管道阻力损失计算

合集下载

管道阻力损失计算

管道阻力损失计算

管道的阻力计算风管内空气流动的阻力有两种,一种是由于空气本身的粘滞性及其与管壁间的摩擦而产生的沿程能量损失,称为摩擦阻力或沿程阻力;另一种是空气流经风管中的管件及设备时,由于流速的大小和方向变化以及产生涡流造成比较集中的能量损失,称为局部阻力。

通常直管中以摩擦阻力为主,而弯管以局部阻力阻力为主(图6-1-1)。

图6-1-1 直管与弯管(一)摩擦阻力1.圆形管道摩擦阻力的计算根据流体力学原理,空气在横断面形状不变的管道内流动时的摩擦阻力按下式计算:(6-1-1)对于圆形风管,摩擦阻力计算公式可改为:(6-1-2)圆形风管单位长度的摩擦阻力(又称比摩阻)为:(6-1-3)以上各式中λ——摩擦阻力系数;v——风秘内空气的平均流速,m/s;ρ——空气的密度,kg/m3;l——风管长度,m;Rs——风管的水力半径,m;f——管道中充满流体部分的横断面积,m2;P——湿周,在通风、空调系统中即为风管的周长,m;D——圆形风管直径,m。

摩擦阻力系数λ与空气在风管内的流动状态和风管管壁的粗糙度有关。

在通风和空调系统中,薄钢板风管的空气流动状态大多数属于紊流光滑区到粗糙区之间的过渡区。

通常,高速风管的流动状态也处于过渡区。

只有流速很高、表面粗糙的砖、混凝土风管流动状态才属于粗糙区。

计算过渡区摩擦阻力系数的公式很多,下面列出的公式适用范围较大,在目前得到较广泛的采用:(6-1-4)式中K——风管内壁粗糙度,mm;D——风管直径,mm。

进行通风管道的设计时,为了避免烦琐的计算,可根据公式(6-1-3)和(6-1-4)制成各种形式的计算表或线解图,供计算管道阻力时使用。

只要已知流量、管径、流速、阻力四个参数中的任意两个,即可利用线解图求得其余的两个参数。

线解图是按过渡区的λ值,在压力B0=101.3kPa、温度t0=20℃、宽气密度ρ0=1.204kg/m3、运动粘度v0=15.06×10-6m2/s、管壁粗糙度K=0.15mm、圆形风管等条件下得出的。

圆管的沿程阻力损失计算公式

圆管的沿程阻力损失计算公式

圆管的沿程阻力损失计算公式圆管的沿程阻力损失计算公式,这可是流体力学中的一个重要知识点呀!咱们先来说说啥是沿程阻力损失。

想象一下,水在一根长长的圆管里欢快地流淌,可它不是毫无阻碍的,在流动过程中,因为管道内壁的摩擦,水的能量会逐渐减少,这减少的部分就是沿程阻力损失啦。

那怎么来计算这个损失呢?这就轮到我们的计算公式登场了!圆管沿程阻力损失的计算公式是:$h_f =\lambda\frac{l}{d}\frac{v^2}{2g}$ 。

