一次函数应用(培训机构专用)

合集下载

苏科版一次函数的应用1上课用

苏科版一次函数的应用1上课用

因此:当乙公司的票价等于1000元时,乘座甲或乙公司的飞机费用一 样;当乙公司的票价大于1000元时,乘座乙公司的飞机划算;当乙公 司的票价小于1000元时,乘座甲公司的飞机划算;
解:设乙公司票价为m元,则 甲公司票价为110%m元, 甲公司的费用y 甲=1.1m + 150 乙公司的费用y 乙= m+ 250
5 4 3 2 1 0 1 2 3 4
乙 甲
s
(米)
t(秒)
例2 :已知甲、乙两物体沿同一条直线同时、同向匀速运 动,它们所经过的路程s与所需时间t之间的关系如图所示. (3)求出两直线的交点坐 标,并说明实际意义.
5
s
4 3 2 1 0
(米)
乙 甲
2秒时乙物体在离起点3米 处追上甲物体。 2秒前甲先乙后, 2秒后乙先甲后。
你将如何选择? Y(元) 乙 D
25 0 150 50 0 A C 40

B
80
X(千克)
解:设乙公司票价为m元,则 甲公司票价为110%m元,可知: 甲公司的费用y 甲= 1.1m +150 乙公司的费用y 乙= m+250 若y 甲= y 乙, 则m=1000 , 此时选甲或乙都可以 ;
若y 甲> y 乙, 则m>1000 , 此时选乙划算; 若y 甲< y 乙, 则m<1000 , 此时选甲划算。
X吨 A城有200吨 (200-X )吨 (240-X) 吨 B城有300吨 〔300-(240-X)〕 吨
D村需要260吨
解:设A城往C村的化肥有x吨,则往D村的有(200-X )吨,
B城往C村的有(240-X) 吨,剩余的〔300-(240-X)〕 吨运往D村;

第05讲一次函数的应用(6类热点题型讲练)(原卷版)

第05讲一次函数的应用(6类热点题型讲练)(原卷版)

第05讲一次函数的应用(6类热点题型讲练)1、掌握一次函数与一元一次方程之间的关系;2、掌握单个一次函数图象的应用;3、掌握两个一次函数图象的应用;4、能利用函数图象解决数学问题.知识点01 一元一次方程与一次函数的关系1)一元一次方程可转化为一般式:ax+b=02)一次函数为:y=kx+b的形式;当y=0时,一次函数x的值就是一元一次方程的解。

