中国与美国和欧盟智能电网之比较研究_英文_

合集下载

智能电网建设的规划与评估研究

智能电网建设的规划与评估研究
Do u n a d d a S RMa n 0 0 0 l w e . ( . c me ts n Me i GS / i 9 7 7 o r s D1 f
_
_
工业不 同领 域 的研究 和实 践 中形 成 了发展模 式不 一
世纪科学技术和社会发展的必然要求 , 而通信技术、 计算机技术、 传感技术 的发展和成熟则 为智能电网
建设 提供 了技 术支 撑 。
的电网发展之路 。但随着社会的智能化发展 , 发展 智 能 电网建 设 已成 为各 国电 网发 展 的必然趋 势 和共
总体目标 、 注意环节进行 了分析 , 重点对智能电网建
设 的效益 评估 进行 了研 究 , 列 举 了 中美 两 国 的智 并 能 电网建 设 的研究 与实 践 。
2 智能 电网建设 的规划
电网建设规划是一个具有多 目 性、 标 不确定性
1 智 能 电网概述
“ 智能 电网 是近 1 O年来电力工业领域异常热
23 , 0 0 但在“ 1 ” 8・ 4 大停 电后 , O D E随后发布 了“ 国 家输 电技术路线 图” 以为实现 “ r 3 ” , G d2 0 设定 了 i 0
技术战略方向。因此, 我国智能电网的建设规划 , 要 以建设坚强智能电网为 目标 , 保证社会经济发展对
第 2 期 o
3 智能 电网建设 的效 益评估
智能电网在国内外 的建设升温 , 多个研究单位 和组织也都对智 能电网的建设 和效益进行评估研 究 , 由于各 自的侧重点不同, 且 评估 的模型、 指标、 体 系等均不相同, 甚至统一组织、 机构的评估 的侧重点
随着 时 间的推移 都 在 变化 , 西北 太 平 洋 国家实 验 如 室在 20 和 2 1 0 3年 00年对 智能 电 网发展 效益 进行 了

国内外智能电网的发展现状与分析

国内外智能电网的发展现状与分析

德国“工业4.0”战略的核心是建立一个高度数字化的生产平台,实现生产 过程的自动化、智能化、精益化。这个平台包括了生产设备、物流系统、控制系 统等各个方面,通过互联网、物联网等技术手段实现互联互通和数据共享。在这 个平台上,企业可以灵活地调整生产模式和生产流程,快速响应市场需求的变化。
2、美国
美国是全球科技创新的中心之一,也是智能制造发展的另一个领军者之一。 美国政府提出了“先进制造业”战略,旨在通过技术创新和数字化转型等手段, 提高制造业的竞争力和创新能力。美国在智能制造领域拥有很多领先的企业和技 术,如通用电气、惠普、苹果等企业都在积极推进智能制造的实践。
我国已经具备了一定的自主创新能力,如数控机床、工业机器人等智能装备 的研发和应用已经得到了广泛的应用。
然而,我国智能制造仍然存在一些问题和挑战。首先,我国制造业基础依然 薄弱,大部分企业的技术水平和管理水平还比较落后;其次,我国智能制造发展 不平衡,东部地区发展较快,中西部地区相对滞后;最后,我国智能制造发展还 面临着人才短缺和技术瓶颈等问题。
国内外智能电网的发展现状与 分析
目录
01 一、国际智能电网的 发展现状
03
三、智能电网发展的 挑战与未来趋势
02
二、中国智能电网的 发展现状
04 参考内容
智能电网是电力系统的一种现代化形态,通过采用先进的信息、通信和控制 技术,可以实现对电力系统的监测、控制、分析和优化。在国内外,智能电网的 发展正在不断推进,对于提高电力系统的效率、可靠性和安全性起到了重要作用。 本次演示将探讨国内外智能电网的发展现状及未来趋势。
其次,我们需要加强人才培养和技术创新。智能制造需要大量的高素质人才 和技术创新成果的支持。政府和企业应该加强人才培养和技术创新的投入力度, 建立更加完善的人才培养和技术创新体系。

智能电网论文

智能电网论文

摘要在过去的20年里,虽然信息、通信技术发生了翻天覆地的变化,但日渐老化的传统电网结构并没有跟上技术变革的步伐,用户对电力供应提出了越来越高的要求,国家安全、环保等各方面政策都对电网的建设和管理提出了更高的标准。

智能电网就是电网的智能化,它是建立在集成的、高速双向通信网络的基础上,通过先进的传感和测量技术、先进的设备技术、先进的控制方法以及先进的决策支持系统技术的应用,实现电网的可靠、安全、经济、高效、环境友好和使用安全的目标。

智能电网的主要特征包括自愈、激励和包括用户、抵御攻击、提供满足21世纪用户需求的电能质量、容许各种不同发电形式的接入、启动电力市场以及资产的优化高效运行。

本文首先介绍了不同国家对于智能电网概念的不同理解,然后介绍了智能电网的主要应用和特征,最后着重介绍了智能电网在国内外发展的现状和一些自己的思考,在科技引领社会变革的时代,智能电网必将展现出其特有的强劲的生命力。

【关键词】智能电网不同国家生命力ABSTRACTIn the past 20 years, although the information, communication technology have changed a lot , but the traditional structure of power grid did not keep up with the pace of technological changes, the user of the power supply had a great increasing demands, and consumers put forward high requirements of the national security, environmental protection and other aspects of policy of power grid construction and management .The smart grid is a grid of intelligence, it is based on the integration, high-speed bidirectional communication network , through the advanced sensing and measuring technology, advanced technical equipment, advanced control method and advanced technology of decision-making support system for power grid application, reliable, safe, economic, efficient, environmental friendly and the use of safety target. Smart grid features the self-healing, incentive and includes user, resist the attack, provided to meet the needs of users of electrical energy quality twenty-first Century, allow for various forms of generation power market access, starting and optimize asset efficient operation.This paper firstly introduces the different countries have different understanding of the concept of the smart grid, then introduces smart grid applications and characteristics, at last introduces the smart grid in the domestic and foreign development present situation with my own thinking, science and technology lead the social changes of the times, the smart grid will show its strong vitality.【Key words】Smart Grid different Countries Vitality前言2005年,一位名叫马克⋅坎贝尔的加拿大人发明了一种无线控制器,这种控制器与大楼的各个电器相连,让大楼里的电器互相协调,减少了大楼在用电高峰期的用电量。

智能电网技术标准体系研究

智能电网技术标准体系研究

智能电网技术标准体系研究王伟;刘英军;王琨【期刊名称】《电器工业》【年(卷),期】2017(000)005【总页数】7页(P32-38)【作者】王伟;刘英军;王琨【作者单位】工业和信息化部产业发展促进中心;工业和信息化部产业发展促进中心;中国电器工业协会【正文语种】中文本文通过对国内外智能电网标准体系发展及现状的研究,以及我国智能电网标准体系机构的解读,提出了智能电网技术标准体系研究工具对于其发展的重要意义。

(一)国际电工委员会国际电工委员会(IEC,International Electro technical Commission)是世界上成立最早的非政府性国际电工标准化机构。

为了推动智能电网建设,2009年4月,IEC标准化管理委员会(SMB,Standardization Management Board)召开首次会议组织成立了第三战略工作组——智能电网国际战略工作组(SG3),负责制定IEC的智能电网标准体系。