这里面的每一项都有它独特的含义哦。

“λ”叫沿程阻力系数,它可不是个好对付的家伙,得根据管道的粗糙度、流体的流动状态等来确定。

“l”是管道的长度,“d”是管道的内径,“v”是流体在管道中的平均流速,“g”则是重力加速度。

就拿咱们日常生活中的事儿来说吧,比如说家里的自来水管。

有一次我家里的水龙头出水变小了,我就琢磨着是不是管道出了问题。

我找来工具,检查了一番,发现可能是管道用的时间长了,内壁变得粗糙,导致沿程阻力增大。

这就好像一个运动员在跑道上跑步,如果跑道坑坑洼洼,阻力大,他跑起来就费劲,速度也会受影响。

圆管里的流体也是一样,管道内壁粗糙了,沿程阻力就大,损失的能量就多。

在实际工程应用中,这个计算公式可重要了。

比如在给排水系统设计中,工程师们得根据管道的材质、长度、预期的流量等,利用这个公式来确定合适的管径和水泵的功率,以保证水能够顺畅地流动。

再比如说,在石油管道输送中,如果不考虑沿程阻力损失,那可能会出现油泵功率不足,石油输送不畅,甚至可能导致管道堵塞等严重问题。

在学习这个公式的时候,可别死记硬背,得理解每个参数的意义和它们之间的关系。

多做几道练习题,结合实际的例子去思考,这样才能真正掌握这个公式的精髓。

总之,圆管的沿程阻力损失计算公式虽然看起来有点复杂,但只要我们用心去理解,多联系实际,就能把它运用得得心应手,为解决实际问题提供有力的帮助!。

管道阻力损失计算公式

管道阻力损失计算公式

管道阻力损失计算公式
管道阻力损失是流体在管道中经历的机械能损失,由其内的摩擦力,压力损失和间断损失组成。

管道阻力损失的计算公式是:
ΔP = L × 0.109 × (V²/ D4) × (f / 2g)
ΔP:管道阻力损失,单位是KPa;
L:管道总长度,单位是m;
V:流体流速,单位是m/s;
D:管道内径,单位是m;
f:管道内摩擦系数;
2g:重力加速度,一般把2g定为9.8。

管道阻力损失计算公式可以帮助我们计算管道中流体的机械能损失,从而更好地控制管道的设计和运行。

管道阻力损失的计算公式可以用于计算水管、汽油管、空气管、蒸汽管等各种流体的阻力损失。

例如,可以用来计算水管中水流的阻力损失,计算公式如下:
ΔP = L × 0.109 × (V²/ D4) × (0.02 / 2g)
ΔP:管道阻力损失,单位是KPa;
L:管道总长度,单位是m;
V:水流流速,单位是m/s;
D:管道内径,单位是m;
0.02:水流的摩擦系数;
2g:重力加速度,一般把2g定为9.8。

通过计算管道的阻力损失,我们可以更好地控制管道的运行,从而更有效地利用管道的资源。

管道阻力损失的计算公式实际上是一种能量守恒定律,它也可以用于分析水力学系统中流体的流动特性,从而发现和解决流体流动中的问题。

总之,管道阻力损失计算公式是一个非常有用的工具,可以帮助我们计算管道中流体的机械能损失,更好地控制管道的设计和运行。

管道阻力损失计算

管道阻力损失计算

管道的阻力计算风管内空气流动的阻力有两种,一种是由于空气本身的粘滞性及其与管壁间的摩擦而产生的沿程能量损失,称为摩擦阻力或沿程阻力;另一种是空气流经风管中的管件及设备时,由于流速的大小和方向变化以及产生涡流造成比较集中的能量损失,称为局部阻力。

通常直管中以摩擦阻力为主,而弯管以局部阻力阻力为主(图6-1-1)。

图6-1-1 直管与弯管(一)摩擦阻力1.圆形管道摩擦阻力的计算根据流体力学原理,空气在横断面形状不变的管道内流动时的摩擦阻力按下式计算:(6-1-1)对于圆形风管,摩擦阻力计算公式可改为:(6-1-2)圆形风管单位长度的摩擦阻力(又称比摩阻)为:(6-1-3)以上各式中λ——摩擦阻力系数;v——风秘内空气的平均流速,m/s;ρ——空气的密度,kg/m3;l——风管长度,m;Rs——风管的水力半径,m;f——管道中充满流体部分的横断面积,m2;P——湿周,在通风、空调系统中即为风管的周长,m;D——圆形风管直径,m。

摩擦阻力系数λ与空气在风管内的流动状态和风管管壁的粗糙度有关。

在通风和空调系统中,薄钢板风管的空气流动状态大多数属于紊流光滑区到粗糙区之间的过渡区。

通常,高速风管的流动状态也处于过渡区。

只有流速很高、表面粗糙的砖、混凝土风管流动状态才属于粗糙区。

计算过渡区摩擦阻力系数的公式很多,下面列出的公式适用范围较大,在目前得到较广泛的采用:(6-1-4)式中K——风管内壁粗糙度,mm;D——风管直径,mm。

进行通风管道的设计时,为了避免烦琐的计算,可根据公式(6-1-3)和(6-1-4)制成各种形式的计算表或线解图,供计算管道阻力时使用。

只要已知流量、管径、流速、阻力四个参数中的任意两个,即可利用线解图求得其余的两个参数。

线解图是按过渡区的λ值,在压力B0=101.3kPa、温度t0=20℃、宽气密度ρ0=1.204kg/m3、运动粘度v0=15.06×10-6m2/s、管壁粗糙度K=0.15mm、圆形风管等条件下得出的。

