算法导论第三十四章答案
算法和数据结构C语言版课后习题集答案解析(机械工业出版社)第34章习题集参考答案解析

第3章栈和队列一、基础知识题3.1有五个数依次进栈:1,2,3,4,5。
在各种出栈的序列中,以3,4先出的序列有哪几个。
(3在4之前出栈)。
【解答】34215 ,34251, 345213.2铁路进行列车调度时,常把站台设计成栈式结构,若进站的六辆列车顺序为:1,2,3,4,5,6,那么是否能够得到435612, 325641, 154623和135426的出站序列,如果不能,说明为什么不能;如果能,说明如何得到(即写出"进栈"或"出栈"的序列)。
【解答】输入序列为123456,不能得出435612和154623。
不能得到435612的理由是,输出序列最后两元素是12,前面4个元素(4356)得到后,栈中元素剩12,且2在栈顶,不可能让栈底元素1在栈顶元素2之前出栈。
不能得到154623的理由类似,当栈中元素只剩23,且3在栈顶,2不可能先于3出栈。
得到325641的过程如下:1 2 3顺序入栈,32出栈,得到部分输出序列32;然后45入栈,5出栈,部分输出序列变为325;接着6入栈并退栈,部分输出序列变为3256;最后41退栈,得最终结果325641。
得到135426的过程如下:1入栈并出栈,得到部分输出序列1;然后2和3入栈,3出栈,部分输出序列变为13;接着4和5入栈,5,4和2依次出栈,部分输出序列变为13542;最后6入栈并退栈,得最终结果135426。
3.3若用一个大小为6的数组来实现循环队列,且当前rear和front的值分别为0和3,当从队列中删除一个元素,再加入两个元素后,rear和front的值分别为多少?【解答】2和 43.4设栈S和队列Q的初始状态为空,元素e1,e2,e3,e4,e5和e6依次通过栈S,一个元素出栈后即进队列Q,若6个元素出队的序列是e3,e5,e4,e6,e2,e1,则栈S的容量至少应该是多少?【解答】 43.5循环队列的优点是什么,如何判断“空”和“满”。
算法分析课后习题解答

2-34、Gray码是一个长度为2n的序列。
序列中无相同元素。
每个元素都是长度为n位的串。
相邻元素恰好只有一位不同。
用分治策略设计一个算法对任意的n构造相应的Gray码。
答:设序列中元素由0、1组成。
当 n=1 时 Gray码的序列有2个元素〔21=2〕,分别为:0,| 1当 n=2 时 Gray码的序列有4个元素〔22=4〕,分别为:00,10,| 11,01当 n=3 时 Gray码的序列有8个元素〔23=8〕,分别为:000,100,110,010,| 011,111,101,001当 n=4 时 Gray码的序列有16个元素〔24=16〕,分别为:0000,1000、1100、0100,0110,1110,1010,0010,| 0011,1011,1111,0111,0101,1101,1001,0001从上面的列举可得如下规律:n=k时,Gray码的序列有2k个元素,分别为:n=k-1时的Gray码元素正向后加0,得前2k-1个元素,反向后加1的后2k-1个元素。
如 n=2时 Gray码序列的4个元素分别为:00,10, 11,01当 n=3 时 Gray码序列的前4个元素〔23=8〕,分别为:000,100,110,010是n=2时Gray码四个元素正向后加0,即:000,100, 110,010Gray码序列的后4个元素〔23=8〕,分别为:011,111,101,001 是n=2时Gray码四个元素反向后加1,n=2时Gray码四个元素:00,10, 11,01即:011,111,101,001可以看出,Gray码可以用分治策略,递归实现,2n的Gray码可以用2n-1的Gray码构成。
算法描述:void Gray( type a[],int n){ char a[];if (n==1) { a[0]=’0’;a[1]=’1’;}if (n>1){ Gray(a[],n-1);int k=2n-1-1; //Gray码的个数,因为数组下标从0开始int i=k;for (int x=k;x>=0;x--){char y=a[x];a[x]=y+’0’;a[i+1]=y+’1’; i++;}}}3-7 给定由n个英文单词组成的一段文章,……答:设由n 个单词组成的一段文章可以表示为 A[1:n],它的“漂亮打印〞方案记为B[1:n],构成该最优解的最小空格数〔最优值〕记为m[1][n](1)分析最优解的结构:A[1:n]的最优解B[1:n],必然在第k个单词处断开,那么A[1:k]是“漂亮打印〞,并且A[k+1:n]也是“漂亮打印〞。