y=0时x的值,即一次函数与x轴的交点横坐标,就是对应一元一次方程的解3)每个二元一次方程组都对应两个一次函数,于是也对应两条直线.从“数”的角度看,解方程组相当于考虑自变量为何值时两个函数的值相等,以及这时的函数为何值;从“形”的角度看,解方程组相当于确定两条直线交点的坐标.知识点02 一次函数的实际应用1)数学建模的一般思路数学建模的关键是将实际问题数学化,从而得到解决问题的最佳方案、最佳策略.在建模的过程中,为了既合乎实际问题又能求解,这就要求在诸多因素中抓住主要因素进行抽象化简,而这一过程恰是我们的分析、抽象、综合、表达能力的体现.函数建模最困难的环节是将实际情景通过数学转化为什么样的函数模型. 2)正确认识实际问题的应用在实际生活问题中,如何应用函数知识解题,关键是建立函数模型,即列出符合题意的函数解析式,然后根据函数的性质综合方程(组)、不等式(组)及图象求解.注:要注意结合实际,确定自变量的取值范围,这是应用中的难点,也是中考的热门考点.3)选择最简方案问题分析问题的实际背景中包含的变量及对应关系,结合一次函数的解析式及图象,通过比较函数值的大小等,寻求解决问题的最佳方案,体会函数作为一种数学模型在分析解决实际问题中的重要作用.题型01 已知直线与坐标轴交点求一元一次方程的解22023()0y kx b k =+≠x y 题型02 利用图象法解一元一次方程【典例2】(2023春·河北石家庄·八年级校考期中)数形结合是解决数学问题常用的思想方法.如图,直线21y x =-与直线()0y kx b k =+≠相交于点()23P ,.根据图像可知,关于x 的方程21x kx b -=+的解是( )A .1x =B .2x =C .3x =D .4x =【变式1】(2023春·山东烟台·七年级统考期末)如图,直线5y x =+和直线y ax b =+相交于点(2025)P ,,则方程5x ax b +=+的解是( )A .25x =B .20xC .15x =D .5x =【变式2】(2023春·河南商丘·八年级统考期末)如图,直线4y x =+和直线y ax b =+相交于点P ,根据图像可知,关于x 的方程4x ax b +=+的解是( )A .16x =或20xB .20xC .16x =D .16x =-题型03 一次函数的应用——分配方案问题【典例3】(2023春·云南临沧·八年级统考期末)为全面推进乡村振兴,某省实行城市援助乡镇的政策.该省的A 市有120吨物资,B 市有130吨物资.经过调研发现该省的甲乡需要140吨物资,乙乡需要110吨物资.于是决定由A 、B 两市负责援助甲、乙两乡、已知从A 市往甲、乙两乡运送物资的运费分别为300元/吨、150元/吨,从B 市往甲、乙两乡运送物资的运费分别为200元/吨、100元/吨.(1)设从A 市往甲乡运送x 吨物资,从A 、B 两市向甲、乙两乡运送物资的总运费为y 元,求y 与x 的函数解析式.(2)请设计运费最低的运送方案,并求出最低运费.【变式1】(2023春·河南郑州·八年级河南省实验中学校考期中)4月23日是“世界读书日”,某书店在这一天举行了购书优惠活动,有两种优惠方案可以选择:方案一:享受当天购书按标价总额8折的普通优惠;方案二:50元购买一张“书香城市纪念卡”,当天凭卡购书,享受标价总额在普通优惠的基础上再打7.5折的优惠.设小明当天购书标价总额为x (50)x >元,方案一应付1y 元,方案二应付2y 元.(1)当150x =时,请通过计算说明选择哪种购书方案更划算;(2)直接写出12,y y 与x 的函数关系式;(3)小明如何选择购书方案才更划算?【变式2】(2023春·河南南阳·八年级统考阶段练习)暑期将至,某健身俱乐部面向学生推出暑期优惠活动,活动方案如下.方案一:购买一张学生暑期专享卡,每次健身费用按六折优惠;方案二:不购买学生暑期专享卡,每次健身费用按八折优惠.设某学生暑期健身x (次),按照方案一所需费用为1y (元),且11y k x b =+;按照方案二所需费用为2y (元),且22y k x =.其函数图象如图所示.(1)求k 1和b 的值,并说明它们的实际意义;(2)求打折前的每次健身费用和2k 的值;(3)八年级学生小华计划暑期前往该俱乐部健身7次,应选择哪种方案所需费用更少?请说明理由.题型04一次函数的应用——最大利润问题(1)求购进A,B两种模型每件分别需多少元?(2)若销售每件A种模型可获利润20元.每件B种模型可获利润30元.商店用1万元购进模型,且购进A 种模型的数量不超过B种模型数量的8倍,设总盈利为W元,购买B种模型b件,请求出W关于b的函数关系式,并求出当b为何值时,销售利润最大,并求出最大值.题型05一次函数的应用——行程问题【典例5】(2023春·山东淄博·七年级统考期中)甲、乙两地相距300千米,一辆货车和一辆轿车先后从甲地出发开往乙地.如图,线段OA表示货车离甲地距离(y千米)与时间(x小时)之间的函数关系;折线BCD表示轿车离甲地距离(y千米)与(x小时)之间的函数关系.请根据图象解答下列问题:(1)求线段CD对应的函数解析式.(2)货车从甲地出发后多长时间被轿车追上?此时离甲地的距离是多少千米?(3)轿车到达乙地后,货车距乙地多少千米.【变式1】(2023·河北沧州·校考模拟预测)航模兴趣小组在操场上进行航模试验,甲型航模从距离地面20米处出发,以a米/分的速度匀速上升,乙型航模从距离地面50米处同时出发,以15米/分的速度匀速上升,经过6分钟,两架航模距离地面高度都是b米,两架航模距离地面的高度y米与时间x分钟的关系如图.两架航模都飞行了20分钟.(1)直接写出a、b的值;(2)求出两架航模距离地面高度y甲、y乙(米)与飞行时间x(分钟)的函数关系式;(3)直接写出飞行多长时间,两架航模飞行高度相差25米?【变式2】(2023春·江苏淮安·九年级校考期中)如图1,甲、乙两车分别从相距480km的A、B两地相向而行,乙车比甲车先出发1小时,并以各自的速度匀速行驶,甲车到达C地后因有事立刻按原路原速返回A地.