匀变速直线运动基本公式及推导
匀变速直线运动公式 推论推导 及规律总结

匀变速直线运动公式推论推导及规律总结一、基本规律:1.基本公式:平均速度 v = s/t加速度 a = (v - v0)/t2.瞬时速度公式:瞬时速度 v = v0 + at初速度 v0 = 03.位移公式:s = vt + 1/2at^2二、匀变速直线运动的推论及推理掌握运用匀变速直线运动公式的推论是解决特殊问题的重要手段。
1.推论1:做匀变速直线运动的物体在中间时刻的即时速度等于这段时间的平均速度,即 v = S/t2.推论2:做匀变速直线运动的物体在一段位移的中点的即时速度 v = (v0 + vt)/23.推论3:做匀变速直线运动的物体,在连续相等的时间间隔 t 内的位移分别为 S1、S2、S3……Sn,加速度为 a,则ΔS = S2 - S1 = S3 - S2 = ……= Sn - Sn-1 = at^2推论6:对于初速度为零的匀变速直线运动,从开始运动算起,物体经过连续相等的位移所用的时间之比为(a(2(n-1)S)^(1/2))]×(n-n+1)/2=a(n-n+1)/(2(n-1)S),代入可得推论7:对于初速度为零的匀加速直线运动,第一个s末、第二个s末、……第n个s末的速度之比为自由落体运动和竖直上抛运动的公式和推论如下:自由落体运动:平均速度v=gt/2瞬时速度vt=gt位移公式s=1/2gt^2重要推论2gs=vt^2竖直上抛运动:瞬时速度vt=v-gt位移公式s=vt-1/2gt^2重要推论-2gs=vt-v作为匀变速直线运动应用的竖直上抛运动,其处理方法有两种:其一是分段法。
将上升阶段看做末速度为零,加速度大小为g的匀减速直线运动;将下降阶段看做初速度为零,加速度大小为g的匀加速直线运动。
其二是通过将竖直上抛运动的轨迹分解为水平和竖直两个方向运动的合成,分别处理水平和竖直两个方向的运动。
匀变速直线运动相关公式与推导全解

匀变速直线运动相关公式与推导全解下面将详细介绍匀变速直线运动的相关公式与推导全解。
一、基本公式:1.速度公式:在匀变速直线运动中,物体的速度是随时间变化的。
记物体的初始速度为v0,时间为t,物体的速度为v。
若物体的加速度为a,则根据速度的定义,有 v = v0 + at。
这个公式表明,物体的速度等于初始速度加上加速度乘以时间。
2.位移公式:在匀变速直线运动中,物体的位移也是随时间变化的。
记物体的初始位移为s0,时间为t,物体的位移为s。
若物体的速度为v,则根据位移的定义,有 s = s0 + vt。
这个公式表明,物体的位移等于初始位移加上速度乘以时间。
3.加速度公式:在匀变速直线运动中,物体的速度会随时间变化,因此有加速度的概念。
加速度的定义为a=(v-v0)/t,即加速度等于速度的差值除以时间。
根据速度公式 v = v0 + at,可以推导出加速度公式 a = (v - v0) / t。
二、推导全解:假设物体在时间t=0时刻的速度为v0,位移为s0,加速度为a。
我们需要求解出该物体在任意时间t时刻的速度v和位移s。
1. 根据速度公式 v = v0 + at,可以得到物体在任意时刻t的速度v。
2. 根据位移公式 s = s0 + vt,可以得到物体在任意时刻t的位移s。
3.根据加速度公式a=(v-v0)/t,可以得到物体的加速度。
4. 根据上述三个公式,我们可以通过任意两个已知量求解出第三个未知量。
比如,如果已知 v0、a 和 t,可以通过速度公式 v = v0 + at 求解出 v,然后再通过位移公式 s = s0 + vt 求解出 s。
5. 如果已知 v0、a 和 s,则可以通过加速度公式 a = (v - v0) / t 求解出 v,然后再通过位移公式 s = s0 + vt 求解出 t。
综上所述,我们可以根据速度公式、位移公式和加速度公式,推导出匀变速直线运动的全解。
这些公式在物理学中的应用非常广泛,可以用于求解各种匀变速直线运动的问题。
(完整版)匀变速直线运动的推论及推理