藏书阁-《算法导论》常见算法总结

常见算法总结分治法分治策略的思想:顾名思义,分治是将一个原始问题分解成多个子问题,而子问题的形式和原问题一样,只是规模更小而已,通过子问题的求解,原问题也就自然出来了。
总结一下,大致可以分为这样的三步:分解:将原问题划分成形式相同的子问题,规模可以不等,对半或2/3对1/3的划分。
解决:对于子问题的解决,很明显,采用的是递归求解的方式,如果子问题足够小了,就停止递归,直接求解。
合并:将子问题的解合并成原问题的解。
这里引出了一个如何求解子问题的问题,显然是采用递归调用栈的方式。
因此,递归式与分治法是紧密相连的,使用递归式可以很自然地刻画分治法的运行时间。
所以,如果你要问我分治与递归的关系,我会这样回答:分治依托于递归,分治是一种思想,而递归是一种手段,递归式可以刻画分治算法的时间复杂度。
所以就引入本章的重点:如何解递归式?分治法适用的情况分治法所能解决的问题一般具有以下几个特征:1. 该问题的规模缩小到一定的程度就可以容易地解决2. 该问题可以分解为若干个规模较小的相同问题,即该问题具有最优子结构性质。
3. 利用该问题分解出的子问题的解可以合并为该问题的解;4. 该问题所分解出的各个子问题是相互独立的,即子问题之间不包含公共的子子问题。
第一条特征是绝大多数问题都可以满足的,因为问题的计算复杂性一般是随着问题规模的增加而增加;第二条特征是应用分治法的前提它也是大多数问题可以满足的,此特征反映了递归思想的应用;、第三条特征是关键,能否利用分治法完全取决于问题是否具有第三条特征,如果具备了第一条和第二条特征,而不具备第三条特征,则可以考虑用贪心法或动态规划法。
第四条特征涉及到分治法的效率,如果各子问题是不独立的则分治法要做许多不必要的工作,重复地解公共的子问题,此时虽然可用分治法,但一般用动态规划法较好。
——————————————————————————————最大堆最小堆1、堆堆给人的感觉是一个二叉树,但是其本质是一种数组对象,因为对堆进行操作的时候将堆视为一颗完全二叉树,树种每个节点与数组中的存放该节点值的那个元素对应。
《算法导论(第二版)》(中文版)课后答案

17.3-1
11
《算法导论(第二版) 》参考答案
17.3-4
17.4-3 假设第 i 个操作是 TABLE_DELETE, 考虑装载因子 : i =(第 i 次循环之后的表 中的 entry 数)/(第 i 次循环后的表的大小)= numi / sizei
19.1-1. If x is not a root node, then Degree[x]=Degree[sibling[x]]+1 If x is a root node, then Degree[x]<Degree[sibling[x]] 19.1-2
13.1-5 prove:
3
《算法导论(第二版) 》参考答案 13.1-6 2k-1 22k-1 13.2-3 13.3-5
13.4-3
4
《算法导论(第二版) 》参考答案
14.1-4
14.2-2
14.2-3 不可以,性能改变 时间复杂度由 O( lgn ) -> O( nlgn )
14.3-2 Note: 注意 Overlap 的定义稍有不同,需要重新定义。 算法:只要将 P314 页第三行的 改成>就行。 14.3-3 INTERVAL-SEARCH-SUBTREE(x, i) 1 while x ≠ nil[T] and i does not overlap int[x] 2 do if left[x] ≠ nil[T] and max[left[x]] ≥ low[i] 3 then x ← left[x] 4 else x ← right[x] 5 return x INTERVAL-SEARCH-MIN(T, i) 2 y←INTERVAL-SEARCH-SUBTREE(root[T], i) 先找第一个重叠区间 3 z←y 4 while y≠ nil[T] and left[y] ≠ nil[T] 在它的左子树上查找
《算法导论》习题答案

n/2
n! nn , n! o(nn )
3.2.4 是否多项式有界 lg n !与 lg lg n !
