平方公式. 简记为: “首平方,尾平方,积的2倍放中间”
人教版八年级数学上册 整式的乘法与因式分解知识点总结及同步练习

整式乘除与因式分解一.知识点 (重点) 1.幂的运算性质:a m ·a n =a m +n (m 、n 为正整数) 同底数幂相乘,底数不变,指数相加. 例:(-2a )2(-3a 2)3 2.()nm a = a mn (m 、n 为正整数)幂的乘方,底数不变,指数相乘. 例: (-a 5)53.()n n nb a ab = (n 为正整数) 积的乘方等于各因式乘方的积. 例:(-a 2b )3 练习:(1)y x x 2325⋅ (2))4(32b ab -⋅- (3)a ab 23⋅(4)222z y yz ⋅ (5))4()2(232xy y x -⋅ (6)22253)(631ac c b a b a -⋅⋅4.nm a a ÷= a m -n (a ≠0,m 、n 都是正整数,且m >n )同底数幂相除,底数不变,指数相减. 例:(1)x 8÷x 2 (2)a 4÷a (3)(a b )5÷(a b )2(4)(-a )7÷(-a )5 (5) (-b ) 5÷(-b )25.零指数幂的概念: a 0=1 (a ≠0)任何一个不等于零的数的零指数幂都等于l . 例:若1)32(0=-b a 成立,则b a ,满足什么条件?6.负指数幂的概念:a -p =pa 1 (a ≠0,p 是正整数)任何一个不等于零的数的-p (p 是正整数)指数幂,等于这个数的p 指数幂的倒数.也可表示为:ppn m m n ⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛-(m ≠0,n ≠0,p 为正整数)7.单项式的乘法法则:单项式相乘,把系数、同底数幂分别相乘,作为积的因式;对于只在一个单项式里含有的字母,则连同它的指数作为积的一个因式.例:(1)223123abc abc b a ⋅⋅ (2)4233)2()21(n m n m -⋅-8.单项式与多项式的乘法法则:单项式与多项式相乘,用单项式和多项式的每一项分别相乘,再把所得的积相加.例:(1))35(222b a ab ab + (2)ab ab ab 21)232(2⋅-(3))32()5(-22n m n n m -+⋅ (4)xyz z xy z y x ⋅++)(23229.多项式与多项式的乘法法则:多项式与多项式相乘,先用一个多项式的每一项与另一个多项式的每一项相乘,再把所得的积相加.例:(1))6.0(1x x --)( (2)))(2(y x y x -+ (3)2)2n m +-( 练习:1.计算2x 3·(-2xy)(-12xy) 3的结果是2.(3×10 8)×(-4×10 4)=3.若n 为正整数,且x 2n =3,则(3x 3n ) 2的值为 4.如果(a n b ·ab m ) 3=a 9b 15,那么mn 的值是5.-[-a 2(2a 3-a)]=6.(-4x 2+6x -8)·(-12x 2)= 7.2n(-1+3mn 2)=8.若k(2k -5)+2k(1-k)=32,则k = 9.(-3x 2)+(2x -3y)(2x -5y)-3y(4x -5y)=10.在(ax 2+bx -3)(x 2-12x +8)的结果中不含x 3和x 项,则a = ,b =11.一个长方体的长为(a +4)cm ,宽为(a -3)cm ,高为(a +5)cm ,则它的表面积为,体积为。
八年级数学上册整式的乘法与因式分解(平方差公式, 完全平方公式)

平方差公式 相同为a
适当交换 (a+b)(a-b)=(a)2-(b)2
合理加括号
相反为b,-b
注:这里的两数可以是两个
也可以是两个
等.
(1+x)(1-x) (-3+a)(-3-a)
(1+a)(-1+a) (0.3x-1)(1+0.3x)
1
x
-3
a
a1
0.3x 1
a2-b2 12-x2 (-3)2-a2 a2-12 ( 0.3x)2-12
3.另一项是两数积的2倍,且与两数中间的符 号相同. 4.公式中的字母a,b可以表示数,单项式和 多项式.
想一想:下面各式的计算是否正确?如果不正确, 应当怎样改正?