罗老师总结匀变速直线运动常用公式 (附匀变速直线运动的推论及推理过程)一、基本公式速度公式 at v v t +=0 当00=v 时,at v t = 位移公式 2021at t v s += 221at s = 二、几个常用的推论1.位移推导公式 2022v v as t -=, t v v s t20+=2.平均速度v 、中间时刻的瞬时速度2/t v 、中间位置的瞬时速度2/s v 为:0/22t t v v xv v t +===, 22202/t s v v v += 3.做匀变速直线运动的物体,在各个连续相等的时间T 内的位移分别是s 1、s 2、s 3…s n ,则Δs =s 2-s 1=s 3-s 2=…=s n -s n-1=aT 2.4.V 0=0的匀加速直线运动中的几个常用的比例公式(1)等分运动时间,以T 为单位时间.①1T 末,2T 末,3T 末…,n T 末的速度之比v 1:v 2:v 3:…:v n =1:2:3…:n②1T 内、2T 内、3T 内…n T 内通过的位移之比s 1:s 2:s 3:…:s n =1:4:9…:n 2③第1个T 内、第2个T 内、第3个T 内…、第n 个T 内通过的位移之比s Ⅰ:s Ⅱ:s Ⅲ:…:s N =1:3:5…:(2n —1)④第1个T 内、第2个T 内、第3个T 内…、第n 个T 内的平均速度之比v Ⅰ:v Ⅱ:v Ⅲ:…:v N =1:3:5…:(2n —1) (2)等分位移,以x 为位移单位. ①通过1x 、2x 、3x …、n x 所需时间之比t 1:t 2:t 3:…:t n =1:3:2…:n②通过第1个x 、第2个x 、第3个x 、…第n 个x 所需时间之比t Ⅰ:t Ⅱ:t Ⅲ:…:t N =1::23:12--…:1--n n③1x 末,2x 末,3x 末…,n x 末的速度之比v 1:v 2:v 3:…:v n =1:3:2…:n对匀变速直线运动公式作进一步的推论,是掌握基础知识、训练思维、提高能力的一个重要途径,掌握运用的这些推论是解决一些特殊问题的重要手段。
匀变速直线运动的公式及推论

匀变速直线运动的公式及推论匀变速直线运动的公式较多,而这些公式在不同的条件下,又可以衍生许多推论,有些推论对于灵活、便捷地处理实际问题非常有用,本文就此作一介绍。
一、 基本公式:(1) 速度与时间关系公式 at v v t +=0(2) 位移与时间关系公式 2021at t v x +=(3) 速度与位移关系公式 ax v v t 2202=-以上三个公式只有两个是独立的,因此匀变速直线运动中五个物理量初速度v0、末速度v 、加速度a 、位移x 、时间t ,只有知道三个,才能求出另外两个。
例1、一辆卡车行驶速度为54千米/小时,紧急刹车时的加速度的大小是5 m/s 2。
那么刹车4s 后卡车行驶的距离是多少?解析:此题表面看三个已知是初速度、加速度、时间t ,其实时间是伪条件,卡车3s 已经停下来了,这里真正一个隐含条件是末速度为0。
应该用公式,ax v v t 2202=- 求得m x 5.22=二、关于速度的几个公式(1)平均速度原始公式t x v ∆∆=或t x v = (2)平均速度特殊公式()000221v v v v v v v v t t t +=+=或 (3)中间时刻速度公式()v v v v t t =+=0221 (4) 中点位置速度公式22022v v v t s += 公式适用任何变速直线运动,其它公式都只适用匀变速直线运动。
不管匀加速直线运动还是匀减速直线运动,一定。
例2、一个质点做匀变速直线运动,依次经过A 、C 、B 三点,其中C 是A 、B 的中点,已知AC 段的平均速度为3m\s,BC 段的平均速度为6m\s,求质点通过C 点的瞬时速度。
解析:此题若用基本公式求解,相当复杂.现在用平均速度特殊公式和中点位置速度公式来求解,相当明了. 由()c a ac v v v +=21 ()c b bc v v v +=21 ① ax v v t 2202=- ② 22022v v v t s += ③ 解①②③得vc=5m/s 。
匀变速直线运动的公式和推论

匀变速直线运动的公式和推论1.位移公式:Δx = v0t + 1/2at²其中,Δx表示位移,v0表示起始速度,t表示时间,a表示加速度。