我国国家电网公司也已派相关专家参加工作。

该次会议明确了智能电网战略工作组的职责范围,其主要任务是智能电网IEC标准体系的研究。

IEC SG3下属三个工作组:智能电网路线图工作组(Roadmap task)、Mapping Chart工作组和用例工作组(Use Case task)。

路线图工作组在2010年5月发布了《IEC智能电网标准路线图》(1.0版),在路线图中提出了信息系统体系结构、SOA架构等概念。

从2011年6月起,IEC开始计划新的架构,中期目标(mid-term 5-years)和长期目标(long term 15-years),并将IEC的体系架构与欧盟智能电网联合工作组(CEN/CENELEC/ETSI Joint WorkingGroup)的智能电网通用参考架构对接。

IEC认为,智能电网核心标准对智能电网应用和解决方案具有重大影响,适用于智能电网的主要技术领域。

智能电网的背景、推动力和制约

智能电网的背景、推动力和制约

智能电网的背景、推动力和制约穆钢;肖白【摘要】The scope of smart grids was discussed in this paper. The background, the driving forces and the constraints of smart grids were investigated. And some emerging frontier technologies of smart gridswere summarized. For the new challenges of large scale renewable generation incorporating to grid, the comprehensive strategies should be adopted to multi-aspects (power generation side, grid side and load side)to overcome the side effects of grid renewable generation. Many countermeasures can be taken to achieve the well power generation at power generation side, unhindered power transmission at grid side and proper utilization at load side.%讨论智能电网的范畴,分析智能电网发展的背景、推动力和制约,概述智能电网的几个前沿领域.针对智能电网面临的“大规模可再生能源接入”新挑战,指出克服其影响应多管齐下、综合施策.分别讨论在电源侧、电网侧和负荷侧可以采取的对策,以实现电源侧发得好、电网侧送得出、负荷侧用得巧.【期刊名称】《电力科学与技术学报》【年(卷),期】2012(027)003【总页数】5页(P5-8,40)【关键词】智能电网;可再生能源;电网;电力负荷【作者】穆钢;肖白【作者单位】东北电力大学现代电力系统仿真控制与绿色电能新技术教育部重点实验室,吉林吉林132012;东北电力大学现代电力系统仿真控制与绿色电能新技术教育部重点实验室,吉林吉林132012【正文语种】中文【中图分类】TM715智能电网是近年来引起学术界、工程界、经济界乃至政治界广泛关注的话题,甚至被寄予了接续网络经济作为提振经济重要助推器的厚望.来自电气工程、信息通信、经济等领域的专家从不同角度刻划了智能电网的属性和特征.定义1 智能电网其概念有广义和狭义之分.狭义的智能电网也称“分布式电网”,是指通过建设一定的基础设施,实现对电力运营的电子化监视,并将监视信息在电力、电网公司和电力用户三者之间实现共享,以实现电网的电力最优化调度、差别计费、新能源电力的购买、故障的实时监测和快速检修,以及对电力用户的分流;广义上是指将电信光缆和电线电缆合二为一,未来将通过电缆实施电信讯号、网络讯号的传输.实现电网的可靠、安全、经济、高效、环境友好和使用安全的目标,是实现电网的信息化、数字化、自动化和互动化,简称为“坚强的智能电网”[1].定义2 智能电网是一个能够实现对用户和设备进行实时监视的完整体系,以利用各种信息提高电网的可靠性、经济性和灵活性,为电网运行和管理人员提供更完整、便捷的电网状态显示界面,帮助电网实现智能化运行的新型电网[2].定义3 智能电网是指以物理电网为基础,将先进的现代传感测量技术、通讯技术、信息技术、计算机技术和控制技术与物理电网高度集成而形成的新型电网.以充分满足用户对电力的需求和优化资源配置、确保电力供应的安全性、可靠性和经济性、满足环保约束、保证电能质量、适应电力市场化发展等为目的,实现对用户可靠、经济、清洁、互动的电力供应和增值服务[3].定义4 智能电网是指一个完全自动化的供电网络,其中的每一个用户和节点都得到实时监控,并保证从发电厂到用户端电器之间的每一点上的电流和信息的双向流动.通过广泛应用的分布式智能和宽带通讯及自动控制系统的集成,它能保证市场交易的实时进行和电网上各成员之间的无缝连接及实时互动[4].4个定义中,前2个主要面向电网本身,侧重于对现有电网体系结构的信息化,提高电网的效能和安全性;后2个主要面向用户和市场,强调的是物理电网与现代信息通信技术的高度集成,进而充分满足用户的需求并推动电力市场化发展,实现新的增值服务,保证市场交易的实时进行和各成员间的实时互动.分析关于智能电网的各种定义,可以发现“智能电网”所覆盖的不仅限于传统“电网”的范畴,这里“电网”是对电网所连接的电能“产、输、配、用”全产业链的指代.从本质上说,智能电网是由信息通信等新技术推动的电网技术跃升,以确保电网承担起高效清洁安全可靠的主要能源供给系统之使命并为各类用户提供优质经济便捷的服务.智能电网是多种新技术乃至管理理念的集成创新,迄今还没有一个可以严格考核的终极目标.智能电网所标示的是电网(或能源供应体系)技术进步和破解发展瓶颈的方向.1 智能电网发展的背景1.1 信息通信技术的飞速发展和可再生能源开发信息通信技术的飞速发展已经深刻地影响了经济社会发展的各个方面,也极大地改变了人们的生活方式.信息通信技术的发展,使得信息的采集、加工和传输变得非常廉价和便捷.在此基础上,通过控制来实现复杂系统性能的优化也就有了更大的技术经济合理性.电网(电力系统)作为最复杂的人造系统,对信息的采集、加工和对系统的控制和优化在电网发展的早期就已经受到重视并伴随着电网的发展而不断进步.由于以往信息采集加工传输成本的限制,在电能的发输配用各环节间存在着巨大的信息化鸿沟,主干输电网和重要发输电装备基本上能伴随信息通信技术的发展同步推进信息化,而配电、用电环节的信息化程度总体上很低,使得电力终端用户很难从电网的角度获得信息技术进步的体验;由于资源环境的约束日益凸显,降低化石能源发电的比重、大力发展可再生能源发电已成为电源结构变化的必然趋势,这给电网的运行和调控带来了全新的挑战;电能产供用各环节资产利用率亟待提高,迫切需要信息通信技术的支撑.1.2 国外智能电网发展2001年,EPRI开始“Intelligrid”(智能电网)研究.2003年,美国电科院首先提出了智能电网研究框架,能源部(DOE)随即发布Grid2030计划.同年,英国工程和自然科学研究委员会(EPSRC)资助的旗舰项目“可持续电力生产和供给”对智能电网展开了大规模、集团式研究.2004年,美国DOE启动了电网智能化(Grid-Wise)项目.2005年,DOE 与 NETL(National Energy Technology Laboratory)合作发起了“现代电网(MGI)”研究.2006年,欧盟智能电网技术论坛推出了欧洲智能电网技术框架;发表了研究报告,全面阐述了智能电网(Smart Grid)的发展理念和方法[5].2008年,美国DOE也采用了Smart Grid这一术语,这一称谓已经得到了普遍认可[2].2009年4月,美国总统奥巴马将智能电网提升为美国的国家战略.1.3 国内智能电网发展2008年以来,中国国家电网公司积极关注和跟踪世界电网智能化发展的趋势,并结合国家电网的建设与发展的实际,提出了加快建设以特高压电网为骨干网架,各级电网协调发展的坚强智能电网的目标.2009年6月27日,天津大学组织第一届智能电网学术论坛,相关学术机构和企业参与,表达了社会各界从不同角度对智能电网目标以及建设任务的理解,体现了对智能电网建设的期待和关注[6].国内各学术团体和企业也组织召开了多次国际国内学术会议研讨智能电网的建设和发展.2 智能电网发展的主要推动力智能电网发展的推动力主要有:①提高电网运行的安全性和供电可靠性,提高电网设备利用率,提高供电质量;②创造电力用户与电网的双向互动,为实现定制的电力增值服务和用户电能管理提供条件;③大规模可再生能源接入电网,促进节能环保,减少能源部门温室气体的排放;④信息通信技术的飞速发展带来了经济社会生活的深刻变革,将在推动电网升级中发挥重要作用.