实验五:运用Excel规划求解进行最优投资组合的求解
如何用Excel的规划求解功能实现一个投资组合在均值-方差法下的最优化?

如何⽤Excel的规划求解功能实现⼀个投资组合在均值-⽅差法下的最优化?⽂中的计算⽅法参考了Samir Khan的“Mean-Variance Optimization with Transaction Costs”。
⼀般来讲,⼀个投资组合中各项资产的价格变动特征是不⼀样的,⽐如有的资产价格波动率很⾼,但有可能带来更⾼的回报;⽽其他的资产会在⼤盘下跌之时反⽽上涨。
在构建投资组合时通过精⼼挑选具有不同价格波动特点的资产,就可以在确保收益最⼤化的同时实现投资组合的风险最⼩化,⽽均值-⽅差法就可以实现这⼀点。
均值-⽅差法是⼀种⽐较传统的优化投资组合的做法,来源于美国经济学家、1990年诺贝尔经济学奖获得者Harry Markowitz于1950年代创⽴的基于均值-⽅差模型现代组合投资理论。
均值-⽅差模型的理论是解决投资者如何从所有可能的证券组合中选择⼀个最优组合的问题。
投资者的决策⽬标通常有两个:尽可能⾼的收益率和尽可能低的不确定性风险。
即先确⽴⼀个⽬标收益率,然后确定各项资产在投资组合中的权重,使整个投资组合的风险值即整个组合的价格波动的⽅差值最低,最终使这两个相互制约的⽬标达到最佳平衡。
本⽂的主题就是探讨如何⽤Excel的规划求解功能实现⼀个由四只股票构成的投资组合在均值-⽅差法下的最优化,即价格波动风险最低,回报率最⾼。
由于在对现有投资组合中各项资产的⽐率进⾏调整时交易成本会成为⼀个很⼤的影响组合回报率的因素,因此为贴近实际操作,⽂中的案例考虑到了交易成本,并将资产权重每变动1%的交易成本设定为0.1%;四只股票的初始权重均为25%,投资组合的⽉度预期回报率为1%。
1、按以下格式设置Excel表格2、通过雅虎财经⽹站下载美孚⽯油公司XOM、卡特彼勒公司CAT、可⼝可乐公司KO和波⾳公司BA在2018年2⽉1⽇⾄2019年2⽉1⽇这1年间的⽉度收盘价。
3、⽤LN()函数计算4只股票的⽉度回报率,()内为⽉度收盘价所在的单元格4、⽤AVERAGE()函数计算这四只股票⽉度回报率的均值5、形成协⽅差矩阵。
使用Excel进行投资组合分析与优化

使用Excel进行投资组合分析与优化在当今的投资领域,有效地管理和优化投资组合是实现长期财务目标的关键。
Excel 作为一款强大的电子表格软件,为投资者提供了便捷且实用的工具,帮助他们进行投资组合的分析与优化。
接下来,让我们深入探讨如何利用 Excel 来实现这一重要的任务。
首先,我们需要明确投资组合的概念。
投资组合简单来说,就是投资者将资金分配到不同的资产类别(如股票、债券、基金、房地产等)中,以达到分散风险和提高收益的目的。
而分析和优化投资组合的目的,就是找到最适合自己的资产配置比例,使得在可接受的风险水平下,获得最大的收益。
在 Excel 中,我们可以通过输入和整理投资数据来开始我们的分析之旅。
这些数据包括各种投资产品的历史价格、收益率、波动率等。
为了获取这些数据,我们可以从金融网站、数据库或者相关的财经报告中收集。
假设我们有以下几种投资产品:股票 A、股票 B、债券 C 和基金 D。
我们将它们的历史价格数据输入到 Excel 表格中,然后通过简单的函数计算,就可以得出它们的平均收益率和波动率。
收益率的计算可以使用“平均函数(AVERAGE)”,而波动率则可以通过计算收益率的标准差来得到,在 Excel 中可以使用“STDEV 函数”。
有了这些基础数据,我们就可以构建投资组合了。
在 Excel 中,我们可以通过假设不同的资产配置比例,来计算组合的预期收益率和风险。
例如,我们假设股票 A 占投资组合的 30%,股票 B 占 20%,债券C 占 30%,基金D 占 20%。
