2020年浙江省中考数学试卷汇编附答案解析

合集下载

2020年浙江省各市中考数学试卷及参考答案解析版合集整理(9套)

2020年浙江省各市中考数学试卷及参考答案解析版合集整理(9套)

2020年浙江省杭州市中考数学试卷参考答案一、选择题:本大题有10个小题,每小题3分,共30分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.(3分)×=()A.B.C.D.3【分析】根据二次根式的乘法运算法则进行运算即可.【解答】解:×=,故选:B.2.(3分)(1+y)(1﹣y)=()A.1+y2B.﹣1﹣y2C.1﹣y2D.﹣1+y2【分析】直接利用平方差公式计算得出答案.【解答】解:(1+y)(1﹣y)=1﹣y2.故选:C.3.(3分)已知某快递公司的收费标准为:寄一件物品不超过5千克,收费13元;超过5千克的部分每千克加收2元.圆圆在该快递公司寄一件8千克的物品,需要付费()A.17元B.19元C.21元D.23元【分析】根据题意列出算式计算,即可得到结果.【解答】解:根据题意得:13+(8﹣5)×2=13+6=19(元).则需要付费19元.故选:B.4.(3分)如图,在△ABC中,△C=90°,设△A,△B,△C所对的边分别为a,b,c,则()A.c=b sin B B.b=c sin B C.a=b tan B D.b=c tan B【分析】根据三角函数的定义进行判断,就可以解决问题.【解答】解:△Rt△ABC中,△C=90°,△A、△B、△C所对的边分别为a、b、c,△sin B=,即b=c sin B,故A选项不成立,B选项成立;tan B=,即b=a tan B,故C选项不成立,D选项不成立.5.(3分)若a>b,则()A.a﹣1≥b B.b+1≥a C.a+1>b﹣1D.a﹣1>b+1【分析】举出反例即可判断A、B、D,根据不等式的传递性即可判断C.【解答】解:A、a=0.5,b=0.4,a>b,但是a﹣1<b,不符合题意;B、a=3,b=1,a>b,但是b+1<a,不符合题意;C、△a>b,△a+1>b+1,△b+1>b﹣1,△a+1>b﹣1,符合题意;D、a=0.5,b=0.4,a>b,但是a﹣1<b+1,不符合题意.故选:C.6.(3分)在平面直角坐标系中,已知函数y=ax+a(a≠0)的图象过点P(1,2),则该函数的图象可能是()A.B.C.D.【分析】求得解析式即可判断.【解答】解:△函数y=ax+a(a≠0)的图象过点P(1,2),△2=a+a,解得a=1,△y=x+1,△直线交y轴的正半轴,且过点(1,2),故选:A.7.(3分)在某次演讲比赛中,五位评委给选手圆圆打分,得到互不相等的五个分数.若去掉一个最高分,平均分为x;去掉一个最低分,平均分为y;同时去掉一个最高分和一个最低分,平均分为z,则()A.y>z>x B.x>z>y C.y>x>z D.z>y>x【分析】根据题意,可以判断x、y、z的大小关系,从而可以解答本题.【解答】解:由题意可得,y>z>x,8.(3分)设函数y=a(x﹣h)2+k(a,h,k是实数,a≠0),当x=1时,y=1;当x=8时,y=8,()A.若h=4,则a<0B.若h=5,则a>0C.若h=6,则a<0D.若h=7,则a>0【分析】当x=1时,y=1;当x=8时,y=8;代入函数式整理得a(9﹣2h)=1,将h的值分别代入即可得出结果.【解答】解:当x=1时,y=1;当x=8时,y=8;代入函数式得:,△a(8﹣h)2﹣a(1﹣h)2=7,整理得:a(9﹣2h)=1,若h=4,则a=1,故A错误;若h=5,则a=﹣1,故B错误;若h=6,则a=﹣,故C正确;若h=7,则a=﹣,故D错误;故选:C.9.(3分)如图,已知BC是△O的直径,半径OA△BC,点D在劣弧AC上(不与点A,点C重合),BD与OA交于点E.设△AED=α,△AOD=β,则()A.3α+β=180°B.2α+β=180°C.3α﹣β=90°D.2α﹣β=90°【分析】根据直角三角形两锐角互余性质,用α表示△CBD,进而由圆心角与圆周角关系,用α表示△COD,最后由角的和差关系得结果.【解答】解:△OA△BC,△△AOB=△AOC=90°,△△DBC=90°﹣△BEO=90°﹣△AED=90°﹣α,△△COD=2△DBC=180°﹣2α,△△AOD+△COD=90°,△β+180°﹣2α=90°,△2α﹣β=90°,故选:D.10.(3分)在平面直角坐标系中,已知函数y1=x2+ax+1,y2=x2+bx+2,y3=x2+cx+4,其中a,b,c是正实数,且满足b2=ac.设函数y1,y2,y3的图象与x轴的交点个数分别为M1,M2,M3,()A.若M1=2,M2=2,则M3=0B.若M1=1,M2=0,则M3=0C.若M1=0,M2=2,则M3=0D.若M1=0,M2=0,则M3=0【分析】选项B正确,利用判别式的性质证明即可.【解答】解:选项B正确.理由:△M1=1,M2=0,△a2﹣4=0,b2﹣8<0,△a,b,c是正实数,△a=2,△b2=ac,△c=b2,对于y3=x2+cx+4,则有△=c2﹣16=b2﹣16=(b2﹣64)<0,△M3=0,△选项B正确,故选:B.二、填空题:本大题有6个小题,每小題4分,共24分11.(4分)若分式的值等于1,则x=0.【分析】根据分式的值,可得分式方程,根据解分式方程,可得答案.【解答】解:由分式的值等于1,得=1,解得x=0,经检验x=0是分式方程的解.故答案为:0.12.(4分)如图,AB△CD,EF分别与AB,CD交于点B,F.若△E=30°,△EFC=130°,则△A=20°.【分析】直接利用平行线的性质得出△ABF=50°,进而利用三角形外角的性质得出答案.【解答】解:△AB△CD,△△ABF+△EFC=180°,△△EFC=130°,△△ABF=50°,△△A+△E=△ABF=50°,△E=30°,△△A=20°.故答案为:20°.13.(4分)设M=x+y,N=x﹣y,P=xy.若M=1,N=2,则P=﹣.【分析】根据完全平方公式得到(x+y)2=x2+2xy+y2=1,(x﹣y)2=x2﹣2xy+y2=4,两式相减即可求解.【解答】解:(x+y)2=x2+2xy+y2=1,(x﹣y)2=x2﹣2xy+y2=4,两式相减得4xy=﹣3,解得xy=﹣,则P=﹣.故答案为:﹣.14.(4分)如图,已知AB是△O的直径,BC与△O相切于点B,连接AC,OC.若sin△BAC =,则tan△BOC=.【分析】根据切线的性质得到AB△BC,设BC=x,AC=3x,根据勾股定理得到AB===2x,于是得到结论.【解答】解:△AB是△O的直径,BC与△O相切于点B,△AB△BC,△△ABC=90°,△sin△BAC==,△设BC=x,AC=3x,△AB===2x,△OB=AB=x,△tan△BOC==,故答案为:.15.(4分)一个仅装有球的不透明布袋里共有4个球(只有编号不同),编号分别为1,2,3,5.从中任意摸出一个球,记下编号后放回,搅匀,再任意摸出一个球,则两次摸出的球的编号之和为偶数的概率是.【分析】画树状图展示所有16种等可能的结果数,再找出两次摸出的球的编号之和为偶数的结果数,然后根据概率公式求解.【解答】解:根据题意画图如下:共有16种等情况数,其中两次摸出的球的编号之和为偶数的有10种,则两次摸出的球的编号之和为偶数的概率是=.故答案为:.16.(4分)如图是一张矩形纸片,点E在AB边上,把△BCE沿直线CE对折,使点B落在对角线AC上的点F处,连接DF.若点E,F,D在同一条直线上,AE=2,则DF=2,BE=﹣1.【分析】根据矩形的性质得到AD=BC,△ADC=△B=△DAE=90°,根据折叠的性质得到CF=BC,△CFE=△B=90°,EF=BE,根据全等三角形的性质得到DF=AE=2;根据相似三角形的性质即可得到结论.【解答】解:△四边形ABCD是矩形,△AD=BC,△ADC=△B=△DAE=90°,△把△BCE沿直线CE对折,使点B落在对角线AC上的点F处,△CF=BC,△CFE=△B=90°,EF=BE,△CF=AD,△CFD=90°,△△ADE+△CDF=△CDF+△DCF=90°,△△ADF=△DCF,△△ADE△△FCD(ASA),△DF=AE=2;△△AFE=△CFD=90°,△△AFE=△DAE=90°,△△AEF=△DEA,△△AEF△△DEA,△,△=,△EF=﹣1(负值舍去),△BE=EF=﹣1,故答案为:2,﹣1.三、解答题:本大题有7个小题,共66分.解答应写出文字说明、证明过程或演算步骤.17.(6分)以下是圆圆解方程=1的解答过程.解:去分母,得3(x+1)﹣2(x﹣3)=1.去括号,得3x+1﹣2x+3=1.移项,合并同类项,得x=﹣3.圆圆的解答过程是否有错误?如果有错误,写出正确的解答过程.【分析】直接利用一元一次方程的解法进而分析得出答案.【解答】解:圆圆的解答过程有错误,正确的解答过程如下:3(x+1)﹣2(x﹣3)=6.去括号,得3x+3﹣2x+6=6.移项,合并同类项,得x=﹣3.18.(8分)某工厂生产某种产品,3月份的产量为5000件,4月份的产量为10000件.用简单随机抽样的方法分别抽取这两个月生产的该产品若干件进行检测,并将检测结果分别绘制成如图所示的扇形统计图和频数直方图(每组不含前一个边界值,含后一个边界值).已知检测综合得分大于70分的产品为合格产品.(1)求4月份生产的该产品抽样检测的合格率;(2)在3月份和4月份生产的产品中,估计哪个月的不合格件数多?为什么?【分析】(1)根据题意列式计算即可;(2)分别求得3月份生产的产品中,不合格的件数和4月份生产的产品中,不合格的件数比较即可得到结论.【解答】解:(1)(132+160+200)÷(8+132+160+200)×100%=98.4%,答:4月份生产的该产品抽样检测的合格率为98.4%;(2)估计4月份生产的产品中,不合格的件数多,理由:3月份生产的产品中,不合格的件数为5000×2%=100,4月份生产的产品中,不合格的件数为10000×(1﹣98.4%)=160,△100<160,△估计4月份生产的产品中,不合格的件数多.19.(8分)如图,在△ABC中,点D,E,F分别在AB,BC,AC边上,DE△AC,EF△AB.(1)求证:△BDE△△EFC.(2)设,△若BC=12,求线段BE的长;△若△EFC的面积是20,求△ABC的面积.【分析】(1)由平行线的性质得出△DEB=△FCE,△DBE=△FEC,即可得出结论;(2)△由平行线的性质得出==,即可得出结果;△先求出=,易证△EFC△△BAC,由相似三角形的面积比等于相似比的平方即可得出结果.【解答】(1)证明:△DE△AC,△△DEB=△FCE,△EF△AB,△△DBE=△FEC,△△BDE△△EFC;(2)解:△△EF△AB,△==,△EC=BC﹣BE=12﹣BE,△=,解得:BE=4;△△=,△=,△EF△AB,△△EFC△△BAC,△=()2=()2=,△S△ABC=S△EFC=×20=45.20.(10分)设函数y1=,y2=﹣(k>0).(1)当2≤x≤3时,函数y1的最大值是a,函数y2的最小值是a﹣4,求a和k的值.(2)设m≠0,且m≠﹣1,当x=m时,y1=p;当x=m+1时,y1=q.圆圆说:“p一定大于q”.你认为圆圆的说法正确吗?为什么?【分析】(1)由反比例函数的性质可得,△;﹣=a﹣4,△;可求a的值和k的值;(2)设m=m0,且﹣1<m0<0,将x=m0,x=m0+1,代入解析式,可求p和q,即可判断.【解答】解:(1)△k>0,2≤x≤3,△y1随x的增大而减小,y2随x的增大而增大,△当x=2时,y1最大值为,△;当x=2时,y2最小值为﹣=a﹣4,△;由△,△得:a=2,k=4;(2)圆圆的说法不正确,理由如下:设m=m0,且﹣1<m0<0,则m0<0,m0+1>0,△当x=m0时,p=y1=,当x=m0+1时,q=y1=>0,△p<0<q,△圆圆的说法不正确.21.(10分)如图,在正方形ABCD中,点E在BC边上,连接AE,△DAE的平分线AG与CD边交于点G,与BC的延长线交于点F.设=λ(λ>0).(1)若AB=2,λ=1,求线段CF的长.(2)连接EG,若EG△AF,△求证:点G为CD边的中点.△求λ的值.【分析】(1)根据AB=2,λ=1,可以得到BE、CE的长,然后根据正方形的性质,可以得到AE的长,再根据平行线的性质和角平分线的性质,可以得到EF的长,从而可以得到线段CF的长;(2)△要证明点G为CD边的中点,只要证明△ADG△△FGC即可,然后根据题目中的条件,可以得到△ADG△△FGC的条件,从而可以证明结论成立;△根据题意和三角形相似,可以得到CE和EB的比值,从而可以得到λ的值.【解答】解:(1)△在正方形ABCD中,AD△BC,△△DAG=△F,又△AG平分△DAE,△△DAG=△EAG,△△EAG=△F,△EA=EF,△AB=2,△B=90°,点E为BC的中点,△BE=EC=1,△AE==,△EF=,△CF=EF﹣EC=﹣1;(2)△证明:△EA=EF,EG△AF,△AG=FG,在△ADG和△FCG中,△△ADG△△FCG(AAS),△DG=CG,即点G为CD的中点;△设CD=2a,则CG=a,由△知,CF=DA=2a,△EG△AF,△GDF=90°,△△EGC+△CGF=90°,△F+△CGF=90°,△ECG=△GCF=90°,△△EGC=△F,△△EGC△△GFC,△,△GC=a,FC=2a,△,△,△EC=a,BE=BC﹣EC=2a﹣a=a,△λ=.22.(12分)在平面直角坐标系中,设二次函数y1=x2+bx+a,y2=ax2+bx+1(a,b是实数,a≠0).(1)若函数y1的对称轴为直线x=3,且函数y1的图象经过点(a,b),求函数y1的表达式.(2)若函数y1的图象经过点(r,0),其中r≠0,求证:函数y2的图象经过点(,0).(3)设函数y1和函数y2的最小值分别为m和n,若m+n=0,求m,n的值.【分析】(1)利用待定系数法解决问题即可.(2)函数y1的图象经过点(r,0),其中r≠0,可得r2+br+a=0,推出1++=0,即a ()2+b•+1=0,推出是方程ax2+bx+1的根,可得结论.(3)由题意a>0,△m=,n=,根据m+n=0,构建方程可得结论.【解答】解:(1)由题意,得到﹣=3,解得b=﹣6,△函数y1的图象经过(a,﹣6),△a2﹣6a+a=﹣6,解得a=2或3,△函数y1=x2﹣6x+2或y1=x2﹣6x+3.(2)△函数y1的图象经过点(r,0),其中r≠0,△r2+br+a=0,△1++=0,即a()2+b•+1=0,△是方程ax2+bx+1的根,即函数y2的图象经过点(,0).(3)由题意a>0,△m=,n=,△m+n=0,△+=0,△(4a﹣b2)(a+1)=0,△a+1>0,△4a﹣b2=0,△m=n=0.23.(12分)如图,已知AC,BD为△O的两条直径,连接AB,BC,OE△AB于点E,点F 是半径OC的中点,连接EF.(1)设△O的半径为1,若△BAC=30°,求线段EF的长.(2)连接BF,DF,设OB与EF交于点P,△求证:PE=PF.△若DF=EF,求△BAC的度数.【分析】(1)解直角三角形求出AB,再证明△AFB=90°,利用直角三角形斜边中线的性质即可解决问题.(2)△过点F作FG△AB于G,交OB于H,连接EH.想办法证明四边形OEHF是平行四边形可得结论.△想办法证明FD=FB,推出FO△BD,推出△AOB是等腰直角三角形即可解决问题.【解答】(1)解:△OE△AB,△BAC=30°,OA=1,△△AOE=60°,OE=OA=,AE=EB=OE=,△AC是直径,△△ABC=90°,△△C=60°,△OC=OB,△△OCB是等边三角形,△OF=FC,△BF△AC,△△AFB=90°,△AE=EB,△EF=AB=.(2)△证明:过点F作FG△AB于G,交OB于H,连接EH.△△FGA=△ABC=90°,△FG△BC,△△OFH△△OCB,△==,同理=,△FH=OE,△OE△AB.FH△AB,△OE△FH,△四边形OEHF是平行四边形,△PE=PF.△△OE△FG△BC,△==1,△EF=FB,△DF=EF,△DF=BF,△DO=OB,△FO△BD,△△AOB=90°,△OA=OB,△△AOB是等腰直角三角形,△△BAC=45°.2020年浙江省湖州市中考数学试卷参考答案与试题解析一、选择题(本题有10小题,每小题3分,共30分)下面每小题给出的四个选项中,只有一个是正确的.请选出各题中一个最符合题意的选项,并在答题卷上将相应题次中对应字母的方框涂黑,不选、多选、错选均不给分.1.(3分)数4的算术平方根是()A.2B.﹣2C.±2D.【分析】算术平方根的定义:一个非负数的正的平方根,即为这个数的算术平方根,由此即可求出结果.【解答】解:△2的平方为4,△4的算术平方根为2.故选:A.2.(3分)近几年来,我国经济规模不断扩大,综合国力显著增强.2019年我国国内生产总值约991000亿元,则数991000用科学记数法可表示为()A.991×103B.99.1×104C.9.91×105D.9.91×106【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.