乙车从B地直达A地,两车同时到达A地.甲、乙两车距各自出发地的路程y(千米)与甲车出发所用的时间x(小时)的关系如图2,结合图像信息解答下列问题:(1)乙车的速度是千米/时,乙车行驶小时到达A地;(2)求甲车从C地按原路原速返回A地的过程中,甲车距它出发地的路程y与它出发的时间x的函数关系式;(3)求甲车出发多长时间两车相距60千米?题型06一次函数的应用——几何问题【典例6】(2023春·河南南阳·八年级校考阶段练习)如图,正方形ABCD的边长为4,P为正方形边上一动→→→,设P点经过的路程为x,以点A、P、D为顶点的三角形的面积是y,则点,运动路线是D C B A下列图象能大致反映y与x的函数关系的是()A .B .C .D .【变式1】(2021春·福建漳州·七年级福建省漳州第一中学校考期中)如图,已知动点P 从B 点出发,以每秒2cm 的速度在图①的边(相邻两边互相垂直)上按B C D E F A →→→→→的路线移动,相应的ABP的面积()2cm S 与点P 的运动时间()t s 的图象如图②所示,且6cm AB =.当230cm S =时,t = .【变式2】(2023春·安徽宿州·七年级校考期中)如图,在长方形ABCD 中,8BC =,6CD =,点E 为边AD 上一动点,连接CE ,随着点E 的运动,DCE △的面积也发生变化.(1)写出DCE △的面积y 与AE 的长()08x x <<之间的关系式;(2)当3x =时,求y 的值.A .0x =B .3x =C .2x =-D .3x =-1A .湖水面大气压强为76.0cmHgB .湖水深23m 处的压强为230cmHg二、填空题5.(2022秋·江西景德镇·八年级统考期中)如图,一次函数y kx b =+的图象与x 轴、y 轴分别交于点()30A -,和点()0,2B ,则关于x 的一元一次方程0kx b +=的解为x = .6.(2023·辽宁葫芦岛·统考二模)如图,直线3y x 与直线y kx b =+交于点(),2A m ,则关于x 的方程3kx b x +=+的解为 ;7.(2023春·山东烟台·六年级统考期末)某菜农想围成一个如图所示的长方形ABCD 菜园,菜园的一边利用足够长的墙,已知长方形菜园ABCD 的另外三边总长度恰好为48米,设BC 边的长为x 米,AB 边的长为y 米,则y 与x 之间关系表达式是 .8.(2023春·浙江杭州·九年级校联考阶段练习)为运输一批医用物质,一辆货车先从甲地出发运送物资到乙地,稍后一辆轿车从甲地急送专家到乙地.已知甲、乙两地的路程是360km ,货车行驶时的速度是60/h km ,两车离甲地的路程s (km )与时间t (h )的函数图象如图,则=a ;轿车比货车早 小时到达乙地.三、解答题9.(2023春·山东聊城·八年级校考阶段练习)某健身体验中心为答谢新老会员举行春日大回馈活动,特推出两种“春季唤醒计划活动方案.方案1:顾客不购买会员卡,每次健身收费20元.方案2:顾客购买会员卡,每张会员卡100元,每张会员卡仅限本人使用一年,每次健身收费10元.设小宇一年来此健身体验中心健身的次数为x (次),使用方案1的费用为y 1(元),使用方案的费用为y 2(元).(1)请直接写出y 1,y 2与x 之间的函数表达式;(2)请根据小宇一年内前往该健身房训练的次数确定哪种方案比较合算.10.(2023春·陕西榆林·九年级校考期中)陕西周至,被誉为“猕猴桃之乡”,世界上最大的猕猴桃种植基地.某水果经销商计划从种植专业户李大爷处购进甲,乙两种新品猕猴桃进行销售.已知李大爷处乙种猕猴桃的进价为8元/千克:李大爷对甲种猕猴桃的价格根据进货量给予优惠,设该经销商购进甲种猕猴桃x 千克,购进甲种猕猴桃所需费用为y 元,y 与x 之间的函数关系如图所示.(1)求y 与x 之间的函数关系式;(2)若该经销商计划从李大爷处一次性购进甲,乙两种猕猴桃共200千克,且甲种猕猴桃不少于45千克,但又不超过80千克.如何分配甲,乙两种猕猴桃的购进量,才能使该经销商购进这两种猕猴桃付款总金额w (元)最少?11.(2023春·河南漯河·八年级校考期末)为响应习近平总书记的号召,鼓励学生多读书,某图书馆针对学生推出两种新的借阅优惠方案.甲方案:凭学生证办理借阅卡,充值超过20元时,超过多少送多少;乙方案:凭学生证办理会员卡,充值每满40元再送20元.设借阅时间为x 天,甲、乙两种方案每本书的借阅租金分别表示1y (元),2y (元)12y y ,关于x 的所数图象如图所示.(1)分别直接写出12y y ,与x 之间的函数关系式;(2)请求出图中线段AB 的长并说明它的实际意义;(3)八年级小兰准备用40元钱在该图书馆借阅一本书,选择哪种方案办卡更划算?说明理由.12.(2021春·福建漳州·七年级福建省漳州第一中学校考期中)某天,小明来到体育馆看球赛,进场时,发现门票还在家里,此时离比赛开始还有25分钟,于是立即步行回家取票.同时,他父亲从家里出发骑自行车以小明3倍的速度给他送票,两人在途中相遇,相遇后小明立即坐父亲的自行车赶回体育馆.如图中线段AB ,OB 分别表示父子俩送票、取票过程中,离体育馆的路程s (米)与所用时间t (分钟)之间的图象,结合图象解答下列问题(假设骑自行车和步行的速度始终保持不变).(1)图中可知小明家离体育馆_____________米,父子俩在出发后_____________分钟相遇.(2)你能求出父亲与小明相遇时,距离体育馆还有多远?(3)小明能否在比赛开始之前赶回体育馆?13.(2023春·河南商丘·八年级校联考期末)2022年河南省全民健身(线上)运动会最终各奖项于12月20日公布,此次盛会充分展示疫情防控常态化下我省全民健身开展情况,某健身房于此推出“云健身”服务,针对特殊人群开展活动.活动方案如下:方案一:不购买“云VIP ”,每次收费10元;方案二:购买“云VIP ”,(1)k=;购买“云VIP”需元;B款汴绣打几折出售时,A,B两款沐绣的销售总额恰好实现盈亏平衡?。