智能电网发展要解决的优先课题则因各国电网的具体情况而异.2003年8月14日发生的美加大停电事故,不仅给电网及相关企业造成严重损失,也产生了很严重的社会影响.事故引起分析和反思已经远远超出了电力工程界,使得美国在推进智能电网建设时更关注遭受扰动后电网的自愈能力.欧洲等国为了解决电力设施老化、跨欧电力市场建设,以及减小环境污染而推动智能电网的研究,分布式能源和可再生能源接入是研究重点.由于中国一次能源和负荷中心的分配极不均衡,电网承担着将能源基地的电能传送到主要负荷中心的重任,因此,中国智能电网建设就强调了主干网架发展建设的任务.3 智能电网发展的制约智能电网毕竟不能从零开始建设,是在既有电网基础上建设和发展的.与其他行业由信息化推动的革命性变化相比,智能电网发展面临着一些特殊制约.例如:电网具有先天的行业垄断性,规模经济增长空间相对较小,不可能像家用电器行业市场扩容之迅猛;电力的产品形态相对固定,加上其兼有公共服务的属性,使其创新增值模式的难度较大,不如电信业和高速铁路(高铁由于运速的提高其票价可以数倍于普通铁路票价,这在电力产品中恐难以实现);上游产品成本制约,电力产品终端供给的降价潜力较小,远不如芯片业.因此,向外部转嫁发展智能电网成本的空间很有限.在发展智能电网的过程中,也需要进行审慎的技术经济比较,盲目的追高求全可能会使智能电网的发展误入歧途.性能指标最高的技术不一定是最好的技术.例如:“航天飞机”、“协和式客机”和“铱星电话”在各自的领域内都是具有最高技术指标的产品,但它们都因为不具有持久的经济竞争力而遭淘汰,成为过眼烟云. 工程技术与科学研究的重要区别就在于前者更关注经济合理性,适合阶段、解决问题、创造效益的技术才是最好的技术.因此,在选择智能电网的发展目标和技术路径时,特别要重视提高技术水平的成本和收益之间的均衡分析.4 智能电网的前沿技术智能电网的前沿技术体现在以下领域:1)发电领域.核聚变发电、海洋发电、生物质能发电、高空风力发电.2)输电领域.新型直流输电、柔性输电(FACTS)技术、特殊用途的无线输电、光纤输电.3)变电领域.智能变电站、主要变电设备的状态感知与监测、基于全寿命周期管理的变电设备状态检修.4)配电领域.多能供给协调的微网技术、电动汽车充放电设施的能量管理技术、储能技术.5)用电领域.基于信息双向互动的定制化用电技术,楼宇/家庭综合能量管理与优化.6)电网调度.大电网智能运行控制技术、大型可再生能源及分布式能源接入控制技术[7].5 大规模可再生能源发电的输送和消纳5.1 大规模可再生能源发电集中入网带来的问题近年来,中国可再生能源发电快速发展,中国的风电装机容量已经跃居世界第一位.中国规划的8个千万千瓦级风电基地建设正在稳步推进,部分省级电网的风电装机容量已经接近总装机容量的20%.风能具有间歇性和波动性,大规模风电集中联网给电网运行带来了诸多挑战.包括:风电功率的间歇性导致的宽运行范围的有功、无功平衡和频率电压调节问题;风电快速变化带来的调峰容量和调峰速率问题;输送低能量密度的风电导致输电元件资产利用率低的问题;输电系统建设滞后导致的风电场并网难或弃风损失问题;大规模可再生能源发电的消纳问题.5.2 大规模可再生能源发电集中入网问题的解决在电源、电网和负荷侧多管齐下,综合施策.1)在电源侧做到“发得好”.加强风电功率预测研究,降低运行时需匹配的调节功率;研究追踪预测曲线的风电场有功控制方法,降低随机波动性;研究大规模风电基地多电压级集电系统无功电压调控方法;多种电源组合打捆外送,提高输电效益;研究提高传统发电方式调峰能力的方法和激励政策;研究大规模储能在风、光发电中的应用.2)在电网侧做到“送得出”.研究考虑风电功率波动特性并兼顾电网安全、提高输电资产收益率并补偿电网阻塞损失的风电外送输电综合优化规划方法[8].研究考虑风电波动对电网运行影响的评价方法,克服现有的单纯以穿透率来评价风电影响的缺陷;基于统计方法建立风电对电网稳态运行影响的评估方法;建立应对大规模风电接入的电网有功、无功调控策略.通过优化调度提高既有电网接纳和服务于可再生能源发电入网的能力,发挥大电网的容量优势,充分挖掘和运用水电的调节潜力.研究鼓励电网接收可再生能源发电的政策和技术措施,规定区域电网消纳可再生能源发电的最低比重.3)在负荷侧做到“用得巧”.通过智能电网平台增加可再生能源发电的消费比重.例如:大力开发可时移、可调控的用电负荷(电动汽车,热,冷);发展基于网络的可再生能源发电出力信号发布机制,对与可再生能源发电同步消长的用电负荷给予政策激励,建立可时移负荷的自主调控模式和控制系统.这样就可以通过部分负荷对可再生能源发电的追踪,对冲可再生能源发电波动的不利影响.4)探索新的风/光电多联产模式.在大规模风/光电场群区域内建设用能密集型新产业,生产能量密集易转换型产品,实现风/光能的综合利用,减轻风/光电波动对电网的影响.例如,提水,制氢,压缩空气,制热,制冷,海水淡化等.即将大型风/光电场群建设成多产型能源基地.6 结语智能电网作为未来电网(或电力系统)的发展方向已经成为各界的共识,但对于智能电网核心特质的描述,尚未有统一的定义,各方专家见仁见智.发展智能电网的主要推动力来自提高电网安全的需求、双向信息互动的需求、信息通信技术进步的推动和大规模可再生能源发电入网的需求.在推进电网技术升级时,应注意审慎的技术经济比较,使智能电网的发展能实现安全、优质、高效、多赢的目标.参考文献:[1]胡晓炜,苑玉山.基于地理信息系统(GIS)的智能电网规划系统研究[J].中国电力教育,2009(12):263-264.HU Xiao-wei,YUAN Yu-shan.Research on GIS based smart grids planning system[J].China Electric Power Education,2009(12):263-264.[2]史卫江,曹荣新,曹增新.智能电网综述[J].华北电力技术,2010(5):40-43.SHI Wei-jiang,CAO Rong-xin,CAO Zeng-xin.Review of Smart Grid [J].North China Electric Power,2010(5):40-43.[3]宋永华,杨霞.以智能电网解决21世纪电力供应面临的挑战[J].能源技术经济,2009,21(6):1-8.SONG Yong-hua,YANG Xia.Smart Grid:The solution to challenges of power supply in the 21st century[J].E-lectric Power Technologic Economics,2009,21(6):1-8.[4]余贻鑫,栾文鹏.智能电网[J].电网与清洁能源,2009,25(1):7-11. YU Yi-xin,LUAN Wen-peng.Smart Grid[J].Power System and Clean Energy,2009,25(1):7-11.[5]European Commission.European technology platform Smart Grids:Vision and strategy for Europe's electricity networks of the future[EB/OL].http://www.smartgrids.eu,2006-04-07.[6]周士平.智能电网及国内近期发展概述[J].湖北工业大学学报,2010,25(1):1-5.ZHOU Shi-ping.Smart Grid and an overview of recent developments in China[J].Journal of Hubei University of Technology,2010,25(1):1-5.[7]宋晓芳,薛峰,李威,等.智能电网前沿技术综述[J].电力系统通信,2010,31(7):1-4.SONG Xiao-fang,XUE Feng,LI Wei,et al.Summary of cutting-edge technologies for Smart Grid[J].Telecommunications for Electric Power System,2010,31(7):1-4.[8]穆钢,崔杨,严干贵.确定风电场群功率汇聚外送输电容量的静态综合优化方法[J].中国电机工程学报,2011,31(1):15-19.MU Gang,CUI Yang,YAN Gan-gui.A static optimization method determine integrated power transmission capacity of clustering wind farms [J].Proceedings of the CSEE,2011,31(1):15-19.。

