2021年吉林省普通高中学业水平考试数学试题

合集下载

2021年吉林普通高中会考数学模拟试题及答案

2021年吉林普通高中会考数学模拟试题及答案

2021年吉林普通高中会考数学模拟试题及答案注意事项:1.答题前将自己的姓名、考籍号、科考号、试卷科目等项目填写或涂在答题卡和试卷规定的位置上。

考试结束时.将试卷和答题卡一并交回。

2.本试题分两卷.第1卷为选择题.第Ⅱ卷为书面表达题。

试卷满分为120分。

答题时间为100分钟。

3.第1卷选择题的答案都必须涂在答题卡上。

每小题选出答案后.用2B 铅笔把答题卡上对应题目的答案标号涂黑.如需改动.用橡皮擦干净后.再选涂其他答案标号。

选择题答案写在试卷上无效。

4.第Ⅱ卷的答案直接写在试卷规定的位置上.注意字迹清楚.卷面整洁。

参考公式:标准差:锥体体积公式: V= 31S底·h其中.s 为底面面积.h 为高,柱体体积公式V=s.h球的表面积、体积公式S= 24R π V=343R π其中.s 为底面面积.h 为高, V 为体积 .R 为球的半径第1卷 (选择题 共50分)一、选择题(本大题共15小题.每小题的四个选项中只有一项是正确的.第1-10小题每 小题3分.第11-15小题每小题4分.共50分)1.设集合M={-2.0.2}.N={0}.则( ). A .N 为空集 B. N ∈M C. N M D. MN2.已知向量(3,1)=a .(2,5)=-b .那么2+a b 等于( ) A (1,11)- B (4,7) C (1,6) D (5,4)-3.函数2log (1)y x =+的定义域是( )222121[()()()]n s x x x x x x n =-+-++-A (0,)+∞B (1,)-+∞C (1,)+∞D [1,)-+∞4.函数sin y x ω=的图象可以看做是把函数sin y x =的图象上所有点的纵坐标保持不变.横坐标缩短到原来的12倍而得到的.那么ω的值为( ) A 14 B 12C 4D 25.在函数3y x =.2xy =.2log y x =.y =.奇函数是( )A 3y x = B 2xy = C 2log y x =D y =6.一个几何体的三视图如图所示.该几何体的表面积是( ) A 3π B 8π C 12π D 14π7.11sin 6π的值为( )A 12-B 2-C 12D 28.不等式2320x x -+<的解集为( )A {}2x x > B {}1x x > C {}12x x << D {}12x x x <>或9.在等差数列{}n a 中.已知12a =.24a =.那么5a 等于( )A .6B .8C .10D .1610.函数45)(2+-=x x x f 的零点为()俯视图左(侧)视图主(正)视图22A .(1,4)B .(4,1)C .(0,1),(0,4)D .1,411.已知平面α∥平面β.直线m ⊂平面α.那么直线m 与平面β的关系是( ) A 直线m 在平面β内 B 直线m 与平面β相交但不垂直 C 直线m 与平面β垂直 D 直线m 与平面β平行12. 在ABC ∆中.如果3a =2b =.1c =.那么A 的值是( )A 2πB 3πC 4πD 6π13.直线y= -12x+34的斜率等于 ( ) A .-12 B .34 C .12 D .- 3414.某城市有大型、中型与小型超市共1500个.它们的个数之比为1:5:9.为调查超市每日的零售额情况.需要通过分层抽样抽取30个超市进行调查.那么抽取的小型超市个数为( )A 5B 9C 18D 2015, .设,x y ∈R 且满足1230x x y y x ≥⎧⎪-+≥⎨⎪≥⎩.则2z x y =+的最小值等于 ( )A. 2B. 3C.4D.52021年吉林省普通高中学业考试模拟试题(数学) 注意事项:1.第Ⅱ卷共4页.用蓝、黑色钢笔或圆珠笔直接答在试卷上。

2021年吉林省普通高中学业水平考试数学试题(word版含答案)

2021年吉林省普通高中学业水平考试数学试题(word版含答案)

2021年吉林省普通高中学业水平考试数学试题一、选择题:(本大题共15小题,每小题的四个选项中,只有一项是正确的,第1—10小题每小题3分,第11—15小题4分,共50分)1. 已知集合A={-1,0,1,2},B={-2,1,2}则A B=( ) A{1} B.{2} C.{1,2} D.{-2,0,1,2}.2.函数5()log (1)f x x =-的定义域是( )A. (,1)(1,)-∞+∞B.[0,1)C.[1,)+∞D.(1,)+∞3函数f(x)=⎩⎨⎧ x +1,x ≤1-x +3,x>1,则f(f(4))=( )A. 0B. -2C. 2D. 64.将一枚质地均匀的骰子抛掷一次,出现“正面向上的点数为6”的概率是() A. B. C. D.5.的值为( )A. B. C. D. 6.已知直线l 过点(0,7),且与直线y=-4x+2平行,则直线l 的方程为( )A.y=-4x-7B.y=4x-7C.y=-4x+7D.y=4x+77.已知向量若,则实数x 的值为( )A.-2B.2C.-1D.1314151614cos 4sin ππ2122422),1,(),2,1(-==x b a b a ⊥8.已知函数f(x)的图像是连续不断的,且有如下对应值表: x 1 2 3 4 5 f(x) -4 -2 1 4 7 在下列区间中,函数f(x)必有零点的区间为 ( )A.(1,2)B.(2,3)C.(3,4)D. (4,5)9.已知直线l :y=x+1和圆C :x 2+y 2=1,则直线l 和圆C 的位置关系为( )A.相交B.相切C.相离D.不能确定10.下列函数中,在区间(0,+)上为增函数的是( )A. B.y=log 3x C. D.y=cosx11..下列结论正确的是( )A .平行于同一个平面的两条直线平行B .一条直线与一个平面平行,它就和这个平面内的任意一条直线平行C .与两个相交平面的交线平行的直线,必平行于这两个平面D .平面外两条平行直线中的一条与这个平面平行,则另一条也与这个平面平行 12. 已知一组数据如图所示,则这组数据的中位数是( )A.27.5B. 28.5C. 27D. 2813. )的最小值是(则若)2(),0,2(x x x +-∈A. 2-B. 23- C. 1- D. 21-14. 偶函数)(x f 在区间[]1,2--上单调递减,则函数)(x f 在区间[]2,1上( )A. 单调递增,且有最小值)1(fB. 单调递增,且有最大值)1(fC. 单调递减,且有最小值)2(fD. 单调递减,且有最大值)2(f∞x y )31(=x y 1=。