(1)(x+y)2=x2 +y2 (2)(x -y)2 =x2 -y2
×
(x +y)2 =x2+2xy +y2
×
(x -y)2 =x2 -2xy +y2
= 3x2-5x-10.
例3 先化简,再求值:(2x-y)(y+2x)-(2y+x)(2y -x),其中x=1,y=2.
解:原式=4x2-y2-(4y2-x2) =4x2-y2-4y2+x2 =5x2-5y2.
当x=1,y=2时,
原式=5×12-5×22=-15.
例4 对于任意的正整数n,整式(3n+1)(3n-1)- (3-n)(3+n)的值一定是10的整数倍吗?
x2 - 12 m2-22
③(2m+ 1)( 2m-1)=4m2 - 12 ④(5y + z)(5y-z)= 25y2 - z2
(2m)2 - 12 (5y)2 - z2
想一想:这些计算结果有什么特点?
人教版八年级上数学整式的乘法与因式分解ppt课件

• (1)98×102 • =(100-2)(100+2) • =1002-22 • =9996
.
• (2)2992
• =(300-1)2 • =3002-2×300×1+1 • =90401
.
(3) 20062-2005×2007 • =20062-(2006-1)(2006+1) • =20062-(20062-12) • =20062-20062 +1 • =1
.
(x-2y+3z)2
• =[(x-2y)+3z]2 • =(x-2y)2 +6z(x-2y)+9z2
• =x2-4xy+4y2+6zx-12yz+9z2 • =x2+4y2+9z2-4xy+6zx-12yz
三数和的平方公式: (a+b+c)2=a2+b2 +c2+2ab+2ac+2bc
.
计算:(1)98×102 (2)2992 (3) 20062-2005×2007
提:提公因式 提负号
套 二项式:套平方差 三项式:套完全平方与十相乘法
看: 看是否分解完
3、因式分解应用:
.
1.从左到右变形是因式分解正确的是( D ) A.x2-8=(x+3)(x-3)+1
B.(x+2y)2=x2+4xy+4y2
C.y2(x-5)-y(5-x)=(x-5)(y2+y)
D. 2 a2-1( 2a2-1) ( 2a1) (a1)
(x+4y-6z)(x-4y+6z) (x-2y+3z)2
八年级数学整式的乘法与因式分解常考必考知识点总结

一、整式的乘法1.几个常用公式:(a+b)² = a² + 2ab + b²(a-b)² = a² - 2ab + b²(a+b)(a-b)=a²-b²(a+b)³ = a³ + 3a²b + 3ab² + b³(a-b)³ = a³ - 3a²b + 3ab² - b³2.整式的乘法法则:(a+b)(c+d) = ac + ad + bc + bd加减混合运算:(a+b)(c-d) = ac - ad + bc - bd3.多项式的乘法:(a₁+a₂+...+aₙ)(b₁+b₂+...+bₙ)=a₁b₁+a₁b₂+...+a₁bₙ+a₂b₁+a₂b₂+...+a₂bₙ+...+aₙb₁+aₙb₂+...+aₙb ₙ4.整式的乘法性质:交换律:a·b=b·a结合律:(a·b)·c=a·(b·c)分配律:a·(b+c)=a·b+a·c5.整式的乘法应用:展开、计算、化简等二、因式分解1.因式分解的基本概念:将一个整式分解为两个或多个因式的乘积的过程。
2.因式分解的方法:a.公因式提取法:找出整个整式和各项中的公因式,并提取出来。
b.公式法:利用已知的一些公式对整式进行因式分解。
c.分组法:将整式中各项按一定的规则分组,然后在每组内部进行因式分解。
d.辗转相除法:若整式中存在因式公共因式,可以多次使用辗转相除法进行因式分解。
3.一些常见的因式分解公式:a.二次差平方公式:a²-b²=(a+b)(a-b)b. 平方差公式:a² + 2ab + b² = (a+b)²c. 平方和公式:a² - 2ab + b² = (a-b)²d. 三次和差公式:a³+b³ = (a+b)(a²-ab+b²)、a³-b³ = (a-b)(a²+ab+b²)e. 四次和差公式:a⁴+b⁴ = (a²+b²)(a²-ab+b²)、a⁴-b⁴ = (a+b)(a-b)(a²+b²)4.因式分解的应用:简化计算、寻找整式的根、列立方程等。
八年级数学上册第12章整式的乘除12.3乘法公式1两数和乘以这两数的差课件(新版)华东师大版

.