智能电网 论文

智能电网 论文

智能电网意义:智能电网包括可以优先使用清洁能源的智能调度系统、可以动态定价的智能计量系统以及通过调整发电、用电设备功率优化负荷平衡的智能技术系统。

展示了未来智能电网的基本结构,电能不仅从集中式发电厂流向输电网、配电网直至用户,同时电网中还遍布各种形式的新能源和清洁能源:太燃料电池阳能、风能、燃料电池、电动汽车等等;此外,高速、双向的通信系统实现了控制中心与电网设备之间的信息交互,高级的分析工具和决策体系保证了智能电网的安全、稳定和优化运行.提纲一、智能电网的定义;二、智能电网概念的发展有3个里程碑;三、互动电网的运转功效和社会意义;四、历史发展智能电网(smart power grids),就是电网的智能化,也被称为“电网2。

0",它是建立在集成的、高速双向通信网络的基础上,通过先进的传感和测量技术、先进的设备技术、先进的控制方法以及先进的决策支持系统技术的应用,实现电网的可靠、安全、经济、高效、环境友好和使用安全的目标,其主要特征包括自愈、激励和包括用户、抵御攻击、提供满足21世纪用户需求的电能质量、容许各种不同发电形式的接入、启动电力市场以及资产的优化高效运行.一个由众多自动化的输电和配电系统构成的电力系统,以协调、有效和可靠的方式实现所有的电网运作,具有自愈功能;快速响应电力市场和企业业务需求;具有智能化的通信架构,实现实时、安全和灵活的信息流,为用户提供可靠、经济的电力服务。

中国的智能电网的基本特征是在技术上要实现信息化、自动化、互动化。

智能电网概念的发展有3个里程碑:美国IBM公司第一个就是2006年,美国IBM公司提出的“智能电网”解决方案。

IBM的智能电网主要是解决电网安全运行、提高可靠性,从其在中国发布的《建设智能电网创新运营管理-中国电力发展的新思路》白皮书可以看出,解决方案主要包括以下几个方面:一是通过传感器连接资产和设备提高数字化程度;二是数据的整合体系和数据的收集体系;三是进行分析的能力,即依据已经掌握的数据进行相关分析,以优化运行和管理。

智能电网文献综述

智能电网综述摘要:智能电网是当今世界电力系统发展变革的最新动向,并被认为是21世纪电力系统的重大科技创新和发展趋势。

目前,以美国、英国、法国、德国为代表的欧美国家,己经纷纷加入到研究和发展智能电网的行列中来,将智能电网(Smart Grid )作为末来电网发展的远景目标之一,建立一个高效能、低投资、安全可靠、灵活应变的电力系统。

具有对用户可靠、经济、清洁、互动的电力供应和增值服务的智能电网是未来电网的发展方向。

本文阐述了智能电网的内涵和特点,分析了国内外智能电网的研究进展和我国发展智能电网的条件,对一些现有的研究行进了分析和讨论。

关键词:智能电网;智能化;信息化;节能减排;1 智能电网的概念随着一些国家对电网的环境影响、可靠性和服务质量的关注,电网朝着更经济、稳定、安全和灵活的方向发展,因此提出了“智能电网”的概念。

智能电网是以通信网络为基础,通过传感和测量技术、电力电子技术、控制方法以及决策支持系统技术,实现电网的可靠、安全、经济、高效、环境友好和高服务质量的目标,其主要特征包括自愈、引导用户、抵御攻击、提供满足用户需求的电能质量、容许各种不同发电形式的接入、电力市场以及资产的优化高效运行。

目前,全世界智能电网的发展还处在起步阶段,没有一个共同的精确定义。

对于智能电网,各个国家的定义有所不同。

美国能源部在《Grid 2030》中将智能电网定义为:一个完全自动化的电力传输网络,能够监视和控制每个用户和电网节点,保证从电厂到终端用户整个输配电过程中所有节点之间的信息和电能的双向流动。

中国物联网校企联盟将智能电网更具体的定义为:智能电网由:智能配电网、智能电能表、智能发电系统、新型储能等系统组成。

欧洲技术论坛把智能电网定义为:一个可整合所有连接到电网用户所有行为的电力传输网络,以有效提供持续、经济和安全的电力。

而国家电网中国电力科学研究院将智能电网定义为:以物理电网为基础(中国的智能电网是以特高压电网为骨干网架、各电压等级电网协调发展的坚强电网为基础),将现代先进的传感测量技术、通讯技术、信息技术、计算机技术和控制技术与物理电网高度集成而形成的新型电网。

中美电网规模与电源容量对比分析

中美电网规模与电源容量对比分析□□王熙亮□□国网信息通信有限公司,北京白广路二条1号 100761;COMPARION STUDY OF ELECTRIC POWER GRID SCALE AND GENERATION CAPACITY BETWEEN CHINA AND USAWang Xi-liangState Grid Information & telecommunication Co.,Ltd. No 1 Lane 2, Baiguang Road, Beijing 100761 ChinaABSTRACT:The ralation between electric power grid scale and generation capacity are determined by many factors such as energy structure, generation structure and load distribution. The primary energy, generation structure, primary energy and load distribution as well as the stage of grid development between China and United States are compared ang studied. The grid investment, development strends of China and United States are studed. The grid scale and generation capacity of main countries in the world are also compared.KEY WORD:electric power grid scale; power source; energy structure; comparison study摘要:一个国家的电网规模与电源容量的关系与能源结构、电源结构和负荷分布等因素有关。

欧美日韩及国内的物联网发展战略比较

欧美日韩与国内的物联网发展战略比较物联网已成为许多国家发展的战略,2005年4月8日,在日内瓦举办的信息社会世界峰会(WSIS)上,国际电信联盟专门成立了"泛在网络社会(UbiquitousNetworkSociety)国际专家工作组",提供了一个在国际上讨论物联网的常设咨询机构。

根据这个工作组的报告,2005年,许多国家已经纷纷开始"物联网"的发展战略。

近年来,越来越多的国家开始了基于物联网的发展计划和行动,中国也并不沉默。

从2005年开始,许多国家已纷纷开始"无处不在物联网"的发展战略。

近年来,越来越多的国家开始了基于物联网的发展计划和行动。

随着日韩基于物联网的"U社会"战略、欧洲"物联网行动计划"以与美国"智能电网"、"智慧地球"等计划纷纷出台,还有2009年温家宝总理在XX考察时,提出了把XX建成"感知中国"中心。