吉林省长春市普通高中2021届高三质量监测(二)数学(理)试题答案

吉林省长春市普通高中2021届高三质量监测(二)数学(理)试题答案

长春市普通高中2021届高三质量监测(二) 数学(理科)试题参考答案及评分标准一、选择题(本大题共12小题,每小题5分,共60分)1. D2. A3. B4. C5.C6. C7. D8. B9. D 10.C 11. C12. D简答与提示:1. 【试题解析】D 复数z 的虚部为2sin3π=D. 2. 【试题解析】A 易知阴影部分为集合()(1,2]U A B =-,故选A. 3. 【试题解析】B 若m 与n 不相交,则“直线l m ⊥且l n ⊥”不能推出“l α⊥”;反之,如果“l α⊥”,无论m 与n 是否相交,都能推出“直线l m ⊥且l n ⊥”,故“直线l m ⊥且l n ⊥”是“l α⊥”的必要不充分条件,故选B.4. 【试题解析】C 由图易知①②③正确,④中位数应为1289(万),④错,故选C.5. 【试题解析】C 设事件A =“第1次抽到代数题” ,事件B =“第2次抽到几何题”,则321(|)342P B A ⨯==⨯,故选C. 6. 【试题解析】C 由题意533565,13S a a ===,所以142328a a a a +=+=,故选C.7. 【试题解析】D 由题意知,直线l 过点1(,1)2-,斜率为2,所以直线:220l x y -+=,故选D.8. 【试题解析】B 由题意知||1,0DC DC BC =⋅=,所以()1AD DC AB BC CD DC AB DC CD DC ⋅=++⋅=⋅+⋅=,故选B9. 【试题解析】D由题意,设ABC △为36A =︒的黄金三角形,有,a b c b ==,所以222cos362b c a bc +-︒==所以sin126cos36︒=︒=另外36A B ==︒,108C =,也可获得此结果,故选D.10. 【试题解析】C 由2FA AM =知A 为线段FM 上靠近F 的三等分点,所以0(,0),(,3)22p p F M y -,有22(2)2,12,2422p pp y x -=+==,故选C. 11. 【试题解析】C 由图知,125,221212πππωω⋅=+=,2()2,0,126k k ππϕπϕ⨯-+===,故①正确,②错误;③中,12,26x x π+=而直线6x π=是函数()f x 的对称轴,故③正确,④错误,故选C.12. 【试题解析】D 由题意化简,()1x xx xe ef x e e --+=+-,可知()f x 的图象与()g x 的图象都关于点(0,1)对称,又2224()0(1)xx e f x e -'=<-,所以()f x 在(,0),(0,)-∞+∞上单调递减,由2()3(4)g x x '=--可知,()g x 在(,2),(2,)-∞-+∞上单调递减,在(2,2)-上单调递增,由图象可知,()f x 与()g x 的图象有四个交点,且都关于点(0,1)对称,所以所求和为4,故选D.二、填空题(本大题共4小题,每小题5分,共20分)13. 614. 例如x -15.16. 三、解答题17. (本小题满分12分)【试题解析】解:(1)由题意,521885020400ˆ90,4,859080ii x x b =-⨯====-∑,ˆ40085460a=-⨯=,所以ˆ8560y x =+. (6分) (2)由(1)知,22171125585805()24w x x x =-+-=--+,所以当8x =或9x =时能获得总利润最大. (12分)18. (本小题满分12分) 【试题解析】解:(1)证明:11111111111A A ABC A A AC AC A ABB AC ABC AC B M AC B M AB AC B M A ABB ⎫⎫⊥⎫⇒⊥⎪⎬⎪⇒⊥⊂⎬⎪⎭⇒⊥⊥⎬⎪⊥⎭⎪⎪ ⊂⎭平面平面平面,即平面111111*********AC B M B M A BC A B B M B C M A BC B M B C M ⎫⊥⎫⇒⊥⎬⎪⊥⇒⊥⎬⎭⎪ ⊂⎭平面平面平面平面. (6分) (2)以A 为原点,AB 方向为x 轴,AC 方向为y 轴,1AA 方向为z 轴,建立空间直角坐标系.1(4,0,2)B ,1(0,4,2)C ,(3,0,0)M11(4,4,0)BC =- 1(1,0,2)B M =--平面11B C M 的法向量为1(2,2,1)n =- 平面11A ACC 的法向量为2(1,0,0)n =即平面11A ACC 与平面11B C M 所成锐二面角θ的余弦值为1212||2cos 3||||n n n n θ⋅==⋅,即平面11A ACC 与平面11B C M 所成锐二面角的余弦值为23. (12分)19. (本小题满分12分)【试题解析】解:(1)由题意112112080a a q a q a q +=⎧⎨+=⎩,可知4q =, 进一步解得14a =. 即{}n a 的通项公式为4n n a =. (6分)(2)22log log 42n n n b a n ===,212(1)22n S n n n n n =+-⋅=+,2221111111n n b n S n n n n==+++++,由*n ∈N , 利用基本不等式以及对勾函数的性质可得11203n n +≥得61123n n b S +≤则λ的最小值为623. (12分)20. (本小题满分12分)【试题解析】解:(1)当1a =时,令2()()()ln F x f x g x x x =-=-,1()2F x x x'=-(0x >) 2121()2x F x x x x -'=-=,令()0F x '=且0x >可得22x =,min 21111((ln 2)ln 222222F F ==--=+. (4分)(2)方法一:由函数()f x 和()g x 的图象可知,当()()f x g x >时,曲线()y f x =与()y g x =有两条公切线.即2ln ax x >在(0,)+∞上恒成立,即2ln x a x>在(0,)+∞上恒成立,设2ln ()x h x x =,312ln ()xh x x -'=令312ln ()0xh x x -'==,x e =即max 1()2h h e e ==,因此,12a e >. (12分)法二: 取两个函数相切的临界条件:20000ln 12ax x ax x⎧=⎪⎨=⎪⎩解得0x =,12a e =, 由此可知,若两条曲线具有两条公切线时,12a e>. (12分) 21. (本小题满分12分)【试题解析】解:(1)由12e =可设2a t =,c t =,则b =, 则方程化为2222143x y t t+=,又点3(1,)2P 在椭圆上,则22914143t t+=,解得1t =,因此椭圆C 的方程为22143x y +=. (4分) (2)当直线AB 的斜率存在时,设AB 直线的方程为y kx m =+, 联立直线AB 和椭圆C 的方程消去y 得,2234()120x kx m ++-=,化简得:222(34)84120k x kmx m +++-=,21111||||||||222AOB S m x x m m =⋅-==△222||2||3434m m k k =++==当221342m k =+时,S22234m k =+, 又122834km x x k -+=+,121226()234my y k x x m k +=++=+, 则1212(,)22x x y y M ++,即2243(,)3434km mM k k -++ 令22434334km x k my k -⎧=⎪⎪+⎨⎪=⎪+⎩,则221322x y +=, 因此平面内存在两点G 、H使得||||GM HM +=当直线AB的斜率不存在时,设(2cos )A θθ,则(2cos ,)B θθcos 2AOB S θθθ==△,即当4πθ=此时AB 中点M的坐标为,满足方程221322x y +=,即||||GM HM +=(12分)22. (本小题满分10分)【试题解析】(1)曲线1C 的普通方程为cos sin 0y x αα⋅-⋅=,即极坐标方程为θα=(ρ∈R ).曲线2C 的直角坐标方程为2223x y x +-=,即22(1)4x y -+=. (5分)(2)曲线2C 的极坐标方程为22cos 30ρθρ-⋅-=,代入θα=,可得123ρρ⋅=-, 则12||||||3OA OB ρρ⋅==. (10分)23. (本小题满分10分) 【试题解析】(1)()(4)|1||3|8f x f x x x ++=-++≥,则(,5][3,)x ∈-∞-+∞. (5分)(2)要证()||()bf ab a f a>成立,即证|1|||ab b a ->-成立, 即证22221b a b a +>+成立,只需证222(1)(1)0a b b --->成立即证22(1)(1)0a b -->成立,由已知||1,||1a b <<得22(1)(1)0a b -->显然成立.(10分)。

2021年吉林省普通高中学业水平考试数学试题(解析)

2021年吉林省普通高中学业水平考试数学试题(解析)