【解答】解:将991000用科学记数法表示为:9.91×105.3.(3分)已知某几何体的三视图如图所示,则该几何体可能是()A.B.C.D.【分析】根据两个视图是长方形得出该几何体是锥体,再根据俯视图是圆,得出几何体是圆锥.【解答】解:△主视图和左视图是三角形,△几何体是锥体,△俯视图的大致轮廓是圆,△该几何体是圆锥.故选:A.4.(3分)如图,已知四边形ABCD内接于△O,△ABC=70°,则△ADC的度数是()A.70°B.110°C.130°D.140°【分析】根据圆内接四边形的性质即可得到结论.【解答】解:△四边形ABCD内接于△O,△ABC=70°,△△ADC=180°﹣△ABC=180°﹣70°=110°,故选:B.5.(3分)数据﹣1,0,3,4,4的平均数是()A.4B.3C.2.5D.2【分析】根据题目中的数据,可以求得这组数据的平均数,本题得以解决.【解答】解:==2,故选:D.6.(3分)已知关于x的一元二次方程x2+bx﹣1=0,则下列关于该方程根的判断,正确的是()A.有两个不相等的实数根B.有两个相等的实数根C.没有实数根D.实数根的个数与实数b的取值有关【分析】先计算出判别式的值,再根据非负数的性质判断△>0,然后利用判别式的意义对各选项进行判断.【解答】解:△△=b2﹣4×(﹣1)=b2+4>0,△方程有两个不相等的实数根.故选:A.7.(3分)四边形具有不稳定性,对于四条边长确定的四边形.当内角度数发生变化时,其形状也会随之改变.如图,改变正方形ABCD的内角,正方形ABCD变为菱形ABC′D′.若△D′AB=30°,则菱形ABC′D′的面积与正方形ABCD的面积之比是()A.1B.C.D.【分析】根据30°角所对的直角边等于斜边的一半可知菱形ABC′D′的高等于AB的一半,再根据正方形的面积公式和平行四边形的面积公式即可得解.【解答】解:根据题意可知菱形ABC′D′的高等于AB的一半,△菱形ABC′D′的面积为,正方形ABCD的面积为AB2.△菱形ABC′D′的面积与正方形ABCD的面积之比是.故选:B.8.(3分)已知在平面直角坐标系xOy中,直线y=2x+2和直线y=x+2分别交x轴于点A和点B.则下列直线中,与x轴的交点不在线段AB上的直线是()A.y=x+2B.y=x+2C.y=4x+2D.y=x+2【分析】求得A、B的坐标,然后分别求得各个直线与x的交点,进行比较即可得出结论.【解答】解:△直线y=2x+2和直线y=x+2分别交x轴于点A和点B.△A(﹣1,0),B(﹣3,0)A、y=x+2与x轴的交点为(﹣2,0);故直线y=x+2与x轴的交点在线段AB上;B、y=x+2与x轴的交点为(﹣,0);故直线y=x+2与x轴的交点在线段AB上;C、y=4x+2与x轴的交点为(﹣,0);故直线y=4x+2与x轴的交点不在线段AB上;D、y=x+2与x轴的交点为(﹣,0);故直线y=x+2与x轴的交点在线段AB 上;故选:C.9.(3分)如图,已知OT是Rt△ABO斜边AB上的高线,AO=BO.以O为圆心,OT为半径的圆交OA于点C,过点C作△O的切线CD,交AB于点D.则下列结论中错误的是()A.DC=DT B.AD=DT C.BD=BO D.2OC=5AC【分析】如图,连接OD.想办法证明选项A,B,C正确即可解决问题.【解答】解:如图,连接OD.△OT是半径,OT△AB,△DT是△O的切线,△DC是△O的切线,△DC=DT,故选项A正确,△OA=OB,△AOB=90°,△△A=△B=45°,△DC是切线,△CD△OC,△△ACD=90°,△△A=△ADC=45°,△AC=CD=DT,△AC=CD=DT,故选项B正确,△OD=OD,OC=OT,DC=DT,△△DOC△△DOT(SSS),△△DOC=△DOT,△OA=OB,OT△AB,△AOB=90°,△△AOT=△BOT=45°,△△DOT=△DOC=22.5°,△△BOD=△ODB=67.5°,△BO=BD,故选项C正确,故选:D.10.(3分)七巧板是我国祖先的一项卓越创造,流行于世界各地.由边长为2的正方形可以制作一副中国七巧板或一副日本七巧板,如图1所示.分别用这两副七巧板试拼如图2中的平行四边形或矩形,则这两个图形中,中国七巧板和日本七巧板能拼成的个数分别是()A.1和1B.1和2C.2和1D.2和2【分析】根据要求拼平行四边形矩形即可.【解答】解:中国七巧板和日本七巧板能拼成的个数都是2,如图所示:故选:D.二、填空题(本题有6小题,每小题4分,共24分)11.(4分)计算:﹣2﹣1=﹣3.【分析】本题需先根据有理数的减法法则,判断出结果的符号,再把绝对值合并即可.【解答】解:﹣2﹣1=﹣3故答案为:﹣312.(4分)化简:=.【分析】直接将分母分解因式,进而化简得出答案.【解答】解:==.故答案为:.13.(4分)如图,已知AB是半圆O的直径,弦CD△AB,CD=8,AB=10,则CD与AB 之间的距离是3.【分析】过点O作OH△CD于H,连接OC,如图,根据垂径定理得到CH=DH=4,再利用勾股定理计算出OH=3,从而得到CD与AB之间的距离.【解答】解:过点O作OH△CD于H,连接OC,如图,则CH=DH=CD=4,在Rt△OCH中,OH==3,所以CD与AB之间的距离是3.故答案为3.14.(4分)在一个布袋里放有1个白球和2个红球,它们除颜色外其余都相同,从布袋里摸出1个球,记下颜色后放回,搅匀,再摸出1个球.将2个红球分别记为红△,红△,两次摸球的所有可能的结果如表所示,第二次第一次白红△红△白白,白白,红△白,红△红△红△,白红△,红△红△,红△红△红△,白红△,红△红△,红△则两次摸出的球都是红球的概率是.【分析】根据图表可知共有9种等可能的结果,再找出两次摸出的球都是红球的情况数,然后根据概率公式即可得出答案.【解答】解:根据图表给可知,共有9种等可能的结果,两次摸出的球都是红球的有4种,则两次摸出的球都是红球的概率为;故答案为:.15.(4分)在每个小正方形的边长为1的网格图形中,每个小正方形的顶点称为格点,顶点都是格点的三角形称为格点三角形.如图,已知Rt△ABC是6×6网格图形中的格点三角形,则该图中所有与Rt△ABC相似的格点三角形中.面积最大的三角形的斜边长是5.【分析】根据Rt△ABC的各边长得出与其相似的三角形的两直角边之比为1:2,在6×6的网格图形中可得出与Rt△ABC相似的三角形的短直角边长应小于4,在图中尝试可画出符合题意的最大三角形,从而其斜边长可得.【解答】解:△在Rt△ABC中,AC=1,BC=2,△AB=,AC:BC=1:2,△与Rt△ABC相似的格点三角形的两直角边的比值为1:2,若该三角形最短边长为4,则另一直角边长为8,但在6×6网格图形中,最长线段为6,但此时画出的直角三角形为等腰直角三角形,从而画不出端点都在格点且长为8的线段,故最短直角边长应小于4,在图中尝试,可画出DE=,EF=2,DF=5的三角形,△===,△△ABC△△DEF,△△DEF=△C=90°,△此时△DEF的面积为:×2÷2=10,△DEF为面积最大的三角形,其斜边长为:5.故答案为:5.16.(4分)如图,已知在平面直角坐标系xOy中,Rt△OAB的直角顶点B在x轴的正半轴上,点A在第一象限,反比例函数y=(x>0)的图象经过OA的中点C.交AB于点D,连结CD.若△ACD的面积是2,则k的值是.【分析】作辅助线,构建直角三角形,利用反比例函数k的几何意义得到S△OCE=S△OBD=k,根据OA的中点C,利用△OCE△△OAB得到面积比为1:4,代入可得结论.【解答】解:连接OD,过C作CE△AB,交x轴于E,△△ABO=90°,反比例函数y=(x>0)的图象经过OA的中点C,△S△COE=S△BOD=,S△ACD=S△OCD=2,△CE△AB,△△OCE△△OAB,△,△4S△OCE=S△OAB,△4×k=2+2+k,△k=,故答案为:.三、解答题(本题有8小题,共66分)17.(6分)计算:+|﹣1|.【分析】首先利用二次根式的性质化简二次根式,利用绝对值的性质计算绝对值,然后再算加减即可.【解答】解:原式=2+﹣1=3﹣1.18.(6分)解不等式组.【分析】先求出不等式组中每一个不等式的解集,再求出它们的公共部分即可求解.【解答】解:,解△得x<1;解△得x<﹣6.故不等式组的解集为x<﹣6.19.(6分)有一种升降熨烫台如图1所示,其原理是通过改变两根支撑杆夹角的度数来调整熨烫台的高度.图2是这种升降熨烫台的平面示意图.AB和CD是两根相同长度的活动支撑杆,点O是它们的连接点,OA=OC,h(cm)表示熨烫台的高度.(1)如图2﹣1.若AB=CD=110cm,△AOC=120°,求h的值;(2)爱动脑筋的小明发现,当家里这种升降熨烫台的高度为120cm时,两根支撑杆的夹角△AOC是74°(如图2﹣2).求该熨烫台支撑杆AB的长度(结果精确到1cm).(参考数据:sin37°≈0.6,cos37°≈0.8,sin53°≈0.8,cos53°≈0.6.)【分析】(1)过点B作BE△AC于E,根据等腰三角形的性质得到△OAC=△OCA==30°,根据三角函数的定义即可得到结论;(2)过点B作BE△AC于E,根据等腰三角形的性质和三角函数的定义即可得到结论.【解答】解:(1)过点B作BE△AC于E,△OA=OC,△AOC=120°,△△OAC=△OCA==30°,△h=BE=AB•sin30°=110×=55;(2)过点B作BE△AC于E,△OA=OC,△AOC=74°,△△OAC=△OCA==53°,△AB=BE÷sin53°=120÷0.8=150(cm),即该熨烫台支撑杆AB的长度约为150cm.20.(8分)为了解学生对网上在线学习效果的满意度,某校设置了:非常满意、满意、基本满意、不满意四个选项,随机抽查了部分学生,要求每名学生都只选其中的一项,并将抽查结果绘制成如图统计图(不完整).请根据图中信息解答下列问题:(1)求被抽查的学生人数,并补全条形统计图;(温馨提示:请画在答题卷相对应的图上)(2)求扇形统计图中表示“满意”的扇形的圆心角度数;(3)若该校共有1000名学生参与网上在线学习,根据抽查结果,试估计该校对学习效果的满意度是“非常满意”或“满意”的学生共有多少人?【分析】(1)从两个统计图中可知,在抽查人数中,“非常满意”的人数为20人,占调查人数的40%,可求出调查人数,进而求出“基本满意”的人数,即可补全条形统计图;(2)样本中“满意”占调查人数的,即30%,因此相应的圆心角的度数为360°的30%;(3)样本中“非常满意”或“满意”的占调查人数的(+),进而估计总体中“非常满意”或“满意”的人数.【解答】解:(1)抽查的学生数:20÷40%=50(人),抽查人数中“基本满意”人数:50﹣20﹣15﹣1=14(人),补全的条形统计图如图所示:(2)360°×=108°,答:扇形统计图中表示“满意”的扇形的圆心角度数为108°;(3)1000×(+)=700(人),答:该校共有1000名学生中“非常满意”或“满意”的约有700人.21.(8分)如图,已知△ABC是△O的内接三角形,AD是△O的直径,连结BD,BC平分△ABD.(1)求证:△CAD=△ABC;(2)若AD=6,求的长.【分析】(1)由角平分线的性质和圆周角定理可得△DBC=△ABC=△CAD;(2)由圆周角定理可得,由弧长公式可求解.【解答】解:(1)△BC平分△ABD,△△DBC=△ABC,△△CAD=△DBC,△△CAD=△ABC;(2)△△CAD=△ABC,△=,△AD是△O的直径,AD=6,△的长=××π×6=π.22.(10分)某企业承接了27000件产品的生产任务,计划安排甲、乙两个车间的共50名工人,合作生产20天完成.已知甲、乙两个车间利用现有设备,工人的工作效率为:甲车间每人每天生产25件,乙车间每人每天生产30件.(1)求甲、乙两个车间各有多少名工人参与生产?(2)为了提前完成生产任务,该企业设计了两种方案:方案一甲车间租用先进生产设备,工人的工作效率可提高20%,乙车间维持不变.方案二乙车间再临时招聘若干名工人(工作效率与原工人相同),甲车间维持不变.设计的这两种方案,企业完成生产任务的时间相同.△求乙车间需临时招聘的工人数;△若甲车间租用设备的租金每天900元,租用期间另需一次性支付运输等费用1500元;乙车间需支付临时招聘的工人每人每天200元.问:从新增加的费用考虑,应选择哪种方案能更节省开支?请说明理由.【分析】(1)设甲车间有x名工人参与生产,乙车间各有y名工人参与生产,由题意得关于x和y的方程组,求解即可.(2)△设方案二中乙车间需临时招聘m名工人,由题意,以企业完成生产任务的时间为等量关系,列出关于m的分式方程,求解并检验即可;△用生产任务数量27000除以方案一中甲和乙完成的生产任务之和可得企业完成生产任务的时间,然后分别按方案一和方案二计算费用并比较大小即可.【解答】解:(1)设甲车间有x名工人参与生产,乙车间各有y名工人参与生产,由题意得:,解得.△甲车间有30名工人参与生产,乙车间各有20名工人参与生产.(2)△设方案二中乙车间需临时招聘m名工人,由题意得:=,解得m=5.经检验,m=5是原方程的解,且符合题意.△乙车间需临时招聘5名工人.△企业完成生产任务所需的时间为:=18(天).△选择方案一需增加的费用为900×18+1500=17700(元).选择方案二需增加的费用为5×18×200=18000(元).△17700<18000,△选择方案一能更节省开支.23.(10分)已知在△ABC中,AC=BC=m,D是AB边上的一点,将△B沿着过点D的直线折叠,使点B落在AC边的点P处(不与点A,C重合),折痕交BC边于点E.(1)特例感知如图1,若△C=60°,D是AB的中点,求证:AP=AC;(2)变式求异如图2,若△C=90°,m=6,AD=7,过点D作DH△AC于点H,求DH 和AP的长;(3)化归探究如图3,若m=10,AB=12,且当AD=a时,存在两次不同的折叠,使点B 落在AC边上两个不同的位置,请直接写出a的取值范围.【分析】(1)证明△ADP是等边三角形即可解决问题.(2)分两种情形:情形一:当点B落在线段CH上的点P1处时,如图2﹣1中.情形二:当点B落在线段AH上的点P2处时,如图2﹣2中,分别求解即可.(3)如图3中,过点C作CH△AB于H,过点D作DP△AC于P.求出DP=DB时AD的值,结合图形即可判断.【解答】(1)证明:△AC=BC,△C=60°,△△ABC是等边三角形,△AC=AB,△A=60°,由题意,得DB=DP,DA=DB,△DA=DP,△△ADP使得等边三角形,△AP=AD=AB=AC.(2)解:△AC=BC=6,△C=90°,△AB===12,△DH△AC,△DH△BC,△△ADH△△ABC,△=,△AD=7,△=,△DH=,将△B沿过点D的直线折叠,情形一:当点B落在线段CH上的点P1处时,如图2﹣1中,△AB=12,△DP1=DB=AB﹣AD=5,△HP1===,△A1=AH+HP1=4,情形二:当点B落在线段AH上的点P2处时,如图2﹣2中,同法可证HP2=,△AP2=AH﹣HP2=3,综上所述,满足条件的AP的值为4或3.(3)如图3中,过点C作CH△AB于H,过点D作DP△AC于P.△CA=CB,CH△AB,△AH=HB=6,△CH===8,当DB=DP时,设BD=PD=x,则AD=12﹣x,△tan A==,△=,△x=,△AD=AB﹣BD=,观察图形可知当6<a<时,存在两次不同的折叠,使点B落在AC边上两个不同的位置.24.(12分)如图,已知在平面直角坐标系xOy中,抛物线y=﹣x2+bx+c(c>0)的顶点为D,与y轴的交点为C.过点C的直线CA与抛物线交于另一点A(点A在对称轴左侧),点B在AC的延长线上,连结OA,OB,DA和DB.(1)如图1,当AC△x轴时,△已知点A的坐标是(﹣2,1),求抛物线的解析式;△若四边形AOBD是平行四边形,求证:b2=4c.(2)如图2,若b=﹣2,=,是否存在这样的点A,使四边形AOBD是平行四边形?若存在,求出点A的坐标;若不存在,请说明理由.【分析】(1)△先确定出点C的坐标,再用待定系数法即可得出结论;△先确定出抛物线的顶点坐标,进而得出DF=,再判断出△AFD△△BCO,得出DF=OC,即可得出结论;(2)先判断出抛物线的顶点坐标D(﹣1,c+1),设点A(m,﹣m2﹣2m+c)(m<0),判断出△AFD△△BCO(AAS),得出AF=BC,DF=OC,再判断出△ANF△△AMC,得出=,进而求出m的值,得出点A的纵坐标为c﹣<c,进而判断出点M的坐标为(0,c﹣),N(﹣1,c﹣),进而得出CM=,DN=,FN=﹣c,进而求出c=,即可得出结论.【解答】解:(1)△△AC△x轴,点A(﹣2,1),△C(0,1),将点A(﹣2,1),C(0,1)代入抛物线解析式中,得,△,△抛物线的解析式为y=﹣x2﹣2x+1;△如图1,过点D作DE△x轴于E,交AB于点F,△AC△x轴,△EF=OC=c,△点D是抛物线的顶点坐标,△D(,c+),△DF=DE﹣EF=c+﹣c=,△四边形AOBD是平行四边形,△AD=DO,AD△OB,△△DAF=△OBC,△△AFD=△BCO=90°,△△AFD△△BCO(AAS),△DF=OC,△=c,即b2=4c;(2)如图2,△b=﹣2.△抛物线的解析式为y=﹣x2﹣2x+c,△顶点坐标D(﹣1,c+1),假设存在这样的点A使四边形AOBD是平行四边形,。