各国都把物联网建设提升到国家战略来抓,通过大力加强本国物联网建设,来占领这个后IP时代制高点,从而推动和引领未来世界经济的发展。

针对物联网的国家战略以与应用发展迅速,日韩基于物联网的"U社会"战略、欧洲"物联网行动计划"以与美国"智能电网"、"智慧地球"等计划纷纷出台,物联网已经开始在军事、工业、农业、环境监测、建筑、医疗、空间和海洋探索等领域投入应用。

2009年包括Google 在内的互联网厂商、IBM、思科在内的设备制造商和方案解决商以与AT&T、Veri-zon、中移动、中国电信等在内的电信运营企业纷纷加速了物联网的战略布局,以期在未来的物联网领域取得先发优势。

1 主要发达国家的物联网战略1.1 美国的物联网战略美国非常重视物联网的战略地位,在国家情报委员会(NIC)发表的《2025对美国利益潜在影响的关键技术》报告中,将物联网列为六种关键技术之一。

智能电网在新能源发电中的应用研究 李涛

智能电网在新能源发电中的应用研究李涛发表时间:2019-12-11T17:19:24.057Z 来源:《河南电力》2019年6期作者:李涛曹云龙[导读] 通过智能电网的使用实现了整个电网系统智能交流,并在保证安全的基础上电网系统可以更好的利用新能源进行发电,并可以降低环境压力,减少电力企业成本。

(中国能源建设集团陕西省电力设计院有限公司陕西 710054)摘要:通过智能电网的使用实现了整个电网系统智能交流,并在保证安全的基础上电网系统可以更好的利用新能源进行发电,并可以降低环境压力,减少电力企业成本。

智能电网中储能技术是关键,从现阶段技术使用情况来看蓄电池可以在短时内将能量进行储备,抽水蓄能属于长时间储能设备。

利用新能源进行电力传输时可以通过智能电网对传输过程进行控制。

关键词:智能电网;新能源发电;应用1我国智能电网发展情况1.1电源侧电力企业要想实现绿色可持续发展,应加大新能源的使用力度,通过大量清洁能源的使用来提升智能电网电能传输质量,实现西部能源生产地向东部能源消费地输送能源的目标。

预计到2030年我国清洁能源发电装机会超过总装机的55%,电能会占到重点能源消费的30%以上。

1.2电网侧(1)我国国家电网公司与美国、欧盟智能电网概念所不同的是,提出了坚强智能电网的理念与规划,现阶段我国现代电网建设正朝着高效化、稳定化、透明化、开放化、友好型及清洁环保型方向发展。

(2)发展智能变电站是我国坚强智能电网快速发展的一个缩影,目前为适应新一代电力系统发展需要,结合各专业业务需求,立足电网安全稳定运行,推动技术创新,正在建设“安全可靠、共享融合、灵活高效、智能互动”的第三代智能变电站自动化系统,具有适应无人值守和远方操作的技术和管理要求。

2智能电网应用新能源发电的意义2.1提高了发电的可靠性电力是人们生活中所必需的,在传统的发电过程中,往往会出现断电、停电的情况。

对人们的生产生活造成了严重性的影响,伴随着新能源的使用,它有效地提高了发电的可靠性,实现了为人们持续供电的目的。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第33卷第15期电网技术V ol. 33 No. 15 2009年8月Power System Technology Aug. 2009文章编号:1000-3673(2009)15-0007-09 中图分类号:TM7 文献标志码:A 学科代码:470·4054 中国与美国和欧盟智能电网之比较研究汤奕1,Manisa Pipattanasomporn2,邵盛楠2,刘浩明3,Saifur Rahman2(1.东南大学电气工程学院,江苏省南京市 210096;2.美国弗吉尼亚理工大学高级研究所,美国弗吉尼亚州阿灵顿市 22203;3.河海大学电气工程学院,江苏省南京市 210098)Comparative Study on Smart Grid Related R&D inChina, the United States and the European UnionTANG Yi1,Manisa Pipattanasomporn2,SHAO Sheng-nan2,LIU Hao-ming3,Saifur Rahman2(1.School of Electrical Engineering,Southeast University,Nanjing 210096,Jiangsu Province,China;2.Advanced Research Institute,Virginia Polytechnic Institute and State University,Arlington,V A,22203,U.S.;3.School of Electrical Engineering,Hohai University,Nanjing 210098,Jiangsu Province,China)ABSTRACT: Electric power systems are facing many challenges due to the rapid social and economic developments all over the world. Many countries and regions are interested in the smart grid concept as a new idea to meet the requirements of power demands in the 21st century. As various countries have different natural resources, technologies and societal preferences, the approaches to the smart grid development will be different from one country to another. This paper presents a summary of the concept, research and implementation – including primary responsible organizations - of smart grids from four distinct parts of the world: the U.S., the E.U., Japan and China. Through the comparison and analyses among the U.S., the E.U. and China based on electricity demand, energy supply, security and reliability in power delivery, and the electricity market, a case study has been presented which may benefit China as the country is embarking upon a smart grid development program.KEY WORDS: smart grid;the United States;the European Union;China摘要:电力系统正面临着全世界社会和经济发展带来的众多挑战。

很多国家和地区都把智能电网视为应对21世纪电力需求变化的新思路。

由于不同的国家或地区有着不同的自然资源状况,处于不同的技术和社会发展阶段,因此实现智能电网的途径和方法也应该彼此不同。

该文总结了中国、美国、欧盟和日本的智能电网研究和实施现状,并比较和分析了中、美、欧3者在电力需求、能源供应、电力输送的安全稳定以及电力市场等方面的异同,建议中国智能电网建设应结合自身特点走具有中国特色的坚强智能电网道路。