然后,我们使用“SUMPRODUCT 函数”来计算组合的预期收益率。
这个函数可以将每种资产的收益率乘以其在组合中的权重,然后将结果相加。
对于组合的风险(波动率),由于投资组合中不同资产之间的相关性会影响整体风险,所以计算会相对复杂一些。
但在 Excel 中,我们可以通过使用“协方差函数(COVAR)”和“方差函数(VAR)”来进行计算。
利用EXCEL进行多项目最优投资组合及投资安排决策

利用EXCEL 进行多项目最优投资组合及投资安排决策韩良智〔北京科技大学管理学院,北京,100083〕摘要:资金限额条件下投资项目的最优投资组合及投资安排是某些企业经常遇到的问题,企业对这些项目进行组合与投资安排时,不仅要考虑各项目的投资额大小,还要考虑项目投资的先后顺序。
本文介绍了在EXCEL 上进行这类投资决策问题求解的具体方法和步骤。
关键词:资金限额 投资 优化在某些企业,很可能面对多个具有可行性的投资项目,但由于筹集资金数额以及筹资时间的限制,这些项目既不可能全部采用,也不可能在一年内全部投资,而是需要在这些项目中作出取舍,并分散在几个投资年度进行投资,这就要求企业对这些项目进行最优组合及作出投资安排计划,使企业取得最大效益〔净现值〕。
笔者结合实例说明利用EXCEL 解决这类投资决策问题的具体方法和步骤。
在下述的计算中,均假设项目无论在何年投资,其初始投资、净现金流量、以及相对于该项目投资年度的净现值均不变。
1 利用EXCEL 进行多项目最优投资组合及投资安排方法和步骤1.1 所有项目均在某年内一次性投资并于当年投产的情况在这种情况下,已知各个项目的初始投资及净现值,企业需要根据制订的投资年度计划及各投资年度的资金限额,优化组合及安排各个投资项目,即第0年先投资哪些项目,第1年再根据第0年剩余的投资资金加上本年的资金限额安排哪些项目,……,等等。
设第t 年安排i 项目的投资,以x i ,t 表示项目i 在第t 年投资的决策变量,x i ,t =1表示在第t 年对项目i 进行投资,x i ,t =0表示在第t 年不对项目i 进行投资,则选取的投资项目以第t 年为投资起点的总净现值为∑=⋅m i i t i NPV x 1,,将各投资年度选取的投资项目的总净现值∑=⋅mi i t i NPV x 1,看作是一个综合项目的净现金流量,则此综合项目的净现值〔以第0年为起点〕为:∑∑∑-==⎥⎥⎦⎤⎢⎢⎣⎡⋅+=101,)()1(1p t m i i t i t NPVx k NPV〔1〕式中:NPV i 为项目i 的的净现值〔以该项目的投资年度为起点〕,m 为项目的个数,p 为企业计划安排投资的年数,k 为企业的基准收益率。
如何使用Excel的“规划求解”功能进行优化

如何使用Excel的“规划求解”功能进行优化在日常工作和生活中,我们经常会遇到需要优化的问题,比如如何在有限的资源条件下实现最大的效益,或者如何找到满足多个条件的最优方案。
这时候,Excel 的“规划求解”功能就可以派上用场了。
“规划求解”是 Excel 中一个强大的工具,它可以帮助我们通过建立数学模型来找到最优解。
接下来,让我们详细了解一下如何使用这个功能。
首先,确保您的 Excel 中已经加载了“规划求解”功能。
如果没有,可以通过以下步骤进行加载:点击“文件”选项卡,选择“选项”,在弹出的“Excel 选项”对话框中,选择“加载项”,然后在“管理”下拉菜单中选择“Excel 加载项”,点击“转到”按钮,在弹出的“加载宏”对话框中勾选“规划求解加载项”,点击“确定”即可。
在使用“规划求解”之前,我们需要明确问题的目标和约束条件,并将其转化为数学模型。
例如,假设我们有一个生产问题,需要决定生产两种产品 A 和 B 的数量,已知产品 A 的单位利润为 10 元,产品 B 的单位利润为 15 元,我们拥有的原材料限制为 100 单位,生产产品 A 每单位需要消耗 2 单位原材料,生产产品 B 每单位需要消耗 3 单位原材料。