设lgn=m,则 m! 2 m ( )m e2m ( )m em(ln m1) mln m1 nln ln n
∴lgn!不是多项式有界的。
T (n) O(lg n)
4.1.2 证明 T (n) 2T (n) n 的解为 O(n lg n)
设 T (n) c n lg n
T (n) 2c n lg n n c lg n n n c(n 1) lg(n / 2) n cn lg n c lg n cn n cn(lg n 1) n c(lg n 2n)
虽然用二分查找法可以将查找正确位置的时间复杂度降下来,但 是移位操作的复杂度并没有减少, 所以最坏情况下该算法的时间复杂 度依然是 (n2 )
2.3-7 给出一个算法, 使得其能在 (n lg n) 的时间内找出在一个 n 元
素的整数数组内,是否存在两个元素之和为 x
首先利用快速排序将数组排序,时间 (n lg n) ,然后再进行查找:
sin(n / 2) 2 1,所以 af (n / b) cf (n) 不满足。 2(sin n 2)
4.1.6 计算 T (n) 2T (
令 m lg n, T (2 ) 2T (2
m m/ 2
n ) 1 的解
) 1
令 T(n)=S(m),则 S (m) 2S (m / 2) 1 其解为 S (m) (m),T (n) S (m) (lg n)
4.2 The recursion-tree method 4.2.1 4.2.2 4.2.3 4.2.5 略
算法导论习题

//在合并排序中对小数组采用插入排序#include<stdio.h>void main(){void MERGE_SORT(int a[],int p,int r,int k);int a[12]; //={3,0,1,10,9,5,4,12,7,8,2,6};int k=3,n=12;int i,j,s;int tmp=0;printf("请输入12个正整数:\n");for(i=0;i<12;i++)scanf("%d",&a[i]);for(i=0;i<=3;i++){for(j=i*3+1;j<i*3+3;j++){s=j;while(s>=i*3+1){if(a[s]<a[s-1])tmp=a[s],a[s]=a[s-1],a[s-1]=tmp;s--;}}}printf("第一步对4个长度3的子列表进行插入排序的结果为:\n");for(i=0;i<12;i++)printf("%d,",a[i]);printf("\n");MERGE_SORT(a,0,3,3);printf("第二步对4个子列表进行合并排序的结果为:\n");for(i=0;i<12;i++)printf("%d,",a[i]);printf("\n");} void MERGE_SORT(int a[],int p,int r,int k) {void MERGE(int a[],int p,int q,int r,int k);int q;if(p<r){q=(p+r)/2;MERGE_SORT(a,p,q,k);MERGE_SORT(a,q+1,r,k);MERGE(a,p,q,r,k);}}void MERGE(int a[],int p,int q,int r,int k) {int n1=(q-p+1)*k,n2=(r-q)*k;int i,j,s;int *L=new int[n1];int *R=new int[n2];for(i=0;i<n1;i++)L[i]=a[p*k+i];for(j=0;j<n2;j++)R[j]=a[(q+1)*k+j];i=0;j=0;for(s=p*3;s<=(r+1)*3-1;s++){if(i>n1-1)a[s]=R[j++];else if(j>n2-1)a[s]=L[i++];else if(L[i]<R[j])a[s]=L[i++];elsea[s]=R[j++];}}//用分治法在数组中查找逆序对#include<stdio.h>void main(){int count_inversion(int a[],int p,int r);int a[5]={5,4,3,2,1};printf("数组的逆序对是%d个\n",count_inversion(a,0,4));}int merge_inversion(int a[],int p,int q,int r){int n1=q-p+1;int n2=r-q;int *L=new int[n1];int *R=new int[n2];int i,j,k,v;for(i=0;i<n1;++i)L[i]=a[p+i];for(j=0;j<n2;++j)R[j]=a[q+1+j];i=0;j=0;v=0;for(k=p;k<=r;++k){if(i>n1-1)a[k]=R[j++];else if(j>n2-1)a[k]=L[i++];else if(L[i]>R[j]){a[k]=R[j++];v+=n1-i;}elsea[k]=L[i++];}delete L;delete R;return v;}int count_inversion(int a[],int p,int r){int