2020年浙江省中考数学试卷原卷附解析

2020年浙江省中考数学试卷原卷附解析

2020年浙江省中考数学试卷原卷学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上一、选择题1.如图,圆与圆之间不同的位置关系有( )A .2种B .3种C .4种D .5种2.下列命题中,是真命题的为( )A .两条对角线相等的四边形是矩形B .两条对角线垂直的四边形是菱形C .两条对角线垂直且相等的四边形是正方形D .两条对角线相等的平行四边形是矩形3.已知样本数据个数为30,且被分成4组,各组数据个数之比为2∶4∶3∶1,则第二小组和第三小组的频率分别为( )A .0.4和0.3B .0.4和9C .12和0.3D .12和9 4.化简352+,甲、乙两同学的解法如下: 甲:33(52)5252(52)(52)-==-++- 乙:3(52)(52)5252(52)+-==-++ 对于他们的解法,正确的判断是( )A . 甲、乙的解法都正确B . 甲的解法正确,乙的解法不正确C . 乙的解法正确,甲的解法不正确D . 甲、乙的解法都不正确 5.如图是由一些相同的小正方体构成的几何体的三视图,这些相同的小正方体的个数是( )A .4个B .5个C .6个D .7个6.如图,ABC △是等腰直角三角形,BC 是斜边,将ABP △绕点A 逆时针旋转后,能与ACP '△重合,如果3AP =,那么PP '的长等于( )A .32B .3C .42D .337.如图,在长方体中,与AB平行的棱有()A. 1条B.2条C.3条D.4条二、填空题8.若x=一2,y=3满足一次函数y=kx-3,则k= .9.已知 9×l+0=9,9×2+1=19,9×3+2=29,9×4+3=39,……. 根据前面式子构成的规律写出第n个式子是 (n是正整数)10.已知数据13,25,37,49,…,试猜想第 n 个数(用含 n 的代数式表示)是.11.写出一个一无一次方程,使它的解为12x=-,这个方程是 .12.爷爷病了,需要挂100毫升的药液,小明守候在旁边,观察到输液流量是每分钟3毫升,输液10分钟后,吊瓶的空出部分容积是50毫升(如图),利用这些数据,计算整个吊瓶的容积是毫升.解答题13.若(1+x)(2x2+mx+5)的计算结果中x2项的系数为-3,则m= _.14.等腰三角形的一个外角是130°,它的一个底角是 .15.若2(2)30a b++-=,则a b= .16.已知点P(a,b)在第二象限,则直线y=ax+b不经过第象限.17.科学老师让小明统计一天的日照时间,小明记录钓情况如下:早晨 6 点钟,太阳从东方地平线上升起,在下午 6 点时落到西方的地平线下,假设太阳每小时转过的角度相同,则太阳每小时转过的角度为度;这一天时,小明的影子最短;时小明的影长与他的身高一样(假设太阳 12 点正在小明头顶).18.将点P(-3,y)向下平移3个单位,向左平移2个单位后得到点Q(x,-1),则xy= .19.有一边长为3的等腰三角形,它的两边长是方程x2-4x+k=0的两根,则k的值为.20.在一块试验田里抽取l000个麦穗,考察它的长度(单位:cm).对数据适当分组后看到落在5.75~6.05 cm的频率是0.36,可以估计出在这块田里,长度为5.75~6.05 cm之间的麦穗约占.21.用正十二边形与三角形组合能够铺满地面,每个顶点周围有个三角形和①② 个正十二边形. 22.已知下列函数①2y x =;②32y x =-+;③1(0)y x x =->;④2(0)y x x =<; ⑤2321y x x =-+-.其中y 随x 增大而减少的 (填序号).23.如图,将一块斜边长为12cm ,60B ∠=°的直角三角板ABC ,绕点C 沿逆时针方向旋转90°至A B C '''△的位置,再沿CB 向右平移,使点B '刚好落在斜边AB 上,那么此三角板向右平移的距离是 cm .解答题24.正方体有 个顶点,经过每个顶点有 条棱,这些棱的位置关系是 ,数量关系是 .三、解答题25.如图,把一个长为3的立方体的每个面等分成 9个小正方形,然后沿每个面正中心的一个正方形向里挖空(相当于挖去了7个小立方体),所得到的几何体的表面积是多少?26.如图,折线ABC 是一片农田中的道路,现需把它改成一条直路,并便道路两边的农用面积保持不变,道路的一个端点为A ,问应该怎样改?请画出示意图,并说明理由.27.已知y=x 2+px +q ,当x=1时,y 的值为2;当x=-2时,y 的值为2.求x=-3时y 的值.28.从甲地到乙地有两条路,每条路都是3 km,其中第一条路是平路,第二条路有1 km的上坡路和2 km 的下坡路. 小雨在上坡路上的骑车速度为每小时v (km),在平路上的骑车速度每小时2v(km),在下坡路上的骑车速度为每小时3v(km),求:(1)当走第二条路时,她从甲地到乙地需要多长时间?(2)她走哪条路花费时间少?少用多少时间?29.一家奶制品厂现有鲜奶9 t,若将这批鲜奶制成酸奶销售,则加工l t鲜奶可获利1200元;若制成奶粉销售,则加工1 t鲜奶可获利2000元.该厂的生产能力是:若专门生产酸奶,则每天可用去鲜奶3 t,若专门生产奶粉,则每天可能用去l t,由于受人员和设备的限制,酸奶和奶粉两种产品不可能同时生产,为了保证产品的质量,这批鲜奶必须在不超过4天内加工完毕.假如你是厂长,你将如何设计生产方案,才能使工厂获利最大,最大利润是多少?30.现在规定两数a、b通过“⊕”运算得到3ab,如 2⊕5=3×2×5=30.(1)求 5⊕(13)的值;(2)不论x是什么数,总有a⊕x= x,则a 的值是多少?【参考答案】学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上一、选择题1.C2.D3.A4.A5.C6.A7.C二、填空题8.-39.9(1)101n n n +-=-10.(21n n +n 是正整数)11.答案不唯一,如12x+=,210x+=12.12013.-514.50°或65°15.-816.三17.15,12,9:00 或 15:0018.-l019.4,320.36%21.1,222.⑤④23.326-24.8,3,垂直,相等三、解答题25.把该几何体看做是一个组合体,即由棱长为3的立方体挖去了7个棱长为1的小立方体.7个小立方体的三视图如图所示:∴几何体的表面积为棱长为3的立方体的表面积+7个小立方体的表面积-6个面的面积×2 2,即3×3×6+(5+5+5)×2-6×2=72.∴所得到的几何体的表面积是72.26.连结AC,过B作BD∥AC交对边于D点,连结AD,AD即为所求的直路27.6.28.(1)53vh;(2)走第一条花费时间少,少用16vh29.用2.5天生产酸奶,用1.5天生产奶粉,即方案三可获最大利润为l2000元,且不浪费.30.(1)-5 (2)1 3。

