方差分析法
方 差 分 析 方 法

方差分析方法方差分析是用于两个及两个以上样本均数差别的显著性检验。
由于各种因素的影响,研究所得的数据呈现波动状,造成波动的原因可分成两类,一是不可控的随机因素,另一是研究中施加的对结果形成影响的可控因素。
方差分析的基本思想是:通过分析研究不同来源的变异对总变异的贡献大小,从而确定可控因素对研究结果影响力的大小。
方差分析主要用途:①均数差别的显著性检验,②分离各有关因素并估计其对总变异的作用,③分析因素间的交互作用,④方差齐性检验。
在科学实验中常常要探讨不同实验条件或处理方法对实验结果的影响。
通常是比较不同实验条件下样本均值间的差异。
例如医学界研究几种药物对某种疾病的疗效;农业研究土壤、肥料、日照时间等因素对某种农作物产量的影响;不同化学药剂对作物害虫的杀虫效果等,都可以使用方差分析方法去解决。
方差分析原理方差分析的基本原理是认为不同处理组的均数间的差别基本来源有两个:(1) 随机误差,如测量误差造成的差异或个体间的差异,称为组内差异,用变量在各组的均值与该组内变量值之偏差平方和的总和表示,记作SS w,组内自由度df w。
(2) 实验条件,实验条件,即不同的处理造成的差异,称为组间差异。
用变量在各组的均值与总均值之偏差平方和表示,记作SS b,组间自由度df b。
总偏差平方和SS t = SS b + SS w。
组内SS t、组间SS w除以各自的自由度(组内dfw =n-m,组间dfb=m-1,其中n为样本总数,m为组数),得到其均方MS w和MS b,一种情况是处理没有作用,即各组样本均来自同一总体,MS b/MS w≈1。
另一种情况是处理确实有作用,组间均方是由于误差与不同处理共同导致的结果,即各样本来自不同总体。
那么,MS b>>MS w(远远大于)。
MS b/MS w比值构成F分布。
用F值与其临界值比较,推断各样本是否来自相同的总体。
方差分析的假设检验假设有m个样本,如果原假设H0:样本均数都相同即μ1=μ2=μ3=…=μm=μ,m个样本有共同的方差。
方差分析方法的不足

方差分析方法的不足
方差分析法是一种假设检验的方法,它是分析目标在于检验各组的均值间差异是否在统计意义上显著,与其类似的统计方法还有t检验、卡方检验等,不同检验方法各有其不同的使用场景,下文就来讲讲方差分析法的优缺点、spss方差分析法检验显著性差异的具体步骤。
方差分析法的优点在于:
(1)它不受统计组数的限制,可接受大样本统计数量进行多重比较,能够充分地利用试验所提供数据来估计试验误差,可以将各因素对试验指标的影响从试验误差中分离开,是一种定量分析方法,可比性强,分析精度高;
(2)方差分析可以考察多个因素的交互作用。
方差分析法的缺点在于:
(1)涉及到全部数据,计算复杂;
(2)前提条件较为苛刻,需要数据样本之间相互独立,且满足正态分布和方差齐性,所以需要对数据进行方差齐性检验。
方差分析(ANOVA)简介

方差分析(ANOVA)简介方差分析(ANOVA)是一种统计分析方法,用于比较两个或多个组之间的均值是否存在显著差异。
它是一种实用而广泛应用的工具,常用于研究实验设计、质量控制、医学研究和社会科学等领域。
在本文中,我们将简要介绍方差分析的基本原理和应用,帮助你了解如何使用这一方法进行数据分析。
什么是方差分析?方差分析是一种通过比较组内差异和组间差异来确定不同组均值之间是否显著不同的统计分析方法。
