勾股定理和一次函数提高综合练习答案详解

合集下载

北师大版八年级上《第一章勾股定理》综合性提高训练含答案解析

北师大版八年级上《第一章勾股定理》综合性提高训练含答案解析

北师大 8 上第一章勾股定理综合性提升训练(含答案)例题 1、直角三角形的面积为 S ,斜边上的中线长为 d,则这个三角形周长为()(A )d 2S 2d(B )d 2S d(C ) 2 d2S 2d(D ) 2 d2S dS1解:设两直角边分别为 a,b,斜边为 c,则cab由勾股定理 ,得 a 2b 2c 2 .2d , 2 .所以 ab 2a 22ab b 2 c 2 4S 4d 2 4S .所以ab 2 d 2S.所以ab c 2 d 2 S2d.应选( C )例题 2.在 ABC 中, AB AC 1, BC 边上有 2006 个不一样的点P 1, P 2 , P 2006,记 m iAP i 2BP i PC i i 1,2,2006,则 m 1m 2m 2006=_____.解 如图作ADBC 于D ,因为 AB AC 1 ,则 BD CD. :,由勾股定理 ,得AB2AD 2 BD 2, AP 2 AD 2 PD 2 所以.AB 2 AP 2BD 2 PD 2BD PDBD PDBP PC所以AP 2BP PCAB 2 12 .所以m1m 2m200612 2006 2006 .例题 3.如下图,在RtABC 中, BAC90 , ACAB, DAE 45,且 BD 3 ,CE4,求 DE 的长 .解:如右图:因为ABC为等腰直角三角形 ,所以ABDC45.所以把AEC 绕点 A 旋转到 AFB ,则 AFBAEC .所以BFEC 4, AFAE, ABFC45 连结DF. 所以 DBF 为直角三角形 ..由勾股定理 ,得 DF2BF 2 BD 2 4232 52 .所以DF5 .因为 DAE 45 ,所以 DAF DABEAC 45 .所以 ADE ADF SAS .所以DEDF5 .例题 4、如图,在△ ABC 中,AB=AC=6 ,P 为 BC 上随意一点,请用学过的知识试求 PC ·PB+PA 2的值。

勾股定理及一次函数能力提高训练

勾股定理及一次函数能力提高训练

M N P l 勾股定理及一次函数能力提高训练1.如图,∠MON=60°,PA ⊥OM 于点A ,PB ⊥ON 于点B,且PA=2,PB=11,求OP 的长。

2.如图,点M 是BC 的中点,直线l ⊥BC 于点D ,若BC=83.25,MD=12,求AB 2-AC 2。

3.如图,在Rt △ABC 中,∠C=90°,∠A=15°,BC=1,求三角形ABC 的面积。

4.如图,在△ABC 中,AB=AC,AD 垂直于BC 于点D ,P 为线段DC上任意一点。

求证:AP 2=AB 2-PB 〃PC 。

O BA ABC M A B C A C BD P D图15.如图,在Rt △ABC 中,点P 是AC 的中点,PD ⊥BC 于点D ,若BC=9,DC=3,求AB 2的值。

6.如图所示,在△ABC 中,AD 为高,若AB+CD=AC+BD ,试判断△ABC 的形状。

7.如图1,把两个全等的等腰直角三角板ABC 和EFG 叠放在一起,使三角板EFG 的直角顶点G 与三角板ABC 的斜边AB 的中点重合,两三角板重叠部分(阴影部分)的面积记为S 阴。

(1)图1中,S 阴=kS △ABC ,则k=( );(2)将三角板EFG 绕点G 顺时针选转角度α(0°﹤α﹤90°)得到图2,在旋转过程中,S 阴是否改变?并说明理由;(3)在图2中,若S 阴=49cm 2,AH=6cm,求: ○1K 、H 两点之间的距离;○2点H 到EF 的距离。

B C D C B D B A C G E F A B G E FC K H图28.在平面直角坐标系中,边长为2的正方形OABC 的两点A 、C 分别在y 轴、x 轴的正半轴,点O 是原点(如图1)。

现将正方形OABC绕点O 顺时针旋转,当点A 第一次落在直线y=x 上停止,旋转过程中,AB 边交直线y=x 与点M ,BC 边交x 轴于点N 。

勾股定理练习题及答案(共6套)

勾股定理练习题及答案(共6套)