(统编版)2020年中考数学试题分项版解析汇编第期专题平面几何基础含解析0

(统编版)2020年中考数学试题分项版解析汇编第期专题平面几何基础含解析0

专题08 平面几何基础一、选择题1.(2017四川省南充市)如图,直线a∥b,将一个直角三角尺按如图所示的位置摆放,若∠1=58°,则∠2的度数为()A.30°B.32°C.42°D.58°【答案】B.【解析】试题分析:如图,过点A作AB∥b,∴∠3=∠1=58°,∵∠3+∠4=90°,∴∠4=90°﹣∠3=32°,∵a∥b,AB∥B,∴AB∥b,∴∠2=∠4=32°,故选B.考点:平行线的性质.2.(2017四川省南充市)如图,在Rt△ABC中,AC=5cm,BC=12cm,∠ACB=90°,把Rt△ABC所在的直线旋转一周得到一个几何体,则这个几何体的侧面积为()A.60πcm2B.65πcm2C.120πcm2D.130πcm2【答案】B.考点:1.圆锥的计算;2.点、线、面、体.3.(2017四川省绵阳市)“赶陀螺”是一项深受人们喜爱的运动,如图所示是一个陀螺的立体结构图,已知底面圆的直径AB=8cm,圆柱体部分的高BC=6cm,圆锥体部分的高CD=3cm,则这个陀螺的表面积是()A.68πcm2B.74πcm2C.84πcm2D.100πcm2【答案】C.【解析】试题分析:∵底面圆的直径为8cm,高为3cm,∴母线长为5cm,∴其表面积=π×4×5+42π+8π×6=84πcm2,故选C.考点:1.圆锥的计算;2.几何体的表面积.4.(2017四川省达州市)已知直线a∥b,一块含30°角的直角三角尺如图放置.若∠1=25°,则∠2等于()A.50°B.55°C.60°D.65°【答案】B.【解析】试题分析:如图所示:由三角形的外角性质得:∠3=∠1+30°=55°,∵a∥b,∴∠2=∠3=55°;故选B.考点:平行线的性质.5.(2017四川省达州市)下列命题是真命题的是( ) A .若一组数据是1,2,3,4,5,则它的方差是3 B .若分式方程()()41111mx x x -=+--有增根,则它的增根是1 C .对角线互相垂直的四边形,顺次连接它的四边中点所得四边形是菱形 D .若一个角的两边分别与另一个角的两边平行,则这两个角相等 【答案】C . 【解析】试题分析:A .若一组数据是1,2,3,4,5,则它的中位数是3,故错误,是假命题; B .若分式方程()()41111mx x x -=+--有增根,则它的增根是1或﹣1,故错误,是假命题; C .对角线互相垂直的四边形,顺次连接它的四边中点所得四边形是菱形,正确,是真命题; D .若一个角的两边分别与另一个角的两边平行,则这两个角相等或互补,故错误,是假命题. 故选C .考点:命题与定理.6.(2017四川省达州市)如图,将矩形ABCD 绕其右下角的顶点按顺时针方向旋转90°至图①位置,继续绕右下角的顶点按顺时针方向旋转90°至图②位置,以此类推,这样连续旋转2017次.若AB =4,AD =3,则顶点A 在整个旋转过程中所经过的路径总长为( )A .2017πB .2034πC .3024πD .3026π 【答案】D . 【解析】试题分析:∵AB =4,BC =3,∴AC =BD =5,转动一次A 的路线长是:904180π⨯ =2π,转动第二次的路线长是:905180π⨯ =52π,转动第三次的路线长是:903180π⨯ =32π,转动第四次的路线长是:0,以此类推,每四次循环,故顶点A 转动四次经过的路线长为:52π+32π+2π=6π,∵2017÷4=504…1,∴顶点A 转动四次经过的路线长为:6π×504+2π=3026π,故选D .考点:1.轨迹;2.矩形的性质;3.旋转的性质;4.规律型;5.综合题.7.(2017山东省枣庄市)如图,将一副三角板和一张对边平行的纸条按下列方式摆放,两个三角板的一直角边重合,含30°角的直角三角板的斜边与纸条一边重合,含45°角的三角板的一个顶点在纸条的另一边上,则∠1的度数是()A.15°B.22.5°C.30°D.45°【答案】A.考点:平行线的性质.8.(2017山西省)如图,直线a,b被直线c所截,下列条件不能判定直线a与b平行的是()A.∠1=∠3 B.∠2+∠4=180°C.∠1=∠4 D.∠3=∠4【答案】D.【解析】试题分析:A.∵∠1=∠3,∴a∥b,故A正确;B.∵∠2+∠4=180°,∠2+∠1=180°,∴∠1=∠4,∵∠4=∠3,∴∠1=∠3,∴a∥b,故B正确;C.∵∠1=∠4,∠4=∠3,∴∠1=∠3,∴a∥b,故C正确;D.∠3和∠4是对顶角,不能判断a与b是否平行,故D错误.故选D.考点:平行线的判定.9.(2017山西省)2017年5月18日,我国宣布在南海神狐海域成功试采可燃冰,成为世界上首个在海域连续稳定产气的国家.据粗略估计,仅南海北部陆坡的可燃冰资源就达到186亿吨油当量,达到我国陆上石油资源总量的50%.数据186亿吨用科学记数法可表示为( )A .818610⨯吨 B .918.610⨯吨 C .101.8610⨯吨 D .110.18610⨯吨 【答案】C .考点:科学记数法—表示较大的数.10.(2017广东省)已知∠A =70°,则∠A 的补角为( )A .110°B .70°C .30°D .20° 【答案】A . 【解析】试题分析:∵∠A =70°,∴∠A 的补角为110°,故选A . 考点:余角和补角.11.(2017广西四市)如图,△ABC 中,AB >AC ,∠CAD 为△ABC 的外角,观察图中尺规作图的痕迹,则下列结论错误的是( )A .∠DAE =∠B B .∠EAC =∠C C .AE ∥BCD .∠DAE =∠EAC 【答案】D . 【解析】试题分析:根据图中尺规作图的痕迹,可得∠DAE =∠B ,故A 选项正确,∴AE ∥BC ,故C 选项正确,∴∠EAC =∠C,故B选项正确,∵AB>AC,∴∠C>∠B,∴∠CAE>∠DAE,故D选项错误,故选D.考点:1.作图—复杂作图;2.平行线的判定与性质;3.三角形的外角性质.12.(2017河北省)用量角器测得∠MON的度数,下列操作正确的是()A. B.C.D.【答案】C.【解析】试题分析:量角器的圆心一定要与O重合,故选C.考点:角的概念.13.(2017河北省)如图,码头A在码头B的正西方向,甲、乙两船分别从A,B同时出发,并以等速驶向某海域,甲的航向是北偏东35°,为避免行进中甲、乙相撞,则乙的航向不能是()A.北偏东55°B.北偏西55°C.北偏东35°D.北偏西35°【答案】D.考点:方向角.14.(2017湖北省襄阳市)如图,BD∥AC,BE平分∠AB D,交AC于点E.若∠A=50°,则∠1的度数为()A.65°B.60°C.55°D.50°【答案】A.【解析】试题分析:∵BD∥AC,∠A=50°,∴∠ABD=130°,又∵BE平分∠ABD,∴∠1=12∠ABD=65°,故选A.考点:平行线的性质.二、填空题15.(2017四川省广安市)如图,若∠1+∠2=180°,∠3=110°,则∠4= .【答案】110°.【解析】试题分析:如图,∵∠1+∠2=180°,∴a∥b,∴∠3=∠4,又∵∠3=110°,∴∠4=110°.故答案为:110°.考点:平行线的判定与性质.16.(2017山东省济宁市)如图,在平面直角坐标系中,以O为圆心,适当长为半径画弧,交x轴于点M,交y轴于点N,再分别以点M,N为圆心,大于12MN的长为半径画弧,两弧在第二象限内交于点P(a,b),则a与b的数量关系是.【答案】a +b =0.考点:1.作图—基本作图;2.坐标与图形性质;3.点到直线的距离.17.(2017江苏省盐城市)如图,在边长为1的小正方形网格中,将△ABC 绕某点旋转到△A 'B 'C '的位置,则点B 运动的最短路径长为 .【答案】132π. 【解析】试题分析:如图作线段AA ′、CC ′的垂直平分线相交于点P ,点P 即为旋转中心,观察图象可知,旋转角为90°(逆时针旋转)时B 运动的路径长最短,PB =2223+=13,∴B 运动的最短路径长为=9013π⋅=132π,故答案为:132π.考点:1.轨迹;2.旋转的性质.18.(2017浙江省台州市)如图,已知直线a∥b,∠1=70°,则∠2= .【答案】110°.考点:平行线的性质.三、解答题19.(2017四川省达州市)如图,在△ABC中,点O是边AC上一个动点,过点O作直线EF∥BC分别交∠ACB、外角∠ACD的平分线于点E、F.(1)若CE=8,CF=6,求OC的长;(2)连接AE、AF.问:当点O在边AC上运动到什么位置时,四边形AECF是矩形?并说明理由.【答案】(1)5;(2)当点O在边AC上运动到AC中点时,四边形AECF是矩形.【解析】试题分析:(1)根据平行线的性质以及角平分线的性质得出∠OEC=∠OCE,∠OFC=∠OCF,证出OE=OC=OF,∠ECF=90°,由勾股定理求出EF,即可得出答案;(2)解:当点O在边AC上运动到AC中点时,四边形AECF是矩形.理由如下:连接AE 、AF ,如图所示:当O 为AC 的中点时,AO =CO ,∵EO =FO ,∴四边形AECF 是平行四边形,∵∠ECF =90°,∴平行四边形AECF 是矩形.考点:1.矩形的判定;2.平行线的性质;3.等腰三角形的判定与性质;4.探究型;5.动点型. 20.(2017江苏省盐城市)如图,△ABC 是一块直角三角板,且∠C =90°,∠A =30°,现将圆心为点O 的圆形纸片放置在三角板内部.(1)如图①,当圆形纸片与两直角边AC 、BC 都相切时,试用直尺与圆规作出射线CO ;(不写作法与证明,保留作图痕迹)(2)如图②,将圆形纸片沿着三角板的内部边缘滚动1周,回到起点位置时停止,若BC =9,圆形纸片的半径为2,求圆心O 运动的路径长.【答案】(1)作图见解析;(2)153+ 【解析】试题分析:(1)作∠ACB 的平分线得出圆的一条弦,再作此弦的中垂线可得圆心O ,作射线CO 即可; (2)添加如图所示辅助线,圆心O 的运动路径长为12OO O C ∆,先求出△ABC 的三边长度,得出其周长,证四边形OEDO 1、四边形O 1O 2HG 、四边形OO 2IF 均为矩形、四边形OECF 为正方形,得出∠OO 1O 2=60°=∠ABC 、∠O 1OO 2=90°,从而知△OO 1O 2∽△CBA ,利用相似三角形的性质即可得出答案.试题解析:(1)如图①所示,射线OC 即为所求;(2)如图2,圆心O 的运动路径长为12OO O C ∆,过点O 1作O 1D ⊥BC 、O 1F ⊥AC 、O 1G ⊥AB ,垂足分别为点D 、F 、G ,过点O 作OE ⊥BC ,垂足为点E ,连接O 2B ,过点O 2作O 2H ⊥AB ,O 2I ⊥AC ,垂足分别为点H 、I ,在Rt △ABC 中,∠ACB =90°、∠A =30°,∴AC =tan 30BC o =3=93,AB =2BC =18,∠ABC =60°,∴C △ABC =9+9393O 1D ⊥BC 、O 1G ⊥AB ,∴D 、G 为切点,∴BD =BG ,在Rt △O 1BD 和Rt △O 1BG 中,∵BD =BG ,O 1B =O 1B ,∴△O 1BD ≌△O 1BG (HL ),∴∠O 1BG =∠O 1BD =30°,在Rt △O 1BD 中,∠O 1DB =90°,∠O 1BD =30°,∴BD =1tan 30O D o 33OO 1=9﹣2﹣3﹣23O 1D =OE =2,O 1D ⊥BC ,OE ⊥BC ,∴O 1D ∥OE ,且O 1D =OE ,∴四边形OEDO 1为平行四边形,∵∠OED =90°,∴四边形OEDO 1为矩形,同理四边形O 1O 2HG 、四边形OO 2IF 、四边形OECF 为矩形,又OE =OF ,∴四边形OECF 为正方形,∵∠O 1GH =∠CDO 1=90°,∠ABC =60°,∴∠GO 1D =120°,又∵∠FO 1D =∠O 2O 1G =90°,∴∠OO 1O 2=360°﹣90°﹣90°=60°=∠ABC ,同理,∠O 1OO 2=90°,∴△OO 1O 2∽△CBA ,∴1212OO O ABC C O O C BC ∆∆=127232793C -=+12OO O C ∆ =153+O 运动的路径长为153考点:1.轨迹;2.切线的性质;3.作图—复杂作图;4.综合题.21.(2017江苏省连云港市)如图,在平面直角坐标系xOy中,过点A(﹣2,0)的直线交y轴正半轴于点B,将直线AB绕着点顺时针旋转90°后,分别与x轴、y轴交于点D.C.(1)若OB=4,求直线AB的函数关系式;(2)连接BD,若△ABD的面积是5,求点B的运动路径长.【答案】(1)y=2x+4;(2)111p-+.【解析】试题分析:(1)依题意求出点B坐标,然后用待定系数法求解析式;(2)设OB =m ,则AD =m +2,∵△ABD 的面积是5,∴12AD •OB =5,∴12(m +2)•m =5,即22100m m +-= , 解得111m =-+或111m =--(舍去),∵∠BOD =90°,∴点B 的运动路径长为:()111121114p p -+创-+=. 考点:1.一次函数图象与几何变换;2.轨迹;3.弧长的计算.22.(2017重庆市B 卷)如图,直线EF ∥GH ,点A 在EF 上,AC 交GH 于点B ,若∠FAC =72°,∠ACD =58°,点D 在GH 上,求∠BDC 的度数.【答案】50°.【解析】试题分析:由平行线的性质求出∠ABD =108°,由三角形的外角性质得出∠ABD =∠ACD +∠BDC ,即可求出∠BDC 的度数.试题解析:∵EF ∥GH ,∴∠ABD +∠FAC =180°,∴∠ABD =180°﹣72°=108°,∵∠ABD =∠ACD +∠BDC ,∴∠BDC =∠ABD ﹣∠ACD =108°﹣58°=50°.考点:平行线的性质.。

浙江省2023年中考数学真题(圆)附答案

浙江省2023年中考数学真题(圆)附答案

浙江省2023年中考数学真题(圆)一选择题1.如图.⊙O的圆心O与正方形的中心重合,已知⊙O的半径和正方形的边长都为4,则圆上任意一点到正方形边上任意一点距离的最小值为().A.√2B.2C.4+2√2D.4−2√22.如图在⊙O中半径OA.OB互相垂直点C在劣弧AB上.若∠ABC=19°则∠BAC=()A.23°B.24°C.25°D.26°3.如图四边形ABCD内接于⊙O ,BC//AD.AC⊥BD.若∠AOD=120°,AD=√3则∠CAO的度数与BC的长分别为()A.10°1B.10°√2C.15° 1D.15°√2二填空题4.若扇形的圆心角为40°半径为18 则它的弧长为。

5.如图圆锥形烟囱帽的底面半径为30cm母线长为50cm则烟囱帽的侧面积为cm2.(结果保留π)6.如图 四边形ABCD 内接于圆O 若∠D =100° 则∠B 的度数是 .7.如图 六边形ABCDEF 是⊙O 的内接正六边形 设正六边形ABCDEF 的面积为S 1 △ACE 的面积为S 2 则S 1S 2= .8.如图 在Rt △ABC 中 ∠C =90° E 为AB 边上一点 以AE 为直径的半圆O 与BC 相切于点D 连接AD BE =3,BD =3√5.P 是AB 边上的动点 当△ADP 为等腰三角形时 AP 的长为 .9.如图 点A 是⊙O 外一点 AB AC 分别与⊙O 相切于点B C 点D 在BDC⌢上 已知∠A =50° 则∠D 的度数是 。