2021年吉林省普通高中学业水平考试数学试题一、单选题1.已知集合A 1,0,1,2,B2,1,2,则AA .1【答案】C【分析】利用集合的交运算即可求解.【详解】集合A 1,0,1,2,B 2,1,2,则AB .2B()D .C .1,22,0,1,2B1,2.故选:C2.函数f(x)log 5(x 1)的定义域是( )A .(,1)(1,)B .[0,1)【答案】D【分析】根据对数的真数部分大于0,列出不等式解出即可.【详解】要使函数有意义需满足x 10,解得x 1,即函数的定义域为(1,),故选:D.【点睛】本题主要考查了对数函数的定义域,属于基础题.C .[1,)D .(1,)x 1,x 13.函数f x 则f f 4()x 3,x 1A .0【答案】A【分析】根据分段函数解析式,代入即可求解.B .-2C .2D .6x 1,x 1【详解】由f x ,x 3,x 1则f f 4f 1110.故选:A4.将一枚质地均匀的骰子抛掷一次,出现“正面向上的点数为6”的概率是().A .13B .14C .15D .16【答案】D【解析】试题分析:抛一枚质地均匀的硬币,有6种结果,每种结果等可能出现,正面向上的点数为6的情况只有一种,即可求.解:抛掷一枚质地均匀的硬币,有6种结果,每种结果等可能出现,出现“正面向上的点数为6”的情况只有一种,故所求概率为故选D.【解析】古典概率点评:本题主要考查了古典概率中的等可能事件的概率的求解,如果一个事件有n 种可能,而且这些事件的可能性相同,其中事件A 出现m 种结果,那么事件A 的概率P (A )=m:n .属基础题5.sin 1,64cos4的值为()A .12B .22C .24D .2【答案】A【分析】利用二倍角公式求解即可.【详解】sin 故选:A.6.已知直线l 过点(0,7),且与直线y 4x 2平行,则直线l 的方程为()A .y4x 7【答案】D【分析】根据直线平行的斜率关系可得直线的斜率,再结合点斜式即可得解.【详解】因为与直线y4x 2平行,所以斜率相等,即k4;过点(0,7),则由点斜式可知直线方程为y 74x ,即直线l 的方程为y 4x 7,故选:D.【点睛】本题考查了直线位置关系与斜率关系,点斜式求直线方程,属于基础题.7.已知向量a (1,2),b (x,1)若a b ,则实数x 的值为()A .-2【答案】BB .2C .-1D .1B .y4x 7C .y 4x 7D .y4x 74cos11sin ;4222【分析】根据向量垂直的坐标表示计算可得结果.【详解】因为a b ,所以a b0,所以x 20,即x 2.故选:B8.已知函数f(x)的图象是连续不断的,且有如下对应值表:xf(x)1231445742在下列区间中,函数f(x)必有零点的区间为().A .(1,2)【答案】B【解析】解:根据零点的概念可知,当x=2,x=3时,函数值出现异号,因此零点在该区间,选B 9.已知直线l:y x 1和圆C :x 2y 21,则直线l 和圆C 的位置关系为()A .相交【答案】A【分析】利用圆心0,0到直线的距离与半径比较大小,即可判断.【详解】圆C :x y 1的圆心0,0,半径r 1,22B .(2,3)C .(3,4)D .(4,5)B .相切C .相离D .不能确定则圆心0,0到直线l:y x 1的距离为d所以直线l 和圆C 的位置关系为相交,故选:A1121221r ,210.下列函数中,在区间(0,)上为增函数的是().A .y ()【答案】B【解析】试题分析:根据初等函数的图象,可得函数在区间(0,1)上的单调性,从而可得结论.解:由题意,A 的底数大于0小于1、C 是图象在一、三象限的单调减函数、D 是余弦函数,,在(0,+∞)上不单调,B 的底数大于1,在(0,+∞)上单调增,故13xB .y log 3xC .y1xD .ycosx在区间(0,1)上是增函数,故选B 【解析】函数的单调性点评:本题考查函数的单调性,掌握初等函数的图象与性质是关键.11.下列命题正确的是()A .一条直线与一个平面平行,它就和这个平面内的任意一条直线平行B .平行于同一个平面的两条直线平行C .与两个相交平面的交线平行的直线,必平行于这两个平面D .平面外两条平行直线中的一条与这个平面平行,则另一条也与这个平面平行【答案】D【解析】A 错误;平行于平面的直线,和这个平面内的直线平行或异面;B 错误;平行于同一个平面的两条直线可能平行、相交或异面;C 错误;与两个相交平面的交线平行的直线也可能在其中一个平面内;D 正确;设a //b,a ,b,a //;故a 做一平面,c,则a //c,又a //b ,b //c.又b,c.b //.故选D12.已知一组数据如图所示,则这组数据的中位数是()A .27.5【答案】AB .28.5C .27D .28【分析】将茎叶图中的数据按照从小到大的顺序排列,根据中位数的定义计算可得.【详解】将茎叶图中的数据按照从小到大的顺序排列为:16,17,19,22,25,27,28,30,30,32,36,40,所以这组数据的中位数是故选:A.【点睛】关键点点睛:理解茎叶图,掌握中位数的定义是本题的解题关键.13.若x (2,0),则x(2x)的最小值是()A .2B .272827.5.232C .1D .12【答案】C【分析】利用二次函数的单调性求最值即可.【详解】由题意得:令f xx(2x)x 22x x 11,则函数的对称轴为:x 1,又x(2,0),所以函数f x 先减后增,当x 1时,函数f x 取最小值,则f11111,所以x(2x)的最小值是1;故选:C.14.偶函数f(x)在区间2,1上单调递减,则函数f(x)在区间1,2上()A .单调递增,且有最小值f(1)C .单调递减,且有最小值f(2)【答案】A【分析】根据偶函数图象的特点可知f(x)在区间1,2上单调递增,即可得出最值.【详解】因为f(x)是偶函数,f(x)在区间2,1上单调递减,所以函数f(x)在区间1,2上单调递增,所以f(x)在区间1,2上最小值为f(1),最大值为f(2),故选:A15.已知函数y sin(x )的图象为C ,为了得到函数y sin(x )的图象,只要把C 上所有的点()A .横坐标伸长到原来的3倍,纵坐标不变B .横坐标缩短到原来的1/3,纵坐标不变C .纵坐标伸长到原来的3倍,横坐标不变D .纵坐标缩短到原来的1/3,横坐标不变【答案】A【分析】根据三角函数的伸缩变换可得到答案.B .单调递增,且有最大值f(1)D .单调递减,且有最大值f(2)22π413π4【详解】将y sin(x )图像上所有点的横坐标伸长为原来的3倍,纵坐标不变,即可得π41πy sin(x )的图象,34故选:A.二、填空题16.函数y 3cos 【答案】4【分析】直接利用三角函数的周期公式求解即可【详解】解:函数y 3cos 1x 的最小正周期为________.621x 的最小正周期为62T2412故答案为:4【点睛】此题考查余弦型函数的周期,属于基础题.17.在学校组织的一次知识竞赛中,某班学生考试成绩的频率分布直方图如图所示,若低于60分的有12人,则该班学生人数是____________【答案】40【分析】先利用频率分布直方图得到低于60分的学生的频率,再利用案.【详解】由频率分布直方图可得低于60分的学生的频率为:0.0050.01200.3,则该班学生人数是12即可得出答0.31240.0.3故答案为:40.18.已知扇形的圆心角为【答案】2,弧长为,则该扇形的面积为_________634π31lr 计算即可得解.22234.【详解】由扇形的圆心角为,弧长为,可得扇形半径为6361244π.从而有扇形面积为:2334故答案为π.3【分析】由扇形的弧长和圆心角可得半径,再由S 扇形=【点睛】(1)本题主要考查扇形的弧长、圆心角和面积的计算,意在考查学生对这些知识的掌握水平和分析推理计算能力.(2)l 的半径,属于基础题.三、双空题19..已知等差数列{a n }中,a 11,a35,则公差d ________,a5________.【答案】29【分析】利用等差数列的通项公式即可求解.【详解】等差数列{a n }中,a 11,a35,则公差d r S 扇形=lr ,其中l 代表弧长,r 代表圆12a3a 12,2所以a5a14d 189.故答案为:2;9四、解答题20.在ABC中,角A ,B ,C 所对的边分别为a ,b ,c ,且b 2c 2a 2bc .(1)求角A 的大小;(2)若a3,b 1,求角B 的大小.【答案】(1)A3;(2)B6.【分析】(1)根据余弦定理计算可得结果;(2)根据正弦定理计算可得结果.【详解】(1)∵b2c2a2bc,∴b2c2a2bc,b2c2a2bc1∴cosA,2bc2bc2∵A是ABC的内角,∴A (2)∵3 .a b,sinA sin B3∴sin311∴sinB,,sin B2∵b a,∴B A,又因为0B,所以B6.【点睛】关键点点睛:在三角形中,根据正弦值求角时,由边的大小关系确定角是解题关键.21.如图,在正方体ABCD A1B1C1D1中,E、F分别为DD1CC1的中点.(1)求证:AC BD1;(2)求证:AE//平面BFD1.【答案】(1)证明见解析;(2)证明见解析.【分析】(1)连结BD,证出AC D1D,AC BD,利用线面垂直的判定定理可得AC平面BDD1,进而可得AC BD1.(2)连结EF,证出AE//BF,再利用线面平行的判定定理即可证明.【详解】证明:(1)连结BD,由正方体ABCD A1B1C1D1得,D 1D平面ABCD .又AC 平面ABCD ,AC D 1D又四边形ABCD 是正方形,∴AC BD ,而D 1D BDD ,∴AC平面BDD1,又BD 1平面BDD 1,∴ACBD 1.(2)连结EF ,由EF 分别为ABCDA 1B 1C 1D1ABCDA 1B 1C 1D 1的中点得,EF //AB 且EF AB∴四边形ABFE 是平行四边形,∴AE //BF又AE平面BFD 1,BF平面BFD 1,∴AE //平面BFD 1.22.已知数列{a n }满足a n 13a n(nN ),且a26.(1)求a 1及a n .(2)设b nan2,求数列{b n}的前n 项和S n .n 1n【答案】(1)2,an23;(2)S n32n 1.【分析】(1)根据题意知数列是等比数列,代入公式得到答案.(2)先把{b n }表示出来,利用分组求和法得到答案.【详解】解:(1)因为an 13a n(nN ),a26所以数列{a n}是以首项为2,公比n 1为3的等比数列,所以数列a n23;n1(2)bnan2232Snb1b2b3b n=2(3031323n 1)2n13n=2()2n 3n 2n 1.13【点睛】本题考查了等比数列的通项公式和分组求和法,是数列的常考题型.23.已知圆C :x 2y 28y 120,直线l:ax y 2a 0.(1)当a 为何值时,直线与圆C 相切.(2)当直线与圆C 相交于A 、B 两点,且AB 22时,求直线的方程.【答案】(1)a3;(2)x y 20或7x y 140.4【分析】(1)将圆C 的方程化为标准形式,得出圆C 的圆心坐标和半径长,利用圆心到直线的距离等于半径,可计算出实数a 的值;(2)利用弦长的一半、半径长和弦心距满足勾股定理可求得弦心距,利用点到直线的距离公式可求得实数a 的值,进而可得出直线l 的方程.【详解】(1)圆C 的标准方程为x 2y 44,圆心C 的坐标为0,4,半径长为22,当直线l 与圆C 相切时,则2a 432,解得a;4a 212AB (2)由题意知,圆心C 到直线l 的距离为d222,2由点到直线的距离公式可得d 7.2a 4a 212,整理得a 28a 70,解得a 1或因此,直线l 的方程为xy 20或7x y 140.【点睛】本题考查直线与圆的位置关系,考查利用直线与圆相切求参数以及根据弦长求直线方程,解答的核心就是圆心到直线的距离的计算,考查计算能力,属于中等题.24.①f 15;②6f 211.已知函数f x ax 2x c a、c N 满足:2*(1)求a ,c 的值;(2)若对任意的实数x ,,都有f x 2mx1成立,求实数m 的取值范围.22【答案】(1)a 1,c2;(2)m139.4【分析】(1)把条件①f 15;②6f 211,代入到f x 中求出a、c 即可;(2)不等式f x2mx1恒成立,设g xf x2mxx 21m x 22则分21m21,21m21两种情况讨论,只需329g x max g 3m 1即可.24【详解】(1)∵f xax 2x c a,c N 2*,满足f(1)5,可得a2c 5,即ac 3,∵6f(2)11,∴64a 4c 11,即64a 43a 11,∴13a4,∴14a ,33∵a,c N *,∴a 1,c 2;(2)由(1)得f x x 2x 2,2设g x f x 2mxx 21m x 2,2①当21m 21,即m 2时,329g x max g 3m ,24293m 1,425解得m ,与m 2不合,舍去;12故只需②当21m 21,113m ,24即m 2时,g x max g13m1,49解得m,又m2,49故m4故只需综上,m的取值范围为m 【点睛】方法点睛:不等式恒成立问题常见方法:①分离参数a f x恒成立(a f xmax 即可)或9.4a f x恒成立(a f xmin即可);②数形结合(y f x图象在y g x上方即可);③讨论最值f xmin 0或f xmax0恒成立.。