关键词:智能电网;美国;欧盟;中国0 IntroductionOver the past 50 years, the prominent social and economy developments have brought about many challenges to the electricity network, such as the exponentially increase in the demand for electricity, the integration of digitally controlled devices and renewable energy systems, as well as the increase in cyber security threats and malicious attacks. As the operation of today’s electric power system is still based on the traditional technology available 120 years ago, the power grid is inevitably facing the modern.In the United States, the challenges mainly are from the degradation of the electric power system reliability due to under-investment in the infrastructure combined with growing demand and security threats from terrorist attacks and operation failures. In Europe, the challenge has been the integration of renewable energy sources to a distribution network that was not designed for this purpose[1]. The power systems of Japan-as an island country-are not connected to those of other countries. The integration of intermittent power sources susceptible to weather, such as photovoltaic and wind power, would cause negative effects including electricity shortage and frequency fluctuation[2].In China, the target is to build the powerful electric grid with ultra-high voltage transmission corridor and8 汤奕等:中国与美国和欧盟智能电网之比较研究 V ol. 33 No. 15increase the integration of renewable energy resources. This will need a new electric power grid framework and the integration of new and emerging technologies [3]. In response to the worldwide, the smart grid concept is increasingly recognized in China as a means to improve the energy efficiency of generating and consuming electricity in homes, businesses, and public institutions. Many believe that a smart grid is a critical foundation for reducing greenhouse gas emissions and transitioning to a low-carbon economy with allowing an easier integration and higher penetration of renewable energy [4].The objective of this paper is to give an insight into the current state of smart grid research and implementation in the U.S., the E.U. and China. Characteristics, standards, organizations, demonstration projects and use cases of smart grids in different regions will be summarized and discussed. The similarities and differences of the current state-of-the-art power systems in the U.S., the E.U. and China will be analyzed as a basis for China’s future smart grid.1 System view of smart grid1.1 What is smart gridAs stated by DOE’s general report “The Smart Grid: An Introduction”, a Smart Grid uses “digital technology to improve reliability, security, and efficiency of the electric system: from large generation, through the delivery systems to electricity consumers and a growing number of distributed generation and storage resources”[5] (See Fig. 1).Following the statement, National Energy Technology Laboratory (NETL) provided the framework for smart grid —“A System View of Modern Grid”, which is also widely accepted as the concept and guideline for other participants in the field of smart grid.TransmissionAutomationSystem Coordination, Situation AssessmentSystem OperationsEnergy EfficiencyDistributedGeneration & StorageDistributionAutomationRenewables IntegrationSmart Appliances, PHEVs & Storage Demand Participation Signals &Options图1 美国能源部智能电网组成(来源:美国能源部,2008)Fig. 1 DOE smart grid components (Source: U.S. Department of Energy, 2008 )1.2 Characteristics of smart gridFrom the system point of view, a smart or modern grid should have the following seven principle characteristics:1)Self-healing, which means that the smart grid should be able to monitor the operation of itself, detect, analyze and solve the problems and identify the potential problems to prevent the system collapse. When needed, it should be able to restore the grid network. The self-healing grid will minimize the disruption of service.2)Consumer participation, which will bring benefits to consumers, power system and the environment. In a modern smart grid, the consumers could be well informed of the prices and the load situations by the intelligent components. Therefore the consumers are able to balance between their demands and the electricity system’s needs. The demand management, decision making, real time pricing will be needed to realize this function in the smart grid.3)Attack resisting, which makes the power system more resilient, will minimize the consequence of an attack and restore the system as soon as possible.4)High power quality for 21st century needs, which will minimize the harmonics, distortion, imbalance, sags and spikes during the power delivery. The feature will require more advanced components第33卷第15期电网技术 9such as FACTS, DVR, SVC.5)Accommodation of all generation and storage options, which will enable the smart grid to integrate intermittent renewable energy technologies like solar and wind. This will reduce the dependence on the fossil fuels and be more environmentally friendly.6)Market enabling, which will bring in more participants and options to make the system more efficient, requires but not limits to the technologies of distributed generations, real time pricing and customer responses. The planning and support system are also critical to make the market work.7)Optimizes assets and operates efficiently, which comes last but not least, is to realize the functions of modern grid at minimum cost. It requires network and component assessment, optimization algorithms and anticipatory decision making.Modern technologies are needed to support the seven key features mentioned above. Key technologies required to achieve a smarter grid as stated in Title XIII of 2007 Energy Independence and Security Act (EISA)[6]: the integrated communications, sensing and measurement, advanced components, advanced control methods and improved interfaces and decision support.2Organizations2.1 IntroductionIn the United States and the European Union, elements of the smart grid are being identified and researched by organizations representing governments, national laboratories, private sectors, various trade association and academia. In Japan the primary focus on the smart grid work seems to be coming from the electric utility industry and equipment manufacturers. 2.2 Smart grid standardsThe utility industry and regulatory bodies recognize that the Smart Grid vision changes the traditional operating premise and are collectively addressing interoperability standards issues through various working groups and policy actions in the U.S., the E.U., Japan and China.In the U.S., working groups such as the GridWise Architecture Council[7] and Open Smart Grid (OpenSG)[8] Subcommittee of the Utility Communications Architecture International Users Group (UCAIug)[9] as well as the National Institute of Standards and Technology’s (NIST)[10] all moving towards the target of Smart Grid’s standards.The governance model for Smart Grid standards adoption is suggested to include both stakeholder representatives including utilities, RTOs/ISOs, and other key stakeholder segments to oversee the activities of the Domain Expert Working Groups (DEWGs), and key contributors including Standards Development Organizations (SDOs), User Groups (OpenSG, EEI), vendor groups (NEMA), multi-party groups (Gridwise Alliance), and other relevant non-commercial technical advisory groups (EPRI[11], Gridwise Architecture Council).In March 2009 IEEE officially voted to form theP2030 group which aims to write a high-level electronic guide to tomorrow's smart grid and will scope out standards for smart grids.In the 7th Frameworks Programs (FP7) of the E.U., the E.U. research Energy Work program was published; from this it carried a request for projects to develop Open-Access standards for Smart Multi-Metering Services[12]: Research activities should cover formal definition of protocols, data formats and all the necessary modules of integrated open-access Integrated Automatic Meter Management Systems. Among the functions covered are automatic meter reading, remote (re)connection, flexible tariff management, demand side management and demand response to market and network signals, and integration of distributed generation.2.3 Smart grid organizations in the U.S.Generally speaking, Department of Energy serves as the lead agency responsible for the smart grid research and implementation in the U.S.. Majority of the activities related to smart grid are supported by the Department of Energy (DOE). Overall, the organizations contributing to smart grid work could be categorized into government and non-government, of which the laboratories, institutions and universities mainly assume the task of research and development while companies and the related coalitions mainly work on the implementation (See Fig. 2 ).1)Government.①Federal[13].The Federal Smart Grid Task Force was established under Title XIII of the EISA. The Task Force is comprised of experts from federal agencies including the Department of Energy, the Federal10 汤奕等:中国与美国和欧盟智能电网之比较研究V ol. 33 No. 15Governmentr图2 美国的智能电网研究机构Fig. 2 Smart grid organization of U.S.Energy Regulatory Commission, the National Instituteof Standards and Technology, the EnvironmentalProtection Agency, the Department of HomelandSecurity, and the Department of Agriculture. It isexpected that the smart grid will play a significant rolein integrating intermittent renewable energy sources tothe electric power grid.Tab. 1 lists various federal agencies which haveresponsibilities for smart grid related work. Theirtasks are to coordinate and integrate inter-governmental activities, oversee report production forsubmission to Congress, develop smart grid R&Dplans and collaborate on interoperability frameworksand support the Electricity Advisory Committee ofDOE.