v=0,q;if(p<r){q=(p+r)/2;v+=count_inversion(a,p,q);v+=count_inversion(a,q+1,r);v+=merge_inversion(a,p,q,r);}return v;}//用插入方法建堆#include"stdio.h"void HEAP_INCREASE_KEY(int a[],int i,int key) {int tmp;if(key>a[i-1])a[i-1]=key;while(i>1&&a[i/2-1]<a[i-1]){tmp=a[i/2-1],a[i/2-1]=a[i-1],a[i-1]=tmp;i=i/2;}}void MAX_HEAP_INSERT(int a[],int key,int heap_size){heap_size+=1;a[heap_size-1]=0;HEAP_INCREASE_KEY(a,heap_size,key); }void BUILD_MAX_HEAP(int a[],int lengh){int heap_size=1;int i;for(i=2;i<=lengh;i++){MAX_HEAP_INSERT(a,a[i-1],heap_size);heap_size++; //堆的长度要随着循环的次数增长}}void main(){int j;int a[10]={15,84,62,16,29,35,6,18,9,17};BUILD_MAX_HEAP(a,10);for(j=0;j<10;j++)printf("%d\n",a[j]);}#include"stdio.h"void MAX_D_HEAPIFY(int a[],int i,int d,int heap_size){int n=d,j,largest;int tmp;int *child=new int[n];for(j=0;j<n;j++)child[j]=(i-1)*d+2+j;if(child[0]<=heap_size&&a[child[0]-1]>a[i-1])largest=child[0];elselargest=i;for(j=1;j<n;j++){if(child[j]<=heap_size&&a[child[j]-1]>a[largest-1])largest=child[j];}if(largest!=i){tmp=a[largest-1],a[largest-1]=a[i-1],a[i-1]=tmp;MAX_D_HEAPIFY(a,largest,d,heap_size);}}void BUILD_MAX_D_HEAP(int a[],int d,int heap_size){int i,j;j=heap_size%d;if(j==0||j==1)i=heap_size/d;elsei=heap_size/d+1;//由叶子节点求父节点有两种情况for(i;i>=1;i--)MAX_D_HEAPIFY(a,i,d,heap_size);}int EXTRACT_MAX(int a[],int d,int heap_size) {int tmp;tmp=a[heap_size-1];a[heap_size-1]=a[0];a[0]= tmp;heap_size--;MAX_D_HEAPIFY(a,1,d,heap_size);return a[heap_size];}void main(){inta[20]={52,47,16,58,23,26,14,18,59,68,47,19,35,29, 61,82,74,75,98,81};// int b[18]={25,11,15,9,8,17,21,40,18,11,10,20,14,15,19, 21,7,10};int d=5,j,largest;BUILD_MAX_D_HEAP(a,5,20);// BUILD_MAX_D_HEAP(b,5,18);for(j=0;j<20;j++)printf("%d\n",a[j]);largest=EXTRACT_MAX(a,5,20);for(j=0;j<20;j++)printf("%d\n",a[j]);printf("%d\n",largest);/* for(j=0;j<18;j++)printf("%d\n",b[j]);*/#include"stdio.h"void MAX_D_HEAPIFY(int a[],int i,int d,int heap_size){int n=d,j,largest;int tmp;int *child=new int[n];for(j=0;j<n;j++)child[j]=(i-1)*d+2+j;if(child[0]<=heap_size&&a[child[0]-1]>a[i-1])largest=child[0];elselargest=i;for(j=1;j<n;j++){if(child[j]<=heap_size&&a[child[j]-1]>a[largest-1])largest=child[j];}if(largest!