高光谱图像混合像元解混技术研究

合集下载

高光谱遥感图像高效分类与解混方法研究

高光谱遥感图像高效分类与解混方法研究

高光谱遥感图像高效分类与解混方法研究高光谱遥感图像高效分类与解混方法研究摘要:高光谱遥感图像具有信息丰富且具体化的特点,被广泛应用于土地利用、环境监测、农业生产等领域。

然而,高光谱遥感图像面临诸多挑战,如高光谱数据的维度高、数据量大、类间互相重叠等。

因此,高效分类与解混方法的研究就显得尤为重要。

本文主要研究了高光谱遥感图像高效分类与解混方法,并探讨了其在实际应用中的优势和问题。

一、引言高光谱遥感图像是一种将地物不同光谱响应从可见光到近红外光谱范围内进行连续采样的遥感技术。

相比于传统的彩色遥感图像,高光谱遥感图像能够提供更为详细的地物光谱信息。

然而,由于高光谱数据的维度高、数据量大,传统的分类与解混方法在处理高光谱遥感图像时面临较大困难。

二、高光谱遥感图像分类方法研究为了高效地对高光谱遥感图像进行分类,研究者们提出了许多分类方法。

其中,基于光谱信息的分类方法是最常见的方法之一。

该方法通过提取光谱特征,并利用统计模型、聚类算法等来进行分类。

此外,基于空间信息的分类方法也得到了广泛应用。

这些方法结合了地物的空间分布特征,通过纹理分析等方法来提高分类效果。

此外,一些结合光谱和空间信息的联合分类方法也是当前的研究热点。

三、高光谱遥感图像解混方法研究高光谱遥感图像解混是指将混合像素分解为其组成物质的过程,是高光谱图像处理的核心问题之一。

目前,解混方法可以分为光谱解混方法和空间解混方法。

光谱解混方法主要是通过最小二乘法、线性光谱混合模型等来对单像元进行解混,适用于像元内部的光谱变化相对较小的情况。

而空间解混方法则利用相邻像元间的相关性,通过构建像元间的约束条件来实现解混。

四、高光谱遥感图像高效分类与解混方法的应用与挑战高光谱遥感图像高效分类与解混方法在土地利用、环境监测、农业生产等领域具有广泛的应用前景。

例如,在土地利用方面,高光谱遥感图像的分类结果能够提供准确的土地利用信息,为土地资源管理和规划提供重要的参考依据。

高光谱遥感影像混合像元分解

高光谱遥感影像混合像元分解
R ( A c R c A T R T A G R G A Z R Z ) /A
精选ppt
23
(4)随机几何模型
该模型和几何光学模型相类似,像元反射率同 样表示为四种状态i的面积权重的线性组合。 即:
R (,x) fi(x)R i(,x)
i
精选ppt
24
(5)模糊模型
基本原理:将各种地物类别看成模糊集合,像元为模 糊集合的元素,每一像元均与一组隶属度值相对应, 隶属度也就代表了像元中所含此种地物类别的面积百 分比。
精选ppt
2
精选ppt
3
精选ppt
4
精选ppt
5
线性光谱混合
非线性光谱混合
8.2 混合像元分解技术
把像元的反射率表示为端元组分的光谱特征和它们的 面积百分比(丰度)的函数。Charles 在1996年将像 元混合模型归结为以下五种类型:
(1)线性(linear)模型 (2)概率(probabilistic)模型 (3)几何光学(geometric—optical)模型 (4)随机几何(stochastic geometric)模型 (5)模糊分析(fuzzy)模型
精选ppt
7
在线性混合模型中,每一光谱波段中单一像元 的反射率表示为它的端元组分特征反射率与它 们各自丰度的线性组合。
从遥感图像的像元光谱信号可以提取像元整体 的表观光谱信息,其表观光谱信息光谱辐亮度
L()是端元光谱辐亮度Lj( j)的线性组
合。
精选ppt
8
植被
混合 像元
reflectance
KLS方法分解的组分影像
精选ppt
KLS(核最小二乘 )方法 分解结果的BDF图
51