10.如图在△ABC中AB=AC=6cm △BAC=50° 以AB为直径作半圆交BC于点D 交AC 于点E 则弧DE的长为cm.11.一副三角板ABC和DEF中∠C=∠D=90°,∠B=30°,∠E=45°,BC=EF=12.将它们叠合在一起边BC与EF重合CD与AB相交于点G(如图1)此时线段CG的长是现将△DEF绕点C(F)按顺时针方向旋转(如图2)边EF与AB相交于点H 连结DH 在旋转0°到60°的过程中线段DH扫过的面积是。

2020年浙江省中考数学分类汇编专题08 四边形解析版

2020年浙江省中考数学分类汇编专题08 四边形解析版

2020年浙江省中考数学分类汇编专题08 四边形一、单选题(共6题;共12分)1.(2020·台州)下是关于某个四边形的三个结论:①它的对角线相等;②它是一个正方形;③它是一个矩形.下列推理过程正确的是()A. 由②推出③,由③推出①B. 由①推出②,由②推出③C. 由③推出①,由①推出②D. 由①推出③,由③推出②2.(2020·衢州)如图,把一张矩形纸片ABCD按所示方法进行两次折叠,得到等腰直角三角形BEF,若BC=1,则AB的长度为()A. B. C. D.3.(2020·台州)把一张宽为1cm的长方形纸片ABCD折叠成如图所示的阴影图案,顶点A,D互相重合,中间空白部分是以E为直角顶点,腰长为2cm的等腰直角三角形,则纸片的长AD(单位:cm)为()A. 7+3B. 7+4C. 8+3D. 8+44.(2020·台州)如图,已知线段AB,分别以A,B为圆心,大于AB同样长为半径画弧,两弧交于点C,D,连接AC,AD,BC,BD,CD,则下列说法错误的是()A. AB平分∠CADB. CD平分∠ACBC. AB⊥CDD. AB=CD5.(2020·温州)如图,在△ABC中,∠A=40°,AB=AC,点D在AC边上,以CB,CD为边作BCDE,则∠E 的度数为( )A. 40°B. 50°C. 60°D. 70°6.(2020·湖州)四边形具有不稳定性,对于四条边长确定的四边形,当内角度数发生变化时,其形状也会随之改变,如图,改变正方形ABCD的内角,正方形ABCD变为菱形ABC′D′,若∠D′AB=30°,则菱形ABC′D′的面积与正方形ABCD的面积之比是()A. 1B.C.D.二、填空题(共5题;共8分)7.(2020·嘉兴·舟山)如图,有一张矩形纸条ABCD,AB=5cm,BC=2cm,点M,N分别在边AB,CD上,CN=1cm 。

浙江省杭州市2021-2023三年中考数学真题分类汇编-02填空题知识点分类

浙江省杭州市2021-2023三年中考数学真题分类汇编-02填空题知识点分类

浙江省杭州市2021-2023三年中考数学真题分类汇编-02填空题知识点分类一.合并同类项(共1小题)1.(2022•连云港)计算:2a+3a= .二.最简二次根式(共1小题)2.(2022•杭州)计算:= ;(﹣2)2= .三.二次根式的加减法(共1小题)3.(2023•杭州)计算:= .四.一元二次方程的应用(共1小题)4.(2022•杭州)某网络学习平台2019年的新注册用户数为100万,2021年的新注册用户数为169万,设新注册用户数的年平均增长率为x(x>0),则x= (用百分数表示).五.坐标与图形性质(共1小题)5.(2021•杭州)如图,在直角坐标系中,以点A(3,1)为端点的四条射线AB,AC,AD,AE分别过点B(1,1),点C(1,3),点D(4,4),点E(5,2),则∠BAC ∠DAE(填“>”、“=”、“<”中的一个).六.一次函数图象上点的坐标特征(共1小题)6.(2023•杭州)在“探索一次函数y=kx+b的系数k,b与图象的关系”活动中,老师给出了直角坐标系中的三个点:A(0,2),B(2,3),C(3,1).同学们画出了经过这三个点中每两个点的一次函数的图象,并得到对应的函数表达式y1=k1x+b1,y2=k2x+b2,y3=k3x+b3.分别计算k1+b1,k2+b2,k3+b3的值,其中最大的值等于 .七.一次函数与二元一次方程(组)(共1小题)7.(2022•杭州)已知一次函数y=3x﹣1与y=kx(k是常数,k≠0)的图象的交点坐标是(1,2),则方程组的解是 .八.平行线的性质(共1小题)8.(2023•杭州)如图,点D,E分别在△ABC的边AB,AC上,且DE∥BC,点F在线段BC 的延长线上.若∠ADE=28°,∠ACF=118°,则∠A= .九.切线的性质(共1小题)9.(2021•杭州)如图,已知⊙O的半径为1,点P是⊙O外一点,且OP=2.若PT是⊙O 的切线,T为切点,连结OT,则PT= .一十.正多边形和圆(共1小题)10.(2023•杭州)如图,六边形ABCDEF是⊙O的内接正六边形,设正六边形ABCDEF的面积为S1,△ACE的面积为S2,则= .一十一.圆的综合题(共1小题)11.(2022•杭州)如图是以点O为圆心,AB为直径的圆形纸片,点C在⊙O上,将该圆形纸片沿直线CO对折,点B落在⊙O上的点D处(不与点A重合),连接CB,CD,AD.设CD与直径AB交于点E.若AD=ED,则∠B= 度;的值等于 .一十二.翻折变换(折叠问题)(共1小题)12.(2021•杭州)如图是一张矩形纸片ABCD,点M是对角线AC的中点,点E在BC边上,把△DCE沿直线DE折叠,使点C落在对角线AC上的点F处,连接DF,EF.若MF=AB,则∠DAF= 度.一十三.相似三角形的判定与性质(共1小题)13.(2023•杭州)如图,在△ABC中,AB=AC,∠A<90°,点D,E,F分别在边AB,BC,CA上,连接DE,EF,FD,已知点B和点F关于直线DE对称.设=k,若AD =DF,则= (结果用含k的代数式表示).一十四.相似三角形的应用(共1小题)14.(2022•杭州)某项目学习小组为了测量直立在水平地面上的旗杆AB的高度,把标杆DE 直立在同一水平地面上(如图).同一时刻测得旗杆和标杆在太阳光下的影长分别是BC=8.72m,EF=2.18m.已知B,C,E,F在同一直线上,AB⊥BC,DE⊥EF,DE=2.47m,则AB= m.一十五.特殊角的三角函数值(共1小题)15.(2021•杭州)计算:sin30°= .一十六.加权平均数(共1小题)16.(2021•杭州)现有甲、乙两种糖果的单价与千克数如下表所示.甲种糖果乙种糖果单价(元/千克)3020千克数23将这2千克甲种糖果和3千克乙种糖果混合成5千克什锦糖果,若商家用加权平均数来确定什锦糖果的单价,则这5千克什锦糖果的单价为 元/千克.一十七.概率公式(共2小题)17.(2023•杭州)一个仅装有球的不透明布袋里只有6个红球和n个白球(仅有颜色不同).若从中任意摸出一个球是红球的概率为,则n= .18.(2022•杭州)有5张仅有编号不同的卡片,编号分别是1,2,3,4,5.从中随机抽取一张,编号是偶数的概率等于 .浙江省杭州市2021-2023三年中考数学真题分类汇编-02填空题知识点分类参考答案与试题解析一.合并同类项(共1小题)1.(2022•连云港)计算:2a+3a= 5a .【答案】5a.【解答】解:2a+3a=5a,故答案为:5a.二.最简二次根式(共1小题)2.(2022•杭州)计算:= 2 ;(﹣2)2= 4 .【答案】2,4.【解答】解:=2,(﹣2)2=4,故答案为:2,4.三.二次根式的加减法(共1小题)3.(2023•杭州)计算:= ﹣ .【答案】﹣.【解答】解:原式=﹣2=﹣.故答案为:﹣.四.一元二次方程的应用(共1小题)4.(2022•杭州)某网络学习平台2019年的新注册用户数为100万,2021年的新注册用户数为169万,设新注册用户数的年平均增长率为x(x>0),则x= 30% (用百分数表示).【答案】30%.【解答】解:新注册用户数的年平均增长率为x(x>0),依题意得:100(1+x)2=169,解得:x1=0.3,x2=﹣2.3(不合题意,舍去).0.3=30%,∴新注册用户数的年平均增长率为30%.故答案为:30%.五.坐标与图形性质(共1小题)5.(2021•杭州)如图,在直角坐标系中,以点A(3,1)为端点的四条射线AB,AC,AD,AE分别过点B(1,1),点C(1,3),点D(4,4),点E(5,2),则∠BAC = ∠DAE (填“>”、“=”、“<”中的一个).【答案】=.【解答】解:连接DE,由上图可知AB=2,BC=2,∴△ABC是等腰直角三角形,∴∠BAC=45°,又∵AE===,同理可得DE==,AD==,则在△ADE中,有AE2+DE2=AD2,∴△ADE是等腰直角三角形,∴∠DAE=45°,∴∠BAC=∠DAE,故答案为:=.六.一次函数图象上点的坐标特征(共1小题)6.(2023•杭州)在“探索一次函数y=kx+b的系数k,b与图象的关系”活动中,老师给出了直角坐标系中的三个点:A(0,2),B(2,3),C(3,1).同学们画出了经过这三个点中每两个点的一次函数的图象,并得到对应的函数表达式y1=k1x+b1,y2=k2x+b2,y3=k3x+b3.分别计算k1+b1,k2+b2,k3+b3的值,其中最大的值等于 5 .【答案】5.【解答】解:解法一:设直线AB的解析式为y1=k1x+b1,将点A(0,2),B(2,3)代入得,,解得:,∴k1+b1=,设直线AC的解析式为y2=k2x+b2,将点A(0,2),C(3,1)代入得,,解得:,∴k2+b2=,设直线BC的解析式为y3=k3x+b3,将点B(2,3),C(3,1)代入得,,解得:,∴k3+b3=5,∴k1+b1=,k2+b2=,k3+b3=5,其中最大的值为5.解法二:如图,作直线AB、AC、BC,作直线x=1,设直线AB的解析式为y1=k1x+b1,直线AC的解析式为y2=k2x+b2,直线BC的解析式为y3=k3x+b3,由图象可知,直线x=1与直线BC的交点最高,即当x=1时,k1+b1,k2+b2,k3+b3其中最大的值为k3+b3,将点B(2,3),C(3,1)代入得,,解得:,∴k3+b3=5,k1+b1,k2+b2,k3+b3其中最大的值为k3+b3=5.故答案为:5.七.一次函数与二元一次方程(组)(共1小题)7.(2022•杭州)已知一次函数y=3x﹣1与y=kx(k是常数,k≠0)的图象的交点坐标是(1,2),则方程组的解是 .【答案】.【解答】解:∵一次函数y=3x﹣1与y=kx(k是常数,k≠0)的图象的交点坐标是(1,2),∴联立y=3x﹣1与y=kx的方程组的解为:,故答案为:.八.平行线的性质(共1小题)8.(2023•杭州)如图,点D,E分别在△ABC的边AB,AC上,且DE∥BC,点F在线段BC 的延长线上.若∠ADE=28°,∠ACF=118°,则∠A= 90° .【答案】90°.【解答】解:∵DE∥BC,∴∠B=∠ADE=28°,∵∠ACF=∠A+∠B,∴∠A=∠ACF﹣∠B=118°﹣28°=90°.故答案为:90°.九.切线的性质(共1小题)9.(2021•杭州)如图,已知⊙O的半径为1,点P是⊙O外一点,且OP=2.若PT是⊙O 的切线,T为切点,连结OT,则PT= .【答案】.【解答】解:∵PT是⊙O的切线,T为切点,∴OT⊥PT,在Rt△OPT中,OT=1,OP=2,∴PT===,故:PT=.一十.正多边形和圆(共1小题)10.(2023•杭州)如图,六边形ABCDEF是⊙O的内接正六边形,设正六边形ABCDEF的面积为S1,△ACE的面积为S2,则= 2 .【答案】2.【解答】解:如图所示,连接OA,OC,OE.∵六边形ABCDEF是⊙O的内接正六边形,∴AC=AE=CE,∴△ACE是⊙O的内接正三角形,∵∠B=120°,AB=BC,∴∠BAC=∠BCA=(180°﹣∠B)=30°,∵∠CAE=60°,∴∠OAC=∠OAE=30°,∴∠BAC=∠OAC=30°,同理可得,∠BCA=∠OCA=30°,∴△BAC≌△OAC(ASA),∴S△BAC=S△AOC,圆和正六边形的性质可得,S△BAC=S△AFE=S△CDE,由圆和正三角形的性质可得,S△OAC=S△OAE=S△OCE,∵S1=S△BAC+S△AEF+S△CDE+S△OAC+S△OAE+S△OCE=2(S△OAC+S△OAE+S△OCE)=2S2,∴,故答案为:2一十一.圆的综合题(共1小题)11.(2022•杭州)如图是以点O为圆心,AB为直径的圆形纸片,点C在⊙O上,将该圆形纸片沿直线CO对折,点B落在⊙O上的点D处(不与点A重合),连接CB,CD,AD.设CD与直径AB交于点E.若AD=ED,则∠B= 36 度;的值等于 .【答案】36,.【解答】解:∵AD=DE,∴∠DAE=∠DEA,∵∠DEA=∠BEC,∠DAE=∠BCE,∴∠BEC=∠BCE,∵将该圆形纸片沿直线CO对折,∴∠ECO=∠BCO,又∵OB=OC,∴∠OCB=∠B,设∠ECO=∠OCB=∠B=x,∴∠BCE=∠ECO+∠BCO=2x,∵∠BEC+∠BCE+∠B=180°,∴x+2x+2x=180°,∴x=36°,∴∠B=36°;∵∠ECO=∠B,∠CEO=∠CEB,∴△CEO∽△BEC,∴,∴CE2=EO•BE,设EO=x,EC=OC=OB=a,∴a2=x(x+a),解得,x=a(负值舍去),∴OE=a,∴AE=OA﹣OE=a﹣a=a,∵∠AED=∠BEC,∠DAE=∠BCE,∴△BCE∽△DAE,∴,∴=.故答案为:36,.一十二.翻折变换(折叠问题)(共1小题)12.(2021•杭州)如图是一张矩形纸片ABCD,点M是对角线AC的中点,点E在BC边上,把△DCE沿直线DE折叠,使点C落在对角线AC上的点F处,连接DF,EF.若MF=AB,则∠DAF= 18 度.【答案】18.【解答】解:连接DM,如图:∵四边形ABCD是矩形,∴∠ADC=90°.∵M是AC的中点,∴DM=AM=CM,∴∠FAD=∠MDA,∠MDC=∠MCD.∵DC,DF关于DE对称,∴DF=DC,∴∠DFC=∠DCF.∵MF=AB,AB=CD,DF=DC,∴MF=FD.∴∠FMD=∠FDM.∵∠DFC=∠FMD+∠FDM,∴∠DFC=2∠FMD.∵∠DMC=∠FAD+∠ADM,∴∠DMC=2∠FAD.设∠FAD=x°,则∠DFC=4x°,∴∠MCD=∠MDC=4x°.∵∠DMC+∠MCD+∠MDC=180°,∴2x+4x+4x=180.∴x=18.故答案为:18.一十三.相似三角形的判定与性质(共1小题)13.(2023•杭州)如图,在△ABC中,AB=AC,∠A<90°,点D,E,F分别在边AB,BC,CA上,连接DE,EF,FD,已知点B和点F关于直线DE对称.设=k,若AD =DF,则= (结果用含k的代数式表示).【答案】.【解答】解:方法一:∵点B和点F关于直线DE对称,∴DB=DF,∵AD=DF,∴AD=DB,∵AD=DF,∴∠A=∠DFA,∵点B和点F关于直线DE对称,∴∠BDE=∠FDE,∵∠BDE+∠FDE=∠BDF=∠A+∠DFA,∴∠FDE=∠DFA,∴DE∥AC,∴∠C=∠DEB,∠DEF=∠EFC,∵点B和点F关于直线DE对称,∴∠DEB=∠DEF,∴∠C=∠EFC,∵AB=AC,∴∠C=∠B,∵∠ACB=∠EFC,∴△ABC∽△ECF,∴=,∵DE∥AC,∴∠BDE=∠A,∠BED=∠C,∴△BDE∽△BAC,∴==,∴EC=BC,∵=k,∴BC=k•AB,∴EC=k•AB,∴=,∴CF=k2•AB,∴====.方法二:如图,连接BF,∵点B和点F关于直线DE对称,∴DB=DF,∵AD=DF,∴AD=DB=DF,∴BF⊥AC,设AB=AC=1,则BC=k,设CF=x,则AF=1﹣x,由勾股定理得,AB2﹣AF2=BC2﹣CF2,∴12﹣(1﹣x)2=k2﹣x2,∴x=,∴AF=1﹣x=,∴=.故答案为:.一十四.相似三角形的应用(共1小题)14.(2022•杭州)某项目学习小组为了测量直立在水平地面上的旗杆AB的高度,把标杆DE 直立在同一水平地面上(如图).同一时刻测得旗杆和标杆在太阳光下的影长分别是BC=8.72m,EF=2.18m.已知B,C,E,F在同一直线上,AB⊥BC,DE⊥EF,DE=2.47m,则AB= 9.88 m.【答案】9.88.【解答】解:∵同一时刻测得旗杆和标杆在太阳光下的影长分别是BC=8.72m,EF=2.18m.∴AC∥DF,∴∠ACB=∠DFE,∵AB⊥BC,DE⊥EF,∴∠ABC=∠DEF=90°,∴Rt△ABC∽△Rt△DEF,∴,即,解得AB=9.88,∴旗杆的高度为9.88m.故答案为:9.88.一十五.特殊角的三角函数值(共1小题)15.(2021•杭州)计算:sin30°= .【答案】见试题解答内容【解答】解:sin30°=.一十六.加权平均数(共1小题)16.(2021•杭州)现有甲、乙两种糖果的单价与千克数如下表所示.甲种糖果乙种糖果单价(元/千克)3020千克数23将这2千克甲种糖果和3千克乙种糖果混合成5千克什锦糖果,若商家用加权平均数来确定什锦糖果的单价,则这5千克什锦糖果的单价为 24 元/千克.【答案】24.【解答】解:这5千克什锦糖果的单价为:(30×2+20×3)÷5=24(元/千克).故答案为:24.一十七.概率公式(共2小题)17.(2023•杭州)一个仅装有球的不透明布袋里只有6个红球和n个白球(仅有颜色不同).若从中任意摸出一个球是红球的概率为,则n= 9 .【答案】9.【解答】解:根据题意,=,解得n=9,经检验n=9是方程的解.∴n=9.故答案为:9.18.(2022•杭州)有5张仅有编号不同的卡片,编号分别是1,2,3,4,5.从中随机抽取一张,编号是偶数的概率等于 .【答案】.【解答】解:从编号分别是1,2,3,4,5的卡片中,随机抽取一张有5种可能性,其中编号是偶数的可能性有2种可能性,∴从中随机抽取一张,编号是偶数的概率等于,故答案为:.。