=i){tmp=a[largest-1],a[largest-1]=a[i-1],a[i-1]=tmp;MAX_D_HEAPIFY(a,largest,d,heap_size);}}void BUILD_MAX_D_HEAP(int a[],int d,int heap_size){int i,j;j=heap_size/d;if(j==0||j==1)i=heap_size/d;elsei=heap_size/d+1;//由叶子节点求父节点有两种情况for(i;i>=1;i--)MAX_D_HEAPIFY(a,i,d,heap_size);}void HEAP_INCREASE_KEY(int a[],int i,int d,int key){int tmp,j;if(a[i-1]<=key)a[i-1]=key;while(i>1){if(i%d==0||i%d==1)j=i/d;elsej=i/d+1;if(a[j-1]<a[i-1]){tmp=a[j-1],a[j-1]=a[i-1],a[i-1]=tmp;i=j;}else break;}}void INSERT(int a[],int key,int d,int heap_size) {heap_size+=1;a[heap_size-1]=0;HEAP_INCREASE_KEY(a,heap_size,d,key); }void main(){inta[20]={52,47,16,58,23,26,14,18,59,68,47,19,35,29, 61,82,74,75,98,81};int j,s=0;BUILD_MAX_D_HEAP(a,5,19);for(j=0;j<20;j++){printf("%d,",a[j]);s+=1;if(s%6==0)printf("\n");}INSERT(a,a[19],5,19);s=0;printf("\n");for(j=0;j<20;j++){printf("%d,",a[j]);s+=1;if(s%6==0)printf("\n");}}#include"stdio.h"void MAX_D_HEAPIFY(int a[],int i,int d,int heap_size){int n=d,j,largest;int tmp;int *child=new int[n];for(j=0;j<n;j++)child[j]=(i-1)*d+2+j;if(child[0]<=heap_size&&a[child[0]-1]>a[i-1])largest=child[0];elselargest=i;for(j=1;j<n;j++){if(child[j]<=heap_size&&a[child[j]-1]>a[largest-1])largest=child[j];}if(largest!=i){tmp=a[largest-1],a[largest-1]=a[i-1],a[i-1]=tmp;MAX_D_HEAPIFY(a,largest,d,heap_size);}}void BUILD_MAX_D_HEAP(int a[],int d,int heap_size){int i,j;j=heap_size/d;if(j==0||j==1)i=heap_size/d;elsei=heap_size/d+1;//由叶子节点求父节点有两种情况for(i;i>=1;i--)MAX_D_HEAPIFY(a,i,d,heap_size);}void HEAP_DECREASE_KEY(int a[],int i,int d,int key,int heap_size){if(a[i-1]>=key)a[i-1]=key;MAX_D_HEAPIFY(a,i,d,heap_size);}void main(){inta[20]={52,47,16,58,23,26,14,18,59,68,47,19,35,29, 61,82,74,75,98,81};int key=1,s=0,j;BUILD_MAX_D_HEAP(a,5,20);for(j=0;j<20;j++){printf("%d,",a[j]);s+=1;if(s%6==0)printf("\n");}printf("\n");s=0;HEAP_DECREASE_KEY(a,3,5,key,20);for(j=0;j<20;j++){printf("%d,",a[j]);s+=1;if(s%6==0)printf("\n");}}#include"stdio.h"void main(){//int a[10]={6,4,12,7,9,11,5,13,18,8};int a[10]={20,18,17,14,16,10,8,9,8,15};int i=9,j;int heap_size;void BULD_MAX_HEAP(int a[]);int HEAP_DELETE(int a[],int i);BULD_MAX_HEAP(a);heap_size=HEAP_DELETE(a,i);printf("删除第i个元素后的堆是:\n");for(j=0;j<heap_size;j++)printf("%d\n",a[j]);}void BULD_MAX_HEAP(int a[]){void MAX_HEAPIFY(int