我们的目标是最大化总利润。
接下来,我们在 Excel 中建立表格来表示这个问题。
在第一列中输入产品名称(A 和 B),第二列输入生产数量(假设初始值为 10),第三列输入单位利润(分别为 10 和 15),第四列计算每种产品的利润(数量乘以单位利润),第五列输入每种产品消耗的原材料数量(分别为 2 和 3),第六列计算总的原材料消耗(数量乘以消耗的原材料数量)。
然后,我们设置目标单元格。
在这个例子中,目标是最大化总利润,所以我们选择计算总利润的单元格作为目标单元格。
接下来,设置变量单元格,即生产数量所在的单元格。
再然后,添加约束条件。
在这个例子中,约束条件是总的原材料消耗不能超过 100 单位,所以我们添加这个约束条件。
运用Excel Solver构建最优投资组合(王世臻)

运用Excel Solver构建最优投资组合王世臻(20121563)黄燕宁(20121941)王爽(20125204)汪雅娴(20121336)杨瑞(20121799)潘晓玉(20123384)本文运用马科维茨投资组合优化程序来说明股票市场的分散化投资,借助Excel Solver构建最优投资组合。
我们从Resset金融研究数据库中从电子信息行业选取启明星辰等40只股票2010年至2013年的月收益率以及对应的无风险收益率等数据。
来源于Resset金融研究数据库二、模型设定我们可以设第i 只股票的期望风险溢价为i (r )E ,第i 只股票的权重为i w ,整体的期望风险溢价为p (r )E ,标准差为p σ,夏普比率为p S ,因此我们可以得到组合的期望风险溢价为:11224040()()()()()p i i E r w E r w E r w E r w E r =+++++(1)整体的标准差为:124040[(,)]11i j i j p w w Cov r r i j σ=∑∑==(2) 夏普比率为: p (r )p pE S σ= (3)三、构建组合我们分卖空和未卖空两种情况分别进行讨论: (一)允许进行卖空在这种情况下,为了找出最小的方差组合,我们以(2)式为目标函数,以4011i i w ==∑为约束条件运用Excel solver 求解可以得到最小的标准差为0.04127,此时的风险溢价为0.03901 ,夏普比率为0.94525,同时可以得到此时的风险组合如表。
为了画出风险组合的有效边界,我们以(2)式为目标函数,通过改变(1)式的值利用Excel solver 画出下图1:图1 有效边界与资本配置线图选取边界上夏普比率最高的组合,即有效边界上的最优的风险组合。
我们标准差风险溢价以(3)式为目标函数,以4011i i w ==∑为约束条件运用Excel solver 求解可以得到最优风险组合的标准差为0.0446,此时的风险溢价为0.0477 ,夏普比率为1.069507,得到图1。
用EXCEL实现多个资产的投资组合优化

用EXCEL实现多个资产的投资组合优化作者:祝媛博来源:《时代经贸》2012年第17期【摘要】我们可以用EXCEL来构建多个资产的投资组合,实现收益最大化或者风险最小化,并计算达到目标收益的概率。
【关键词】投资组合;最优一、风险资产数据假设我们要构建含五个风险资产的投资组合。
根据统计以往10年的五个资产的历史数据,我们得到以下数据相关系数(Correlation)风险资产1 风险资产2 风险资产3 风险资产4 风险资产5风险资产1 1 0.51 0.49 0.27 0.47风险资产2 0.51 1 0.98 0.5 0.94风险资产3 0.49 0.98 1 0.48 0.9风险资产4 0.27 0.5 0.48 1 0.46风险资产5 0.47 0.94 0.9 0.46 1预期收益(E(r)) 0.085 0.13 0.135 0.13 0.11收益标准差() 0.091 0.206 0.212 0.19 0.12占组合最大百分比(%) 100 40 80 30 10占组合最小百分比(%) 0 10 0 0 0二、假设为了简化计算过程,我们做了一下假设:1.根据中心极限理论,我们假设五个资产的收益分布为正态分布。