高光谱遥感图像的解混和波段选择方法研究

高光谱遥感图像的解混和波段选择方法研究

高光谱遥感图像的解混和波段选择方法研究高光谱遥感图像能够以纳米级的光谱分辨率提供海量数据信息,但是由于空间分辨率限制,图像中的一个像元可能包含有多种地物类型,形成混合像元,影响了对地表形态的精确测量和分析。

因此,在实际应用时经常需要将混合像元进行分解,从中得到典型地物的光谱(端元)及这些地物所占比例(丰度),以便充分发掘数据中的光谱信息,研究目标物质。

如何快速有效地进行混合像元的分解,是近年来高光谱图像处理中的一个热点问题。

本论文重点针对混合像元问题,分别从统计学和几何学的角度展开分析,并在此基础上提出相应的解混方法。

此外,针对数据的维数问题,我们还研究了复杂网络的方法,将其应用到高光谱波段选择问题中,用于数据的降维处理。

本论文的主要工作和创新点包括以下几个方面:1.提出一种有约束独立分量分析的解混方法。

该方法通过设计新的目标函数,选择符合高光谱图像物理意义的约束条件,在根本上克服了传统ICA的独立性假设,使算法能够适用于遥感数据的分析。

此外还设计了一种自适应的模型来描述数据的概率分布,能够利用蕴含在观测图像中的统计信息实现自动建模,在提高解混结果精度的同时,使算法对各种不同的遥感数据都表现出良好的适用性。

所提出的算法克服了基于独立分量分析的方法进行光谱解混时所出现的问题,能够得出更优的解。

而且,算法即使在端元数估计错误的情况下仍能得到正确结果,作为一种无需光谱先验信息的算法,为混合像元分解问题提供了一种有效的解决手段。

2.提出一种基于三角分解的端元提取框架。

这既是一种单形体类的几何方法,同时又建立在三角分解的代数原理之上。

我们通过最小化单形体体积寻找端元,在这一过程中引入了三角分解,利用递归操作,只需对数据做一轮体积比较便可完成端元提取任务,得到全局最优解。

该算法能够在原始高维数据上快速而稳定地运行,在实时处理领域有着很好的应用前景。

降维处理不是必要步骤,所以在实际应用中可以根据具体情况选择是否进行降维,具有很好的灵活性。

高光谱线性解混的理论与方法及应用研究

高光谱线性解混的理论与方法及应用研究

高光谱线性解混的理论与方法及应用研究高光谱遥感是遥感领域的重要前沿技术之一。

成像光谱仪能够测量散射在数百或数千个光谱通道的瞬时视场内所有物质的电磁能量,它比多光谱相机具有更高的光谱分辨率,覆盖了可见光、近红外光、短波红外线波段(波长范围在0.3~2.5?m之间)。

高光谱遥感已经广泛应用于资源、灾害、全球变化、极地、环境监测、生态、农业、水文和生物医学等领域。

高光谱解混是高光谱遥感图像分析的重要内容之一,是高光谱遥感领域十分关键而具有挑战性的任务。

高光谱成像光谱仪的空间分辨率不高,这一限制条件常导致高光谱图像混合像元的出现,即通常一个像元在瞬时视场内包含了多于一种地物类型的地面信息,形成了混合像元;同时,由于高光谱解混受模型不准确、观测噪声、环境条件、端元不确定以及数据规模等条件限制,使得高光谱解混是一个具有挑战性的不适定性反问题。

因此,能否发展具有鲁棒性、稳定性、可行性和准确性的高光谱解混算法,解决高光谱混合像元分解问题,是高光谱图像分析的核心内容。

本文研究高光谱线性解混的理论与方法,以及其在地物识别中的应用。

首先综述了高光谱线性解混的国内外研究背景和现状,论文内容、创新点,以及全文的结构安排;然后研究了高光谱线性混合模型与子空间辨识,包括:线性混合模型、高光谱解混的处理流程、高光谱解混的思路与问题、高光谱解混反问题的刻画,以及信号子空间辨识;针对最小误差的高光谱信号辨识(HySime)方法的可靠性,我们进一步研究了特征值子集、特征子空间与相关矩阵之间的关系问题,即约束特征值反问题及相关的最佳逼近问题,给出了由特征值和特征向量恢复相关矩阵的一个充分必要条件,以及最佳逼近问题的解的表达式和求解算法;第三部分总结了几种基于几何的高光谱线性解混算法,包括:N-Finder、PPI、VCA、SISAL、AVMAX和SVMAX,并比较了这些方法在仿真的高光谱数据端元提取中的应用。