a[],int j,int heap_size);int heap_size=10;int j;for(j=4;j>=0;j--)MAX_HEAPIFY(a,j,heap_size);printf("堆a是:\n");for(j=0;j<heap_size;j++)printf("%4d",a[j]);printf("\n");}void MAX_HEAPIFY(int a[],int j,int heap_size) {int left=2*(j+1);int right=2*(j+1)+1;//结点与数组下标之间要转换int largest=0,temp;if(left<=heap_size&&a[left-1]>a[j])largest=left-1;elselargest=j;if(right<=heap_size&&a[right-1]>a[largest])largest=right-1;if(largest!=j){temp=a[largest];a[largest]=a[j];a[j]=temp;MAX_HEAPIFY(a,largest,heap_size);}}int HEAP_DELETE(int a[],int i){int temp,key=a[9],key1=a[i-1];int heap_size=10;temp=a[9];a[9]=a[i-1];a[i-1]=temp;heap_size--;if(key>key1){while(i>1&&a[i/2-1]<a[i-1])//如果a[9]大于i结点的值,则通过不断与父结点的比较//来确它的位置{temp=a[i/2-1],a[i/2-1]=a[i-1],a[i-1]=temp;i=i/2;}}elseMAX_HEAPIFY(a,i-1,heap_size);//如果a[9]比i结点的值要小,则从i结点开始堆维护return heap_size;}//建立最小堆#include"stdio.h"void MIN_HEAPIFY(int a[],int i,int heap_size){int small,tmp;int left=2*i,right=2*i+1;if(left<=heap_size&&a[left-1]>a[i-1])small=left;elsesmall=i;if(right<=heap_size&&a[right-1]>a[small-1]) small=right;if(small!=i){tmp=a[small-1],a[small-1]=a[i-1],a[i-1]=tmp;MIN_HEAPIFY(a,small,heap_size);}}void BUILD_MIN_HEAP(int a[],int heap_size) {int i;for(i=(heap_size/2);i>=1;i--)MIN_HEAPIFY(a,i,heap_size);}void HEAPSORT(int a[],int lengh){int i,tmp;int heap_size=lengh;BUILD_MIN_HEAP(a,heap_size);for(i=lengh;i>=2;i--){tmp=a[i-1],a[i-1]=a[0],a[0]=tmp;heap_size--;MIN_HEAPIFY(a,1,heap_size);}}void main(){int a[10]={23,6,21,3,7,5,8,54,14,10};int i;HEAPSORT(a,10);for(i=0;i<10;i++)printf("%d\n",a[i]);}//PARTITION的最初版本#include"stdio.h" int HOARE_PARTITION(int a[],int p,int r){int x,tmp;int i,j;x=a[p-1];i=p-1;j=r+1;while(1){while(a[--j-1]>x);while(a[++i-1]<x);if(i<j)tmp=a[i-1],a[i-1]=a[j-1],a[j-1]=tmp;elsereturn j;}}void QUICK_SORT(int a[],int p,int r){int q;if(p<r){q=HOARE_PARTITION(a,p,r);QUICK_SORT(a,p,q);QUICK_SORT(a,q+1,r);}}void main(){int i;inta[20]={10,58,46,23,26,48,47,59,68,23,12,19,17,24, 43,81,76,72,98,46};QUICK_SORT(a,1,20);for(i=0;i<20;i++)printf("%d\n",a[i]);/*对插入排序来说,当其输入已“几乎”排好序时,运行时间是很快的。
《算法导论》读书笔记(一)

《算法导论》读书笔记(⼀) 本章是本书的开篇,介绍了什么是算法,为什么要学习算法,算法在计算机中的地位及作⽤。
算法(algorithm)简单来说就是定义良好的计算机过程,它取⼀个或⼀组值作为输⼊,并产⽣出⼀个或⼀组值作为输出。
即算法就是⼀系列的计算步骤,⽤来将输⼊数据转换成输出数据。