2020年浙江省中考数学试题附解析

2020年浙江省中考数学试题附解析

2020年浙江省中考数学试题学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上一、选择题1.如图,在纸上剪下一个圆形和一个扇形的纸片,使之恰好能围成一个圆锥模型. 若圆的半径为 r,扇形的半径为 R,扇形的圆心角等于120°,则r与R之间的关系是()A.R=2r B.3R r=C.R=3r D.R =4r2.如图,AB、AC 分别是⊙O的直径和切线,BC 交⊙O于D.AB=8,AC=6,那么 CD 的长为()A.3 B.4 C.9 D.3.63.已知1sin2A=,且∠A为锐角,则∠A=()A.30°B.45°C.60°D.75°4.若等腰三角形的一个外角为110°,则它的底角为()A.55°B.70°C.55°或70°D.以上答案都不对5.若一个三角形的一个外角等于其中的一个内角,则这个三角形是()A.等腰三角形B.正三角形C.直角三角形D.不存在6.在□ABCD中,对角线AC,BD的长分别为6和8,则边AB的取值范围为()A.2<AB<14 B.1<AB<7 C.1<AB<5 D.2<AB<107.画一个物体的三视图时,一般的顺序是()A.主视图、左视图、俯视图B.主视图、俯视图、左视图C.俯视图、主视图、左视图D.左视图、俯视图、主视图8.如图,已知 AB∥CD,∠A = 70°,则∠1 的度数为()A. 70°B. 100°C.110°D. 130°9.用 9根火柴棒(等长)拼成一个三角形,火柴棒不允许剩余、重叠和折断,则能摆出不同的三角形的个数是( )A . 1个B . 2个C .3个D .4个 10.已知12506x y -+=,用含x 的代数式表示y 应有( ) A .6(25)x y =+ B .6(25)x y =- C .11(5)26y x =+ D .11(5)26y x =-+ 11.从n 个苹果和3个雪梨中,任选1个,若选中苹果的概率是12,则n 的值是( ) A . 6 B . 3 C . 2 D . 112.下列各个物体的运动,属于旋转的是( )A .电梯从一楼升到了八楼B .电风扇叶片的转动C .火车在笔直的铁路上行驶D .一块石子扔进河里,水波在不断扩大13.方程213148x x --=-去分母后正确的结果是( ) A .2(21)83x x -=--B .2(21)1(3)x x -=--C .211(3)x x -=--D .2(21)8(3)x x -=--14.下列说法:①代数式21a +的值永远是正的;②代数式2a b +中的字母可以是任何数;③代数式2a b +只代表一个值;④代数式2x x-中字母x 可以是 0 以外的任何数. 其中正确的有( ) A .1 个 B .2 个 C .3 个 D .4 个二、填空题15.如图,已知AB 是⊙O 的直径,弦CD AB ⊥,22AC =,1BC =,那么sin ABD ∠的值是 .16.反比例函数x m y 12--=(m 为常数)的图像如图所示,则m 的取值范围是________. 17.如图,E 、F 是□ABCD 对角线BD 上的两点,请你添加一个条件: ,使四边形AECF 是平行四边形.18.如图 ,在△ABC 中,∠ACB=90°,角平分线 AD 、BE 交于点F ,则∠AFB= .19.长方形有_____条对称轴,正方形有_____条对称轴,圆有_____条对称轴.20.木材加工厂堆放木料的方式如图所示:依此规律可以得出第六堆木料的根数是 根.21.某潜水员先潜入水下 100 m ,然后又上升30m ,再下降 l2m ,又上升 l8m ,则此潜水员在水下 m.三、解答题22.如图所示,施工工地的水平地面上,有三根外径都是lm 的水泥管,两两外切地堆放在一起,求其最高点到地面的距离是多少?23.某公司甲、乙两座仓库分别有运输车 12辆和6辆,要调往A 地 10辆,调往B 地8辆. 已知从甲仓库调运一辆到 A 地和 B 地的费用分别为 40元与 80元;从乙仓库调运一辆到A 地和 B 地的费用分别为 30元与 50元. 设从乙仓库调到入地x 辆车.(1)用含x 的式子表示调运车辆的总费用;(2)若要求总费用不超过 900 元,共有几种运方案?(3)求出总费用最低的方案,最低费用是多少元?24.一艘潜艇在水下800 m处用声纳测得水面上一艘静止的轮船与它的直线距离为l000m,潜艇的速度为20m/s,若它向这艘轮船方向驶去(深度保持不变),则经多少时间它会位于轮船正下方?25.如图,在屋架上要加一根横梁 DE.已知∠ABC =60°,当∠ADE 等于多少度时,才能使DE∥BC?为什么?26.分析如图(1)、(2)、(4)中阴影部分的分布规律,按此规律在如图(3)中画出其中的阴影部分.27.当x为何值时,代数式12x-与113x+-值相等.28.小惠的牡丹卡上还有余款 260 元,小惠想买一件衬衣和一件连衣裙,衬衣价格为 98 元/件,连衣裙价格为 180 元/件,小惠用牡丹卡购买这两件商品会透支吗?用有理数加法说明理由.29.你能根据图中标出的数值,写出数轴上点A和点B之间,点C和点D之间,点B和点C 之间的所有整数吗?30.A 地海拔是-40 m,B 地比A地高 20 m,C地又比B 地高 30m,试用正数或负数表示B、C两地的海拔.【参考答案】学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上一、选择题1.C2.D3.A4.C5.C6.B7.A8.C9.C10.B11.B12.B13.D14.B二、填空题15. 223 16. 21-<m 17. BE =DF 等,(答案不惟一)18.135°19.2,4,无数20.2821.64三、解答题22.连结三个圆心,构成一个边长为lm 的正三角形,其高为32m ,则最高点到地面的距离是232+m. 23.(1)(20x+860)元.(2)根据题意,得20x+860≤900.解得2x ≤.∵x 为非负整数,∴x =0、1、2.∴共有三种调运方案:(方案一)从甲仓库分别调运10辆、2辆到A 、B 两地,从乙仓库调运6辆到B 地;(方案二)从甲仓库分别调运9辆、3辆到A 、B 两地,从乙仓库分别调运1辆、5辆到A 、B 两地;(方案三)从甲仓库分别调运8辆、4辆到A 、B 两地,从乙仓库分别调运2辆、4辆到A 、B 两地.(3)方案一的总费用最低,为860元.24.30s25.∠ADE=60°,理由略26.如图:27. 由题意,得11123x x -+=-,去分母,得3(1)62(1)x x -=-+. 解得1x =-答:当1x =-时,代数式12x -与113x +-的值相等. 28.会透支29.A 与B 之间有-12,-11,-10,-9,-8,-7;C 与D 之间有 3,4,5,6,7;B 与C 之间有-6,-5,-4,-3,-2,-1,0,1,230.B :-20 mC :+10 m。