在非负矩阵分解的理论与方法基础上,第四部分总结了三种高光谱线性解混算法,即含复杂度约束的NMF算法(CC-NMF)、含最小体积约束的NMF算法(MVC-NMF)和同时含复杂度和最小体积约束的NMF算法(CMVC-NMF),以及这些算法在城市高光谱数据解混中的应用。

高光谱图像混合像元解混技术研究

高光谱图像混合像元解混技术研究

高光谱图像混合像元解混技术研究高光谱图像混合像元解混技术研究随着高光谱遥感技术不断发展,高光谱图像具有显著特点:光谱分辨高,图谱合一,并广泛应用到各个领域。

但遥感技术向定量化方向进一步发展的主要障碍是广泛存在着混合像元。

为了突破遥感图像空间分辨率低的障碍与地物具有复杂多样性的影响,多种类型的地物常包含于独立的单个像元中,要在亚像元级别的精度上得到混合像元的真实属性信息,提高图像分类精度。

在高光谱图像中,关键问题之一是如何有效地对混合像元进行分解已经得到了广泛关注,并一直进行着深入地研究。

本文首先对其所研究内的相关技术及应用进行了叙述,并阐述了高光谱解混的研究现状,混合像元分解存在的问题,如解混效果不理想,算法的目标函数收敛速度慢,图像分类不精确,耗时多等。

针对以上问题,本文在NMF算法的基础上,提出了3种混合像元分解算法:(1)基于图正则和稀疏约束半监督NMF的混合像元分解算法。

该算法加入了拉普拉斯图正则化约束和部分样本的类别信息,并对丰度矩阵施加稀疏约束,最后融合到同一目标函数中,能够改善解混效果;(2)基于图正则和稀疏约束的INMF高光谱解混。

该算法将稀疏非负矩阵分解与增量型学习相结合,既能降低平均运行时间又能提高图像分类精度;(3)基于双图正则的半监督NMF混合像元解混。

该算法不仅考虑了高光谱数据流形与特征流形的几何结构,还将已知的标签类别信息施加于非负矩阵分解中,极大加快了目标函数的收敛速度,改善效果得到进一步提高,耗时少。

本文分别对提出的3种算法在真实遥感数据集上进行仿真实验,在解混性能评价指标均方根误差和光谱角度距离上与NMF和改进的NMF算法作比较,实验结果表明本文提出的3种算法解混可靠性和有效性高。

最后,对3种解混算法进行比较,得到基于双图正则的半监督NMF 混合像元解混算法耗时最少,解混效果最优。

高光谱遥感图像高效分类与解混方法研究

高光谱遥感图像高效分类与解混方法研究

高光谱遥感图像高效分类与解混方法研究高光谱遥感兴起于20世纪80年代,是一种融合光谱学理论与成像技术的前沿技术。

高光谱遥感图像包含几十至几百个窄波段的光谱信息,能够为人类社会提供丰富且精细的观测数据。

地物识别与分析作为高光谱遥感图像的研究热点,是高光谱遥感图像处理的重要组成部分,主要可通过地物分类与像元解混两种技术实现。

地物分类技术是一种像元级处理技术,通过对观测像元进行类别标定与识别来完成对地物的分析与识别;而像元解混技术是一种亚像元级处理技术,通过对观测像元中所包含的不同纯地物进行分析并计算其含量来完成对地物的识别与分析。