它基于方差的概念,将总体方差分解为组内变异和组间变异,通过计算F值来判断各组均值是否存在显著差异。
方差分析最常见的形式是单因素方差分析,也就是比较一个因素(自变量)对一个因变量的影响。
然而,方差分析也可以应用于多因素实验设计,比较不同因素及其交互作用对因变量的影响。
方差分析的基本原理方差分析的基本原理是比较组内差异和组间差异,确定组间差异是否由于随机因素引起还是真实存在的。
组内差异是指同一组内个体之间的差异,组间差异是指不同组之间个体均值的差异。
方差分析使用方差比的概念来判断组间差异是否显著。
该概念定义为组间方差与组内方差的比值,当组间方差较大且组内方差较小时,该比值较大,表明组间差异显著;反之,该比值较小,表明组间差异不显著。
方差分析通过计算F值来判断组内差异和组间差异的相对大小。
F值是组间均方与组内均方的比值,如果F值大于给定的临界值,则可以推断组间差异显著,否则差异不显著。
方差分析的应用方差分析广泛应用于实验设计和数据分析中。
它可以用于比较不同处理组的均值是否存在显著差异,评估实验结果的有效性和可靠性。
在科学研究中,方差分析可以用于比较不同实验组的平均值是否存在显著差异,例如测试新药物的疗效、评估肥料对作物产量的影响等。
在质量管理中,方差分析可以用于比较不同生产线、不同供应商或不同工艺参数对产品质量的影响,帮助确定最优的质量控制策略。
在社会科学研究中,方差分析可以用于比较不同人群、不同地区或不同时间点的数据,例如比较不同教育水平对收入的影响、比较不同性别对心理健康的影响等。
方差分析方法

10.2.1 单因素方差分析的问题
因而有: 因而有: (1) 粮食产量是随机变量,是数值型的变量; 粮食产量是随机变量,是数值型的变量; (2) 把同一化肥 的同一水平 得到的粮食产量看作 把同一化肥(A的同一水平 的同一水平)得到的粮食产量看作 同一总体抽得的样本, 同一总体抽得的样本,施用不同化肥得到的粮食产量 视为不同总体下抽得的样本, 视为不同总体下抽得的样本 ,表中数据应看成从三个 总体X 中分别抽了容量为6的样本的观测值 的样本的观测值. 总体 1,X2,X3中分别抽了容量为 的样本的观测值 推断甲乙丙三种化肥的肥效是否存在差异的问题, 推断甲乙丙三种化肥的肥效是否存在差异的问题, 就是要辨别粮食产量之间的差异主要是由随机误差造 成的,还是由不同化肥造成的, 成的,还是由不同化肥造成的,这一问题可归结为三 个总体是否有相同分布的讨论. 个总体是否有相同分布的讨论.
10.2.1 单因素方差分析的问题
由于在实际中有充分的理由认为粮食产量服从正 态分布, 且在安排试验时, 除所关心的因素(这里是化肥 这里是化肥) 态分布 且在安排试验时 除所关心的因素 这里是化肥 外, 其它试验条件总是尽可能做到一致. 其它试验条件总是尽可能做到一致 这使我们可以认为每个总体的方差相同 即 Xi~N(µi,σ2) i = 1, 2, 3 因此,推断三个总体是否具有相同分布的问题就简 因此, 化为: 化为:检验几个具有相同方差的正态总体均值是否相 等的问题, 等的问题,即只需检验 H0: µ 1 = µ 2 = µ 3
10. 10.2.2 单因素方差分析的数学模型
进行单因素方差分析时, 需要得到如表10.2所示的 进行单因素方差分析时 , 需要得到如表 所示的 数据结构. 数据结构.