这个公式说明了在匀变速直线运动中,物体的位移取决于起始速度、时间和加速度。
当起始速度为零时,位移简化为:Δx = 1/2at²。
这意味着位移与加速度和时间的平方成正比。
2.速度公式:v = v0 + at其中,v表示速度,v0表示起始速度,t表示时间,a表示加速度。
速度公式说明了在匀变速直线运动中,物体的速度是起始速度和时间以及加速度的乘积。
当起始速度为零时,速度简化为:v = at。
这意味着速度取决于加速度和时间的乘积。
3.加速度公式:a=(v-v0)/t其中,a表示加速度,v表示结束速度,v0表示起始速度,t表示时间。
加速度公式说明了在匀变速直线运动中,加速度是结束速度和起始速度之差与时间的比率。
如果没有指定结束速度,加速度公式可以进一步简化为:a=(2Δx)/t²。
这意味着加速度取决于位移和时间的平方与两倍的比率。
通过这些公式,我们可以推导出一些匀变速直线运动的推论。
1.速度-时间关系:通过速度公式和位移公式,可以推导出速度与时间之间的关系。
首先,从速度公式 v = v0 + at 中可以解出时间 t:t=(v-v0)/a将解出的时间 t 代入位移公式Δx = v0t + 1/2at²,消去时间 t:Δx=v0[(v-v0)/a]+1/2a[(v-v0)/a]²整理后得到速度-时间关系公式:v²=v0²+2aΔx这个公式说明了在匀变速直线运动中,速度的平方与起始速度的平方、加速度和位移的乘积之间存在线性关系。
2.位置-时间关系:将位置公式右侧移项,得到:1/2at² = Δx - v0t由位移公式可知,左侧1/2at² 表示物体在时间 t 内所表现的“缺失位移”。
这是因为在变速直线运动中,速度不断增加或减小,导致物体的真实位移将大于或小于其平均速度乘以时间的值。
匀变速直线运动公式推论推导及规律总结

匀变速直线运动公式推论推导及规律总结v = v0 + at位移由速度的定义导出:s = v0t + 1/2at²在匀变速直线运动中,加速度是变化的,因此在不同的时间段内,可以得到不同的位移和速度的关系。
根据运动的规律,我们可以得到几个重要的推论:推论1:t=0时刻的速度为v0,t时刻的速度为v,则平均速度为(v0+v)/2根据速度的定义,可以得到:v = v0 + at从t=0到t时刻的时间段内,速度变化了v-v0,平均速度就是速度变化量的一半。
推论2:匀变速直线运动的位移与时间的关系可以由位移公式得出。
s = v0t + 1/2at²根据位移公式可以看出,位移与时间的平方成正比。
这说明,在匀变速直线运动中,物体的位移与时间的平方呈现出二次增长的规律。
推论3:匀变速直线运动的速度与时间的关系可以由加速度公式得出。
v = v0 + at在匀变速直线运动中,可以通过加速度的大小和方向的不同来改变速度的大小和方向。
加速度的大小和方向会影响速度的改变速率。
推论4:匀变速直线运动中,速度与位移的关系可以由速度公式和位移公式得出。
将速度公式和位移公式联立,并将速度v表示为位移s和时间t的函数,可以得到:v=(2/t)*(s-v0t)从上式中可以看出,速度与位移的关系呈现线性关系。
即速度与位移成正比,并且速度与时间的倒数成正比。
以上是对匀变速直线运动公式进行推论推导的过程,可以得出一些规律总结如下:1.在匀变速直线运动中,速度和位移与时间有关,速度与时间成一次函数关系,位移与时间成二次函数关系。
2.加速度的大小和方向会影响速度的改变速率,从而影响物体的运动轨迹和速度的变化。
3.速度与位移成正比,并且速度与时间的倒数成正比。
因此,在匀变速直线运动中,可以通过速度-时间图和位移-时间图来分析物体的运动情况。
4.在匀变速直线运动中,如果加速度为零,即物体的速度保持不变,则运动成为匀速直线运动;如果加速度为常数,即物体的速度随着时间的推移以恒定的速率加快或减慢,则运动成为等加速度运动。
匀变速直线运动的公式及推导式

一、适用于所有匀变速直线运动的公式及推导式:①末速度公式:at v v t +=0②位移与时间的公式:2021at t v x +=③位移与速度的公式:2022v v ax t -= ④连续相等的时间间隔内的位移差:x ∆=aT 2 ⑤某段时间内中间时刻的瞬时速度:2t v =v =20tv v + ⑥某段位移中点的瞬时速度: 2Xv =2220t v v + 且:2t v <2X v 二、初速度为零的匀加速直线运动规律:(匀减速直线运动可以看成反向的匀加速直线运动)。