2.我们假设资产的相关系数,预期收益,收益的标准差在短期内保持不变。
后面我们会通过压力测试来检验构建的投资组合对这些条件变动的敏感程度。
三、数学模型首先,我们计算投资组合的期望收益,是每个资产的期望收益,是将要构建的投资组合中每个资产的比重。
然后计算投资组合的收益的标准差,是两个资产间的协方差。
如果用矩阵的方式来计算,会有以下等式是五个资产的收益期望值的矩阵:是单位矩阵:只要确定了五个资产的比重,我们就可以计算出投资组合的收益期望值,标准差和达到目标收益的可能性(因为收益为正态分布,可以通过NORM.DIS公式,输入目标收益、投资组合期望、方差,得到概率值)。
相反地,我们也可以用EXCEL的规划求解功能,通过设定目标收益期望,标准差或者达到目标收益的概率,算出各资产的比例。
基于excel的最优资产组合求解

基于excel的最优资产组合求解作者:殷海娜来源:《时代金融》2012年第11期【摘要】在投资证券市场的决策中,收益与风险的权衡是投资决策的核心问题。
本文借助excel强大的线性规划及函数功能建立证券投资模型,进行有效集的绘制及最优组合求解。
包括风险资产与无风险资产的最优组合,以及收益或风险固定的有条件下的最优资产组合求解。
并在最后对模型进行评价。
【关键词】最优资产组合规划求解模型有效集一、引言1952年马克维茨(Markowits)提出“资产组合选择”的理论,第一次阐述了概念明确,可操作性强的选择投资组合的理论。
1964年威廉·夏普(Sharpe)則在其基础上提出了资本资产定价模型(CAPM),指出无风险资产收益率与有效率风险资产组合收益率之间的连线代表了各种风险偏好的投资者组合。
而在实际操作中,利用excel的函数运算及规划求解功能即可完成资产组合最优解的求解,并在不同的收益、风险限定条件下确定资产的最优投资决策。
二、最优资产组合求解首先从市场上选取不同行业领域的股票共十只,截取这十只股票在2011年3月至2012年三月的日收盘价数据,利用excel平均值求值公式AVERAGE计算出其各自的日平均收益率。
以上证综指作为市场指标并计算出市场日平均收益率。
利用VAR公式求得各个资产的方差及与上证综指的协方差,由公式β=■求得各只资产的β系数。
β系数是衡量资产对市场风险贡献率的指标,其值越大说明该资产的风险水平越高。
观察各只β系数,选取β值水平不同的股票三只,记为股票1、2、3。
如可选择β1的一只。
(一)求解可行区域以0.05为单位跨度赋予三只股票权重ω1、ω2、ω3,由公式E(r)=■■■ω■r■求得在不同权重赋予下资产组合的收益率。
利用公式σ■■=■■ω■ω■σ■求得不同权重组合的方差,具体步骤如下:σ■■=(ω1ω2,…ωn)·σ■σ■…σ■σ■σ■…σ■……σ■σ■…σ■·ω■ω■…ω■首先利用矩阵原理及excel的MMULT公式计算出前两个矩阵的乘积矩阵,然后用公式SUMPRODUCT求得资产组合风险的方差,即各个资产的加权平均值。
如何利用Excel进行投资组合分析和风险评估

如何利用Excel进行投资组合分析和风险评估投资组合分析和风险评估是投资者在进行投资决策时必不可少的工具和方法之一。
而Excel作为一款功能强大、操作简便的电子表格软件,可以帮助投资者进行投资组合分析和风险评估。
本文将详细介绍如何利用Excel进行投资组合分析和风险评估。
第一章:数据准备和导入投资组合分析和风险评估所涉及的数据通常包括资产收益率、协方差矩阵等。