For personal use only in study and research; not for commercial use For personal use only in study and research; not for commercial use勾股定理课时练(1)1.在直角三角形ABC中,斜边AB=1,则AB222ACBC++的值是()A.2B.4C.6D.82.如图18-2-4所示,有一个形状为直角梯形的零件ABCD,AD∥BC,斜腰DC的长为10 cm,∠D=120°,则该零件另一腰AB的长是______ cm(结果不取近似值).3.直角三角形两直角边长分别为5和12,则它斜边上的高为_______.4.一根旗杆于离地面12m处断裂,犹如装有铰链那样倒向地面,旗杆顶落于离旗杆地步16m,旗杆在断裂之前高多少m?5.如图,如下图,今年的冰雪灾害中,一棵大树在离地面3米处折断,树的顶端落在离树杆底部4米处,那么这棵树折断之前的高度是米.6.飞机在空中水平飞行,某一时刻刚好飞到一个男孩子头顶正上方4000米处,过了20秒,飞机距离这个男孩头顶5000米,求飞机每小时飞行多少千米?7.如图所示,无盖玻璃容器,高18cm,底面周长为60cm,在外侧距下底1cm的点C处有一蜘蛛,与蜘蛛相对的容器的上口外侧距开口1cm的F处有一苍蝇,试求急于扑货苍蝇充饥的蜘蛛,所走的最短路线的长度. 8.一个零件的形状如图所示,已知AC=3cm,AB=4cm,BD=12cm。

求CD的长.9.如图,在四边形ABCD 中,∠A=60°,∠B=∠D=90°,BC=2,CD=3,求AB的长.10.如图,一个牧童在小河的南4km的A处牧马,而他正位于他的小屋B的西8km北7km处,他想把他的马牵到小河边去饮水,然后回家.他要完成这件事情所走的最短路程是多少?11如图,某会展中心在会展期间准备将高5m,长13m,宽2m的楼道上铺地毯,已知地毯平方米18元,请你帮助计算一下,铺完这个楼道至少需要多少元钱?12.甲、乙两位探险者到沙漠进行探险,没有了水,需要寻找水源.为了不致于走散,他们用两部对话机联系,已知对话机的有效距离为15千米.早晨8:00甲先出发,他以6千米/时的速度向东行走,1小时后乙出发,他以5千米/时的速度向北行进,上午10:00,甲、乙二人相距多远?还能保持联系吗?第一课时答案:1.A ,提示:根据勾股定理得122=+AC BC,所以AB 222ACBC ++=1+1=2;2.4,提示:由勾股定理可得斜边的长为5m ,而3+4-5=2m ,所以他们少走了4步.3.1360 ,提示:设斜边的高为x ,根据勾股定理求斜边为1316951222==+ ,再利用面积法得,1360,132112521=⨯⨯=⨯⨯x x ;4. 解:依题意,AB=16m ,AC=12m ,在直角三角形ABC 中,由勾股定理,222222201216=+=+=AC AB BC ,所以BC=20m ,20+12=32(m ), 故旗杆在断裂之前有32m 高. 5.86. 解:如图,由题意得,AC=4000米,∠C=90°,AB=5000米,由勾股定理得BC=30004000500022=-(米),所以飞机飞行的速度为5403600203=(千米/小时) 7. 解:将曲线沿AB 展开,如图所示,过点C 作CE ⊥AB 于E. 在R 90,=∠∆CEF CEF t ,EF=18-1-1=16(cm ), CE=)(3060.21cm =⨯,由勾股定理,得CF=)(3416302222cm EF CE =+=+8.解:在直角三角形ABC 中,根据勾股定理,得254322222=+=+=AB AC BC在直角三角形CBD 中,根据勾股定理,得CD 2=BC 2+BD 2=25+122=169,所以CD=13.9. 解:延长BC 、AD 交于点E.(如图所示)∵∠B=90°,∠A=60°,∴∠E=30°又∵CD=3,∴CE=6,∴BE=8, 设AB=x ,则AE=2x ,由勾股定理。

一次函数综合练习(全等三角形,勾股定理)问题详解

一次函数综合练习(全等三角形,勾股定理)问题详解

1.如图1,直线y=2x+2与y轴、x轴分别交于A、B两点,以B为直角顶点在第二象限作等腰Rt△ABC〔1〕求点C的坐标,并求出直线AC的关系式.〔2〕如图2,直线CB交y轴于E,在直线CB上取一点D,连接AD,假如AD=AC,求证:BE=DE.〔3〕如图3,在〔1〕的条件下,直线AC交x轴于M,P〔,k〕是线段BC上一点,在线段BM上是否存在一点N,使直线PN平分△BCM的面积?假如存在,请求出点N的坐标;假如不存在,请说明理由.考点:一次函数综合题。