设T 为时间单位,则有: (1)T 末、2T 末、3T 末、…… nT 末的瞬时速度之比为: v1∶v2∶v3∶…… :vn =1∶2∶3∶…… ∶n(2)T 内、2T 内、3T 内…… nT 内位移之比为:x 1∶x 2∶x 3∶…… :x n =12∶22∶32∶…… ∶n 2 =1∶4∶9……(3)第一个T 内,第二个T 内,第三个T 内,…… 第n 个T 内的位移之比为: x 1∶x 2∶x 3∶…… :x n =1∶3∶5∶…… ∶(2n -1)(4)通过连续相等位移的所用时间之比为:t 1∶t 2∶t 3∶…… :t n =1∶(12-)∶(23-)∶……… ∶(1--n n )逐差法求解纸带加速度(1)理解如下图所示,是相邻两计数点间的距离,△x是两个连续相等的时间里的位移之差,即,…T是两相邻计数点间的时间间隔,对两段进行分析,由匀变速直线的规律得则任意相邻计数点间位移差:对匀变速直线运动,a是恒量,T也是恒量,它是判断物体是否做匀变速直线运动的必要条件。
即若任意两连续相等的时间间隔里的位移之差为恒量,则与纸带相连物体的运动为匀变速运动。
(2)用逐差法求加速度由得又,可得同理可得:加速度的平均值为如果不用此法,而用相邻的各x值之差计算加速度再求平均值可得比较可知,逐差法将纸带上到各实验数据都利用了,而后一种方法只用上了和两个实验数据,实验结果只受、两个数据影响,算出a的偶然误差较大。
匀变速直线运动的基本公式

匀变速直线运动的基本公式1.位移:物体在其中一时刻相对于参考点的位置变化量,用Δx表示。
2.速度:物体单位时间内移动的位移变化量,即位移对时间的导数。
可以分为瞬时速度和平均速度两种。
3.加速度:物体单位时间内速度的变化量,即速度对时间的导数。
同样可以分为瞬时加速度和平均加速度两种。
接下来,我们将对匀变速直线运动的位移、速度和加速度进行推导,并给出其基本公式。
一、位移的公式推导:对于匀变速直线运动,我们已知其加速度是一个常量a,即在任何时刻,物体的加速度都保持不变。
根据加速度定义可知:a=Δv/Δt其中,Δv表示速度的变化量,Δt表示时间的变化量。
由于物体的加速度是一个常量,我们可以将上述等式进行积分得到速度与时间的关系:∫a dt = ∫(Δv / Δt) dt由于a是一个常量,上式可以简化为:a*t=Δv其中,t表示时间。
接下来,我们再次对上式进行积分,得到位移与时间的关系:∫a t dt = ∫Δv dt化简可得:(1/2)*a*t^2=v其中,v表示速度。
此即为匀变速直线运动的位移公式。
二、速度的公式推导:根据上述位移公式可知:(1/2)*a*t^2=v将位移公式两边对时间t求导,得到速度与时间的关系:d((1/2) * a * t^2) / dt = dv / dt化简可得:a * t = dv / dt即:a = dv / dt此即为匀变速直线运动的速度公式。
三、加速度的公式推导:根据速度公式可知:a = dv / dt将速度公式两边对时间t求导,得到加速度与时间的关系:d(a * t) / dt = d^2x / dt^2化简可得:a = d^2x / dt^2此即为匀变速直线运动的加速度公式。
综上所述,匀变速直线运动的基本公式如下:位移公式:Δx=(1/2)*a*t^2速度公式:v=a*t加速度公式:a = dv / dt = d^2x / dt^2其中,Δx表示位移,v表示速度,a表示加速度,t表示时间。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
匀速直线运动基本公式及推导1、 速度:物理学中将位移与发生位移所用的时间的比值定义为速度。
用公式表示为:V =ΔX Δt=x2−x1t2−t12、 瞬时速度:在某一时刻或某一位置的速度称为瞬时速度。
瞬时速度的大小称为瞬时速率,简称速率。
3、加速度:物理学中,用速度的改变量∆V 与发生这一改变所用时间∆t 的比值,定量地描述物体速度变化的快慢,并将这个比值定义为加速度。