表10.2 单因素方差分析中数据结构
方差分析方法的比较

方差分析方法的比较方差分析是一种广泛应用于统计学中的方法,用于比较两个或多个群体之间的差异性。
近年来,社会科学领域中越来越多的研究者开始使用方差分析方法,但是同时也出现了很多其他的方法,并且每种方法都有其优缺点。
本文将对比几种不同的方差分析方法,以期能够帮助使用者更好地选择适用于自己研究的方法。
一、单因素方差分析单因素方差分析是最常见的一种方差分析方法,主要用于比较两个或多个群体在一个因素下的差异性。
例如,在一个心理学实验中,想要比较不同教育背景的学生在完成一个困难任务时所花费的时间是否有所不同,就可以使用单因素方差分析来进行比较。
单因素方差分析的优点在于简单易用,适用范围广泛。
同时,它还可以通过多个组合因素来进行协作。
然而,单因素方差分析也存在一些缺点。
例如,当因素较多时,它就不再适用。
此外,在不同条件下,虽然不同组别的差异显著,但是考虑到一些随机因素而无统计意义。
二、重复测度方差分析重复测度方差分析是一种常用的方差分析方法,主要用于比较同一群体在不同时间或不同情况下的差异性。
例如,在一个医学实验中,想要比较同一患者在接受不同治疗方案的情况下血压值的变化,就可以使用重复测度方差分析进行比较。
重复测度方差分析的优点在于可以减少测量误差,提高测试的稳定性。
此外,由于样本中存在了自身控制组,更容易发现实验组中出现的重要特征。
重复测度方差分析也存在一些缺点。
例如,如果要比较的两个时间之间的差异很小,则可能会导致拒绝零假设。
另外,重复测度方差分析所得到的结果比较关注群体的平均水平,而较少关注个体信息。
三、协方差分析协方差分析是一种常用的方差分析方法,主要用于比较两个或更多个因素之间的交互作用。
例如,在一个心理学实验中,想要比较学生的性别和教育背景对完成一个任务的影响,就可以使用协方差分析进行比较。
协方差分析的优点在于可以更深入地理解因素的交互作用。
此外,它比较灵活,因此可以适用于多个变量的情况。
然而,协方差分析也存在一些缺点。
统计学中的方差分析方法

统计学中的方差分析方法统计学是现代社会中最重要的学科之一,它基于大量的数据和数学模型,研究人类社会和自然环境中各种现象和规律。
其中,方差分析是统计学中最基本的分析方法之一,它常常被用来分析各种因素对某个变量的影响。
在本文中,我们将详细介绍方差分析方法的基本原理和应用。
一、方差分析的基本原理方差分析是利用方差的性质分析多组数据之间的差异或相似性的方法。
它是以方差分解为基础的,通过对总方差、组间平方和和组内平方和的分解,来度量实验因素对实验变量的影响。
在具体的研究过程中,我们通常将所研究的因素分为不同的组别,并在每个组别中测量实验变量的值,随后运用方差分析方法来分析不同组别之间的差异。
在方差分析中,我们通常采用F检验法来判断差异的显著性。
通过计算F值并与临界值进行比较,得出数据是否符合研究假设的结果。
如果F值大于临界值,则说明差异是显著的,反之则说明差异不显著。
F检验法在实际应用中非常广泛,适用于大多数实验设计和数据类型。
二、方差分析的应用方差分析方法可以用于各种不同类型的数据分析,如一元方差分析、双因素方差分析、三因素方差分析等等。
下面我们将分别介绍它们的应用。
1. 一元方差分析一元方差分析是指只有一个自变量和一个因变量的分析方法,也就是说只有一个因素影响一个变量。
一元方差分析通常用于分析实验组与对照组之间的差异或者不同处理方式对实验结果的影响等。
例如,我们要研究不同肥料对作物产量的影响,我们可以将实验分成几组,每组采用不同的肥料,最后对产量进行测量。
接着通过方差分析法来比较每组之间产量的差异,最后确定哪种肥料更适合提高作物产量。
2. 双因素方差分析双因素方差分析是指有两个自变量和一个因变量的分析方法,也就是说有两个因素对一个变量产生影响。
双因素方差分析通常用于研究两种或多种因素的交互效应。
例如,我们要研究不同机器和不同操作员对产品质量的影响,我们可以先在不同机器上制造同种产品,然后再让不同的操作员进行操作。
方差分析法PPT课件

计算各样本平均数 y 如i 下:
表 6-2
型号
ABCDE F
yi
9.4 5.5 7.9 5.4 7.5 8.8
•5
引言 方差分析的基本概念和原理
两个总体平均值比较的检验法 把样本平均数两两组成对:
y 1与 y ,2 与y 1 ,…y 3 与 y ,1 与y 6 ,…y ,2 与y 3 ,共有y (5
6.3 显著性检验
利用(6-17)式来检验原假设H0是否成立.对于给定的显著水
平,可以从F分布表查出临界值
A的值.