虽然,高光谱图像具有光谱分辨率高及图谱合一的特点,可以为地物分类与像元解混处理提供丰富的细节信息,但同时给这两种技术带来了巨大的挑战和难度,主要原因有:(1)高光谱图像容易受到高光谱传感器在空间分辨率上的限制以及光照、大气、云层厚度等自然环境因素的影响,出现“同物异谱”和“异物同谱”的现象,这两种现象不同程度地增加了地物分类与像元解混的难度。

(2)高光谱图像光谱维度高,由小样本引起“Hughes”现象的出现,使高光谱图像地物识别性能呈现先增加后下降趋势。

(3)高光谱图像的大数据量给高光谱图像处理带来了极大的计算量。

针对上述高光谱图像在地物分类与像元解混中存在的问题,本文深入研究了基于人工神经网络的地物分类技术与基于稀疏回归的像元解混技术,提出了高效的地物分类方法和像元解混方法。

具体工作概括如下:一、基于优化极限学习机的高光谱图像分类方法研究针对高光谱图像数据量大,导致分类方法计算复杂度高、样本训练时间长等问题,本文开创性的将极限学习机方法应用在高光谱图像分类中,并提出了一种基于优化极限学习机的高效高光谱图像分类方法。

该方法研究并发掘出训练样本数目与隐层神经元数目之间存在一种经验的线性关系,且这种线性关系可从小样本数据集延伸至大样本数据集,因此避免了大样本数据集所带来的大计算量。

高光谱遥感图像光谱解混方法研究及其应用

高光谱遥感图像光谱解混方法研究及其应用

高光谱遥感图像光谱解混方法研究及其应用近年来,随着遥感技术的发展,所获取的高光谱遥感图像的光谱分辨率和空间分辨率都得到进一步的提高,其处理手段也得到了长足的发展。

高光谱遥感图像不仅可以得到所观测区域物质的光谱特性,同时可以在视觉上直接观看图像的空间信息,以其图谱合一的特性,受到了各领域研究学者的关注。

在高光谱遥感图像获取过程中,遥感传感器以像元的形式来记录地物所反射、散射以及其他各种形式的作用所产生的光谱信息。

遥感传感器一般都是从遥远的空间距离来进行地物观测,所获取的高光谱遥感图像的空间分辨率会受到一定影响,同时,由于自然界地物的复杂多样性,所获取的高光谱遥感图像中单像元得到的光谱不一定只是一种物质的光谱,可能是几种不同物质光谱的组合。

这样的像元被称为混合像元。

相对应的,如果所获取的单像元中只有一种物质的光谱,这样的像元被称为纯像元。

所以,混合像元的存在导致无法直接获取所需要的光谱信息,这制约了高光谱遥感图像的分析及应用,进而影响了高光谱遥感技术领域的发展。

光谱解混技术就是用来解决混合像元问题的一项技术。

它将高光谱图像的混合像元分解为端元和丰度的组合,为更精细的光谱应用提供了可能。

因此,光谱解混技术是实现高光谱遥感技术定量化研究和应用的重要条件。

本文所做的主要研究工作如下:1.对高光谱遥感图像进行了线性混合模型下的解混方法研究。

针对假设图像中存在纯像元的情形,采用基于吉文斯旋转的QR 分解方法,获得高光谱数据的正交子空间,提出了一种基于吉文斯旋转的端元提取方法(Endmember Extraction Algorithm base on QR Factorization usingGivens Rotations,EEGR),进而对获取的端元,采用全约束的最小二乘法对丰度进行了估计。