管道阻力损失计算 (2)

管道阻力损失计算 (2)

管道的阻力计算风管内空气流动的阻力有两种,一种是由于空气本身的粘滞性及其与管壁间的摩擦而产生的沿程能量损失,称为摩擦阻力或沿程阻力;另一种是空气流经风管中的管件及设备时,由于流速的大小和方向变化以及产生涡流造成比较集中的能量损失,称为局部阻力。

通常直管中以摩擦阻力为主,而弯管以局部阻力阻力为主(图6-1-1)。

图6-1-1 直管与弯管(一)摩擦阻力1.圆形管道摩擦阻力的计算根据流体力学原理,空气在横断面形状不变的管道内流动时的摩擦阻力按下式计算:(6-1-1)对于圆形风管,摩擦阻力计算公式可改为:(6-1-2)圆形风管单位长度的摩擦阻力(又称比摩阻)为:(6-1-3)以上各式中λ——摩擦阻力系数;v——风秘内空气的平均流速,m/s;ρ——空气的密度,kg/m3;l——风管长度,m;Rs——风管的水力半径,m;f——管道中充满流体部分的横断面积,m2;P——湿周,在通风、空调系统中即为风管的周长,m;D——圆形风管直径,m。

摩擦阻力系数λ与空气在风管内的流动状态和风管管壁的粗糙度有关。

在通风和空调系统中,薄钢板风管的空气流动状态大多数属于紊流光滑区到粗糙区之间的过渡区。

通常,高速风管的流动状态也处于过渡区。

只有流速很高、表面粗糙的砖、混凝土风管流动状态才属于粗糙区。

计算过渡区摩擦阻力系数的公式很多,下面列出的公式适用范围较大,在目前得到较广泛的采用:(6-1-4)式中K——风管内壁粗糙度,mm;D——风管直径,mm。

进行通风管道的设计时,为了避免烦琐的计算,可根据公式(6-1-3)和(6-1-4)制成各种形式的计算表或线解图,供计算管道阻力时使用。

只要已知流量、管径、流速、阻力四个参数中的任意两个,即可利用线解图求得其余的两个参数。

线解图是按过渡区的λ值,在压力B0=101.3kPa、温度t0=20℃、宽气密度ρ0=1.204kg/m3、运动粘度v0=15.06×10-6m2/s、管壁粗糙度K=0.15mm、圆形风管等条件下得出的。

管道阻力损失计算

管道阻力损失计算
管道的阻力计算
风管空气流动的阻力有两种,一种是由于空气本身的粘滞性及其与管壁间的摩擦而 产生的沿程能量损失,称为摩擦阻力或沿程阻力;另一种是空气流经风管中的管件及设 备时,由于流速的大小和方向变化以及产生涡流造成比较集中的能量损失,称为局部阻 力。通常直管中以摩擦阻力为主,而弯管以局部阻力阻力为主(图 6-1-1)。
(6-1-10)
式中 Kr——管壁粗糙度修正系数;
K——管壁粗糙度,mm;
v——管空气流速,m/s。
表 6-1-1 各种材料的粗糙度 K
风管材料15~0.18 塑料板
0.01~0.05 矿渣石膏板
1.0 矿渣混凝土板
1.5 胶合板
1.0 砖砌体
3~6 混凝土
1~3 木板 0.2~1.0
矩形风管的水力半径