.
1.(孝感中考)下列计算正确的是( B ) A.b3· b3=2b3 B.(a+2)(a-2)=a2-4 C.(ab2)3=ab8 D.(8a-7b)-(4a-5b)=4a-12b 2.计算:(x-y)(-y-x)的结果是( A ) A.-x2+y2 C.x2-y2 B.-x2-y2 D.x2+y2
解:原式=9;
(2)(4m-3n)(4m+3n);
解:原式=16m2-9n2;
1 1 (3)(-2x2+ )(-2x2- ); 2 2 1 4 解:原式=4x - ; 4 2 3 2 3 (4)( x- y)(- x- y). 3 4 3 4 4 9 解:原式=- x2+ y2. 9 16
7.边长为 acm 的正方形(a>1),一组对边的边长增加 1cm,另一组对边的 边长减少 1cm,得到的长方形的面积与原正方形的面积比较,有没有发生 变化?说明你的理由.
14.(青海中考)观察下列各式规律: (x-1)(x+1)=x2-1; (x-1)(x2+x+1)=x3-1; (x-1)(x3+x2+x+1)=x4-1…
8 x 可得到(x-1)(x +x +x +x +x +x +x+1)= -1
7
6
5
4
3
2
; .
n+1 一般地(x-1)(xn+xn-1+x5+…x2+x+1)= x -1
10.(x+2)(x-2)(x2+4)的计算结果是( C ) A.x4+16 C.x4-16 B.-x4-16 D.16-x4
11.已知 m2-n2=4.那么(m+n)2(m-n)2 的结果是( C ) A.4 C.16 B.8 D.32
人教版八年级数学上册课件 14.2 乘法公式

三、研读课文
例2 计算:
知 识
(解:1)原(式y+2=)(yy-22)-(y2-12)-(y( +5y) 2 +4y-5) =y2 22 -y2 -4y+5
点
=1-4y
四 (2) 102×98
解:原式==1(100002+-222)(100-2)
=10000-4 =9996
归纳 :只有符合公式要求的乘法,才能运用公式简化 运算,其余的运算仍按照法则来进行.
4
4
x
2;1
三、研读课文
一般地,
知
(a+b)(a-b)=a2-b2.
识 点
两个数的 __和与这两个数的 __ 的差 __积___,等于这两个数的平方差.
二
这个公式叫做(乘法的)平方差公式.
温馨提示:应用公式的关键是确定a和b.
三、研读课文
思考
知
你能根据下面图形的面积说明平方差公式吗?
识
a
点
b
三
3、(2012哈尔滨)下列运算中,正确的是( )
a 3 a 4 a12
a 3 4 a12
A、 a a 4 a 5
B、 a ba b a2 b2
C、
D、
4ห้องสมุดไป่ตู้下列各式中,计算结果是 81 x 2的是( ) D
x 9x 9
A、
2 y 1 1 2 y
a bb
矩形面积=大正方形面积--小正方形面试
(a b)(a b)=a2 b2
即
三、研读课文
练一练 下面各式的计算对不对?若不对, 应当怎样改正?