2024年中考数学一轮复习考点精讲课件—一次函数的应用

2024年中考数学一轮复习考点精讲课件—一次函数的应用
点的坐标为

【详解】解:如图, = = 6,∵ ∠ = 60°,∴ 4,3 3 ,
∵点在边上且横坐标为8,∴ 8, 3 , 10,3 3 ,
∵直线过定点,∴ ⊥ 时,点到所在直线的距离取得最大值.
∵ 0, −
5 3
3
∴ 3 = 8 −
, 8, 3 ,设解析式为 = −
考点一 一次函数的实际应用
【变式】(2021·河南平顶山·统考二模)小明和小亮相约从学校前往博物馆,其中学校距离博物馆900米.小明因有
事,比小亮晚一些出发,图中1 = 1 、2 = 2 + 分别是小明、小亮行驶的路程与小明追赶时间之间的关系.
(1)观察图象可知,小亮比小明先走了_______米.
2
20
故答案为:5;3; 3
20
km;
3
考点一 一次函数的实际应用
题型03 行程问题
【例3】(2022·浙江绍兴·统考一模)绍兴首条智慧快速路于今年3月19日正式通车.该快速路上,两站相距
20km,甲、乙两名杭州亚运会会务工作志愿者从站出发前往站附近的比赛场馆开展服务.甲乘坐无人驾驶小
巴,乙乘坐无人驾驶汽车.图中,分别表示甲、乙离开站的路程 km 与时间 min 的函数关系的图象.
(2)求1 、2 的值,并解释2 的实际意义.
(3)通过计算说明,谁先到博物馆.
【详解】
(1)根据图像可以看出小明走的时候,小亮已经走了 100 米.故答案为:100.
(2)将 = 20, = 60代入1 = 1 ,得60 = 201 ,∴1 = 3;
分别将 = 0时, = 100; = 20时, = 140代入2 = 2 + 得
∴A种物品购买7个,B种物品购买13个最省钱.

湖北省武汉市乐其教育培训学校八年级数学一次函数讲义第十讲一次函数在实际生活中的应用

湖北省武汉市乐其教育培训学校八年级数学一次函数讲义第十讲一次函数在实际生活中的应用

第十讲一次函数在实质生活中的应用【知识重点】一次函数在实质生活问题中的应用【新知讲解】例一、现代互联网技术的宽泛应用,催生了快递行业的高速发展.小明计划给朋友快递一部分物件,经认识有甲、乙两家快递企业比较适合.甲企业表示:快递物件不超出 1 千克的,按每千克 22 元收费;超出 1 千克,超出的部分按每千克 15 元收费.乙企业表示:按每千克 16 元收费,另加包装费 3 元.设小明快递物件 x 千克.(1)请分别写出甲、乙两家快递企业快递该物件的花费 y(元)与t(千克)之间的函数关系式;(2)小明选择哪家快递企业更省钱?例二、。