则 (6-1-11)
Dv 称为边长为 a×b 的矩形风管的流速当量直径。 (2)流量当量直径 设某一圆形风管中的空气流量与矩形风管的空气流量相等,并且单位长度摩擦阻力 也相等,则该圆形风管的直径就称为此矩形风管的流量当量直径,以 DL 表示。根据推 导,流量当量直径可近似按下式计算。
图 6-1-1 直管与弯管 (一)摩擦阻力 1.圆形管道摩擦阻力的计算 根据流体力学原理,空气在横断面形状不变的管道流动时的摩擦阻力按下式计算:
(6-1-1) 对于圆形风管,摩擦阻力计算公式可改为:
(6-1-2) 圆形风管单位长度的摩擦阻力(又称比摩阻)为:
(6-1-3) 以上各式中
λ——摩擦阻力系数; v——风秘空气的平均流速,m/s; ρ——空气的密度,kg/m3; l——风管长度,m; Rs——风管的水力半径,m;
(1) 比摩阻法 令
称 Rm 为比摩阻,Pa/m,其意义是单位长度管道的摩擦阻力。这样摩擦阻力计算式则 变换成下列表达式:

管路沿程阻力计算

管路沿程阻力计算

管路沿程阻力计算1.摩擦阻力:在流体流动中,由于流体与管道壁之间的摩擦力,使得流体流动速度逐渐减小,产生摩擦阻力。

根据代表性的达西-魏泽巴赫公式,可以计算流体在管道中的摩擦阻力。

ΔP=λ(L/D)(ρV^2/2)其中,ΔP为单位管长上的摩擦阻力损失,λ为摩擦系数,L为管道长度,D为管道直径,ρ为流体密度,V为流速。

2.沿程局部阻力:在管道流动中,由于管道内部存在一些特殊设计或结构,导致流体流动时发生局部阻力。

根据达西-魏泽巴赫公式,可以计算管道局部阻力。

ΔP=K(ρV^2/2)其中,ΔP为单位管长上的沿程局部阻力损失,K为局部阻力系数,ρ为流体密度,V为流速。

3.管道弯曲阻力:在管道中,当流体流过弯曲部分时,会受到弯曲的影响,产生较大的阻力。

根据经验公式,可以计算管道弯曲阻力。

ΔP=K(ρV^2/2)其中,ΔP为单位管长上的弯曲阻力损失,K为弯曲阻力系数,ρ为流体密度,V为流速。

这些阻力形式在实际管道中经常同时存在,因此需要综合考虑计算总阻力。

通常采用经验公式、实验数据或数值模拟等方法进行计算。

在实际工程中,一般可以通过试验或计算得到相应的阻力系数,并且根据阻力计算公式,结合流体参数,来计算管路沿程阻力。

在实际应用中,管路沿程阻力的计算是非常重要的,它影响到管道系统的工作效率和输送能力。

为了降低阻力损失,有效节约能源,可以采取以下措施:优化管道布局,减少管道弯曲和局部阻力;选择合适的管道材料和直径,减小摩擦阻力;采用流体增压、注入润滑剂等方法来减小摩擦阻力。

总之,管路沿程阻力的计算是管道工程中的一个重要环节,通过合理地计算和设计,可以提高管道系统的效率和安全性,降低能源消耗。

管道压头损失计算式

管道压头损失计算式

管道阻力损失计算式一、雷若数Re 的计算 Re =d u ρ/μ =(m )(m/s )(kg/m 3)/(N.s/m 2)=m 0kg 0s 0 式中:d 管径,u 流速,μ流体粘度,ρ流体密度。

流体粘度μ的计算式:μ=469.0R(00158.0460.0s11)φη--= (mPa.s )式中:溶剂(水)密度η1(g/cm 3),纯溶质密度η2(g/cm 3), R =η1/η2 , 固体体积分率Φs 。

(备注:20℃时,水密度η1=1g/cm 3,石灰密度η2=0.64g/cm 3,石灰浆液中质量浓度为5%,8%,10%,15%,20%的石灰浆液密度ρ(g/cm 3)和固体体积分率Φs 分别为:1.031,1.055,1.061,1.093,1.126;0.05,0.08,0.1,0.15,0.2。

)二、湍流时的摩擦损失因数 λ (一)光滑管 1. 柏拉修斯式:λ=0.316/Re 0.25其适用范围为Re =5×103~105 2. 顾袖珍式:λ=0.0056+0.5/ Re 0.32其适用范围为Re =3×103~3×106 3. 尼库拉则与卡门式1/λ0.5=2 logRe λ0.5-0.8此式可用于更广的湍流范围,但由于式两边都含有待求的λ,计算较为不便。