浙江省温州市2021-2023三年中考数学真题分类汇编-03解答题(提升题)知识点分类

浙江省温州市2021-2023三年中考数学真题分类汇编-03解答题(提升题)知识点分类

浙江省温州市2021-2023三年中考数学真题分类汇编-03解答题(提升题)知识点分类一.分式的加减法(共1小题)1.(2023•温州)计算:(1)|﹣1|++()﹣2﹣(﹣4);(2)﹣.二.待定系数法求一次函数解析式(共1小题)2.(2023•温州)如图,在直角坐标系中,点A (2,m )在直线y =2x ﹣上,过点A 的直线交y 轴于点B (0,3).(1)求m 的值和直线AB 的函数表达式;(2)若点P (t ,y 1)在线段AB 上,点Q (t ﹣1,y 2)在直线y =2x ﹣上,求y 1﹣y 2的最大值.三.一次函数的应用(共1小题)3.(2021•温州)某公司生产的一种营养品信息如表.已知甲食材每千克的进价是乙食材的2倍,用80元购买的甲食材比用20元购买的乙食材多1千克.营养品信息表营养成分每千克含铁42毫克原料每千克含铁甲食材50毫克配料表乙食材10毫克规格每包食材含量每包单价A 包装1千克45元B 包装0.25千克12元(1)问甲、乙两种食材每千克进价分别是多少元?(2)该公司每日用18000元购进甲、乙两种食材并恰好全部用完.①问每日购进甲、乙两种食材各多少千克?②已知每日其他费用为2000元,且生产的营养品当日全部售出.若A的数量不低于B的数量,则A为多少包时,每日所获总利润最大?最大总利润为多少元?四.待定系数法求二次函数解析式(共1小题)4.(2021•温州)已知抛物线y=ax2﹣2ax﹣8(a≠0)经过点(﹣2,0).(1)求抛物线的函数表达式和顶点坐标.(2)直线l交抛物线于点A(﹣4,m),B(n,7),n为正数.若点P在抛物线上且在直线l下方(不与点A,B重合),分别求出点P横坐标与纵坐标的取值范围.五.二次函数的应用(共1小题)5.(2022•温州)根据以下素材,探索完成任务.如何设计拱桥景观灯的悬挂方案?素材1图1中有一座拱桥,图2是其抛物线形桥拱的示意图,某时测得水面宽20m,拱顶离水面5m.据调查,该河段水位在此基础上再涨1.8m达到最高.素材2为迎佳节,拟在图1桥洞前面的桥拱上悬挂40cm长的灯笼,如图3.为了安全,灯笼底部距离水面不小于1m;为了实效,相邻两盏灯笼悬挂点的水平间距均为1.6m;为了美观,要求在符合条件处都挂上灯笼,且挂满后成轴对称分布.问题解决任务1确定桥拱形状在图2中建立合适的直角坐标系,求抛物线的函数表达式.任务2探究悬挂范围在你所建立的坐标系中,仅在安全的条件下,确定悬挂点的纵坐标的最小值和横坐标的取值范围.任务3拟定设计方案给出一种符合所有悬挂条件的灯笼数量,并根据你所建立的坐标系,求出最左边一盏灯笼悬挂点的横坐标.六.平行四边形的判定与性质(共2小题)6.(2022•温州)如图,在△ABC 中,AD ⊥BC 于点D ,E ,F 分别是AC ,AB 的中点,O 是DF 的中点,EO 的延长线交线段BD 于点G ,连结DE ,EF ,FG .(1)求证:四边形DEFG 是平行四边形.(2)当AD =5,tan ∠EDC =时,求FG 的长.7.(2021•温州)如图,在▱ABCD 中,E ,F 是对角线BD 上的两点(点E 在点F 左侧),且∠AEB =∠CFD =90°.(1)求证:四边形AECF 是平行四边形;(2)当AB =5,tan ∠ABE =,∠CBE =∠EAF 时,求BD 的长.七.圆的综合题(共2小题)8.(2022•温州)如图1,AB为半圆O的直径,C为BA延长线上一点,CD切半圆于点D,BE⊥CD,交CD延长线于点E,交半圆于点F,已知BC=5,BE=3,点P,Q分别在线段AB,BE上(不与端点重合),且满足=.设BQ=x,CP=y.(1)求半圆O的半径.(2)求y关于x的函数表达式.(3)如图2,过点P作PR⊥CE于点R,连结PQ,RQ.①当△PQR为直角三角形时,求x的值.②作点F关于QR的对称点F′,当点F′落在BC上时,求的值.9.(2021•温州)如图,在平面直角坐标系中,⊙M经过原点O,分别交x轴、y轴于点A (2,0),B(0,8),连结AB.直线CM分别交⊙M于点D,E(点D在左侧),交x轴于点C(17,0),连结AE.(1)求⊙M的半径和直线CM的函数表达式;(2)求点D,E的坐标;(3)点P在线段AC上,连结PE.当∠AEP与△OBD的一个内角相等时,求所有满足条件的OP的长.八.利用平移设计图案(共1小题)10.(2021•温州)如图中4×4与6×6的方格都是由边长为1的小正方形组成.图1是绘成的七巧板图案,它由7个图形组成,请按以下要求选择其中一个并在图2、图3中画出相应的格点图形(顶点均在格点上).(1)选一个四边形画在图2中,使点P为它的一个顶点,并画出将它向右平移3个单位后所得的图形.(2)选一个合适的三角形,将它的各边长扩大到原来的倍,画在图3中.九.作图-旋转变换(共1小题)11.(2023•温州)如图,在2×4的方格纸ABCD中,每个小方格的边长为1.已知格点P,请按要求画格点三角形(顶点均在格点上).(1)在图1中画一个等腰三角形PEF,使底边长为,点E在BC上,点F在AD上,再画出该三角形绕矩形ABCD的中心旋转180°后的图形;(2)在图2中画一个Rt△PQR,使∠P=45°,点Q在BC上,点R在AD上,再画出该三角形向右平移1个单位后的图形.一十.相似形综合题(共1小题)12.(2023•温州)如图1,AB 为半圆O 的直径,C 为BA 延长线上一点,CD 切半圆于点D ,BE ⊥CD ,交CD 延长线于点E ,交半圆于点F ,已知OA =,AC =1.如图2,连结AF ,P 为线段AF 上一点,过点P 作BC 的平行线分别交CE ,BE 于点M ,N ,过点P 作PH ⊥AB 于点H .设PH =x ,MN =y .(1)求CE 的长和y 关于x 的函数表达式;(2)当PH <PN ,且长度分别等于PH ,PN ,a 的三条线段组成的三角形与△BCE 相似时,求a 的值;(3)延长PN 交半圆O 于点Q ,当NQ =x ﹣3时,求MN 的长.一十一.解直角三角形的应用-仰角俯角问题(共1小题)13.(2023•温州)根据背景素材,探索解决问题.测算发射塔的高度背景素材某兴趣小组在一幢楼房窗口测算远处小山坡上发射塔的高度MN (如图1),他们通过自制的测倾仪(如图2)在A ,B ,C 三个位置观测,测倾仪上的示数如图3所示.经讨论,只需选择其中两个合适的位置,通过测量、换算就能计算发射塔的高度问题解决分析规划选择两个观测位置:点 和点  .任务1获取数据写出所选位置观测角的正切值,并量出观测点之间的图上距离.任务2推理计算计算发射塔的图上高度MN .任务3换算高度楼房实际宽度DE 为12米,请通过测量换算发射塔的实际高度.注:测量时,以答题纸上的图上距离为准,并精确到1mm .浙江省温州市2021-2023三年中考数学真题分类汇编-03解答题(提升题)知识点分类参考答案与试题解析一.分式的加减法(共1小题)1.(2023•温州)计算:(1)|﹣1|++()﹣2﹣(﹣4);(2)﹣.【答案】(1)12;(2)a﹣1.【解答】解:(1)原式=1﹣2+9+4=12;(2)原式===a﹣1.二.待定系数法求一次函数解析式(共1小题)2.(2023•温州)如图,在直角坐标系中,点A(2,m)在直线y=2x﹣上,过点A的直线交y轴于点B(0,3).(1)求m的值和直线AB的函数表达式;(2)若点P(t,y1)在线段AB上,点Q(t﹣1,y2)在直线y=2x﹣上,求y1﹣y2的最大值.【答案】(1)m=;直线AB的函数表达式为y=﹣x+3.(2)当t =0,y 1﹣y 2的最大值为.【解答】解:(1)把点A (2,m )代入y =2x ﹣中,得m =;设直线AB 的函数表达式为:y =kx +b ,把A (2,),B (0,3)代入得:,解得,∴直线AB 的函数表达式为y =﹣x +3.(2)∵点P (t ,y 1)在线段AB 上,∴y 1=﹣t +3(0≤t ≤2),∵点Q (t ﹣1,y 2)在直线y =2x ﹣上,∴y 2=2(t ﹣1)﹣=2t ﹣,∴y 1﹣y 2=﹣t +3﹣(2t ﹣)=﹣t +,∵﹣<0,∴y 1﹣y 2随t 的增大而减小,∴当t =0,y 1﹣y 2的最大值为.三.一次函数的应用(共1小题)3.(2021•温州)某公司生产的一种营养品信息如表.已知甲食材每千克的进价是乙食材的2倍,用80元购买的甲食材比用20元购买的乙食材多1千克.营养品信息表营养成分每千克含铁42毫克原料每千克含铁甲食材50毫克配料表乙食材10毫克规格每包食材含量每包单价A 包装1千克45元B 包装0.25千克12元(1)问甲、乙两种食材每千克进价分别是多少元?(2)该公司每日用18000元购进甲、乙两种食材并恰好全部用完.①问每日购进甲、乙两种食材各多少千克?②已知每日其他费用为2000元,且生产的营养品当日全部售出.若A的数量不低于B的数量,则A为多少包时,每日所获总利润最大?最大总利润为多少元?【答案】(1)甲食材每千克进价为40元,乙食材每千克进价为20元;(2)①每日购进甲食材400千克,乙食材100千克;②当A为400包时,总利润最大,最大总利润为2800元.【解答】解:(1)设乙食材每千克进价为a元,则甲食材每千克进价为2a元,由题意得,解得a=20,经检验,a=20是所列方程的根,且符合题意,∴2a=40(元),答:甲食材每千克进价为40元,乙食材每千克进价为20元;(2)①设每日购进甲食材x千克,乙食材y千克,由题意得,解得,答:每日购进甲食材400千克,乙食材100千克;②设A为m包,则B为=(2000﹣4m)包,∵A的数量不低于B的数量,∴m≥2000﹣4m,∴m≥400,设总利润为W元,根据题意得:W=45m+12(2000﹣4m)﹣18000﹣2000=﹣3m+4000,∵k=﹣3<0,∴W随m的增大而减小,∴当m=400时,W的最大值为2800,答:当A为400包时,总利润最大,最大总利润为2800元.四.待定系数法求二次函数解析式(共1小题)4.(2021•温州)已知抛物线y=ax2﹣2ax﹣8(a≠0)经过点(﹣2,0).(1)求抛物线的函数表达式和顶点坐标.(2)直线l交抛物线于点A(﹣4,m),B(n,7),n为正数.若点P在抛物线上且在直线l下方(不与点A,B重合),分别求出点P横坐标与纵坐标的取值范围.【答案】(1)y=x2﹣2x﹣8;(1,﹣9).(2)﹣4<x P<5,﹣9≤y P<16.【解答】解:(1)把(﹣2,0)代入y=ax2﹣2ax﹣8得0=4a+4a﹣8,解得a=1,∴抛物线的函数表达式为y=x2﹣2x﹣8,∵y=x2﹣2x﹣8=(x﹣1)2﹣9,∴抛物线顶点坐标为(1,﹣9).(2)把x=﹣4代入y=x2﹣2x﹣8得y=(﹣4)2﹣2×(﹣4)﹣8=16,∴m=16,把y=7代入函数解析式得7=x2﹣2x﹣8,解得x=5或x=﹣3,∴n=5或n=﹣3,∵n为正数,∴n=5,∴点A坐标为(﹣4,16),点B坐标为(5,7).∵抛物线开口向上,顶点坐标为(1,﹣9),∴抛物线顶点在AB下方,∴﹣4<x P<5,﹣9≤y P<16.五.二次函数的应用(共1小题)5.(2022•温州)根据以下素材,探索完成任务.如何设计拱桥景观灯的悬挂方案?素材1图1中有一座拱桥,图2是其抛物线形桥拱的示意图,某时测得水面宽20m,拱顶离水面5m.据调查,该河段水位在此基础上再涨1.8m达到最高.素材2为迎佳节,拟在图1桥洞前面的桥拱上悬挂40cm长的灯笼,如图3.为了安全,灯笼底部距离水面不小于1m;为了实效,相邻两盏灯笼悬挂点的水平间距均为1.6m;为了美观,要求在符合条件处都挂上灯笼,且挂满后成轴对称分布.问题解决任务1确定桥拱形状在图2中建立合适的直角坐标系,求抛物线的函数表达式.任务2探究悬挂范围在你所建立的坐标系中,仅在安全的条件下,确定悬挂点的纵坐标的最小值和横坐标的取值范围.任务3拟定设计方案给出一种符合所有悬挂条件的灯笼数量,并根据你所建立的坐标系,求出最左边一盏灯笼悬挂点的横坐标.【答案】任务1:y=﹣x2;任务2:﹣1.8m,﹣6≤x≤6;任务3:挂7盏或8盏,横坐标分别为﹣4.8和﹣5.6,方案见解答.【解答】解:任务1:以拱顶为原点,建立如图1所示的直角坐标系,则顶点为(0,0),且过点B(10,﹣5),设抛物线的解析式为:y=ax2,把点B(10,﹣5)代入得:100a=﹣5,∴a=﹣,∴抛物线的函数表达式为:y=﹣x2;任务2:∵该河段水位再涨1.8m达到最高,灯笼底部距离水面不小于1m,灯笼长0.4m,∴当悬挂点的纵坐标y≥﹣5+1.8+1+0.4=﹣1.8,即悬挂点的纵坐标的最小值是﹣1.8m,当y=﹣1.8时,﹣x2=﹣1.8,∴x=±6,∴悬挂点的横坐标的取值范围是:﹣6≤x≤6;任务3:方案一:如图2(坐标轴的横轴),从顶点处开始悬挂灯笼,∵﹣6≤x≤6,相邻两盏灯笼悬挂点的水平间距均为1.6m,∴若顶点一侧悬挂4盏灯笼时,1.6×4>6,若顶点一侧悬挂3盏灯笼时,1.6×3<6,∴顶点一侧最多悬挂3盏灯笼,∵灯笼挂满后成轴对称分布,∴共可挂7盏灯笼,∴最左边一盏灯笼的横坐标为:﹣1.6×3=﹣4.8;方案二:如图3,∵若顶点一侧悬挂5盏灯笼时,0.8+1.6×(5﹣1)>6,若顶点一侧悬挂4盏灯笼时,0.8+1.6×(4﹣1)<6,∴顶点一侧最多悬挂4盏灯笼,∵灯笼挂满后成轴对称分布,∴共可挂8盏灯笼,∴最左边一盏灯笼的横坐标为:﹣0.8﹣1.6×3=﹣5.6.六.平行四边形的判定与性质(共2小题)6.(2022•温州)如图,在△ABC中,AD⊥BC于点D,E,F分别是AC,AB的中点,O 是DF的中点,EO的延长线交线段BD于点G,连结DE,EF,FG.(1)求证:四边形DEFG是平行四边形.(2)当AD=5,tan∠EDC=时,求FG的长.【答案】(1)证明见解析;(2),【解答】(1)证明:∵E,F分别是AC,AB的中点,∴EF是△ABC的中位线,∴EF∥BC,∴∠EFO=∠GDO,∵O是DF的中点,∴OF=OD,在△OEF和△OGD中,,∴△OEF≌△OGD(ASA),∴EF=GD,∴四边形DEFG是平行四边形.(2)解:∵AD⊥BC,∴∠ADC=90°,∵E是AC的中点,∴DE=AC=CE,∴∠C=∠EDC,∴tan C==tan∠EDC=,即=,∴CD=2,∴AC===,∴DE=AC=,由(1)可知,四边形DEFG是平行四边形,∴FG=DE=.7.(2021•温州)如图,在▱ABCD中,E,F是对角线BD上的两点(点E在点F左侧),且∠AEB=∠CFD=90°.(1)求证:四边形AECF是平行四边形;(2)当AB=5,tan∠ABE=,∠CBE=∠EAF时,求BD的长.【答案】见试题解答内容【解答】(1)证明:∵∠AEB=∠CFD=90°,∴AE⊥BD,CF⊥BD,∴AE∥CF,∵四边形ABCD是平行四边形,∴AB=CD,AB∥CD,∴∠ABE=∠CDF,在△ABE和△CDF中,,∴△ABE≌△CDF(AAS),∴AE=CF,∴四边形AECF是平行四边形;(2)解:在Rt△ABE中,tan∠ABE==,设AE=3a,则BE=4a,由勾股定理得:(3a)2+(4a)2=52,解得:a=1或a=﹣1(舍去),∴AE=3,BE=4,由(1)得:四边形AECF是平行四边形,∴∠EAF=∠ECF,CF=AE=3,∵∠CBE=∠EAF,∴∠ECF=∠CBE,∴tan∠CBE=tan∠ECF,∴=,∴CF2=EF×BF,设EF=x,则BF=x+4,∴32=x(x+4),解得:x=﹣2或x=﹣﹣2,(舍去),即EF=﹣2,由(1)得:△ABE≌△CDF,∴BE=DF=4,∴BD=BE+EF+DF=4+﹣2+4=6+.七.圆的综合题(共2小题)8.(2022•温州)如图1,AB为半圆O的直径,C为BA延长线上一点,CD切半圆于点D,BE⊥CD,交CD延长线于点E,交半圆于点F,已知BC=5,BE=3,点P,Q分别在线段AB,BE上(不与端点重合),且满足=.设BQ=x,CP=y.(1)求半圆O的半径.(2)求y关于x的函数表达式.(3)如图2,过点P作PR⊥CE于点R,连结PQ,RQ.①当△PQR为直角三角形时,求x的值.②作点F关于QR的对称点F′,当点F′落在BC上时,求的值.【答案】(1);(2)y=;(3)①或;②.【解答】解:(1)如图1,连接OD,设半径为r,∵CD切半圆于点D,∴OD⊥CD,∵BE⊥CD,∴OD∥BE,∴△COD∽△CBE,∴,∴,解得r=,∴半圆O的半径为;(2)由(1)得,CA=CB﹣AB=5﹣2×=,∵=,BQ=x,∴AP=,∴CP=AP+AC,∴y=;(3)①显然∠PRQ<90°,所以分两种情形,当∠RPQ=90°时,则四边形RPQE是矩形,∴PR=QE,∵PR=PC×sin C=,∴,∴x=,当∠PQR=90°时,过点P作PH⊥BE于点H,如图,则四边形PHER是矩形,∴PH=RE,EH=PR,∵CR=CP•cos C=,∴PH=RE=3﹣x=EQ,∴∠EQR=∠ERQ=45°,∴∠PQH=45°=∠QPH,∴HQ=HP=3﹣x,由EH=PR得:(3﹣x)+(3﹣x)=,∴x=,综上,x的值为或;②如图,连接AF,QF',由对称可知QF=QF',∵CP=,∴CR=x+1,∴ER=3﹣x,∵BQ=x,∴EQ=3﹣x,∴ER=EQ,∴∠F'QR=∠EQR=45°,∴∠BQF'=90°,∴QF=QF'=BQ•tan B=,∵AB是半圆O的直径,∴∠AFB=90°,∴BF=AB•cos B=,∴,∴x=,∴.9.(2021•温州)如图,在平面直角坐标系中,⊙M经过原点O,分别交x轴、y轴于点A (2,0),B(0,8),连结AB.直线CM分别交⊙M于点D,E(点D在左侧),交x轴于点C(17,0),连结AE.(1)求⊙M的半径和直线CM的函数表达式;(2)求点D,E的坐标;(3)点P在线段AC上,连结PE.当∠AEP与△OBD的一个内角相等时,求所有满足条件的OP的长.【答案】见试题解答内容【解答】解:(1)∵∠AOB=90°,∴AB为⊙M的直径,∵点M是AB的中点,则点M(1,4),则圆的半径为AM==,设直线CM的表达式为y=kx+b,则,解得,故直线CM的表达式为y=﹣x+;(2)设点D的坐标为(x,﹣x+),由AM=得:(x﹣1)2+(﹣x+﹣4)2=()2,解得x=5或﹣3,故点D、E的坐标分别为(﹣3,5)、(5,3);(3)过点D作DH⊥OB于点H,则DH=3,BH=8﹣5=3=DH,故∠DBO=45°,由点A、E的坐标,同理可得∠EAP=45°;由点A、E、B、D的坐标得,AE==3,同理可得:BD=3,OB=8,①当∠AEP=∠DBO=45°时,则△AEP为等腰直角三角形,EP⊥AC,故点P的坐标为(5,0),故OP=5;②∠AEP=∠BDO时,∵∠EAP=∠DBO,∴△EAP∽△DBO,∴,即==,解得AP=8,故PO=10;③∠AEP=∠BOD时,∵∠EAP=∠DBO,∴△EAP∽△OBD,∴,即,解得AP=,则PO=2+=,综上所述,OP为5或10或.八.利用平移设计图案(共1小题)10.(2021•温州)如图中4×4与6×6的方格都是由边长为1的小正方形组成.图1是绘成的七巧板图案,它由7个图形组成,请按以下要求选择其中一个并在图2、图3中画出相应的格点图形(顶点均在格点上).(1)选一个四边形画在图2中,使点P为它的一个顶点,并画出将它向右平移3个单位后所得的图形.(2)选一个合适的三角形,将它的各边长扩大到原来的倍,画在图3中.【答案】见试题解答内容【解答】解:(1)如图2所示,即为所求;(2)如图3所示,即为所求.九.作图-旋转变换(共1小题)11.(2023•温州)如图,在2×4的方格纸ABCD中,每个小方格的边长为1.已知格点P,请按要求画格点三角形(顶点均在格点上).(1)在图1中画一个等腰三角形PEF,使底边长为,点E在BC上,点F在AD上,再画出该三角形绕矩形ABCD的中心旋转180°后的图形;(2)在图2中画一个Rt△PQR,使∠P=45°,点Q在BC上,点R在AD上,再画出该三角形向右平移1个单位后的图形.【答案】(1)(2)作图见解析部分.【解答】解:(1)图形如图1所示(答案不唯一);(2)图形如图2所示(答案不唯一).一十.相似形综合题(共1小题)12.(2023•温州)如图1,AB为半圆O的直径,C为BA延长线上一点,CD切半圆于点D,BE⊥CD,交CD延长线于点E,交半圆于点F,已知OA=,AC=1.如图2,连结AF,P为线段AF上一点,过点P作BC的平行线分别交CE,BE于点M,N,过点P 作PH⊥AB于点H.设PH=x,MN=y.(1)求CE的长和y关于x的函数表达式;(2)当PH<PN,且长度分别等于PH,PN,a的三条线段组成的三角形与△BCE相似时,求a的值;(3)延长PN交半圆O于点Q,当NQ=x﹣3时,求MN的长.【答案】(1)CE=,y=﹣x+4;(2)a的值为或或;(3)MN的长为.【解答】解:(1)如图1,连接OD,∵CD切半圆O于点D,∴OD⊥CE,∵OA=,AC=1,∴OC=,BC=4,∴CD==2,∵BE⊥CE,∴OD∥BE,∴,∴,∴CE=,如图2,∵∠AFB=∠E=90°,∴AF∥CE,∴MN∥CB,∴四边形APMC是平行四边形,∴CM=PA====x,∵NM∥BC,∴△BCE∽△NME,∴,∴=,∴y=﹣x+4;(2)∵PN=y﹣1=﹣x+4﹣1=﹣x+3,PH<PN,△BCE的三边之比为3:4:5,∴可分为三种情况,当PH:PN=3:5时,x=﹣x+3,解得:x=,∴a=x=,当PH:PN=4:5时,x=﹣x+3,解得:x=,∴a=x=,当PH:PN=3:4时,x=﹣x+3,解得:x=,∴a=x=,综上所述:a的值为或或;(3)如图3,连接AQ,BQ,过点Q作QG⊥AB于点G,则∠AQB =∠AGQ =90°,PH =QG =x ,∴∠QAB =∠BQG ,∵NQ =x ﹣3,PN =y ﹣1=﹣x +3,∴HG =PQ =NQ +PN =x ,∵AH =x ,∴AG =AH +HG =3x ,∴tan ∠BQG =tan ∠QAB ===,∴BG =QG =x ,∴AB =AG +BG =x =3,∴x =,∴y =﹣x +4=,∴MN 的长为.一十一.解直角三角形的应用-仰角俯角问题(共1小题)13.(2023•温州)根据背景素材,探索解决问题.测算发射塔的高度背景素材某兴趣小组在一幢楼房窗口测算远处小山坡上发射塔的高度MN (如图1),他们通过自制的测倾仪(如图2)在A ,B ,C 三个位置观测,测倾仪上的示数如图3所示.经讨论,只需选择其中两个合适的位置,通过测量、换算就能计算发射塔的高度问题解决分析规划选择两个观测位置:点 A 和点 B (答案不唯一) .任务1获取数据写出所选位置观测角的正切值,并量出观测点之间的图上距离.任务2推理计算计算发射塔的图上高度MN .任务3换算高度楼房实际宽度DE 为12米,请通过测量换算发射塔的实际高度.注:测量时,以答题纸上的图上距离为准,并精确到1mm .【答案】任务1:A 、B ;tan ∠1=,tan ∠2=,tan ∠3=,测得图上AB =4mm ,任务2:MN =18mm ;任务3:43.2m .【解答】解:任务1:【分析规划】选择点A 和点B(答案不唯一),故答案为:A 、B (答案不唯一);【获取数据】tan ∠1=,tan ∠2=,tan ∠3=,测得图上AB =4mm ;任务2:如图1,过点A 作AF ⊥MN 于点F ,过点B 作BG ⊥MN 于点G ,则FG =AB =4mm,设MF=xmm,则MG=(x+4)mm,∵tan∠MAF==,tan∠MBG==,∴AF=4x,BG=3x+12,∵AF=BG,即4x=3x+12,∴x=12,即MF=12mm,∴AF=BG=4x=48(mm),∵tan∠FAN==,∴FN=6mm,∴MN=MF+FN=12+6=18(mm),任务3:测得图上DE=5mm,设发射塔的实际高度为hm,由题意得,=,解得h=43.2(m),∴发射塔的实际高度为43.2m.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
21. 如图,在正方形 ABCD 中,点 E 在 BC 边上,连接 AE ,∠DAE 的平分线 AG 与 CD 边交于点 G,与 BC 的延 长线交于点 F.设 =λ(λ>0). (1)若 AB=2,λ=1,求线段 CF 的长. (2)连接 EG,若 EG⊥AF, ①求证:点 G 为 CD 边的中点. ②求 λ 的值.
2020 年浙江省杭州市中考数学试卷
题号 得分