某书店为迎接“念书节”拟订了活动计划,以下是活动计划书的部分信息:“念书节”活动计划书书籍类型A类B类进价(单位:元)18121、用不超出 16800 元购进 A、 B 两类图书共1000 本;备注2、A 类图书许多于 600 本;(1)陈经理查察计划数时发现:A 类图书的标价是 B 类图书标价的 1.5 倍,若顾客用 540 元购置的图书,能独自购置 A 类图书的数目恰巧比独自购买 B 类图书的数目少 10 本,恳求出 A、B 两类图书的标价;(2)经市场检查后,陈经剪发现他们高估了“念书节”对图书销售的影响,便调整了销售方案, A 类图书每本标价降低 a 元( 0<a <5)销售, B类图书价钱不变,那么书店应如何进货才能获取最大收益?第1页/共4页例三、某家具商场计划购进某种餐桌、餐椅进行销售,相关信息如表:原进价(元 /零售价(元 /成套售价(元 /餐张)张)套)a270500 元桌 a ﹣11070餐椅600 元购进的餐桌数目与用160 元购进的餐椅数目同样.已知用(1)求表中 a 的值;(2)若该商场购进餐椅的数目是餐桌数目的 5 倍还多 20 张,且餐桌和餐椅的总数目不超出 200张.该商场计划将一半的餐桌成套(一张餐桌和四张餐椅配成一套)销售,其他餐桌、餐椅以零售方式销售.请问如何进货,才能获取最大收益?最大收益是多少?(3)因为原资料价钱上升,每张餐桌和餐椅的进价都上升了 10 元,依据(2)中获取最大收益的方案购进餐桌和餐椅,在调整成套销售量而不改变销售价钱的状况下,实质所有售出后,所得收益比( 2)中的最大收益少了 2250 元.请问本次成套的销售量为多少?例四、小明到服饰店参加社会实践活动,服饰店经理让小明帮助解决以下问题:服饰店准备购进甲乙两种服饰,甲种每件进价80 元,售价 120 元;乙种每件进价 60 元,售价 90 元.计划购进两种服饰共 100 件,此中甲种服饰不少于 65 件.(1)若购进这 100 件服饰的花费不得超出 7500,则甲种服饰最多购进多少件?(2)在( 1)的条件下,该服饰店对甲种服饰以每件优惠a (0< a <20)元的价钱进行优惠促销活动,乙种服饰价钱不变,那么该服饰店应如何调整进货方案才能获取最大收益?第2页/共4页例五、甲、乙两家草莓采摘园的草莓质量同样,销售价钱也同样.“五一时期”,两家均推出了优惠方案,甲采摘园的优惠方案是:旅客进园需购置50元的门票,采摘的草莓六折优惠;乙采摘园的优惠方案是:旅客进园不需购置门票,采摘园的草莓超出必定数目后,超出部分打折优惠.优惠时期,设某旅客的草莓采摘量为x(千克),在甲采摘园所需总花费为 y1(元),在乙采摘园所需总花费为 y2(元),图中折线 OAB 表示 y2与 x 之间的函数关系.(1)甲、乙两采摘园优惠前的草莓销售价钱是每千克元;(2)求 y1、 y2与 x 的函数表达式;(3)在图中画出 y1与 x 的函数图象,并写出选择甲采摘园所需总花费较少时,草莓采摘量 x 的取值范围.例六、 2019 年 3 月 27 日“丽水半程马拉松比赛”在莲都举行,某运动员从起点万地广场西门出发,路过紫金大桥,沿比赛路线跑回中点万地广场西门.设该运动员走开起点的行程 S (千米)与跑步时间 t (分钟)之间的函数关系如下图,此中从起点到紫金大桥的均匀速度是 0.3 千米 /分,用时35分钟,依据图象供给的信息,解答以下问题:(1)求图中 a 的值;(2)组委会在距离起点 2.1 千米处建立一个拍摄点 C,该运动员从第一次经过 C 点到第二次经过 C 点所用的时间为 68 分钟.①求 AB 所在直线的函数分析式;②该运动员跑完赛程用时多少分钟?第3页/共4页例七、 甲、乙两车分别从 A 、B 两地同时出发,甲车匀速前去 B 地,抵达 B 地立刻以另一速度按原路匀速返回到 A 地;乙车匀速前去 A 地,设甲、乙两车距A 地的行程为 y (千米),甲车行驶的时间为 x (时), y 与x 之间的函数图象如下图(1)求甲车从 A 地抵达 B 地的行驶时间;(2)求甲车返回时 y 与 x 之间的函数关系式,并写出自变量 x 的取值范围;(3)求乙车抵达 A 地时甲车距 A 地的行程.例八、 因为连续高平和连日无雨,某水库的蓄水量随时间的增添而减少,已知原有蓄水量 y (万 m 3)与干旱连续时间 x (天)的关系如图中线段 l 所示, 针对这类干旱状况,从第 20 天开始向水库灌水,灌水量 y 2 (万 m 3)与时间 x (天)的关系如图中线段 l 2 所示(不考 虑其他要素).( 1)求原有蓄水量 y (万 m 3)与时间 x (天)的函数关系式,并求当 x =20 时的水库总蓄水量.( 2)求当 0≤ x ≤60 时,水库的总蓄水量 y (万 m 3)与时间 x (天)的函数关系式(注明 x 的范围),若总蓄水量不多于 900 万m 3为严重干旱,直接写出发生严重干旱时 x 的范围.第4页/共4页。

4.4.1一次函数的应用(教案)

4.4.1一次函数的应用(教案)
2.数学建模:使学生掌握利用一次函数对现实问题进行建模的方法,提高他们运用数学知识解决实际问题的能力。
3.逻辑推理:引导学生运用一次函数相关知识进行逻辑推理,培养他们分析问题、解决问题的逻辑思维能力。
4.数学抽象:培养学生从实际问题中抽象出数学模型,理解并运用一次函数的概念及其性质。
5.数学表达:通过一次函数图像的绘制和解释,提高学生的数学表达能力,使他们能够清晰、准确地描述数学问题和解答过程。
6.团队合作:鼓励学生在解决问题时进行合作交流,培养他们的团队协作能力和沟通能力。
三、教学难点与重点
1.教学重点
(1)一次函数的定义及其图像特点:y=kx+b(k≠0,k、b为常数),强调k、b的物理意义,斜率k代表直线的倾斜程度,截距b代表直线与y轴的交点。
-通过实例让学生理解k、b在图像中的具体表现,如:当k>0时,图像呈现上升趋势;当k<0时,图像呈现下降趋势;b>0时,图像与y轴正向相交;b<0时,图像与y轴负向相交。
3.成果展示:每个小组将向全班展示他们的讨论成果和实验操作的结果。
(四)学生小组讨论(用时10分钟)
1.讨论主题:学生将围绕“一次函数在实际生活中的应用”这一主题展开讨论。他们将被鼓励提出自己的观点和想法,并与其他小组成员进行交流。
2.引导与启发:在讨论过程中,我将作为一个引导者,帮助学生发现问题、分析问题并解决问题。我会提出一些开放性的问题来启发他们的思考。
(2)一次函数在实际问题中的应用:行程问题、价格问题、速度与时间问题等,掌握将实际问题转化为一次函数模型的方法。
-以行程问题为例,讲解如何根据速度和时间计算路程,以及如何利用一次函数图像分析物体的运动状态。
(3)一次函数图像的绘制方法:掌握根据实际问题绘制一次函数图像的步骤,包括确定坐标轴、标定关键点、绘制直线等。