2021年12月吉林省普通高中学业水平合格性考试数学真题试卷含详解

2021年12月吉林省普通高中学业水平合格性考试数学真题试卷含详解

2021年12月吉林省普通高中学业水平合格性考试数学试卷一、选择题(本大题共15小题,每小题的四个选项中只有一项是正确的,第1—10小题每小题3分,第11—15小题每小题4分,共50分)1.设集合{}1,2A =,{}2,3,4B =,则A B = ()A.{}1,2,3,4 B.{}1,2 C.{}2,3,4 D.{}22.若()()()1i 23i i ,a b a b ++-=+∈R ,其中i 是虚数单位,则,a b 的值分别等于()A.3,2a b ==B.1,4a b =-= C.3,2a b ==- D.3,2a b =-=3.已知4sin 5α=,且α为第二象限角,则cos α的值为()A.45 B.45-C.35D.35-4.不等式()20x x -<的解集是()A.()(),02,-∞+∞B.()0,2C.()(),20,-∞-⋃+∞ D.()2,0-5.已知向量()1,a m = ,()1,2b =- ,若a b ⊥,则实数m 等于()A.12B.12-C.-2D.26.设x ,R y ∈,则“1x >”是“0x >”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件7.在空间,下列命题正确的是()A.平行于同一平面的两条直线平行B.平行于同一直线的两个平面平行C.垂直于同一平面的两条直线平行D.垂直于同一平面的两个平面平行8.下列函数中,与y x =是同一个函数的是()A.2y = B.u =C.y =D.2n m n=9.有一组数据,将其从小到大排序如下:157,159,160,161,163,165,168,170,171,173.则这组数据的第75百分位数是()A.165B.168C.170D.17110.已知函数()21,02,0x x f x x x ⎧+≤=⎨>⎩,则12f f ⎛⎫⎛⎫= ⎪ ⎪⎝⎭⎝⎭()A.2B.52-C.54D.1-11.函数()lg 3f x x x =+-的零点所在区间为()A.(0,1)B.(1,2)C.(2,3)D.(3,4)12.在ABC 中,π3A =,BC =,AC =,则角B 为()A.π6 B.π4 C.π3 D.π213.若一个正方体的顶点都在球面上,它的棱长为1,则这个球的表面积是()A.3π2 B.3π4C.3πD.12π14.已知3log 2a =,4log 2b =,5log 2c =,则()A.c b a>> B.c a b>> C.b a c>> D.a b c>>15.在ABC 中,点D 在BC 边上,2BD DC = ,则AD =()A.2133AB AC +B.1233AB AC +C.1122AB AC +D.1344AB AC +二、填空题(本大题共4小题,每小题4分,共16分)16.若0x >,则4x x+的最小值为________________.17.某校高二年级有男生510名,女生490名,若用分层随机抽样的方法从高二年级学生中抽取一个容量为200的样本,则女生应抽取___________名.18.已知1sin 23α=-,则2πcos 4α⎛⎫- ⎪⎝⎭的值为___________.19.根据某地不同身高的未成年男性的体重平均值,建立了能够近似地反映该地未成年男性平均体重y (单位:kg )与身高x (单位:cm )的函数关系:2 1.02x y =⨯,如果体重超过相同身高男性体重平均值的1.2倍为偏胖,低于0.8倍为偏瘦,那么该地一名身高为175cm ,体重为78kg 的未成年男性的体重状况为___________.(填“偏胖”或“正常”或“偏瘦”,参考数据:351.022≈)三、解答题(本大题共4小题,第20、21小题每小题8分,第22、23小题每小题9分,共34分,解答应写出文字说明、证明过程或演算步骤)20.已知函数()sin 2cos 2f x x x =+.(1)求函数()f x 的最小正周期;(2)求函数()f x 的最大值及取得最大值时自变量x 的集合.21.一个盒子中装有5支圆珠笔,其中3支为一等品(记为1A ,2A ,3A ),2支为二等品(记为1B ,2B ),从中随机抽取2支进行检测.(1)写出这个试验的样本空间Ω;(2)求抽取的2支圆珠笔都是一等品的概率.22.如图,三棱柱111ABC A B C -中,1AA ⊥平面ABC ,AB =3,AC =4,BC =5.(1)求证:AB ⊥平面11ACC A ;(2)若异面直线1BB 与1AC 所成的角为30°,求三棱柱111ABC A B C -的体积.23.已知函数2()31xf x a =+-.(1)根据函数单调性的定义证明函数()f x 在区间(),0∞-上单调递减;(2)若函数()f x 是奇函数,求实数a 的值.2021年12月吉林省普通高中学业水平合格性考试数学试卷一、选择题(本大题共15小题,每小题的四个选项中只有一项是正确的,第1—10小题每小题3分,第11—15小题每小题4分,共50分)1.设集合{}1,2A =,{}2,3,4B =,则A B = ()A.{}1,2,3,4 B.{}1,2 C.{}2,3,4 D.{}2【答案】D【分析】利用集合交集的定义求解即可.【详解】因为{}1,2A =,{}2,3,4B =,所以{2}A B = ,故选:D2.若()()()1i 23i i ,a b a b ++-=+∈R ,其中i 是虚数单位,则,a b 的值分别等于()A.3,2a b ==B.1,4a b =-= C.3,2a b ==- D.3,2a b =-=【答案】C【分析】将等式合并计算结果,求出,a b 即可.【详解】解:由题知()()1i 23i 32i i a b ++-=-=+,,a b ∈R ,3,2a b ∴==-.故选:C 3.已知4sin 5α=,且α为第二象限角,则cos α的值为()A.45 B.45-C.35D.35-【答案】D【分析】直接根据同角三角函数关系得到答案.【详解】α为第二象限角,则3cos 5α===-.故选:D4.不等式()20x x -<的解集是()A.()(),02,-∞+∞B.()0,2C.()(),20,-∞-⋃+∞ D.()2,0-【答案】B【分析】根据一元二次不等式的解法计算可得.【详解】解:由()20x x -<,解得02x <<,所以不等式的解集为()0,2.故选:B5.已知向量()1,a m = ,()1,2b =- ,若a b ⊥,则实数m 等于()A.12B.12-C.-2D.2【答案】A【分析】根据向量垂直列方程,化简求得m 的值.【详解】由于a b ⊥,所以1120,2a b m m ⋅=-+== .故选:A6.设x ,R y ∈,则“1x >”是“0x >”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件【答案】A 【分析】根据充分条件和必要条件的定义即可判断,进而可得正确选项.【详解】若1x >可以得出0x >,但0x >得不出1x >,所以“1x >”是“0x >”的充分不必要条件,故选:A7.在空间,下列命题正确的是()A.平行于同一平面的两条直线平行B.平行于同一直线的两个平面平行C.垂直于同一平面的两条直线平行D.垂直于同一平面的两个平面平行【答案】C【分析】A.利用两直线的位置关系判断;B.利用两平面的位置关系判断;C.利用线面垂直的性质定理判断;D.利用两平面的位置关系判断.【详解】A.平行于同一平面的两条直线平行、相交或异面,故错误;B.平行于同一直线的两个平面平行或相交,故错误;C.由线面垂直的性质定理知:垂直于同一平面的两条直线平行,故正确;D.垂直于同一平面的两个平面平行或相交,故错误;故选:C8.下列函数中,与y x =是同一个函数的是()A.2y = B.u =C.y =D.2n m n=【答案】B【分析】根据函数的概念,结合函数的定义域与对应法则,逐项分析即得.【详解】对于A ,函数[)20,y x x ==∈+∞,,与函数R y x x =∈,的定义域不同,不是同一个函数;对于B ,函数R u v v ==∈,,与函数R y x x =∈,的定义域相同,对应关系也相同,是同一个函数;对于C ,函数R s t t ==∈,,与函数R y x x =∈,的对应关系不同,不是同一个函数;对于D ,函数()()2,00,n m n n n==∈-∞⋃+∞,,与函数R y x x =∈,的定义域不同,不是同一个函数.故选:B.9.有一组数据,将其从小到大排序如下:157,159,160,161,163,165,168,170,171,173.则这组数据的第75百分位数是()A.165B.168C.170D.171【答案】C【分析】根据百分位数的定义求解即可.【详解】因为1075%7.5⨯=,所以这组数据的第75百分位数是第8个数170,故选:C.10.已知函数()21,02,0x x f x x x ⎧+≤=⎨>⎩,则12f f ⎛⎫⎛⎫= ⎪ ⎪⎝⎭⎝⎭()A.2B.52-C.54D.1-【答案】A【分析】根据分段函数解析式求得正确答案.【详解】()112121222f f f f ⎛⎫⎛⎫⎛⎫=⨯==⨯=⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭.故选:A11.函数()lg 3f x x x =+-的零点所在区间为()A.(0,1) B.(1,2)C.(2,3)D.(3,4)【答案】C【分析】首先判断函数的单调性,再根据零点存在性定理判断即可;【详解】解:因为lg y x =与3y x =-在定义域上单调递增,所以()lg 3f x x x =+-在定义域()0,∞+上单调递增,又()1lg11320f =+-=-<,()2lg 2231lg 20f =+-=-+<,()3lg 333lg 30f =+-=>,即()()230f f ⋅<,所以()f x 的零点位于()2,3内;故选:C12.在ABC 中,π3A =,BC =,AC =,则角B 为()A.π6 B.π4 C.π3 D.π2【答案】B【分析】利用正弦定理求得正确答案.【详解】由正弦定理得=sin sin BC AC A B,即sin 32B =,解得sin B =由于BC AC >,所以π3B <为锐角,所以π4B =.故选:B13.若一个正方体的顶点都在球面上,它的棱长为1,则这个球的表面积是() A.3π2B.3π4C.3πD.12π【答案】C【分析】先求得球的半径,进而求得球的表面积.,所以球的直径322R R ==,所以球的表面积为24π3πR =.故选:C14.已知3log 2a =,4log 2b =,5log 2c =,则()A.c b a >>B.c a b >>C.b a c>> D.a b c>>【答案】D【分析】根据对数函数在同一坐标系中作函数245log ,log ,log y x y x y x ===的图象,结合图象即可比较函数值大小.【详解】解:如下图,作函数245log ,log ,log y x y x y x ===的图象由图可知,当2x =时,345log 2log 2log 2>>,即a b c >>.故选:D.15.在ABC 中,点D 在BC 边上,2BD DC = ,则AD =()A.2133AB AC +B.1233AB AC +C.1122AB AC +D.1344AB AC +【答案】B【分析】根据平面向量的线性运算求得正确答案.【详解】23AD AB BD AB BC=+=+()212333AB AC AB AB AC =+-=+ .故选:B二、填空题(本大题共4小题,每小题4分,共16分)16.若0x >,则4x x+的最小值为________________.【答案】4【分析】利用基本不等式求得最小值.【详解】40,4x x x >+≥=,当且仅当4,2x x x==时等号成立.故答案为:417.某校高二年级有男生510名,女生490名,若用分层随机抽样的方法从高二年级学生中抽取一个容量为200的样本,则女生应抽取___________名.【答案】98【分析】根据分层抽样的定义,计算男女生比例,即可计算求解.【详解】由已知得,男生与女生的比例为:51:49,根据分层抽样的定义,女生应该抽取的人数为:4920098100⨯=(人)故答案为:9818.已知1sin 23α=-,则2πcos 4α⎛⎫- ⎪⎝⎭的值为___________.【答案】13【分析】根据余弦的二倍角公式即可求解.【详解】由于2ππ22c cos os 124αα⎛⎫⎛⎫-=-- ⎪ ⎪⎝⎭⎝⎭,所以22π1π1sin 22cos 1cos 4343ααα⎛⎫⎛⎫=--=-⇒-= ⎪ ⎪⎝⎭⎝⎭,故答案为:1319.根据某地不同身高的未成年男性的体重平均值,建立了能够近似地反映该地未成年男性平均体重y (单位:kg )与身高x (单位:cm )的函数关系:2 1.02x y =⨯,如果体重超过相同身高男性体重平均值的1.2倍为偏胖,低于0.8倍为偏瘦,那么该地一名身高为175cm ,体重为78kg 的未成年男性的体重状况为___________.(填“偏胖”或“正常”或“偏瘦”,参考数据:351.022≈)【答案】偏胖【分析】根据题意得到身高为175cm 的未成年男性平均体重,然后得到平均体重的1.2倍,最后比较大小即可.【详解】由题意得身高为175cm 的未成年男性平均体重为()51753521.022 1.0264⨯=⨯≈kg ,而641.276.878⨯=<,所以该男性体重偏胖.故答案为:偏胖.三、解答题(本大题共4小题,第20、21小题每小题8分,第22、23小题每小题9分,共34分,解答应写出文字说明、证明过程或演算步骤)20.已知函数()sin 2cos 2f x x x =+.(1)求函数()f x 的最小正周期;(2)求函数()f x 的最大值及取得最大值时自变量x 的集合.【答案】(1)π(2)()f x ,此时自变量x 的集合为π|π,Z 8x x k k ⎧⎫=+∈⎨⎬⎩⎭.【分析】(1)利用辅助角公式化简()f x 的解析式,然后根据三角函数最小正周期的求法求得正确答案.(2)根据三角函数最值的求法求得正确答案.【小问1详解】()πsin 2cos 224x x x f x ⎛⎫=+=+ ⎪⎝⎭,所以()f x 的最小正周期2ππ2T ==.【小问2详解】由(1)得()π24f x x ⎛⎫=+ ⎪⎝⎭,所以当()πππ22π,πZ 428x k x k k +=+=+∈时,()f x 取得最大值,此时自变量x 的集合为π|π,Z 8x x k k ⎧⎫=+∈⎨⎬⎩⎭.21.一个盒子中装有5支圆珠笔,其中3支为一等品(记为1A ,2A ,3A ),2支为二等品(记为1B ,2B ),从中随机抽取2支进行检测.(1)写出这个试验的样本空间Ω;(2)求抽取的2支圆珠笔都是一等品的概率.【答案】(1)()12,A A ,()13,A A ,()11,A B ,()12,A B ,()23,A A ,()21,A B ,()22,A B ,()31,A B ,()32,A B ,()12,B B .(2)310【分析】(1)直接写出样本空间即可;(2)计算2支圆珠笔都是一等品的样本数,得到概率.【小问1详解】试验的样本空间Ω为:()12,A A ,()13,A A ,()11,A B ,()12,A B ,()23,A A ,()21,A B ,()22,A B ,()31,A B ,()32,A B ,()12,B B .【小问2详解】抽取的2支圆珠笔都是一等品有()12,A A ,()13,A A ,()23,A A 3种情况,故概率310p =.22.如图,三棱柱111ABC A B C -中,1AA ⊥平面ABC ,AB =3,AC =4,BC =5.(1)求证:AB ⊥平面11ACC A ;(2)若异面直线1BB 与1AC 所成的角为30°,求三棱柱111ABC AB C -的体积.【答案】(1)证明见解析(2)【分析】(1)由1AA ⊥平面ABC 可得1AA AB ⊥,勾股定理可证AC AB ⊥,由线面垂直的判定定理可证结论.(2)由异面直线1BB 与1AC 所成的角为30°,求出1AA ,再由体积公式计算三棱柱111ABC AB C -的体积.【小问1详解】1AA ⊥平面ABC ,AB ⊂平面ABC ,有1AA AB ⊥.AB =3,AC =4,BC =5,有222AB AC BC +=,由勾股定理得AC AB ⊥.1AA AC A = ,1,AA AC ⊂平面11ACC A ,∴AB ⊥平面11ACC A 【小问2详解】由11//BB AA ,异面直线1BB 与1AC 所成的角即为1∠AA C ,130AA C ∠= ,又1AA ⊥平面ABC ,AC ⊂平面ABC ,∴1AA AC ⊥,则1tan 30AC AA = ,得1AA =1134622ABC S AB AC =⋅=⨯⨯=△,所以三棱柱111ABC A B C -的体积16ABC V S AA =⋅=⨯= .23.已知函数2()31x f x a =+-.(1)根据函数单调性的定义证明函数()f x 在区间(),0∞-上单调递减;(2)若函数()f x 是奇函数,求实数a 的值.【答案】(1)证明见解析(2)1【分析】(1)设任意12,(,0)x x ∞∈-且12x x >,然后计算12()()f x f x -,通过化简变形从而确定符号,根据函数的单调性的定义可得结论;(2)先求函数的定义域,然后根据奇函数的定义建立等式关系,即可求出实数a 的值.【小问1详解】证明:设任意12,(,0)x x ∞∈-且12x x >,则211212*********(33)()()31313131(31)(31)x x x x x x x x f x f x a a --=+--=-=------,因为12,(,0)x x ∞∈-且12x x >,所以2121330,310,310x x x x -<-<-<,则21122(33)0(31)(31)x x x x -<--,也即12())0(f x f x -<,所以12()()f x f x <,又因为12x x >,所以函数()f x 在区间(),0∞-上单调递减,【小问2详解】要使函数2()31x f x a =+-有意义,则有310x -≠,所以函数的定义域为(,0)(0,)-∞+∞ ,关于原点对称,若函数()f x 是奇函数,则()()0f x f x -+=,即22223031313113xx x x xa a a a -⋅+++=+++=----,解得:1a =,所以实数a 的值为1.。