F(k1,k(再m根1)据),样本观测值算出F
当 FAF(k1,时k(m ,拒1绝))H0,
当 FAF(k1,,时k(m ,接1 受))H0。
即:如果H0成立,F应等于1;相反应大于1,而且因素的影响越大, F值也越大
m
km
T Tj Yij
•38
j1
作统计假设:6种型号的生产线平均维修时数无显 著差异,即
H0: i=0(i=1,2,…,6),H1:i不全为零
•37
6.3 显著性检验
计算SA及SE
k
SA
k
m
i1
(Yi
Y)2
Ti2
i1
m
T2 km
k
km
km
Ti2
SE i1
(Yij Yi)2
j1
i1
j1Yij2i1m
m
Ti Yij
j 1
相当于检验假设
H0 : i 0 (i=1,2,…,k) , H1 : αi不全为零
•29
6.3 显著性检验
可以证明当H0为真时,
ST
2
~2(k
第七章方差分析法

2020/1/4
版权所有 BY 统计学课程组
24
单因素方差分析的数据结构
2020/1/4
版权所有 BY 统计学课程组
25
试验数据变异原因(误差来源)分析
同一试验条件下的数据变异-----随机因素影响 不同试验条件下,试验数据变异-----随机因素
和可能存在的系统性因素即试验因素共同影响
2020/1/4
2020/1/4
版权所有 BY 统计学课程组
2
学习内容
第一节 方差分析简介
常用术语 基本假定
第二节 单因素方差分析 分析模型 基本思想
分析步骤 多重比较
第三节 双因素方差分析 无交互作用双因素方差分析
有交互作用双因素方差分析
2020/1/4
版权所有 BY 统计学课程组
3
7.1 方差分析简介
7.1.1 方差分析中的基本概念 7.1.2 方差分析中的基本假设与检验
i= 1 j= 1
邋k
=
n 轾 犏 臌(xi.- x..)2 + 2(xi.- x..)(xij - xi.) + (xij - xi.)2
i= 1 j= 1
邋 邋 ? k
k
n
kn
= n (xi.- x..)2 + 2 [(xi.- x..) (xij - xi.)] +
(xij - xi.)2
i= 1
2020/1/4
版权所有 BY 统计学课程组
22
7.2. 单因素方差分析
7.2.1 单因素方差分析模型 7.2.2 方差分析的基本原理 7.2.3 单因素方差分析的步骤 7.2.4 方差分析中的多重比较
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
19
系统误差 (systematic error) 由某些或某个因素按照某一确定的规律起作用而形成 的误差。当实验条件确定,系统误差就是客观上的 恒定值,不能通过多次实验值的平均值而减小。多 次重复试验不能消除系统误差。 砝码不准,刻度不均匀,个人读取刻度的习惯
9
例2:某样品质量的称量结果为58.7±0.2g,试求其相对误 差。
解:称量的绝对误差是0.2g,所以相对误差为ER=
X/X=0.2/58.7=0.3%
例3:已知由试验测得水在20摄氏度时的密度ρ是 997.9kg/m3,又已知其相对误差为0.05%,试求密度 ρ的范围。
解: ER= X/X=0.05% 所以X=997.9*0.05%=0.5kg/m3 ρ =997.9*(1±0.05%) kg/m3
方差分析中的几个基本概念
因变量:我们实际测量的、作为结果的变量, 例如铜浓度。因变量也称试验指标,其不同的 取值常称为观察值或试验数据。
自变量:作为原因的、把观测结果分成几个组 以进行比较的变量例如操作人员。
在方差分析中,自变量也被称为因素(factor)。 因素的不同表现,即每个自变量的不同取值称
1) 绝对误差是一个具有确定的大小、 符号及单位的量。