一次函数的应用PPT课件

一次函数的应用PPT课件

例2 教材补充例题 如图,直线l是一次函数y=kx+b的图象,请根据图象 求出这个函数的表达式.
【解析】由图象可知,函数y=kx+b的图象经过 点(0,1)和点(3,-3).
解:由图象可知,直线 y=kx+b 过点(0,1), 所以 b=1,所以一次函数的表达式为 y=kx+1. 又因为此函数图象过点(3,-3), 所以-3=3k+1,解得 k=-43. 故这个函数的表达式为 y=-4x+1.
点(a,0)
函数值为 0 时,相应的自变量的值为 a;函数图象与 x 轴的交点
点(x1,y1)和点(x2,y2)
自变量每增加 1,函数值的改变量为y2-y1 x2-x1
点(x1,y1)和点(x2,y2) (x1≤x≤x2)
若 k>0,当 x=x1 时,y 最小值=kx1+b;当 x=x2 时,y 最大值=kx2+b 若 k<0,当 x=x1 时,y 最大值=kx1+b;当 x=x2 时,y 最小值=kx2+b
解:(1)根据题意,得s=400-80t(0≤t≤5). (2)如图所示: (3)当t=3时,s=400-80×3=160. 因此Байду номын сангаас3小时后,小明一家距重庆160千米.
总结反思
小结
知识点一 正比例函数表达式的确定 由于正比例函数y=kx中只有一个不确定的系数k,故只要
一个条件(原点除外,如一对x,y的值或一个点的坐标)就可求得 k的值.
3
【归纳总结】 确定一次函数表达式的“五步法”: (1)设一次函数表达式为y=kx+b; (2)根据已知条件列出有关k,b的方程; (3)解方程,求k,b的值; (4)把k,b的值代回所设表达式; (5)写出表达式.
目标二 能借助表达式解决一些简单问题

《一次函数的应用》一次函数PPT优质课件(第1课时)

《一次函数的应用》一次函数PPT优质课件(第1课时)北师大版八年级数学上册《一次函数的应用》一次函数PPT优质课件(第1课时),共23页。

素养目标1.理解待定系数法的意义.2.学会运用待定系数法和数形结合思想求一次函数解析式.探究新知待定系数法求一次函数的解析式某物体沿一个斜坡下滑,它的速度 v (米/秒)与其下滑时间t (秒)的关系如右图所示:(1)请写出 v 与 t 的关系式;(2)下滑3秒时物体的速度是多少?解:(1)设v=kt,因为(2,5)在图象上,所以5=2k,k=2.5,即v=2.5t.(2) v=7.5 米/秒像这样先设出函数解析式,再根据条件确定解析式中未知的系数,从而具体写出这个式子的方法,叫做待定系数法.求一次函数解析式的步骤:(1)设:设一次函数的一般形式y=kx+b(k≠0)(2)列:把图象上的点(x1y1),(x2y2)代入一次函数的解析式,组成几个_________方程;(3)解:解几个一次方程得k,b;(4)还原:把k,b的值代入一次函数的解析式.已知两点利用待定系数法求一次函数的解析式例1 一次函数图像经过点(2,0)和点(0,6),写出函数解析式.解:设这个一次函数的解析式为y=kx+b.把点(2,0)与(0,6)分别代入y=kx+b,得:这个一次函数的解析式为y=-3x+6.已知一点利用待定系数法求一次函数的解析式例2 若一次函数的图象经过点 A(2,0)且与直线y=-x+3平行,求其解析式.解:设这个一次函数的解析式为y=kx+b.因为一次函数图象与直线y= -x+3平行,所以k= -1.又因为直线过点(2,0),所以0=-1某2+b, 解得b=2,所以解析式为y=-x+2.课堂小结用待定系数法求一次函数的解析式1. 设所求的一次函数解析式为y=kx+b(k≠0);2. 根据已知条件列出关于k,b的方程;3. 解方程,求出k,b;4. 把求出的k,b代回解析式即可.... ... ...关键词:一次函数的应用PPT课件免费下载,一次函数PPT下载,.PPTX 格式;。