2021年高中学业水平合格性考试数学模拟卷(含参考答案)07

2021年高中学业水平合格性考试数学模拟卷(含参考答案)07

2021年普通高中学业水平考试 科合格性考试数学仿真模拟卷07(考试时间为90分钟,试卷满分为150分)一、选择题(本大题共15小题,每小题6分,共90分.每小题中只有一个选项是符合题意的,不选、多选、错选均不得分)1.已知234x -=,则x 等于( ) A .±18 B .±8C .344D .±232 1.【解析】由题意,可知234x-=,可得13x 2=4,即3x 2=14,所以x 2=164,解得x =±18.故选A .【答案】A2.若集合M ={-1,1},N ={-2,1,0},则M ∩N =( ) A .{0,-1} B .{0} C .{1} D .{-1,1} 2.【解析】M ∩N ={1},故选C . 【答案】C3.已知f (x )、g (x )分别是定义在R 上的偶函数和奇函数,且f (x )-g (x )=x 3+x 2+1,则f (1)+g (1)=( ) A .-3 B .-1 C .1 D .33.【解析】本题考查函数的奇偶性.令x =-1可得f (-1)-g (-1)=1⇒f (1)+g (1)=1,故选C . 【答案】C4.直线x +3y -2=0与圆x 2+y 2=4相交于A 、B 两点,则弦AB 的长度等于( )A .2 5B .2 3C . 3D .14.【解析】利用平面几何中圆心距、半径、半弦长的关系求解.∵圆心到直线x +3y -2=0的距离d =|0+3×0-2|12+(3)2=1,半径r =2,∴弦长|AB |=2r 2-d 2=222-12=2 3.【答案】B5.函数f (x )=2x +1的定义域是( )A .⎝⎛⎦⎤-∞,-12B .⎣⎡⎭⎫-12,+∞C .⎝⎛⎦⎤-∞,12 D .(-∞,+∞) 5.【解析】由2x +1≥0,解得x ≥-12,故选B . 【答案】B6.已知向量a =(1,x ),b =(-1,x ),若2a -b 与b 垂直,则|a |=( ) A . 2 B . 3 C .2 D .46.【解析】(2a -b )·b =(3,x )·(-1,x )=x 2-3=0, ∴x =±3,∴|a |=2. 【答案】C7.已知a +b >0,b <0,那么a ,b ,-a ,-b 的大小关系是( ) A .a >b >-b >-a B .a >-b >-a >b C .a >-b >b >-aD .a >b >-a >-b7.【解析】∵a +b >0,b <0,∴a >-b >0.∴-a <0,b >-A . ∴-a <b <0<-b <A . 【答案】C8.函数y =2cos 2⎝⎛⎭⎫x -π4-1的是( )A .最小正周期为π的奇函数B .最小正周期为2π的奇函数C .最小正周期为π的偶函数D .最小正周期为2π的偶函数8.【解析】因为y =2cos 2⎝⎛⎭⎫x -π4-1=cos 2⎝⎛⎭⎫x -π4=sin 2x ,所以T =2π2=π,且为奇函数,故选A .【答案】A9.设变量x 、y 满足约束条件⎩⎪⎨⎪⎧x -2≤0,x -2y ≤0,x +2y -8≤0,则目标函数z =3x +y 的最大值为( )A .7B .8C .9D .149.【解析】由不等式组,作出可行域如下: 在点A (2,3)处,z =3x +y 取最大值为9. 【答案】C10.已知{a n }为等比数列,a 4+a 7=2,a 5a 6=-8,则a 1+a 10=( ) A .7 B .5 C .-5 D .-710.【解析】利用等比数列的通项公式求解.由题意得⎩⎪⎨⎪⎧a 4+a 7=a 1q 3+a 1q 6=2,a 5a 6=a 1q 4×a 1q 5=a 21q 9=-8, ∴⎩⎪⎨⎪⎧q 3=-2,a 1=1或⎩⎪⎨⎪⎧q 3=-12,a 1=-8,∴a 1+a 10=a 1(1+q 9)=-7. 【答案】D11.当x >0时,下列不等式正确的是( ) A .x +4x ≥4 B .x +4x ≤4 C .x +4x ≥8 D .x +4x ≤8 11.【解析】由均值不等式可知,当x >0时,x +4x ≥2x ·4x =4,当且仅当x =2时取“=”,故选A .【答案】A12.△ABC 的内角A 、B 、C 的对边分别为a 、b 、C .已知a =5,c =2,cos A =23,则b =( ) A . 2 B . 3 C .2 D .312.【解析】由余弦定理得cos A =b 2+c 2-a 22bc =b 2+22-524b =23,∴b =3,答案选D . 【答案】D13.从甲、乙等5名学生中随机选出2人,则甲被选中的概率为( ) A .15 B .25 C .825 D .92513.【解析】从5人中选2人共有10种选法,其中有甲的有4种选法,所以概率为410=25. 【答案】B14.《周髀算经》有这样一个问题:从冬至日起,依次小寒、大寒、立春、雨水、惊蛰、春分、清明、谷雨、立夏、小满、芒种十二个节气日影长减等寸,雨水、惊蛰、春分、清明日影之和为三丈二尺,前七个节气日影之和为七丈三尺五寸,问立夏日影长为( ) A .七尺五寸B .六尺五寸C .五尺五寸D .四尺五寸14.【解析】由已知结合等差数列的通项公式及求和公式即可直接求解. 从冬至日起,日影长构成数列{a n },则数列{a n }是等差数列,则a 5+a 6+a 7+a 8=32,S 7所以解可得,a 1=,d =﹣1.故a 10=【答案】D .15.若变量x ,y 满足约束条件⎩⎪⎨⎪⎧x +y ≤2,x ≥1,y ≥0,则z =2x +y 的最大值为( )A .1B .2C .3D .415.【解析】在平面直角坐标系中,作出变量x ,y 的约束条件⎩⎪⎨⎪⎧x +y ≤2,x ≥1,y ≥0表示的平面区域如图中阴影部分所示.由图可知,当z =2x +y 过点B (2,0)时,z 最大,所以z max =4,所以z =2x +y 的最大值4.故选D . 【答案】D二、填空题(本大题共4小题,每小题6分,共24分.将正确答案填在题中横线上) 16.f (x )为奇函数,当x <0时,f (x )=log 2(1-x ),则f (3)=________. 16.【解析】f (3)=-f (-3)=-log 24=-2. 【答案】-217.经过点(-2,2),且与两坐标轴所围成的三角形面积为1的直线l 的方程为________. 17.【解析】设所求直线l 的方程为x a +yb =1,由已知可得⎩⎨⎧-2a +2b =1,12|a ||b |=1,解得⎩⎪⎨⎪⎧a =-1,b =-2或⎩⎪⎨⎪⎧a =2,b =1.∴2x +y +2=0或x +2y -2=0为所求. 【答案】2x +y +2=0或x +2y -2=018.某防疫站对学生进行身体健康调查,欲采用分层抽样的办法抽取样本.某中学共有学生2 000名,抽取了一个容量为200的样本,已知样本中女生比男生少6人,则该校共有女生________人.18.【解析】由题意知抽取女生97人,设该校共有女生x 人.则x ×2002 000=97,解得x =970. 【答案】97019.已知函数f (x )=sin(ωx +φ)⎝⎛⎭⎫ω>0,-π2≤φ≤π2的图象上的两个相邻的最高点和最低点的距离为22,则ω=______.19.【解析】由已知两相邻最高点和最低点的距离为22,由勾股定理可得T2=(22)2-22,∴T =4,∴ω=α2.【答案】α2三、解答题(本大题共3小题,共36分.解答时应写出必要的文字说明、证明过程及演算步骤) 20.(12分)设{a n }是公比为正数的等比数列,a 1=2,a 3=a 2+4. (1)求{a n }的通项公式;(2)设{b n }是首项为1,公差为2的等差数列,求数列{a n +b n }的前n 项和S n .20.解:(1)设q 为等比数列{a n }的公比,则由a 1=2,a 3=a 2+4得2q 2=2q +4,即q 2-q -2=0,解得q =2或q =-1(舍去),因此q =2,所以{a n }的通项为a n =2·2n -1=2n (n ∈N *). (2)S n =2(12)12n --+n ×1+(1)2n n -×2=2n +1+n 2-2. 21.(12分)如图,在梯形ABCD 中,AD ∥BC ,AB ⊥BC ,AB =BC =1,PA ⊥平面ABCD ,CD ⊥PC , (1)证明:CD ⊥平面PAC ;(2)若E 为AD 的中点,求证:CE ∥平面PAB . 21.证明:(1)∵PA ⊥平面ABCD ,CD ⊂平面ABCD ,∴PA ⊥CD .又CD ⊥PC ,PA ∩PC =P , ∴CD ⊥平面PAC .(2)∵AD ∥BC ,AB ⊥BC ,AB =BC =1, ∴∠BAC =45°,∠CAD =45°,AC = 2.∵CD ⊥平面PAC ,∴CD ⊥CA ,∴AD =2.又E 为AD 的中点,∴AE =BC =1,∴四边形ABCE 是正方形, ∴CE ∥AB .又AB ⊂平面PAB ,CE ⊄平面PAB , ∴CE ∥平面PAB . 22.(12分)如图是半径为1m 的水车截面图,在它的边缘(圆周)上有一定点P ,按逆时针方向以角速度rad /s π(每秒绕圆心转动rad 3π)作圆周运动,已知点P 的初始位置为0P ,且06xOP π∠=,设点P 的纵坐标y 是转动时间t (单位:s )的函数,记为()y f t =.(1) 求()30,2f f ⎛⎫⎪⎝⎭的值,并写出函数()y f t =的解析式; (2) 选用恰当的方法作出函数()f t ,06t ≤≤的简图; (3) 试比较13131,,345f f f ⎛⎫⎛⎫⎛⎫⎪⎪ ⎪⎝⎭⎝⎭⎝⎭的大小(直接给出大小关系,不用说明理由). 22.解:(1)()10sin62f π==,()32sin cos 23662f πππ⎛⎫=⨯+== ⎪⎝⎭, ()sin 36y f t t ππ⎛⎫==+ ⎪⎝⎭,0t ≥.(2)用“五点法”作图,列表得:描点画图:说明:的变化过程也可给满分.(3) 13131345f f f ⎛⎫⎛⎫⎛⎫>> ⎪⎪ ⎪⎝⎭⎝⎭⎝⎭.。