分析:〔1〕如图1,作CQ⊥x轴,垂足为Q,利用等腰直角三角形的性质证明△ABO≌△BCQ,根据全等三角形的性质求OQ,CQ的长,确定C点坐标;〔2〕同〔1〕的方法证明△BCH≌△BDF,再根据线段的相等关系证明△BOE≌△DGE,得出结论;〔3〕依题意确定P点坐标,可知△BPN中BN变上的高,再由S△PBN=S△BCM,求BN,进而得出ON.解答:解:〔1〕如图1,作CQ⊥x轴,垂足为Q,∵∠OBA+∠OAB=90°,∠OBA+∠QBC=90°,∴∠OAB=∠QBC,又∵AB=BC,∠AOB=∠Q=90°,∴△ABO≌△BCQ,∴BQ=AO=2,OQ=BQ+BO=3,CQ=OB=1,∴C〔﹣3,1〕,由A〔0,2〕,C〔﹣3,1〕可知,直线AC:y=x+2;〔2〕如图2,作CH⊥x轴于H,DF⊥x轴于F,DG⊥y轴于G,∵AC=AD,AB⊥CB,∴BC=BD,∴△BCH≌△BDF,∴BF=BH=2,∴OF=OB=1,∴DG=OB,∴△BOE≌△DGE,∴BE=DE;〔3〕如图3,直线BC:y=﹣x﹣,P〔,k〕是线段BC上一点,∴P〔﹣,〕,由y=x+2知M〔﹣6,0〕,∴BM=5,如此S△BCM=.假设存在点N使直线PN平分△BCM的面积,如此BN•=×,∴BN=,ON=,∵BN<BM,∴点N在线段BM上,∴N〔﹣,0〕.点评:此题考查了一次函数的综合运用.关键是根据等腰直角三角形的特殊性证明全等三角形,利用全等三角形的性质求解.2.如图直线ℓ:y=kx+6与x轴、y轴分别交于点B、C,点B的坐标是〔﹣8,0〕,点A的坐标为〔﹣6,0〕〔1〕求k的值.〔2〕假如P〔x,y〕是直线ℓ在第二象限内一个动点,试写出△OPA的面积S与x的函数关系式,并写出自变量x的取值X围.〔3〕当点P运动到什么位置时,△OPA的面积为9,并说明理由.考点:一次函数综合题;待定系数法求一次函数解析式;三角形的面积。