(二)粗糙管 1. 顾袖珍式:λ=0.01227+0.7543/ Re 0.38上式适用范围为Re =3×103~3×106。

此式所指的粗糙管为内径50~200mm 的新钢铁管。

2. 柯尔布鲁克式:1/λ0.5=1.14-2 log[ e/d + 9.35/ (Re λ0.5)]其适用范围甚广(Re =4×103~108,e/d =5×10-2~10-6),但由于算式两边都含有待求的λ,计算较为不便。

(e/d为管壁粗糙度与管径之比,即相对粗糙度)三、阻力损失计算直管(管径一至)损失:h f = λL/d×u2/2g = (m)90°弯头损失:h f = ∑ξu2/2g =λ∑Le/d×u2/2g = (m)式中:ξ为90°弯头阻力系数,ξ=0.75,λ为管道摩擦因数,L/d为管长与管径之比,Le为当量长度,90°弯头的当量长度与管径之比Le/d=35。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(1)比摩阻法

称Rm为比摩阻,Pa/m,其意义是单位长度管道的摩擦阻力。这样摩擦阻力计算式则 变换成下列表达式:
(6-1-13)
为了便于工程设计计算,人们对Rm的确定已作出了线解图,设计时只需根据管风 量、管径和管壁粗糙度由线解图上即可查出Rm值,这样就很容易由上式算出摩擦阻力。
(2)综合摩擦阻力系数法
D——风管直径,mm。
进行通风管道的设计时,为了避免烦琐的计算,可根据公式(6-1-3)和(6-1-4)制
成各种形式的计算表或线解图,供计算管道阻力时使用。只要已知流量、管径、流速、 阻力四个参数中的任意两个, 即可利用线解图求得其余的两个参数。线解图是按过渡区 的入值,在压力B0=101.3kPa、温度t0=20C、宽气密度p0=1204kg/m3、运动粘度v0=15.06 >10—6m2/s、管壁粗糙度K=0.15mm、圆形风管等条件下得出的。当实际使用 条件下上述条件不相符时,应进行修正。
入擦阻力系数;
v――风秘空气的平均流速,m/s;
P――气的密度,kg/m3;
l――风管长度,m;
Rs――风管的水力半径,m;
f——管道中充满流体部分的横断面积,m2;
P——湿周,在通风、空调系统中即为风管的周长,m;
D——圆形风管直径,m。
摩擦阻力系数入与空气在风管的流动状态和风管管壁的粗糙度有关。在通风和空调
(1)密度和粘度的修正
(6-1-5)
式中Rm——实际的单位长度摩擦阻力,Pa/m;
Rmo——图上查出的单位长度摩擦阻力,Pa/m;
p――际的空气密度,kg/m3;
v——实际的空气运动粘度,m2/s。
(2)空气温度和大气压力的修正
(6-1-6)
式中Kt――温度修正系数。
KB―― 大气压力修正系数。
(6-1-7)
系统中, 薄钢板风管的空气流动状态大多数属于紊流光滑区到粗糙区之间的过渡区。通 常,高速风管的流动状态也处于过渡区。只有流速很高、表面粗糙的砖、混凝土风管流 动状态才属于粗糙区。 计算过渡区摩擦阻力系数的公式很多,下面列出的公式适用围较 大,在目前得到较广泛的采用:
(6-1-4)
式中K——风管壁粗糙度,mm;
管道的阻力计算
风管空气流动的阻力有两种,一种是由于空气本身的粘滞性及其与管壁间的摩擦而 产生的沿程能量损失,称为摩擦阻力或沿程阻力; 另一种是空气流经风管中的管件及设 备时,由于流速的大小和方向变化以及产生涡流造成比较集中的能量损失,称为局部阻
力。通常直管中以摩擦阻力为主,而弯管以局部阻力阻力为主(图6-1-1)。
由于通风、空调系统中空气的流动都处于自模区,局部阻力系数只取决于管件的形状, 一般不考虑相对粗糙度和雷诺数的影响。
局部阻力在通风、空调系统中占有较大比例,在设计时应加以注意,为了减小局部 阻力,通常采取以下措施:
直管臥摩擦齟力为主,弯头处J5部阻力大
图6-1-1直管与弯管
(一)摩擦阻力
1•圆形管道摩擦阻力的计算
根据流体力学原理,空气在横断面形状不变的管道流动时的摩擦阻力按下式计算:
(6-1-1)
对于圆形风管,摩擦阻力计算公式可改为:
(6-1-2)
圆形风管单位长度的摩擦阻力(又称比摩阻)为:
(6-1-3)
以上各式中
(6-1-12)
必须指出,利用当量直径求矩形风管的阻力,要注意其对应关系:采用流速当量直 径时,必须用矩形风管中的空气流速去查出阻力;采用流量当量直径时,必须用矩形风 管中的空气流量去查出阻力。用两种方法求得的矩形风管单位长度摩擦阻力是相等的。
3.摩擦阻力的转换计算式
在实际设计计算中,一般将上述摩擦阻力计算式作一定的变换,使其变为更直观的表 达式.目前有如下两种变换方式
式中Kr——管壁粗糙度修正系数;
K——管壁粗糙度,mm;
v——管空气流速,m/s。
表6-1-1各种材料的粗糙度K
风ቤተ መጻሕፍቲ ባይዱ材料
粗糙度(mm)
薄钢板或镀锌薄钢板
0.15
塑料板
0.01
矿渣石膏板
1.0
矿渣混凝土板
1.5
胶合板
1.0
砖砌体
3
混凝土
1
木板
0.2
2.矩形风管的摩擦阻力计算
上述计算是按圆形风管得出的,要进行矩形风管计算,需先把矩形风管断面尺寸折 算成相当的圆形风管直径, 即折算成当量直径。再由此求得矩形风管的单位长度摩擦阻 力。
管风速,L为管风量,f为管道断面积。将代入摩擦阻力计算式:
后,