α=ΔV Δt单位:米每二次方秒;m/S 2α即为加速度;即为一次函数图象的斜率;加速度的方向与斜率的正负一致。
速度与加速度的概念对比:速 度:位移与发生位移所用的时间的比值加速度:速度的改变量与发生这一改变所用时间∆t 的比值4、 匀变速直线运动:在物理学中,速度随时间均匀变化,即加速度恒定的运动称为匀变速直线运动。
1) 匀变速直线运动的速度公式:V t =V 0+αt推导:α=ΔV Δt=Vt− V0t……..速度改变量发生这一改变所用的时间2)匀变速直线运动的位移公式:x =V 0t+ 12 αt 2……….(矩形和三角形的面积公式) …推导:x =V0+Vt2∙t (梯形面积公式) 如图:3)由速度公式和位移公式可以推导出的公式:⑴V t 2-V 02=2αx (由来:V T 2-V 02=(V 0+αt)2 -V 02=2αV 0t +α2t 2=2α(V 0t+ 12αt 2)=2αx) ⑵V t 2=V0+Vt 2=V −(由来:V t 2=V 0+α t 2=2V0+αt 2=V0+(V0+αt)2=V0+Vt 2=V −)⑶V x 2=√V2+V t 22(由来:因为:V t 2-V 02=2αx 所以V x 22-V 02=2αx2=αx =VT2−V022)(V x 22-V 02=V t 2−V 022;V x 22=V t 2−V 022+V 02=V t 2+V 022)⑷∆x=αT 2(做匀变速直线运动的物体,在任意两个连续相等的时间内的位移差为定值。
设加速度为α,连续相等的时间为T,位移差为∆X )证明:设第1个T 时间的位移为X 1;第2个T 时间的位移为X 2;第3个T 时间的位移为X 3……..第n 个T 时间的位移即X n由:x =V 0t+ 12 αt 2 得: X 1=V 0T+ 12 αT 2X 2=V 02T+12α(2T)2-V 0T- 12 αT 2=V 0T+ 32 αT 2 X 3=V 03T+ 12 α(3T)2-V 02T- 12 α(2T)2=V 0T+ 52 αT 2 X n= V 0nT+ 12α(nT)2-V 0(n-1)T- 12α((n −1)T)2∆x =X 2-X 1=X 3-X 2=(V 0T+ 32 αT 2)-(V 0T+ 12 αT 2)=(V 0T+ 52 αT 2)-(V 0T+ 32 αT 2)=αT 2 可以用来求加速度α=∆x T 25、初速度为零的匀加速直线运动的几个比例关系。
初速度为零的匀加速直线运动(设其为等分时间间隔):① t 秒末、2t 秒末、……nt 秒末的速度之比:(V t =V 0+at=0+at=at) V 1:V 2:V 3……V n =at:a2t:a3t …..ant=1:2:3…:n②前一个t 秒内、前二个t 秒内、……前N 个t 秒内的位移之比:S 1=v 0t+12at 2=0+12at 2=12at 2; S 2=v 0t+12a(2t)2=2at 2; S 3=v 0t+12at 2=12a(3t)2=92at 2 S n =v 0t+12at 2=12a(nt)2=n22at 2S 1:S 2:S 3……. S n =12at 2: 2at 2: 92at 2……n22=1:22:32…. N 2③第1个t 秒内、第2个t 秒内、……-第n 个t 秒内的位移之比:)12(::5:3:1:::21-=n s s s nS 1=v 0t+12αt 2=0+12αt 2=12αt 2; (初速为0) S 2=v 0t+12αt 2=αt*t+12αt 2=32αt 2; (初速为αt) S 3=v 0t+12αt 2=α2t*t+12αt 2=52αt 2) (初速为2αt)n =v 0t+12αt 2=α*(2n-1)t*t+12αt 2=2n−12αt 2 (初速为(2n-1)αt)α④前一个s 、前二个s 、……前n 个s 的位移所需时间之比: t 1:t 2:t 3……:t n =1:√2:√3:……………√n 因为初速度为0,所以x =V 0t+ 12 αt 2= 12 αt 2 S= 12a t 