采用模拟高光谱数据和真实高光谱图像进行实验分析,其端元提取精度相对于经典的同类型端元提取算法来说更为精确。

并且,由于吉文斯旋转本身的固有特性,更适合于用高性能计算来实现,这也是后续的研究内容。

高光谱遥感影像光谱解混算法研究

高光谱遥感影像光谱解混算法研究

高光谱遥感影像光谱解混算法研究高光谱遥感将表征地物辐射属性的光谱与反映地物空间分布和几何特性的图像有机结合在一起为地物的准确识别和精细分类提供了强有力的手段。

随着应用领域的不断拓展和应用需求的逐步升级,高光谱遥感体现出信息定量化的趋势。

然而,混合像元的广泛存在不仅影响地物的识别和分类精度,而且严重阻碍高光谱遥感技术向定量化方向深入发展。

光谱解混作为解决混合像元问题的关键技术之一,已经成为当今高光谱遥感应用领域里的一个研究热点。

本文基于线性光谱混合模型对光谱解混涉及到的端元提取和丰度估计算法进行了系统深入的研究,研究工作主要包括以下几个方面:1.端元提取是光谱解混的关键步骤。

传统的端元提取方法仅分析影像数据的光谱信息,忽略了遥感影像的二维空间特性,这类方法易受噪声和异常信号的影响进而导致端元提取精度下降。

为此,本文提出一种结合正交子空间投影和局部空间信息的端元提取算法。

该算法立足于凸面单体理论,将正交子空间投影和单体体积分析方法结合实现序列地提取端元。

在端元提取过程中,引入局部空间光谱相似性限制以提高算法对噪声及异常信号的稳健性,同时避免了利用整个二维影像空间信息进行端元提取带来的巨大运算量。

此外,在单体体积计算过程中,使用了无需降维的体积计算公式,以避免降维带来的信息损失。

实验结果表明,与传统的基于光谱的端元提取算法相比,本文算法可以有效提高端元提取的精度,对于噪声和异常信号都具有较强的鲁棒性。

2.全约束线性光谱解混通常归结为凸优化问题,需要高级的优化技术求解,从而导致较高的时间复杂度。

高光谱遥感影像涵盖地物类型多、光谱数据量大的特点进一步增加了解混的计算量。

为了解决此问题,本文提出一种基于子空间投影的几何解混算法,该算法将像元的丰度解译为该像元向量关于端元单体的重心坐标确保了丰度的全加性约束,并将行列式Laplace展开应用于重心坐标计算过程以降低算法的运算量。

对于不满足丰度非负性约束的混合像元,该算法利用子空间投影方法以迭代的方式实现全约束丰度估计。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高光谱图像混合像元解混技术研究
随着高光谱遥感技术不断发展,高光谱图像具有显著特点:光谱分辨高,图谱合一,并广泛应用到各个领域。

但遥感技术向定量化方向进一步发展的主要障碍是广泛存在着混合像元。

为了突破遥感图像空间分辨率低的障碍与地物具有复杂多样性的影响,多种类型的地物常包含于独立的单个像元中,要在亚像元级别的精度上得到混合像元的真实属性信息,提高图像分类精度。

在高光谱图像中,关键问题之一是如何有效地对混合像元进行分解已经得到了广泛关注,并一直进行着深入地研究。

本文首先对其所研究内的相关技术及应用进行了叙述,并阐述了高光谱解混的研究现状,混合像元分解存在的问题,如解混效果不理想,算法的目标函数收敛速度慢,图像分类不精确,耗时多等。

针对以上问题,本文在NMF算法的基础上,提出了3种混合像元分解算法:(1)基于图正则和稀疏约束半监督NMF的混合像元分解算法。

该算法加入了拉普拉斯图正则化约束和部分样本的类别信息,并对丰度矩阵施加稀疏约束,最后融合到同一目标函数中,能够改善解混效果;(2)基于图正则和稀疏约束的INMF高光谱解混。

该算法将稀疏非负矩阵分解与增量型学习相结合,既能降低平均运行时间又能提高图像分类精度;(3)基于双图正则的半监督NMF混合像元解混。

该算法不仅考虑了高光谱数据流形与特征流形的几何结构,还将已知的标签类别信息施加于非负矩阵分解中,极大加快了目标函数的收敛速度,改善效果得到进一步提高,耗时少。

本文分别对提出的3种算法在真实遥感数据集上进行仿真实验,在解混性能评价指标均方根误差和光谱角度距离上与NMF和改进的NMF
算法作比较,实验结果表明本文提出的3种算法解混可靠性和有效性高。

最后,对3种解混算法进行比较,得到基于双图正则的半监督NMF混合像元解混算法耗时最少,解混效果最优。

相关文档
最新文档