一次函数应用经典课件pptPPT课件

在牛顿第二定律中,力和加速度之间的关系是一次函数。通过测量力和加速度,我们可以确定物体的 质量。此外,在分析物体的运动时,我们也需要用到一次函数来描述力和加速度随时间的变化关系。
在实际应用中,一次函数在解决车辆动力学问题、航空航天器设计等领域中具有广泛的应用。
03
一次函数的实际案例
人口增长模型
总结词
练习题
某股票价格在过去一年内从10元上涨到20元,如果市场环境发生 变化,股票价格可能会如何变化?
THANKS
感谢观看
在实际应用中,线性回归分析被广泛应用于经济、金融、医 学、农业等领域,例如预测股票价格、评估广告效果、研究 疾病与年龄之间的关系等。
速度和加速度的计算
速度和加速度是一次函数在物理学中的重要概念。速度是 描述物体位置变化快慢的物理量,而加速度是描述速度变 化快慢的物理量。
通过一次函数,我们可以表示物体在直线运动中的速度和 加速度随时间的变化关系。这对于理解运动学的基本原理 以及解决相关问题具有重要意义。
一次函数应用经典课件pptppt课 件
• 一次函数的基本概念 • 一次函数的应用场景 • 一次函数的实际案例 • 一次函数与其他数学知识的结合 • 一次函数在实际问题中的应用练习
01
一次函数的基本概念
一次函数的定义
一次函数是形如$y = ax + b$的函数,其 中$a$和$b$是常数, 且$a neq 0$。
Hale Waihona Puke 经济学中的成本和收益问题在经济学中,成本和收益是核心概念之一。通过一次函数,我们可以表示成本和 收益与生产量之间的关系。例如,固定成本、可变成本与总成本之间的关系,以 及总收入与销售量之间的关系。
了解成本和收益的变化规律对于企业制定生产计划、进行市场预测以及制定价格 策略等具有重要意义。

一次函数的应用(课堂PPT)

(1)设某户一个月的用水量为x立方米,应交水 费为y元,试分别对①②两种情况,写出y关于x的 函数解析式,并指出函数的定义域.
(2)若某用户某月所交水费为26元,则 该居民用户该月的用水量是多少吨? 3
例2:据报道,某地区从1995年底开始, 每年增加的沙漠面积几乎相同,1998年底 该地区的沙漠面积约为100.6万公顷, 2001年底扩展到101.2万公顷,如果不进 行有效治理,试估计到2020年该地区的沙 漠面积.
)1(20.4 一次函数的应用
1
引入: 2006年7月12日,刘翔以12秒88的成绩获得瑞士 洛桑田径超级大奖赛金牌,并打破沉睡13年之 久、由英国名将科林.杰克逊创造的12秒91的世 界纪录,这是中国人的骄傲. 假设刘翔在110米跨栏比赛中速度是匀速的,那 么枪响后,刘翔离终点的距离 y米与他所跑的 时间x秒之间的函数关系式是 _________.
量的关系,根据图意填空:
(1) l1对应的表达式是
对应的表达式是

C
D
总计
A
X吨
200-x 吨 200吨
B
总计
240-x 吨
240吨
60+x
吨 260吨
300吨 500吨
(3)如果总运费为y元,你会表示y与x的
函数关系2 x)
3.解决问题:
解:设总运费为y元,A城运往C乡的肥料量为 x吨,则运往D乡的肥料量为(200-x)吨; B城运往C、D乡的肥料分别为(240-x)吨与 (60+x)吨。由总运费与各运输量的关系可 知,反映y与x之间关系的函数为:
16
2. 沙尘暴发生后,经过开阔荒漠时加速,经过乡镇、 遇到防护林带区则减速,最终停止。某气象研究所观 察一场沙尘暴从发生到结束的全过程,记录了风速 y(km/h)随时间t(h)变化的图象(如图) (1) 求沙尘暴的最大风速; (2) 用恰当的方式表示沙尘暴风速y与时间t之间的 关系。

一次函数的应用课件(共31张PPT)

(0,b)
直线
未知数
方程或方程组
3.一次函数的图象与性质.
图象:一次函数y=kx+b(k≠0)的图象是一条 ,通常叫做直线y=kx+b.
性质:对于一次函数y=kx+b,当 时,y随x的 而 ;当 时,y随x的 而 .
(1)完成下面的表格
(2)你能探索L与n之间的函数解析式吗?这个函数是一次函数吗?试写出L与n的函数解析式。
(3)求n=20时L的值。
14
17
20
北京某厂和上海某厂同时制成电子计算机若干台,北京厂可支援外地10台,上海厂可支援外地4台,现在决定给重庆8台,汉口6台。假定每台计算机的运费如下表,求
华氏温度y看作x的函数,建立直角坐标系,把表中每一对(x,y)的值作为点的坐标,在直角坐标系中描出表中相应的点,观察这些点是否同在一条直线上.
(2)你能利用(1)中的图象,写出y与x的函数表达式吗?
(3)除了小亮所说的方法外,你能通过分析上表中两个变量间的数量关系,判断它们之间是一次函数关系吗?
(4)你能求出华氏温度为0度(即0˚F )时,摄氏温度是多少度?
10.6 一次函数的应用
1.一次函数图象的画法.
通常过 , 两点画一条 ,就是函数y=kx+b(k≠0)的图象.
2.待定系数法.
先设出表达式中的 ,再根据所给条件,利用 确定这些未知数.这种方法叫待定法.
在例1 的解决过程中,是从现实生活中抽象出数学问题,用数学符号建立函数表达式,表示数学问题中变量之间的数量关系和变化规律.因此函数也是一种重要的数学模型.
梯形个数n
1
2
3
4
5
6