首先,需要将相应的数据准备好并导入Excel中。
可以使用Excel中的数据导入功能,将数据从外部文件(如.csv、.txt)导入到Excel中。
第二章:计算资产收益率和协方差矩阵在Excel中,可以使用函数来计算资产的收益率和协方差矩阵。
假设有n个资产,那么可以使用Excel的AVERAGE函数计算每个资产的平均收益率,使用COVARIANCE.S函数计算资产之间的协方差,使用VAR.S函数计算资产的方差。
通过这些计算,可以得到一个n*n的协方差矩阵。
第三章:计算投资组合的预期收益率和风险在进行投资组合分析时,需要计算投资组合的预期收益率和风险。
预期收益率可以通过资产的权重和各资产的预期收益率的加权平均来计算。
在Excel中,可以使用SUMPRODUCT函数来实现这个计算。
风险可以使用投资组合的方差或标准差来衡量。
在Excel中,可以使用COVAR函数计算投资组合的协方差,使用STDEV函数计算投资组合的标准差。
第四章:计算投资组合的有效边界有效边界是指在给定风险下,可以获得最大预期收益的投资组合。
在Excel中,可以使用Solver插件来求解有效边界。
首先需要在Excel中构建一个目标函数和一系列约束条件,然后通过调整资产的权重来使目标函数最大化。
通过这样的方式,就可以得到有效边界上的一系列投资组合。
第五章:风险评估和资产配置在选择投资组合时,需要进行风险评估和资产配置。
在Excel 中,可以通过计算投资组合的风险收益比、夏普比率等指标来评估风险。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
实验报告证券投资学院名称专业班级提交日期评阅人 ______________评阅分数 ______________实验五:运用Excel规划求解进行最优投资组合的求解【实验目的】1理解资产组合收益率和风险的计算方法,熟练掌握收益率与风险的计算程序;2、进一步理解最优投资组合模型,并据此构建多项资产的最优投资组合;【实验条件】1个人计算机一台,预装Windows操作系统和浏览器;2、计算机通过局域网形式接入互联网;3、matlab 或者Excel 软件。
【知识准备】理论知识:课本第三章收益与风险,第四章投资组合模型,第五章CAPM实验参考资料:《金融建模一使用EXCEL 和VBA》电子书第三章,第四章,第五章【实验项目内容】请打开参考《金融建模一使用EXCEL和VBA》电子书第四章相关章节(4.3)完成以下实验A .打开“实验五组合优化∙xls”,翻到“用规划求解计算最优组合”子数据表;B •调用规划求解功能进行求解。
点击“工具”在下拉菜单点击“规划求解”,如没有此选项说明需要加载规划求解后才能使用,如何加载见实验补充文档“EXCEL规划求解功能的安装”。
C∙(⅛中总上盟皐0忡空鼻阳皐住∣∙. I:∙nr ■■H QT kιd⅞ι⅞ P⅛B⅛L0J⅛M Fdimult!- Di财R⅛vi⅛wChPbeMrd Mgrwneni:A B C D E F H1J K L O I 131⅛A4∣⅛fi⅛rtS中世还祥中孟董令三一甫范梆5平均回抿C-JClα⅛Jβ.7≥5Q.367 3.A⅛'0.3⅛D6⅛*≠0.3M0⅛450駆0.7Gfi33S⅛ C.656S K>3T≡⅛T51OPΛ9.⅛⅛÷8il甲*证漲中≤Λ⅛三Lj E工尿蛋LD融帳行AlM0-1?S Odlfi CiJSl 3.1±!Il Ii mlE# D.17Iβ.32?0.23?0.1⅛7, C.27312D.110gj2.? C.E^E∣D.112 C.22313三1运工 D.153□ 2J7 C.11Ξ D.49E 3 ZM C.1E3U C.1H50 357 C.1SE D.23B 3.M5- C.2D7L5 D.12-⅞0 273 D.2M D.1E33JΠ7 C.43ΠLlS EkKKl1?