知
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
课题:整式的乘法公式复习课课时:2课时教学目标:1.能说出整式的乘法公式;2.会运用整式的乘法公式进行计算;4.通过具体例子体会本节学习中体现的从具体到抽象、特殊到一般的思考问题的方法,渗透转化、归纳等思想方法,发展合情推理能力和演绎推理能力。
教学重点:相关运算公式教学难点:熟练地进行有关运算教学方法:讲练结合教学过程:第一课时:(一) 引导学生归纳整理这节的知识结构(学生阅读教材,勾出重点,完成各节练习题P24-28页练习)(二)、解题指导1、 有些多项式的乘法不能直接应用此公式()()22a b a b a b +-=-进行计算,需经简单变形后方可应用,常用的变形有: ①位置变化:如:12212332a b b a ⎛⎫⎛⎫+- ⎪⎪⎝⎭⎝⎭=21213232b a b a ⎛⎫⎛⎫+- ⎪⎪⎝⎭⎝⎭= ②符号变化:如:()()()()32323232x y x y x y x y ---=-+- ③系数变化:如:()()()()1144422a b a b a b a b +-=⨯+- 整式的乘法平方差公完全平方公④相同项结合,相反项结合:如()()()()23232323x y z x y z x y z x y z +--+=+---⎡⎤⎡⎤⎣⎦⎣⎦⑤根据题目特点,创造条件,灵活变形,巧妙应用公式:如:()()()()()()35235835353535a b c a b c a c c b c b a b ----+=-+----⎡⎤⎡⎤⎣⎦⎣⎦ 2、对()2222a b a ab b +=++ 或 ()2222a b a ab b -=-+常见的恒等变形、: ①()()222222a b a b ab a b ab +=+-=-+②()()224a b a b ab +=-+③()()224a b a b ab -=+- ④()()224a b a b ab +--=3、乘法公式也可以逆用,逆用后的计算可能更为简便。
如:()()()()()()22232323232323x x x x x x +--=++-+--⎡⎤⎡⎤⎣⎦⎣⎦=4x 6=24x例1、计算:(1) ()()22222323xy x y +- (2) 22112222x x ⎛⎫⎛⎫-+-- ⎪⎪⎝⎭⎝⎭(3)、22421113a b 3a b 9a b 224⎛⎫⎛⎫⎛⎫+-- ⎪⎪⎪⎝⎭⎝⎭⎝⎭(4)、()()()2222x 1x 1x 1+-+例2、利用乘法公式计算:(1)19992001⨯ (2)21997199719981996-⨯ ⑵ 20032例3、 化简求值:(1)()()()()()()222222x x y x y x x y y ⎡⎤-+--++---⎡⎤⎣⎦⎣⎦,其中11,2x y =-=检测、作业1、填空题(1) (b + a)(b -a) = _______________, (x -2) (x + 2) = _________________;(2) (3a + b) (3a -b) =________________, (2x 2-3) (-2x 2-3) = ______________________;(3) 2294)3)(______3(______________,__________)2132)(2132(b a b b a a -=-+=-+ (4) (x + y)2=_________________,(x -y)2=______________________;(5)______________________)2(_________,__________)3(22=+-=-b a b a(6)41________)21(22+=-x x(7)(3x + ________)2=__________+ 12x + ____________;(8)_________________________)2(__,__________)()(222=--+-=+y x b a b a ;(9) (x 2-2)2-(x 2 + 2)2 = _________________________;2、计算题(写过程)(1))5)(5(33m n n m -+ (2))2.02)(22.0(x y y x -+ (3))1)(1(---xy xy(4)2)2332(y x - (5)22)2()2(a b b a -++ (6))1)(1)(1(2--+m m m(7)22)2()2(n m n m -+ (8)22)23()32(+-+x x (9)2)32(z y x +-3、用简便方法计算(写过程)⑴ 92×88 ⑵ 32593160⨯ ⑶225.365.38- ⑷2220012003-(5) 982 (6) 13.42-2×13.4 + 3.424、计算)13)(13)(13)(13)(13(16842+++++5、已知x + y = a , xy = b ,求(x -y) 2 ,x 2 + y 2 ,x 2-xy + y 2的值6、已知3)()1(2-=+-+y x x x ,求xy y x -+222的值第二课时:(一)、复习整式的乘法公式(二)、随堂练习、讲评:1、填空题(1) (x + y) (-x + y) = ______________, (-7m -11n) (11n -7m) = ____________________;(2) _____________________)2)(4)(2(___,__________)2)(2(2=++-=---a a a y x x y ;2、计算(1))23)(23(2222b a ab b a ab ++- (2) )1)(1)(1(2++-a a a(3) )132)(132(++--y x y x (4)()()x y z x y z ++--(5)()()2525x y z x y z +-+-++ (6)22222210099989721-+-++-(7)()()()()243221212121++++ (8)22221111111123410⎛⎫⎛⎫⎛⎫⎛⎫---- ⎪⎪⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭(三)、拓展提高例1()()323388418841x x x x x x +++-+- 其中12x =例2解不等式:()()()()3434923x x x x +-≤-+例3、解方程组:()()()()223223x y x y x y x y -=⎧⎪⎨+--=+-⎪⎩例4、设m 、n 为自然数,且满足:2222221299n m =++++,求n 的值。
例5、已知S=2222222123499100101-+-++-+,求S 被103除的余数。
例6、解答下列各题:①已知()()22a b =7,a b =4+-,求22a b ab +和的值。
②已知1a =4a -,求221a a +的值 。
③已知2222a b a b 1=4ab +++,求a 、b 的值 。
④若222x-y=m,y-z=n,x +y +z -xy-yz-xz 求的值⑤化简求值:()()()223x-y 2x y 5x y x -+--⋅,其中x=2,y=1⑥若()()22a b =m,a b =n +-,用含m 、n 的代数式表示:(1) a 与b 的平方和。
(2)b a a b+的值 。
(2)⑦已知x y z=a,xy yz zx=b ++++,求222x y z ++的值 。
(四)、数学生活实践例1 学校警署有一块边长为 (2a + b)米的正方形草坪,经统一规划后,南北向要缩短3米,而东西向要加长3米,问改造后的长方形草坪的面积是多少?例2、如图,矩形ABCD 被分成六个大小不一的正方形,已知中间一个小正方形的面积为4,求矩形ABCD 中最大的正方形与最小正方形的面积之差。
例3、已知两个两位数的平方差为220,且它们的十位上的数字相同,一个数有个位是6,另一个数的个位是4,求这两个数。
AA A A d C b a a 4(五)、小结:收获?(六)、教学反思:(七)作业1、判断题⑴222964)32(y xy x y x +-=- ( )⑵ (3a 2 + 2b )2 = 9a 4 + 4b 2 ( )⑶2234226.004.0)2.0(n m n m m mn m ++=-- ( )⑷ (-a + b) (a -b) = -(a -b) (a -b) = -a 2-2ab + b 2 ( )2、选择题⑴下列可以用平方差公式计算的是( )A 、(x -y) (x + y)B 、(x -y) (y -x)C 、(x -y)(-y + x)D 、(x -y)(-x + y)⑵下列各式中,运算结果是22169b a -的是( )A 、)43)(43(b a b a --+-B 、)34)(34(a b a b --+-C 、)34)(34(a b a b -+D 、)83)(23(b a b a -+⑶若2422549))(________57(y x y x -=--,括号内应填代数式( )A 、y x 572+B 、y x 572--C 、y x 572+-D 、y x 572- ⑷22)213()213(-+a a 等于( )A 、4192-aB 、161814-a C 、161298124+-a a D 、161298124++a a(5)2)2(n m +-的运算结果是 ( )A 、2244n mn m ++B 、2244n mn m +--C 、2244n mn m +-D 、2242n mn m +-(6)运算结果为42421x x +-的是 ( )A 、22)1(x +-B 、22)1(x +C 、22)1(x --D 、2)1(x -(7)已知2264b Nab a +-是一个完全平方式,则N 等于 ( )A 、8B 、±8C 、±16D 、±32(8)如果22)()(y x M y x +=+-,那么M 等于 ( )A 、 2xyB 、-2xyC 、4xyD 、-4xy3、计算题⑴ x (9x -5)-(3x + 1) (3x -1) ⑵ (a + b -c) (a -b + c)⑶)49)(23)(23(22b a b a b a ++- ⑷ (2x -1) (2x + 1)-2(x -2) (x + 2)(5) 22)()(y x y x +- (6)22)35()35(y x y x ++-(7) ))((c b a c b a +--+ (8) 2222)2()4()2(++-t t t4、已知(a + b) 2 =3,(a -b) 2 =2 ,分别求a 2 + b 2, ab 的值。