总分
一、选择题(本大题共 10 小题,共 30.0 分)
1. 计算
的结果是( )
A.
B.
C.
D. 3
2. (1+y)(1-y)=( )
A. 1+y2
B. -1-y2
C. 1-y2
D. -1+y2
3. 已知某快递公司的收费标准为:寄一件物品不超过 5 千克,收费 13 元;超过 5 千 克的部分每千克加收 2 元.圆圆在该快递公司寄一件 8 千克的物品,需要付费(
13. 设 M=x+y,N=x-y,P=xy.若 M=1,N=2,则 P=______. 14. 如图,已知 AB 是⊙O 的直径,BC 与⊙O 相切于点 B,连
接 AC,OC.若 sin∠BAC= ,则 tan∠BOC=______.
15. 一个仅装有球的不透明布袋里共有 4 个球(只有编号不同),编号分别为 1,2,3 ,5.从中任意摸出一个球,记下编号后放回,搅匀,再任意摸出一个球,则两次 摸出的球的编号之和为偶数的概率是______.
D. 若 h=7,则 a>0
第 1 页,共 14 页
9. 如图,已知 BC 是⊙O 的直径,半径 OA⊥BC,点 D 在劣弧 AC 上 (不与点 A,点 C 重合),BD 与 OA 交于点 E.设∠AED=α,
∠AOD=β,则( )
A. 3α+β=180° B. 2α+β=180° C. 3α-β=90° D. 2α-β=90°
16. 如图是一张矩形纸片,点 E 在 AB 边上,把△BCE 沿直 线 CE 对折,使点 B 落在对角线 AC 上的点 F 处,连接 DF .若点 E,F,D 在同一条直线上,AE=2,则 DF=______, BE=______.
三、解答题(本大题共 7 小题,共 66.0 分)
17. 以下是圆圆解方程
10. 在平面直角坐标系中,已知函数 y1=x2+ax+1,y2=x2+bx+2,y3=x2+cx+4,其中 a,b,
c 是正实数,且满足 b2=ac.设函数 y1,y2,y3 的图象与 x 轴的交点个数分别为 M1,0
B. 若 M1=1,M2=0,则 M3=0
一个最低分,平均分为 z,则( )
A. y>z>x
B. x>z>y
C. y>x>z
D. z>y>x
8. 设函数 y=a(x-h)2+k(a,h,k 是实数,a≠0),当 x=1 时,y=1;当 x=8 时,y=8,
( )
A. 若 h=4,则 a<0 B. 若 h=5,则 a>0 C. 若 h=6,则 a<0
22. 在平面直角坐标系中,设二次函数 y1=x2+bx+a,y2=ax2+bx+1(a,b 是实数,a≠0) . (1)若函数 y1 的对称轴为直线 x=3,且函数 y1 的图象经过点(a,b),求函数 y1 的表达式. (2)若函数 y1 的图象经过点(r,0),其中 r≠0,求证:函数 y2 的图象经过点( ,0). (3)设函数 y1 和函数 y2 的最小值分别为 m 和 n,若 m+n=0,求 m,n 的值.
=1 的解答过程.
解:去分母,得 3(x+1)-2(x-3)=1.
第 2 页,共 14 页
去括号,得 3x+1-2x+3=1. 移项,合并同类项,得 x=-3. 圆圆的解答过程是否有错误?如果有错误,写出正确的解答过程.
18. 某工厂生产某种产品,3 月份的产量为 5000 件,4 月份的产量为 10000 件.用简单 随机抽样的方法分别抽取这两个月生产的该产品若干件进行检测,并将检测结果分 别绘制成如图所示的扇形统计图和频数直方图(每组不含前一个边界值,含后一个 边界值).已知检测综合得分大于 70 分的产品为合格产品. (1)求 4 月份生产的该产品抽样检测的合格率; (2)在 3 月份和 4 月份生产的产品中,估计哪个月的不合格件数最多?为什么?
C. 若 M1=0,M2=2,则 M3=0
D. 若 M1=0,M2=0,则 M3=0
二、填空题(本大题共 6 小题,共 24.0 分)
11. 若分式 的值等于 1,则 x=______.
12. 如图,AB∥CD,EF 分别与 AB,CD 交于点 B,F.若 ∠E=30°,∠EFC=130°,则∠A=______.
19. 如图,在△ABC 中,点 D,E,F 分别在 AB,BC,AC 边上,DE∥AC,EF∥AB. (1)求证:△BDE∽△EFC. (2)设 , ①若 BC=12,求线段 BE 的长; ②若△EFC 的面积是 20,求△ABC 的面积.
第 3 页,共 14 页
20. 设函数 y1= ,y2=- (k>0). (1)当 2≤x≤3 时,函数 y1 的最大值是 a,函数 y2 的最小值是 a-4,求 a 和 k 的值. (2)设 m≠0,且 m≠-1,当 x=m 时,y1=p;当 x=m+1 时,y1=q.圆圆说:“p 一定 大于 q”.你认为圆圆的说法正确吗?为什么?

A. 17 元
B. 19 元
C. 21 元
D. 23 元
4. 如图,在△ABC 中,∠C=90°,设∠A,∠B,∠C 所对的 边分别为 a,b,c,则( )
A. c=bsinB
B. b=csinB
C. a=btanB
D. b=ctanB
5. 若 a>b,则( )
A. a-1≥b
B. b+1≥a
C. a+1>b-1
D. a-1>b+1
6. 在平面直角坐标系中,已知函数 y=ax+a(a≠0)的图象过点 P(1,2),则该函数
的图象可能是( )
A.
B.
C.
D.
7. 在某次演讲比赛中,五位评委给选手圆圆打分,得到互不相等的五个分数.若去掉
一个最高分,平均分为 x;去掉一个最低分,平均分为 y;同时去掉一个最高分和
相关文档
最新文档