(完整版)初二数学一次函数综合习题提高训练及答案详解

(完整版)初二数学一次函数综合习题提高训练及答案详解

一次函数提高训练一、选择题:1.已知y与x+3成正比例,并且x=1时,y=8,那么y与x之间的函数关系式为()(A)y=8x (B)y=2x+6 (C)y=8x+6 (D)y=5x+32.若直线y=kx+b经过一、二、四象限,则直线y=bx+k不经过()(A)一象限(B)二象限(C)三象限(D)四象限3.直线y=-2x+4与两坐标轴围成的三角形的面积是()(A)4 (B)6 (C)8 (D)164.若甲、乙两弹簧的长度y(cm)与所挂物体质量x(kg)之间的函数解析式分别为y=k1x+a1和y=k2x+a2,如图,所挂物体质量均为2kg时,甲弹簧长为y1,乙弹簧长为y2,则y1与y2的大小关系为()(A)y1>y2 (B)y1=y2(C)y1<y2 (D)不能确定5.设b>a,将一次函数y=bx+a与y=ax+b的图象画在同一平面直角坐标系内,•则有一组a,b的取值,使得下列4个图中的一个为正确的是()6.若直线y=kx+b经过一、二、四象限,则直线y=bx+k不经过第()象限.(A)一(B)二(C)三(D)四7.一次函数y=kx+2经过点(1,1),那么这个一次函数()(A)y随x的增大而增大(B)y随x的增大而减小(C)图像经过原点(D)图像不经过第二象限8.无论m为何实数,直线y=x+2m与y=-x+4的交点不可能在()(A)第一象限(B)第二象限(C)第三象限(D)第四象限9.要得到y=-32x-4的图像,可把直线y=-32x().(A)向左平移4个单位(B)向右平移4个单位(C)向上平移4个单位(D)向下平移4个单位10.若函数y=(m-5)x+(4m+1)x2(m为常数)中的y与x成正比例,则m 的值为()(A)m>-14(B)m>5 (C)m=-14(D)m=511.若直线y=3x-1与y=x-k的交点在第四象限,则k的取值范围是().(A)k<13(B)13<k<1 (C)k>1 (D)k>1或k<1312.过点P(-1,3)直线,使它与两坐标轴围成的三角形面积为5,•这样的直线可以作()(A)4条(B)3条(C)2条(D)1条13.已知abc≠0,而且a b b c c ac a b+++===p,那么直线y=px+p一定通过()(A)第一、二象限(B)第二、三象限(C)第三、四象限(D)第一、四象限14.当-1≤x≤2时,函数y=ax+6满足y<10,则常数a的取值范围是()(A)-4<a<0 (B)0<a<2(C)-4<a<2且a≠0 (D)-4<a<215.在直角坐标系中,已知A(1,1),在x轴上确定点P,使△AOP为等腰三角形,则符合条件的点P共有()(A)1个(B)2个(C)3个(D)4个16.一次函数y=ax+b(a为整数)的图象过点(98,19),交x轴于(p,0),交y轴于(•0,q),若p为质数,q为正整数,那么满足条件的一次函数的个数为()(A)0 (B)1 (C)2 (D)无数17.在直角坐标系中,横坐标都是整数的点称为整点,设k为整数.当直线y=x-3与y=kx+k的交点为整点时,k的值可以取()(A)2个(B)4个(C)6个(D)8个18.在直角坐标系中,横坐标都是整数的点称为整点,设k为整数,当直线y=x-3与y=kx+k的交点为整点时,k的值可以取()(A)2个(B)4个(C)6个(D)8个19.甲、乙二人在如图所示的斜坡AB上作往返跑训练.已知:甲上山的速度是a米/分,下山的速度是b米/分,(a<b);乙上山的速度是12a米/分,下山的速度是2b米/分.如果甲、乙二人同时从点A出发,时间为t(分),离开点A 的路程为S(米),•那么下面图象中,大致表示甲、乙二人从点A出发后的时间t(分)与离开点A的路程S(米)•之间的函数关系的是()20.若k、b是一元二次方程x2+px-│q│=0的两个实根(kb≠0),在一次函数y=kx+b中,y随x的增大而减小,则一次函数的图像一定经过()(A)第1、2、4象限(B)第1、2、3象限(C)第2、3、4象限(D)第1、3、4象限二、填空题1.已知一次函数y=-6x+1,当-3≤x≤1时,y的取值范围是________.2.已知一次函数y=(m-2)x+m-3的图像经过第一,第三,第四象限,则m 的取值范围是________.3.某一次函数的图像经过点(-1,2),且函数y的值随x的增大而减小,请你写出一个符合上述条件的函数关系式:_________.4.已知直线y=-2x+m不经过第三象限,则m的取值范围是_________.5.函数y=-3x+2的图像上存在点P,使得P•到x•轴的距离等于3,•则点P•的坐标为__________.6.过点P(8,2)且与直线y=x+1平行的一次函数解析式为_________.7.y=23x与y=-2x+3的图像的交点在第_________象限.8.某公司规定一个退休职工每年可获得一份退休金,•金额与他工作的年数的算术平方根成正比例,如果他多工作a年,他的退休金比原有的多p元,如果他多工作b年(b≠a),他的退休金比原来的多q元,那么他每年的退休金是(以a、b、p、•q•)表示______元.9.若一次函数y=kx+b,当-3≤x≤1时,对应的y值为1≤y≤9,•则一次函数的解析式为________.10.(湖州市南浔区2005年初三数学竞赛试)设直线kx+(k+1)y-1=0(为正整数)与两坐标所围成的图形的面积为Sk(k=1,2,3,……,2008),那么S1+S2+…+S2008=_______.