2) 给出了被测量的量纲,其单位与测 得值相同。
7
7
2 相对误差(Relative Error):
绝对误差与被测量真值之比
定义 特点:
r L
L0
绝对误差
被测量的真值,常用 约定真值代替,也可
以近似用测量值 L 来 代相替对误L差0
1) 相对误差有大小和符号。
显著性水平 a(也称显著度)是一个概率值,常用百分数表示。
置信水平(1-a)%(也称置信度)。 如取显著性水平 a=0.1,表明所作出的显著性与否的判断有
90%的把握,或者判断的可信程度是 90%,误判的可能性有 10%。
若 a=0.05 则 1-a=1-0.05=0.95=95% 若 a=0.01,则 1-a=1-0.01=0.99=99% 由于判断的结论不可避免的存在误差,为了减少差错的出 现机率,在特别重要的实验中,显著性水平 a 尽可能取小值, 使判断的结论具有较高的置信度。
21
21
系统误差的处理方法
当分析方法、仪器、试剂及操作者确定后,即
确定了一个分析系统,此分析系统的固有缺陷所
导致的误差即系统误差。因此,如果条件不变,
系统误差是恒定的。
选择较好的分析方法 校正仪器 提纯试剂
完善分析系统
提高操作水平
22
过失误差 (mistake error)----使得测量值异常的误 差。可以避免
都会使测量结果与被测量的真值有所不同,这 个差异称为测量误差。
5
误差的基本概念
表示形式
误差
性质特点
绝对 相对 误差 误差
标准 误差
系统 误差
随机 粗大 误差 误差
6
6
1绝对误差(Absolute Error)
绝对误差 = 测得值- 真值
绝对误差
测得值
特点:
L=L-L0
被测量的真值,常 用约定真值代替
方差分析
Analysis of Variance (ANOVA )
学习目标
掌握方差分析中的基本概念; 掌握方差分析的基本思想和原理; 掌握单因素方差分析的方法及应用; 了解双因素方差分析的方法及应用。
学习内容
第一节 方差分析简介 常用术语 基本假定 第二节 单因素方差分析
分析模型 基本思想 分析步骤 第三节 双因素方差分析 无交互作用双因素方差分析 有交互作用双因素方差分析
22.0
23.5
21.5
23.4
21.8
21.2
20.6
23.8
23.0
要研究的问题
总体1,μ1 (铜=1)
总体2,μ2 (铜=2)
总体3,μ3 (铜=3)
总体4,μ4 (铜=4)
样本1
样本2
样本3
样本4
x1, s12
x2, s22
x3, s32
x4, s42
H0 : 1 2 3 4 ??
试验数据
不同操作人员测定铜元素的结果(ug/L)
ห้องสมุดไป่ตู้
甲
乙
丙
丁
22
21.8
21.9
22.1
22.5
20.9
23.2
22.8
21.7
22.7
23.8
21.6
23.1
21.2
22.9
21.7
22.8
20.2
24.0
22.4
21.5
20.7
22.8
23.0
21.4
21.1
21.2
23.2
22.9
22.0
22.7
15
甲组
0.4, 0.2, 0.1, 0.0, 0.2, 0.2, 0.3, 0.3, 0.3, 0.4
d甲 0.24,
乙组
n 10
0.9, 0.1, 0.1, 0.1, 0.0, 0.0, 0.1
0.2, 0.2, 0.7,
d乙 0.24,
n 10
16
前述两组数据的标准偏差分别是
甲组
0.42 0.22 0.42
S甲
乙组
10 1
0.28
S乙
0.92 0.12 0.72 0.40
10 1
由此可见,甲组测定值精密度较好。
17
总体标准偏差和样本标准偏差
各个总体的均值相等吗?
f(X)
X
1 2 3 4
f(X)
X
3 1 2 4
研究方法:两样本的t检验?