书中有⼀句话⾮常好: Having a solid base of algorithm knowledge and technique is one characteristic that separates the truly skilled programmers from the novices. 是否具有扎实的算法知识和技术基础,是区分真正熟练的程序员与新⼿的⼀项重要特征。
以这句话激励⾃⼰要努⼒学习算法,夯实基础,成为真正熟练的程序员。
本章通过介绍插⼊排序和归并排序两种常见的排序算法来说明算法的过程及算法分析,在介绍归并排序算法过程中引⼊了分治(divide-and-conquer)算法策略。
1、插⼊排序 输⼊:n个数(a1,a2,a3,...,an) 输出:输⼊序列的⼀个排列(a1',a2',a3',...an')使得(a1'≤a2'≤a3'≤...≤an')。
插⼊排序的基本思想是:将第i个元素插⼊到前⾯i-1个已经有序的元素中。
具体实现是从第2个元素开始(因为1个元素是有序的),将第2个元素插⼊到前⾯的1个元素中,构成两个有序的序列,然后从第3个元素开始,循环操作,直到把第n元素插⼊到前⾯n-1个元素中,最终使得n个元素是有序的。
该算法设计的⽅法是增量⽅法。
书中给出了插⼊排序的为代码,并采⽤循环不变式证明算法的正确性。
我采⽤C 语⾔实插⼊排序,完整程序如下:1 void insert_sort(int *datas,int length)2 {3 int i,j;4 int key,tmp;5 //判断参数是否合法6 if(NULL == datas || 0==length)7 {8 printf("Check datas or length.\n");9 exit(1);10 }11 //数组下标是从0开始的,从第⼆个元素(对应下标1)开始向前插⼊12 for(j=1;j<length;j++)13 {14 key = datas[j]; //记录当前要插⼊的元素15 i = j-1; //前⾯已经有序的元素16 //寻找待插⼊元素的位置,从⼩到到排序,如果是从⼤到⼩改为datas[i]<key17 while(i>=0 && datas[i] > key)18 {19 /×tmp = datas[i+1];20 datas[i+1] = datas[i];21 datas[i] = tmp;×/ 这个过程不需要进⾏交换,因为要插⼊的值保存在key中,没有被覆盖掉,在此感谢”两⽣花“指出问题所在datas[i+1] = datas[i];22 i--; //向前移动23 }24 datas[i+1] = key; //最终确定待插⼊元素的位置25 }26 }插⼊排序算法的分析 算法分析是对⼀个算法所需的资源进⾏预测,资源是指希望测度的计算时间。
算法导论标准答案

算法导论标准答案————————————————————————————————作者:————————————————————————————————日期:2第二章算法入门由于时间问题有些问题没有写的很仔细,而且估计这里会存在不少不恰当之处。
另,思考题2-3 关于霍纳规则,有些部分没有完成,故没把解答写上去,我对其 c 问题有疑问,请有解答方法者提供个意见。
给出的代码目前也仅仅为解决问题,没有做优化,请见谅,等有时间了我再好好修改。
插入排序算法伪代码INSERTION-SORT(A)1 for j ←2 to length[A]2 do key ←A[j]3 Insert A[j] into the sorted sequence A[1..j-1]4 i ←j-15 while i > 0 and A[i] > key6 do A[i+1]←A[i]7 i ←i − 18 A[i+1]←keyC#对揑入排序算法的实现:public static void InsertionSort<T>(T[] Input) where T:IComparable<T>{T key;int i;for (int j = 1; j < Input.Length; j++){key = Input[j];i = j - 1;for (; i >= 0 && Input[i].CompareTo(key)>0;i-- )Input[i + 1] = Input[i];Input[i+1]=key;}}揑入算法的设计使用的是增量(incremental)方法:在排好子数组A[1..j-1]后,将元素A[ j]揑入,形成排好序的子数组A[1..j]这里需要注意的是由于大部分编程语言的数组都是从0开始算起,这个不伪代码认为的数组的数是第1个有所丌同,一般要注意有几个关键值要比伪代码的小1.如果按照大部分计算机编程语言的思路,修改为:INSERTION-SORT(A)1 for j ← 1 to length[A]2 do key ←A[j]3 i ←j-112 31 41 59 26 41 584 while i ≥ 0 and A[i] > key5 do A[i+1]←A[i]6 i ← i − 17A[i+1]←key循环丌变式(Loop Invariant)是证明算法正确性的一个重要工具。