表1美国智能电网相关机构Tab. 1 Federal agencies for smart grid in U.S.Organization RolesOE-DOE[14]Leadership Cyber Security, State Policy Transmission R&DEERE-DOE[15]Energy efficiency & renewablesNETL[16] Informationdissemination DHS[17] HomelandsecurityEPA[18] EnvironmentalIssues FERC[19] WholesalemarketsNIST Interoperabilitystandards USDA[20]Rural electricity developmentDoD[21] Nationalsecurity②State.30 states have developed and adopted renewable portfolio standards, which require a pre-determined amount of a state’s energy portfolio (up to 20%) to come exclusively from renewable sources by as early as 2010[22].2)Research.National labs, supported by DOE, such as NETL, Pacific Northwest National Laboratory (PNNL)[23] and National Renewable Energy Laboratory (NREL)[24]have major responsibilities dealing with smart grid R&D. There are also industry organizations like EPRI and universities such as Virginia Tech [25], Illinois Institute of Technology [26], who are involved in smart grid research and education. As an independent, non-profit organization, EPRI members represent more than 90% of the electricity generation and delivery in the U.S. The EPRI’ IntelliGrid Architecture represents their ongoing work to establish an industry level architecture for intelligent equipment that interoperates to assist the ultimate deployment and cost effectiveness of intelligent systems [27].3)Industry.For the implementation of smart grid, private entities are an important driving force. Most of the leading manufacturers have their own R&D departments, which help to accelerate the development of communication and advanced components in smart grid. On the other hand, utilities will help to deploy the intelligent devices and controls to realize the “smart grid” in their serving areas. Consulting companies also participate in this endeavour by providing the dynamic development information for policy makers and other market participants. Stakeholders also form alliances or coalitions such as GridWise, Demand Respond Smart Grid (DRSG) and Utilimetrics to guide the industry and help develop the interoperability of various smart grid devices.4)Media.There are many media—commercial or non- commercial—which publish news about smart grid as this technology goes through its rapid development. Among all these, the Smart Grid Newsletter (SGN)[28]—第33卷 第15期 电 网 技 术 11as the official public media supported by DOE —is theleading source of news and analysis for themodernization and automation of the electric powernetwork. Besides, there are also many forums to provide opportunities for the stakeholders to communicate with each other such as GridWeek [29]which is held in Washington, DC every year.2.4 Smart grid organizations in the E.U.Since 1984, research and innovation activities inthe E.U. are enclosed in large programs called Frameworks Programs (FP)[30]. The FPs delimit, focus,find and monitor research at the European level.Integration of Renewable Energy Sources andDistributed Generation into the European ElectricityGrid [31](IRED) is the general name of a series of R&Dprograms involving more than 100 researchinstitutions and electric companies, supported by theE.U. Committee. Five categories of renewable energyand distributed generation related programs in FP5include: distributed generation, electricitytransmission, storage, high temperaturesuperconductors and other integration projects. Someof these categories are extended to FP6 and FP7,which are also included in IRED.In May 2005, the E.U. Committee broughtforward the concept of “Platform for Future PowerGrid”, i.e. “Smart Grid”. In FP7 (2007—2013)[32],“Smart energy networks” is one of the activities within the energy theme, and “SmartGrid” is the name of the European Technology Platform (ETP_ SmartGrid). Some preliminary research has been condected in FP7 to address in the framework of smart grid. At the same time, FP7 published five research areas related to smart grid, shown in the following Fig. 3.图3 欧盟框架计划7的智能电网研究领域 Fig. 3 Research areas in smart grid of FP72.5 Smart grid organizations in Japan The System Engineering Research Laboratory (SERL)[33] is the main organization that conducts smart grid R&D in Japan. The SERL researches the following smart grid related issues to achieveCRIEPI’s (Central Research Institute of Electric Power Industry) mission of “the challenging to global climate change” and “the assuring of energy security”: 1)Research on power systems to support stable power supply, and safe, comfortable and efficientenergy utilization. 2)Research on next generation power grid whichis reliable and affordable to integrate large amount ofrenewable generation.3)Research on information and communicationtechnologies to support next generation grid.4)Research on end-use technologies.The SERL conducts the smart grid R&D, knownas “the next-generation grid”, i.e. Triple I “Intelligent,Interactive and Integrated” Power System (TIPS). Thepurpose is to develop operation and controltechnologies to allow large-scale interconnections ofdistributed generations, technologies for preventinglarge-scale blackouts, and techniques for advancedmanagement of aged infrastructure [34].3 Smart grid implementation 3.1 IntroductionThe information summarized above indicates the advancement of the U.S. and the E.U. and Japan in smart grid studies. Examples of efforts to push the smart grid forward from the R&D in the laboratoryenvironment to the real world implementation are discussed below. 3.2 Smart grid implementation in the U.S. 1)Smart grid city [35].SmartGridCity™ is the nation's first fully integrated smart grid. Boulder, Colorado has been selected as the site of SmartGridCity™.SmartGridCity™ is a multi-phase project expected to be completed in December 2009. In the first phase, initial installations took place to test capabilities and gauge customer reaction that involving upgrading two substations, five feeders and nearly 15 000 meters in Boulder. The second phase is a full deployment phase with a larger reach to a broader consumer base with two substations, 20 feeders and 35 000 premises.12 汤奕等:中国与美国和欧盟智能电网之比较研究V ol. 33 No. 152)Austin energy.Austin Energy’s Smart Grid[36] initiative initially started out as an enterprise architecture program, followed by an effort to redefine the company’s business process using service-oriented architecture (SOA). Austin went on to enable consumer choice through different demand response, distributed generation, and renewable energy programs. Technology deployment as of August 2008 included 130000 smart meters and 70000 smart thermostats. Plans call for 270000 smart meters and 70000 smart thermostats, along with 10000 new transmission and distribution grid sensors by early 2009. At that point, 100% of Austin Energy’s consumer base will be served by Smart Grid technologies.3)Other smart grid implementations.Other smart grid implementations in the U.S. include: SmartSynch SmartMeter System[37], IBM Smart Grid Model[38], San Diego Smart Grid[39], Duke energy[40], Irish Smart Grid firm[41], Siemens Smart Grid Solutions[42], and Intel’s Smart Grid Play[43].3.3 Smart grid implementation in the E.U.1)Telegestore project[44].The Telegestore project, which was completed in 2005 in Italy, is the earliest and still the largest smart grid example with over 27 million smart meters. The system was installed by Enel, an Italian provider which is the third largest energy provider in the world. Enel acted as the system integrator, and designed, developed and deployed its own smart meters and system software.The system investment is approximately 2.1 billion Euros while the savings from the operation is around 500 million Euros per year. The system provides advanced features including remote advanced metering control, real-time monitoring and demand management, which make the project a testament to the next-generation advanced metering systems.2)Other cases.There are also some other smart grid implementation in the E.U., including: “Am Steinweg” estate of DISPOWER (Germany)[45], Centre East of DISPOWER (Germany), Technology Demonstration Centre of DISPOWER (Spain)[46].3.4 Smart grid implementation in JapanThe government of Japan plans to launch a test case for the next generation transmission network—the smart grid—as early as 2009. Through the test, Japan aims to establish technologies for securing power system stability in preparation for the massive introduction of new energy sources such as photovoltaic power. The test case will be carried out on an isolated island in cooperation with electric utilities in order to determine whether the smart grid can be introduced to the power systems in Japan [47].3.5 Smart grid implementation in China1)“SG186” project[48].On April 29, 2006, the State Grid of China has introduced the “SG186” Project for implementation in the whole power systems. This project sets up a solid foundation for the introduction of the smart grid in China.2)The east China power grid.The area served by the East China Power Grid is one of the most active and fastest developing areas in the world. The demand for electricity remains at a high level due to the continuous development of regional social economy for many years. In 2007, the peak loadof the East China Power Grid reached 122GW. Accordingly, the East China Power Grid proposed the smart grid with the characteristics of “self-healing, secure, economic, clean and provide the high quality electric power and service for the future social economy development”.3)The north China power grid[49].Since the beginning of 2008, the regulation centre has started the R&D effort for the North China Smart