如果采用t检验法对多个总体均值进行差异显 著性检验 ,会出现如下问题: 全部检验过程烦琐,做法不经济 无统一的总体方差估计 ,检验的精度降低 犯第一类错误的概率增大,检验的可靠性降 低
方差分析目的
确定是否存在影响测试结果的系统误差,即 确定不同因素间或同一因素中不同水平是否存 在实质性的差异。
假定所研究的对象都是服从正态分布 。
方差分析可以用来比较多个均值
方差分析(Analysis of variance,ANOVA)的主要目 的是通过对方差的比较来同时检验多个均值之间差异 的显著性。
24
方差分析简介
方差分析中的基本概念 方差分析中的基本假设与检验
为什么要进行方差分析?
在环境科研中,常常需要对测试结果进 行分析,以判断各种测试因素是对试验 结果产生显著影响,例如测量某一污染 物浓度时,不同的实验室、不同的测量 仪器、不同的分析方法、不同的操作人 员等种种因素都会对测试结果产生影响。 方差分析就上判断这些影响是否显著的 重要方法
标准偏差来衡量数据的分散程度。平方不 仅避免单次测量偏差相加时正负抵消,更 重要的是使大偏差能更显著地反映出来, 更好地表达数据的分散程度,表示测量的 精密度
当实验次数无穷大时,称为总体标准差。
18
实验误差的来源及分类
随机误差(random error) 以不可预知的规律变化着的误差,随机误差的出
20
系统误差来源
① 测量装置方面的因素 ② 环境方面的因素 ③ 测量方法的因素 ④ 测量人员的因素
计量校准后发现的偏差、仪器设 计原理缺陷、仪器制造和安装的 不正确等。
测量时的实际温度对标准温度的 偏差、测量过程中的温度、湿度 按一定规律变化的误差。
采用近似的测量方法或计算公式 引起的误差等。
测量人员固有的测量习性引起的 误差等。
为因素的水平。
方差分析中的几个基本概念
方差分析主要用来研究一个定量因变量与一个 或多个定性自变量的关系
只有一个自变量的方差分析称为单因素方差分 析。
研究多个因素对因变量的影响的方差分析称为 多因素方差分析,其中最简单的情况是双因素 方差分析。
固定效应与随机效应模型
为便于理解,在单因素方差分析中,将因
在一定测试条件下随机误差的分布处于有限的范 围内。如果测量误差超过这个界限,则认为测量 该值时存在疏失误差。
来源: 测量人员疏忽造成的读数、记录或运算造 成的错误,加错试剂,溅失溶液等
处理方法: 对实验结果处理前,须剔除这类数值。 操作者应该严格认真,避免过失。
23
显著性水平(a)与置信水平(1-a)
(1)误差: 测量值(X)与真值(XT)之间的 差值(E)。 (2)偏差(Deviation):一组是表示个别测量 值与平均值之间的差值,一组分析结果的精密度 可以用平均偏差和准偏差两种方法来表示。
13
误差与偏差
两者的区别与联系
用误差衡量测量结果的准确度,用偏差衡量测量结果 的精密度;误差是以真实值为标准,偏差是以多次测 量结果的平均值为标准。
可以看作t检验的扩展,只比较两个均值时与t检验等 价。
20世纪20年代由英国统计学家费喧(R. A. Fisher)最 早提出的,开始应用于生物和农业田间试验,以后在 许多学科中得到了广泛应用。
方差分析思想
将测定数据 的总变异(方差)分解 为因素间 的变异和因素内不同水平间的变异。通过比较 因素在不同水平间的变异,分析不同水平 选取 是否对测定结果产生影响。或者通过因素间的 变异的比较分析各因素对分析结果产生的影响 及因素间的交互作用。