12, t 1=√2Sa 2S ==12a t 22 t 2=√4Sa 3S =12a t 32 t 3=√6Sa t 1:t 2:t 3……:t n =√2Sa : √4Sa : √6Sa ………=1:√2: √3……√n⑤第一个s 、第二个s 、……第n 个s 的位移所需时间之比:)1(::)23(:)12(:1:::21----=n n t t t n 由上题证明可知:第一个s 所需时间为t 1=√2Sa ;第二个s 所需时间为t 2-t 1=√4Sa -√2Sa =√2Sa (√2-1) 第三个s 所需时间为t 3-t 2=√6Sa −√4Sa =√2Sa (√3-√2) 第n 个s 的位移所需时间t n -t n-1=√2Sa (√n -√n −1) ⑥一个s 末、第二个s 末、……第n 个s 末的速度之比:n v v v n ::3:2:1:::21 =因为初速度为0,且V t 2-V 02=2αx ,所以V t 2 =2αx V t12=2αs V t1=√2αs V t22=2α(2s) V t2=√4αs V t32=2α(3s) V t3=√6αs V tn 2=2α(ns) V tn =√2nαsV t1:V t2:V t3:…….V tn =√2αs:√4αs: √6αs: √2nαs =1:√2:√3:√ n 以上特点中,特别是③、④两个应用比较广泛,应熟记。
6、作为匀变速直线运动应用的竖直上抛运动,其处理方法有两种:其一是分段法。
上升阶段看做末速度为零,加速度大小为g的匀减速直线运动;下降阶段为自由落体运动(初速为零、加速度为g的匀加速直线运动);其二是整体法。
把竖直上抛运动的上升阶段和下降阶段看成整个运动的两个过程。
整个过程初速为v0、加速度为g的匀减速直线运动。
(1)竖直上抛定义:将一个物体以某一初速度V0竖直向上抛出,抛出的物体只受重力,这个物体的运动就是竖直上抛运动。
竖直上抛运动的加速度大小为g,方向竖直向下,竖直上抛运动是匀变速直线运动。
(2)竖直上抛运动性质:初速度为V0≠0,加速度为-g的匀变速直线运动(通常规定以初速度V0的方向为正方向)(3)竖直上抛运动适应规律速度公式:V t=V0−gt位移公式:h=V0t−12gt2速度位移关系式:V t2−V02=−2gh(4)竖直上抛处理方法①段处理上抛:竖直上升过程:初速度为V0≠0加速度为g的匀减速直线运动基本规律:V t=V0−gt h=V0t−12gt2V t2−V02=−2gh竖直下降过程:自由落体运动基本规律:V t=gt h=12gt2V t2=2gh②直上抛运动整体处理:设抛出时刻t=0,向上的方向为正方向,抛出位置h=0,则有:V t=V0−gt{若V t>0,表明物体处于上升阶段。
若V t=0,表明物体上升到最大高度。
若V t<0,表明物体处于下降阶段。
h=V0t−12gt2{h>0,表明物体在抛出点上方运动。
h=0,表明物体正处在抛出点。
h<0,表明物体在抛出点下方运动V t2−V02=−2gh用此方法处理竖直上抛运动问题时,一定要注意正方向的选取和各物理量正负号的选取;特别是t=0时h的正负。
(5)竖直上抛运动的几个特征量①上升到最高点的时间:t =V0g ;从上升开始到落回到抛出点的时间:t =2V 0g。
③ 升的最大高度:h =V 022g ;从抛出点出发到再回到抛出点物体运动的路程:h =V 02g④ 升阶段与下降阶段抛体通过同一段距离所用的时间相等(时间对称性:t 上=t 下) ⑤ 升阶段与下降阶段抛体通过同一位置时的速度等大反向(速度对称性:V 上=−V 下)7、自由落体及公式 (1)物体只受重力作用物体只受重力作用下,从静止开始下落的运动叫做自由落体运动(其初速度为0)。
其规律有V t 2=2gh 。
(g 是重力加速度,g=9.8m/s 2;)(2)一段时间内平均速度v=h t =12gt(3)自由落体半程时间与全程时间之比为1:√12 推理:设半程时间为t;全程时间为T,则: h 2=12g t 2 h=12g T 2 t 2=h g T 2=2h gtT =√t 2T 2=√hg 2h g=√12(4)自由落体半程速率与全程速率之比为1:√12。