^M-D⅛C>S- S Et&r≠UALUE∣Q 5^0』0.4555≠Λ M I19F sVAlUEI D≡∣7⅛2C ≡=55B3盗产财和帕血报]用规划車解订a有故组台,可夷空言⅞⅛边畀J可卖空有册CRMd)∣,■ ■ ■ •誰13-Font三h½cUrttyWArntangi Eome■■商k< >E⅝r⅞erv1 his b«en disabled.OPtIaFis...F弋;I谋件∖⅛≡⅛⅛t揍2M0∖E JT诃文档溶诃2"7tel[Q4章坦合挠忙揆型'茹]魏据和弼盎H辽∙⅞i□lSOlVer ParameterSEqUal To:θMa× ® Mirl O ValUe of; DEy Changing Cells :D •在规划求解选项卡里面选择“选项”,再选择“非负”再运行一次,比较两次返回的投资比例值的正负。
在实验报告中记录两次得到的最优投资组合,并说明投资比例是负值说明什么?E.(选做)借助连续调用规划求解的 VBA 过程生成有效组合以及资本市场线。
参考实验参考电子书 《金融建模一使用EXCEL 和VBA 》电子书第四章 P83F .对比可卖空和不可卖空的有效前沿图试对比说明其不同?【实验项目步骤与结果】Set Target Cell: 权重Subject to the Constr aints : IClle - IE$19 ⅛⅛16- 1Add ChangeClBleteQPUonSReSet AlI HeIPJ f⅝ 申』7E3 皐 0[申』[G3^Of ⅜a∙fl⅛⅛⅜⅛" [Q*ipttiE ∣H⅞f h4gςl.∣ - MiCrgTgF⅞ EX¢¢1R<v⅛w Vi ⅛w ⅞dd>[h^Page LJ沖XFdrniult!, D4<Aj⅛ Fl i Gnl AIetMl 舟_i From V⅛⅛ —" JF⅛⅝dλ Otħ⅛r√JFrofll TieiCIΞ□UΓCM TEAj 亦科匚QnrwclionsG<t EItHnIl Di^a\ 切 CWrlfdi⅞π⅛ '-JFtDfierties ⅛^rt⅜ħ ~立j[音Edrt ILinkSCmnrkHllOnS⅛*噩U s *tE CI⅞dΓ ■:J- PeaPP⅛ F■电 I iπ-■/ Ad ∣,a∏Hed一Jr Jg_n ^DdtiVdIiφati^ ■ [⅛Cuπs⅛dff1-!Tt4⅞⅛ F⅛M V ⅞ -CalUmnS- DUVmBbEE ISf WhIlJ Ana⅜⅛ 'Dv⅞a Toak-≠ Gr乜WP 5*⅛5β⅜fftiA (JJ17i4S7⅛0J73635■J* Ur⅞grDup T ■■:EuMortri □ιlUinbtAnalystsA BDE FH1 I J KLi M W=0 ■1 用規知或据苗H 棺羟堀含e 杜巫塀20103∙Λ4⅛Λ⅛^≡Pffi=L≡*中金贅金Z-ffiZ 弼l⅛亦 蠡轴3 平均回抠0.3C1 OW0.克 5> 0.367 <J-⅛⅛ 0.3⅛E0.5M叮認C.E34¢.70635»&.656t⅛方工返甲和収重⅜⅞⅛⅛⅞行中世证弄中"工三一盂工;対冰鶴恥茏爪 玫畫W⅛fi ⅛澜行 0.25C CLITrCllD ⅛153 3.1S5 C.12A c.∆l -LL CP 催匹鼻 0.178 o⅛sG.3≥T 0.23? 0.1⅛7 β∙.275 -C.⅛61L2 CP 金黄全 D.110 OJJ.7 询6D.112DiSiC.228 CJOl 13 S=IX &.153 02J?CllS A 朋D2Ji Clfii C.l^ LISimii D.lβ⅝ 0J⅛7C.l££ 3.H⅞C.2fi7O>.1D7 L5 IfeX^0.1Sd WOlH0.1flj3J0?0.4MC.M2LHi ■岀Ti⅛lfi⅛⅛f.