所拼得四边形的周长L
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

初二数学训练
第13讲一次函数应用
学习目标:
1、一次函数的应用;
2、二元一次方程(组)和一次函数的关系;
3、一元一次不等式、一元一次方程和一次函数的关系.
例题精讲Array例1、如图,一次函数y=kx+b的图象经过A、B两点,则kx+b>0
的解集是()A.x>0 B.x>2 C.x>-3 D.-3<x<2
例2、已知直线y=3x和y=2x+k的交点在第三象限,求k的取值范围.
例3、如图,请根据图象所提供的信息解答下列问题:
(1)交点P的坐标(1,1)是一元二次方程组:的解;
(2)不等式kx+b<0的解集是;
(3)当x时,kx+b≥mx﹣n;
(4)若直线l1分别交x轴、y轴于点M、A,直线l2分别交x轴、y轴于点B、N,求点M
的坐标和四边形OMPN的面积.
例4.(2014•河南)某商店销售10台A型和20台B型电脑的利润为4000元,销售20
台A型和10台B型电脑的利润为3500元.
(1)求每台A型电脑和B型电脑的销售利润;
(2)该商店计划一次购进两种型号的电脑共100台,其中B型电脑的进货量不超过A型电
脑的2倍,设购进A型电脑x台,这100台电脑的销售总利润为y元.
①求y关于x的函数关系式;
②该商店购进A型、B型电脑各多少台,才能使销售总利润最大?
(3)实际进货时,厂家对A型电脑出厂价下调m(0<m<100)元,且限定商店最多购进
A型电脑70台,若商店保持同种电脑的售价不变,请你根据以上信息及(2)中条件,设计
出使这100台电脑销售总利润最大的进货方案.
当堂训练
1.下列各曲线中,不能表示y是x的函数的是()
A.B.C.D.
3.在如图所示的计算程序中,y与x之间的函数关系所对应的图象大致是()
A. B.C.D.
4.已知点A(a﹣1,2a﹣3)在一次函数y=x+1的图象上,则实数a=.5.如图,已知函数y=3x+b和y=ax﹣3的图象交于点P(﹣2,﹣5),则根据图象可得不等式3x+b>ax﹣3的解集是.
(第5题) (第6题)
6.如图,已知函数y=2x+b和y=ax﹣3的图象交于点P(﹣2,﹣5),根据图象可得方程2x+b=ax ﹣3的解是.
y的若干信息.
m+2n=.
8.已知一次函数y1=﹣x+1,y2=2x﹣5的图象如图所示,根据图象,
回答下列问题:
(1)解方程组的解是;
(2)y1随x的增大而,y2随x的增大而;
(3)当y1>y2时,x的取值范围是.
9.如图,直线y=﹣x+8与x轴、y轴分别相交于点A、B,设M是OB上一点,若将△ABM
沿AM折叠,使点B恰好落在x轴上的点B′处.求:
(1)点B′的坐标;
(2)直线AM所对应的函数关系式.
10.某租赁公司共有50台联合收割机,其中甲型20台,乙型30台.现将这50台联合收割机派往A、B两地收割小麦,其中30台派往A地,20台派往B地.两地区与该租赁公司商
y (元),请用x表示y,并注明x的范围.
(2)若使租赁公司这50台联合收割机一天获得的租金总额不低于79600元,说明有多少种分派方案,并将各种方案写出.
11.在一次蜡烛燃烧试验中,甲、乙两根蜡烛燃烧时剩余部分的高度y(厘米)与燃烧时间x(小时)之间的关系如图所示,请根据图象所提供的信息解答下列问题:
(1)甲、乙两根蜡烛燃烧前的高度分别是,从点燃到燃尽所用的时间分别是;
(2)分别求甲、乙两根蜡烛燃烧时y与x之间的函数关系式;
(3)燃烧多长时间时,甲、乙两根蜡烛的高度相等(不考虑都燃尽时的情况)在什么事件段内,甲蜡烛比乙蜡烛高在什么时间段内,甲蜡烛比乙蜡烛低?
12.如图,已知函数y=x+1的图象与y轴交于点A,一次函数y=kx+b的图象经过点B(0,﹣1),并且与x轴以及y=x+1的图象分别交于点C、D.
(1)若点D的横坐标为1,求四边形AOCD的面积(即图中阴影部分的面积);
(2)在第(1)小题的条件下,在y轴上是否存在这样的点P,使得以点P、B、D为顶点的三角形是等腰三角形.如果存在,求出点P坐标;如果不存在,说明理由.
(3)若一次函数y=kx+b的图象与函数y=x+1的图象的交点D始终在第一象限,则系数k 的取值范围是.。

相关文档
最新文档