Grid. The study focuses on “Integrative maintenance schedule optimization management system”, “Integrative network model management platform”, “Regulation digital supporting system” and “AC2 Service bus”. The R&D effort is based on the practical situation of the North China Power Grid and has obtained some progressive achievements.4)Wide Area Measurement System(WAMS). China will have a comprehensive national WAMS system when its current 5-year economic plan is complete in 2012[50].4 Similarities and differencesThe similarities among these smart grid cases in different regions of the world are mainly based on the integration of emerging information and communications technologies with emerging electric power systems to create more reliable and smarter electric power grids. There are also active support第33卷第15期电网技术 13from the individuals and working groups representing government laboratories, private sector and academic research organizations and electricity consumers.However, obvious differences also exist in several aspects because of the different situation of power system in U.S., E.U. and China. Japan will not be compared in this paper because its island grid.1)From the perspective of electricity demand, the consumption in the U.S. and the E.U. are in the stage of slowly increasing. Affected by the economy crisis, the total electricity consumption in the U.S. is expected to reduce by 1.6% in 2009 but return to a more normal growth of 1.4% in 2010. For the E.U., final electricity consumption grew across the EU-27 at an average annual rate of 1.7 % between 1990 and 2005 (an absolute increase of 28.7 %) [51]. However, China is experiencing a rapid developing period. In 2008, the increase of generation capacity in China is 90.51GW, which improve the total generation capacity to 792.53GW. The growth compared to the same period last year is 10.34%. It is anticipated that in 2020, the total generation capacity will reach nearly 1600 GW and the total electricity demand will reach 770GWh. Compared with the U.S. and the E.U., the massive generation commission in China makes the problem of lagging development power grid more prominent. Therefore we need to build “powerful state grid based on the ultra-high-voltage backbone network with the coordinated development of all-level power grids”.2)From the energy supply point of view, the U.S. plans to build high capacity transmission corridors covering the northern America to connect eastern and western U.S., Canada and Mexico. In contrast, the E.U. places more emphasis on the development of distribution power network, which is partially due to its energy limitation. In 2006, the external energy dependence of EU-27 increased to 54% from 45% in 1997[52]. In the Energy Green Paper submitted in 2006, the E.U. made the prediction that after 20 or 30 years, the external energy dependence of the E.U. will reach as high as about 70%. On the other hand, in the E.U.’s power system, generation and loads are relatively close to each other, which is in favor of building micro-grids to accommodate distributed generations. At the same time, the environmental pressure and the appeal to use clean energy speed up the development of renewable energy in the E.U. Therefore the modern smart grid in the E.U. concerns more about making better use of the renewable energies.However, the distribution of energy resources and electricity demands is unbalanced in China. 76% reserves of coal are in the northern district and 80% hydro resources are in the western district. The on-land wind resource mainly distributed in the Northeast, North China and Northwest, known as “Three-North Areas”. On the contrary, two thirds of the energy demands are concentrated in the eastern and central area of China. In this case, to meet the electricity demands for the long-term development of social economy, China has to choose long-distance massive electricity transmission and optimize the resource distribution around the whole country.3)From the viewpoint of power grid’s operation security and stability, a big concern in the U.S. is security issues caused by man-made and natural disasters. In order to enhance the power grid stability and reliability, the U.S. plans the three-class power grid made up of a national electricity “backbone” and regional interconnections that include Canada and Mexico and local distribution, mini-and micro-grids. This is to provide services to customers and obtaining services from generation resources anywhere on the continent. Aiming at this goal, the smart grid in the U.S. clearly states the key characteristics of “self- healing” and “resists attack”.In the E.U., instead of working for cross-border power exchange, most of the E.U. power grids are designed as country or regional grids. Even there are some interconnections between national grids, the power exchange is limited. At the same time, more and more renewable energy technologies are integrated into the power grids, which have to be built close to the location of energy resources instead of loads. Therefore the E.U. concerns more about how to make the power grids accommodated to the renewable energies with high reliability and security considering the randomness of renewable energies.In China, at the beginning of 2008, the massive blackout due to the snow disaster exposed the weakness of the power grid structure. This also prompts us to consider building a micro-grid with the integration of distributed energy sources as an advantageous framework for building up Ultra-14 汤奕等:中国与美国和欧盟智能电网之比较研究V ol. 33 No. 15high-voltage transmission system. In fact there is a rapid development of distributed energy technologies in China. For example, the total installed wind generation capacity in China is 7GW in Aug. 2008 and it is anticipated to be 20GW in 2010[53]. The challenges introduced by the integration of large number of DERs also imply the opportunities for China to exploit the DERs’ capability to increase the power grid’s security and stability in the smart grid environment.4)From the economic point of view, the electricity consumers in the U.S. and the E.U. are expected to receive the reduction in their monthly electricity bills through the introduction of more efficient electricity market and more integration of renewable energy resources. Considering that the electricity market in China is still in the early stage, China’s smart grid is supposed to depend on the administrative promotion of SGCC other than electricity market or economical driving forces.From the comparison above, the U.S., the E.U. and China all have their own power grid construction targets based on their different power grid characteristics. The differences among their power grids are leading to different emphasizes on the future smart grids. However, the three regions indeed share some common concerns such as renewable energy integration and power system reliability. This makes the experience seen by the smart grid development in the U.S. and the E.U. a favorable reference for China.5 ConclusionSmart grid is a new paradigm in the power grid’s development. It is a combination of various modern technologies, control mechanisms and software to provide a more reliable, secure, and environment friendly power grid to meet the 21st century needs. Since various countries have different history of power grid development, natural resources, technologies and societal preferences, this will lead to different ways of realizing the smart grid. It is expected that China’s smart grid development will benefit from the experiences and plans from different countries as shown in this paper. But the shape and operational characteristics of China’s smart grid will be influenced by her own resources, priorities and vision for the future. References[1] King J.Power provision:Electrical networks get smarter[EB/OL].[2009-04-20].http://www.iec.ch/online_news/etech/arch_2009/etech_0109/industry_1.htm.[2] Denki Shimbun.Japanese government will launch “Smart Grid”verification test[EB/OL].2009-03-17[2009-04-20].http://www.shimbun.denki.or.jp/english/article/2009031702.shtml.[3] 陈树勇,宋书芳,李兰欣,等.智能电网技术综述[J].电网技术,2009,33(8):1-7.Chen Shuyong,Song Shufang,Li Lanxin,et al.Survey on smart gridtechnology[J].Power System Technology,2009,33(8):1-7(inChinese).[4] 肖世杰.构建中国智能电网技术思考[J].电力系统自动化,2009,33(9):1-4.Xiao Shijie.Consideration of technology for constructing Chinesesmart grid[J].Automation of Electric Power Systems,2009,33(9):1-4(in Chinese).[5] The Electricity Advisory Committee.Smart grid:Enabler of the newenergy economy[EB/OL].2008-12-01[2009-04-20].http://www./DocumentsandMedia/final-smart-grid-report.pdf.[6] Congress of United States.Energy independence and security act of2007[EB/OL]. 2007-12-19[2009-04-20].http://frwebgate.access.gpo.gov/cgi-bin/getdoc.cgi?dbname=110_cong_bills&docid=f:h6enr.txt.pdf.[7] /.[8] /default.aspx.[9] /default.aspx.[10] /.[11] /.[12] DG RTD of European Commission.Introduction to the 2008 RTDenergy calls[EB/OL].2007-12-19[2009-04-20].http://ec.europa.eu/research/conferences/2007/energy_infoday/pdf/present_introductionenergycalls2008_bruno_schmitz_en.pdf.[13] DOE.Smart grid activities at the department of energy. presented toFERC-NARUC collaborative leadership[EB/OL].2008-05-07[2009-04-20]./pdf/Smart_Grid_Eric_Lightner_Presentation_05072008.pdf.[14] http:// /.[15] http:// /.[16] l. /.[17] /.[18] /.[19] /.[20] /.[21] /.[22] DOE.The smart grid:An introduction[EB/OL].2008-09-10[2009-04-20]./DocumentsandMedia/DOE_SG_Book_Single_Pages(1).pdf.[23] /.[24] /.[25] Saifur Rahman,Manisa Pipattanasomporn,Yonael Teklu.Intelligentdistributed autonomous power systems (IDAPS) [EB/OL].2007-06-24[2009-04-20]./2DOC/IDAPS_final.pdf.[26] /.。

相关文档
最新文档