≡≡ιl華≡Ξ1.1KKl 'LLE呱望问?E 0.44555∏.SUJ=J C.4⅞B5&LSi碗3ECl ½LBa3.57⅛E2 D.4S5B3⅛ΛR 7Δ⅛⅛∑S 冋FFJ5SΛ⅛ft可未空有壊辿畀⅜lRNdK⅛∕tragr Π.1-6TCnUrrt:4 SUm- ι.mκ订i⅛rt3证等段责⅛<⅛5EΓ⅛ .. It 2 Windows ∣Eκpkrer ■*-2⅞13⅛ ttltffi型R∙ ∙∙∙H⅛≡⅛ hd⅞ιtVSart 5 FirterG5 0417c aElXB .使用规划求解审闻JT⅛L LHa 碁H 蛊畝歸皓 分列1⅛SK⅛. H⅛ 側S 程合弁计KfflK⅛0Fr .堺 劉亦证■ ■A. 旦回报用规划戒解计算有效担合可卖空■?⅛⅛≡示疇囁蠹:ft⅛S 取洁*沁E 左A Q r I kJnI 輸入.浦岌银行中信证券中金黄金二一重T海峻水混雅戈尔I [乎均回抿0.3010.500 D.4MO6⅛50.7250.804心&70.7060.44505⅛90J400.656标准差协方差矩阵和权重浦绘银行中信证券Φ⅛S金=一重工权重]浦岌银行0.250 0.17B 0.110 0.1530.1B5 0.1241中信证券0.17S 0.4&90327 0.237 0197 0.273 中金茵金0410 0.327 0.646 0.112 OlBS 0.229三一重工OiS3 02370.1120.493O23B0.163海⅛≡水泥OlBS 0.197 OLlSB O23S 0.359 0.2D71雅戈尔0.124 0,273 0.229 0.1S3 0.207 0430∣k O OM ]输岀育效绢台擁信翹值P■4π ⅛ 旨期望回抿Γ⅛VALUEl O.5SSO3 0.44555 权車具原标灌差r WALUEI S<"ΞE22'435b 3选}圣求解方法恒求解方法为光滑非线性规划求解问题选择苫RG斗醸性引≡「井为非光滑规划求解冋豎聲滴化弓奚拿.为线性規划茨解问霆齢軽量为m氐澈Qgitnra ■■■■■■■■■■■■■■ IFiuaaaaaBBB ■■ BBiiiriiiaaa ■■・・・・・・・・・・・・・・・菲线性GRG浦意银行口言还券口 ⅛≡金三一海螺班泥平均回报0.301 0.4940.725 D.S67 0.446 OMO 赫隹差0.5000J 6350.β040.7060.5990.655协方差矩陆和权重投资比例为负值说明该证券风险远远大于其收益率,已经不适合投资。
F .对比可卖空和不可卖空的有效前沿图试对比说明其不同?0 2500.178 OIlO 0.153 0.1S5 0.124 0.4O& 0.17SDΛ&3 0.327 0JJ7 0.157 0.273 0,000 Ollo 0.327 0.&46 D.112 0.1S8 0.229 0.275 0.153 0.237 0.112 0.49B 0.238 0.1&3 0.129 OlfiS D.197 Diaa D.23B D.359 0.207 0.114 0.1240.2730.2290.1630.2070.4300.077 中信证券 中金董金Ξ→I 馬i≡7K泥 雅戈尔洼应汙口言证券口金董金三一重工渎堂叹泥雅:⅞尔椁重1.&00警出 期望回报 标准差0.44555 0 588D3 O.W&S 0.462640.57B520.4&5B3权重复原肓效组合 参箕值蜃箕值065OO期望回按通过可卖空和不可卖空有效前沿图的对比可以看到,在相同风险的时候可卖空的情况下期望回报要比不可卖空的情况要高,并且随着风险的增加可卖空曲线的期望回报增加程度明显比不可卖空曲线要大。
【实验项目结论与心得】通过本次实验,学会了用excel进行相关组合最优的计算,同时也画出了风险收益曲线,为将来进行实盘操作打下了坚实的基础。
【教师评语与评分】。