则摩擦阻力计算式变换为下列表达式:
(6-1-14)
称Km为综合摩擦阻力系数,N S2/m8。
采用 计算式更便于管道系统的分析及风机的选择,因此,在管网系统运行分析与调 节计算时,多采用该计算式。
(二)局部阻力的计算 当空气流过断面变化的管件(如各种变径管、风管进出口、阀门)、流向变化的
管件(弯头)和流量变化的管件(如三通、四通、风管的侧面送、排风口)都会产生局 部阻力。
局部阻力按下式计算
(6-1-15)
式中——局部阻力系数。
局部阻力系数一般用实验方法确定。实验时先测出管件前后的全压差(即局部阻力
Z),再除以与速度v相应的动压,求得局部阻力系数值。有的还整理成经验公式。计 算局部阻力时,必须注意值所对应的气流速度。
所谓“当量直径 ”,就是与矩形风管有相同单位长度摩擦阻力的圆形风管直径,它有 流速当量直径和流量当量直径两种。
(1)流速当量直径 假设某一圆形风管中的空气流速与矩形风管中的空气流速相等, 并且两者的单位长 度摩擦阻力也相等, 则该圆风管的直径就称为此矩形风管的流速当量直径, 以Dv表示 根据这一定义,从公式(6-1-1)可以看出,圆形风管和矩形风管的水力半径必须相等。
圆形风管的水力半径
矩形风管的水力半径


(6-1-11)
Dv称为边长为a>b的矩形风管的流速当量直径。
(2)流量当量直径
设某一圆形风管中的空气流量与矩形风管的空气流量相等, 并且单位长度摩擦阻力 也相等,则该圆形风管的直径就称为此矩形风管的流量当量直径,以DL表示。根据推 导,流量当量直径可近似按下式计算。
式中t――实际的空气温度,C
6-1-8
式中B——实际的大气压力,kPa。
(3)管壁粗糙度的修正
在通风空调工程中,常采用不同材料制作风管,各种材料的粗糙度K见表6-1-1当风管管壁的粗糙度K工0.15mm时,可按下式修正。
Rm=KrRmo Pa/m(6-1-9)
Kr=(Kv)0 .25(6-1-10)
相关文档
最新文档