2021年吉林省中考数学试卷(附答案详解)

2021年吉林省中考数学试卷(附答案详解)

2021年吉林省中考数学试卷(附答案详解)1.化简-(-1)的结果为()答案:B。

12.据《吉林日报》2021年5月14日报道,第一季度XXX销售整车辆,数据用科学记数法表示为()答案:B。

7.006×1043.不等式2x−1>3的解集是()答案:B。

x>24.如图,粮仓可以近似地看作由圆锥和圆柱组成,其主视图是()答案:B.5.如图,四边形ABCD内接于⊙x,D重合)连接xx.点P为边AD上任意一点(点P不与点A,若∠x=120°,则∠xxx的度数可能为()答案:D。

65°6.古埃及人的“纸草书”中记载了一个数学问题:一个数,它的三分之二,它的一半,它的七分之一,它的全部,加起来总共是33.若设这个数是x,则所列方程为()答案:C。

3x+2x+7x+x=337.√9-1=______.答案:B。

28.因式分解:x2−2x=______.答案:x(x-2)9.计算:x−1/x−1=______.答案:110.若关于x的一元二次方程x2+3x+x=有两个相等的实数根,则c的值为______.答案:3/411.如图,已知线段xx=2xx,其垂直平分线CD的作法如下:(1)分别以点A和点B为圆心,xxx长为半径画弧,两弧相交于C,D两点;(2)作直线CD.上述作法中b满足的条作为b______1.(填“>”,“<”或“=”)答案:=12.如图,在平面直角坐标系中,点A的坐标为(0,3),点B的坐标为(4,0),点P在直线y=x上,且AP=BP,过点P作直线CD交x轴于点E.若PE=2,则PE的坐标为______.答案:(2,2)增长量÷去年业务量×100%。

根据以上数据,回答以下问题:1)2016年快递业务量为______亿件;2)2018年快递业务量比2017年增长了______亿件;3)2019年快递业务量为______亿件;4)2020年快递业务量比2019年增长了______亿件;5)2016年至2017年,快递业务量的增长速度______;6)2018年至2020年,快递业务量的增长速度______.过25天完成全部接种,而乙地需要30天完成全部接种.已知甲地每天接种人数比乙地多200人,求甲地前5天平均每天接种人数.解:设甲地每天接种人数为x,乙地每天接种人数为x,则40万=5万+25x+(30−25)x40万=30x+5万解得:x=x+200则甲地前5天接种人数为5x=5(x+200)=5x+1000,平均每天接种人数为(5x+1000)/5=x+200,代入第二个式子得40万=30x+5万解得:x=所以甲地前5天平均每天接种人数为+200=人.解析】去括号与添括号是一种基本的代数运算,常用于化简和变形式子。

吉林省吉林市2021-2022学年高三上学期第二次调研测试数学(理)试题

吉林省吉林市2021-2022学年高三上学期第二次调研测试数学(理)试题

纸刀.
第Ⅰ卷(共 60 分)
一、选择题:本大题共 12 题,每小题 5 分,共 60 分.在每小题给出的四个选
项中,只有一个是符合题目要求.
1.已知集合 A x, y y 2x 1 , B x, y y x ,则 A B (

A.
B.1
C.1,1
D. 1,1
2.若复数 z r cos i sin ( r 0 , R ),则把这种形式叫做复数 z 的三角形式,其
A.2
B.1,2
C.
1 2
,2
D.
1 2
,1,2
4.已知向量
r a
1,
3

b
1,
3
,则下列结论错误的是(

A. a ∥b
C. a b 0
B. a 与 b 可以作为一组基底
D. b a 与 a 方向相反
2x y 0
5.若实数
x,y
满足
x
2
y
1
0
,则
x

y
的最小值为(

x 1
吉林市普通中学 2021—2022 学年度高中毕业班第二次调研测试
理科数学
本试卷共 22 小题,共 150 分,共 6 页,考试时间 120 分钟,考试结束后,将答
题卡和试题卷一并交回.
注意事项:
1.答题前,考生务必先将自己的姓名、准考证号填写在答题卡上,认真核对条
形码、姓名、准考证号,并将条形码粘贴在答题卡的指定位置上.
试卷第 3页,共 5页
16.已知函数 f x x ex 1 ln x ,则它的导函数 y f x 的零点个数为______.若存在
x 0, ,使得不等式 f x a 有解,则实数 a 的取值范围为______.
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
19.已知扇形 圆心角为 ,弧长为 ,则该扇形的面积为_________
三、解答题(本大题共5小题,每小题10分,共50分,解答应写出文字说明、证明过程和演算步骤)
20.在 中,角 , , 所对的边分别为 , , ,且 .
(1)求角 的大小;
(2)若 , ,求角 大小.
21.如图,在正方体 中, 、 分别为 、 中点.
【答案】B
【解析】
解:根据零点的概念可知,当x=2,x=3时,函数值出现异号,因此零点在该区间,选B
9.已知直线 和圆 ,则直线 和圆 的位置关系为()
A.相交B.相切C.相离D.不能确定
【答案】A
【解析】
【分析】
利用圆心 到直线的距离与半径比较大小,即可判断.
【详解】圆 的圆心 ,半径 ,
则圆心 到直线 的距离为 ,
【详解】等差数列 中, , ,
则公差 ,
所以 .
故答案为:2;9
18.在学校组织的一次知识竞赛中,某班学生考试成绩的频率分布直方图如图所示,若低于60分的有12人,则该班学生人数是____________
【答案】
【解析】
【分析】
先利用频率分布直方图得到低于60分的学生的频率,再利用 即可得出答案.
【详解】由频率分布直方图可得低于60分的学生的频率为: ,
2021年吉林省普通高中学业水平考试
数学试题
一、选择题:(本大题共15小题,每小题的四个选项中,只有一项是正确的,第1-10小题每小题3分,第11-15小题4分,共50分)
1.已知集合 , ,则 ()
A. B. C. D.
2.函数 的定义域是( )
A. B. C. D.
3.函数 则 ()
A.0B.-2C.2D.6
的中点得, 且
∴四边形 是平行四边形,∴
又 平面 , 平面 ,∴ 平面 .
22.已知数列 满足 ,且 .
(1)求 及 .
(2)设 ,求数列 的前 项和 .
【答案】(1)2, ;(2) .
【解析】
【分析】
(1)根据题意知数列是等比数列,代入公式得到答案.
(2)先把 表示出来,利用分组求和法得到答案
【详解】解:(1)因为 , 所以数列 是以首项为2,公比为3的等比数列,所以数列 ;
1
2
3
4
5
1
4
7
在下列区间中,函数 必有零点的区间为().
A.(1,2)B.(2,3)C.(3,4)D.(4,5)
9.已知直线 和圆 ,则直线 和圆 的位置关系为()
A. 相交B. 相切C. 相离D. 不能确定
10.下列函数中,在区间 上为增函数的是().
A. B. C. D.
11.下列命题正确的是( )
(2)
=
= .
【点睛】本题考查了等比数列的通项公式和分组求和法,是数列的常考题型.
23.已知圆 ,直线 .
(1)当 为何值时,直线与圆 相切.
(2)当直线与圆 相交于 、 两点,且 时,求直线的方程.
考点:古典概率
点评:本题主要考查了古典概率中的等可能事件的概率的求解,如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=m:n.属基础题
5. 的值为()
A. B. C. D.
【答案】A
【解析】
【分析】
利用二倍角公式求解即可.
【详解】 ;
故选:A.
6.已知直线 过点 ,且与直线 平行,则直线 的方程为()
A. B. C. D.
【答案】D
【解析】
【分析】
根据直线平行的斜率关系可得直线的斜率,再结合点斜式即可得解.
【详解】因为与直线 平行,所以斜率相等,即 ;
过点 ,则由点斜式可知直线方程为 ,
即直线 的方程为 ,
故选:D.
【点睛】本题考查了直线位置关系与斜率关系,点斜式求直线方程,属于基础题.
7.已知向量 , 若 ,则实数 的值为()
4. 将一枚质地均匀的骰子抛掷一次,出现“正面向上的点数为6”的概率是( ).
A. B. C. D.
5. 的值为()
A. B. C. D.
6.已知直线 过点 ,且与直线 平行,则直线 的方程为()
A. B. C. D.
7.已知向量 , 若 ,则实数 的值为()
A.-2B.2C.-1D.1
8.已知函数 的图象是连续不断的,且有如下对应值表:
2021年吉林省普通高中学业水平考试
数学试题
一、选择题:(本大题共15小题,每小题的四个选项中,只有一项是正确的,第1-10小题每小题3分,第11-15小题4分,共50分)
1.已知集合 , ,则 ()
A. B. C. D.
【答案】C
【解析】
【分析】
利用集合的交运算即可求解.
【详解】集合 , ,
则 .
A.-2B.2C.-1D.1
【答案】B
【解析】
【分析】
根据向量垂直的坐标表示计算可得结果.
【详解】因为 ,所以 ,
所以 ,即 .
故选:B
8.已知函数 的图象是连续不断的,且有如下对应值表:
1
2
3
4
5
1
4
7
在下列区间中,函数 必有零点的区间为().
A.(1,2)B.(2,3)C.(3,4)D.(4,5)
【解析】
【分析】
(1)连结 ,证出 , ,利用线面垂直 判定定理可得 平面 ,进而可得 .
(2)连结 ,证出 ,再利用线面平行的判定定理即可证明.
【详解】证明:(1)连结 ,由正方体 得,
平面 .又 平面 ,
又四边形 正方形,∴ ,
而 ,∴ 平面 ,
又 平面 ,∴ .
(2)连结 ,由 、 分别为 、
三、解答题(本大题共5小题,每小题10分,共50分,解答应写出文字说明、证明过程和演算步骤)
20.在 中,角 , , 所对的边分别为 , , ,且 .
(1)求角 的大小;
(2)若 , ,求角 的大小.
【答案】(1) ;(2) .
【解析】
【分析】
(1)根据余弦定理计算可得结果;
(2)根据正弦定理计算可得结果.
考点:函数 单调性
点评:本题考查函数的单调性,掌握初等函数的图象与性质是关键.
11.下列命题正确的是( )
A.一条直线与一个平面平行,它就和这个平面内的任意一条直线平行
B.平行于同一个平面的两条直线平行
C.与两个相交平面的交线平行的直线,必平行于这两个平面
D.平面外两条平行直线中的一条与这个平面平行,则另一条也与这个平面平行
【答案】A
【解析】
【分析】
根据分段函数解析式,代入即可求解.
【详解】由 ,
则 .
故选:A
4. 将一枚质地均匀的骰子抛掷一次,出现“正面向上的点数为6”的概率是( ).
A. B. C. D.
【答案】D
【解析】
试题分析:抛一枚质地均匀的硬币,有6种结果,每种结果等可能出现,正面向上的点数为6的情况只有一种,即可求.解:抛掷一枚质地均匀的硬币,有6种结果,每种结果等可能出现,出现“正面向上的点数为6”的情况只有一种,故所求概率为 ,故选D.
13.若 ,则 的最小值是()
A. B. C. D.
14.偶函数 在区间 上单调递减,则函数 在区间 上()
A.单调递增,且有最小值 B.单调递增,且有最大值
C.单调递减,且有最小值 D.单调递减,且有最大值
15.已知函数 的图象为 ,为了得到函数 的图象,只要把 上所有的点()
A. 横坐标伸长到原来的3倍,纵坐标不变B. 横坐标缩短到原来的1/3,纵坐标不变
C. 纵坐标伸长到原来 3倍,横坐标不变D. 纵坐标缩短到原来的1/3 ,横坐标不变
二、填空题(本大题共4小题,每小题5分共20分)
16.函数 的最小正周期为________.
17..已知等差数列 中, , ,则公差 ________, ________.
18.在学校组织的一次知识竞赛中,某班学生考试成绩的频率分布直方图如图所示,若低于60分的有12人,则该班学生人数是____________
【详解】(1)∵ ,∴ ,
∴ ,
∵ 是 的内角,∴ .
(2)∵ ,
∴ ,∴ ,
∵ ,∴ ,
又因为 ,所以 .
【点睛】关键点点睛:在三角形中,根据正弦值求角时,由边的大小关系确定角是解题关键.
21.如图,在正方体 中, 、 分别为 、 的中点.
(1)求证: ;
(2)求证: 平面 .
【答案】(1)证明见解析;(2)证明见解析.
(1)求证: ;
(2)求证: 平面 .
22.已知数列 满足 ,且 .
(1)求 及 .
(2)设 ,求数列 的前 项和 .
23.已知圆 ,直线 .
(1)当 为何值时,直线与圆 相切.
(2)当直线与圆 相交于 、 两点,且 时,求直线的方程.
24.已知函数 满足:① ;② .
(1)求 , 的值;
(2)若对任意的实数 ,都有 成立,求实数 的取值范围.
所以直线 和圆 的位置关系为相交,
故选:A
10.下列函数中,在区间 上为增函数的是().
A. B. C. D.
【答案】B
【解析】
试题分析:根据初等函数的图象,可得函数在区间(0,1)上的单调性,从而可得结论.解:由题意,A的底数大于0小于1、C是图象在一、三象限的单调减函数、D是余弦函数,,在(0,+∞)上不单调,B的底数大于1,在(0,+∞)上单调增,故在区间(0,1)上是增函数,故选B
A.一条直线与一个平面平行,它就和这个平面内的任意一条直线平行
相关文档
最新文档