三、解答题1.已知一次函数y=ax+b的图象经过点A(2,0)与B(0,4).(1)求一次函数的解析式,并在直角坐标系内画出这个函数的图象;(2)如果(1)中所求的函数y的值在-4≤y≤4范围内,求相应的y的值在什么范围内.2.已知y=p+z,这里p是一个常数,z与x成正比例,且x=2时,y=1;x=3时,y=-1.(1)写出y与x之间的函数关系式;(2)如果x的取值范围是1≤x≤4,求y的取值范围.3.为了学生的身体健康,学校课桌、凳的高度都是按一定的关系科学设计的.•小明对学校所添置的一批课桌、凳进行观察研究,发现它们可以根据人的身高调节高度.于是,他测量了一套课桌、凳上相对应的四档高度,得到如下数据:(1一次函数的关系式;(不要求写出x的取值范围);(2)小明回家后,•测量了家里的写字台和凳子,写字台的高度为77cm,凳子的高度为43.5cm,请你判断它们是否配套?说明理由.4.小明同学骑自行车去郊外春游,下图表示他离家的距离y(千米)与所用的时间x(小时)之间关系的函数图象.(1)根据图象回答:小明到达离家最远的地方需几小时?此时离家多远?(2)求小明出发两个半小时离家多远?(3)•求小明出发多长时间距家12千米?5.已知一次函数的图象,交x轴于A(-6,0),交正比例函数的图象于点B,且点B•在第三象限,它的横坐标为-2,△AOB的面积为6平方单位,•求正比例函数和一次函数的解析式.6.如图,一束光线从y轴上的点A(0,1)出发,经过x轴上点C反射后经过点B(3,3),求光线从A点到B点经过的路线的长.7.由方程│x-1│+│y-1│=1确定的曲线围成的图形是什么图形,其面积是多少?8.在直角坐标系x0y中,一次函数y=3的图象与x轴,y轴,分别交于A、B两点,•点C坐标为(1,0),点D在x轴上,且∠BCD=∠ABD,求图象经过B、D•两点的一次函数的解析式.9.已知:如图一次函数y=12x-3的图象与x轴、y轴分别交于A、B两点,过点C(4,0)作AB的垂线交AB于点E,交y轴于点D,求点D、E的坐标.10.已知直线y=43x+4与x轴、y轴的交点分别为A、B.又P、Q两点的坐标分别为P(•0,-1),Q(0,k),其中0<k<4,再以Q点为圆心,PQ长为半径作圆,则当k取何值时,⊙Q•与直线AB相切?11.(2005年宁波市蛟川杯初二数学竞赛)某租赁公司共有50台联合收割机,其中甲型20台,乙型30台.现将这50台联合收割机派往A、B两地收割小麦,其中30•台派往A地,20台派往B地.两地区与该租赁公司商定的每天的租赁价格如下:(1)设派往A地x台乙型联合收割机,租赁公司这50台联合收割机一天获得的租金为y(元),请用x表示y,并注明x的范围.(2)若使租赁公司这50台联合收割机一天获得的租金总额不低于79600元,•说明有多少种分派方案,并将各种方案写出.12.已知写文章、出版图书所获得稿费的纳税计算方法是f(x)=(800)20%(130%),400(120%)20%(130%),400x xx x--≤⎧⎨-->⎩g gg g g其中f(x)表示稿费为x元应缴纳的税额.假如张三取得一笔稿费,缴纳个人所得税后,得到7104元,•问张三的这笔稿费是多少元?13.某中学预计用1500元购买甲商品x个,乙商品y个,不料甲商品每个涨价1.5元,乙商品每个涨价1元,尽管购买甲商品的个数比预定减少10个,总金额多用29元.•又若甲商品每个只涨价1元,并且购买甲商品的数量只比预定数少5个,那么买甲、乙两商品支付的总金额是1563.5元.(1)求x、y的关系式;(2)若预计购买甲商品的个数的2倍与预计购买乙商品的个数的和大于205,但小于210,求x,y的值.14.某市为了节约用水,规定:每户每月用水量不超过最低限量am3时,只付基本费8元和定额损耗费c元(c≤5);若用水量超过am3时,除了付同上的基本费和损耗费外,超过部分每1m3付b元的超额费.某市一家庭今年一月份、二月份和三月份的用水量和支付费用如下表所示:15.A市、B市和C市有某种机器10台、10台、8台,•现在决定把这些机器支援给D市18台,E市10.已知:从A市调运一台机器到D市、E市的运费为200元和800元;从B•市调运一台机器到D市、E市的运费为300元和700元;从C市调运一台机器到D市、E市的运费为400元和500元.(1)设从A市、B市各调x台到D市,当28台机器调运完毕后,求总运费W(元)关于x(台)的函数关系式,并求W的最大值和最小值.(2)设从A市调x台到D市,B市调y台到D市,当28台机器调运完毕后,用x、y表示总运费W(元),并求W的最大值和最小值.答案:1.B 2.B 3.A 4.A5.B 提示:由方程组y bx ay ax b=+⎧⎨=+⎩的解知两直线的交点为(1,a+b),•而图A中交点横坐标是负数,故图A不对;图C中交点横坐标是2≠1,故图C不对;图D•中交点纵坐标是大于a,小于b的数,不等于a+b,故图D不对;故选B.6.B 提示:∵直线y=kx+b经过一、二、四象限,∴0,kb<⎧⎨>⎩对于直线y=bx+k,∵0,kb<⎧⎨>⎩∴图像不经过第二象限,故应选B.7.B 提示:∵y=kx+2经过(1,1),∴1=k+2,∴y=-x+2,∵k=-1<0,∴y随x的增大而减小,故B正确.∵y=-x+2不是正比例函数,∴其图像不经过原点,故C错误.∵k<0,b=•2>0,∴其图像经过第二象限,故D错误.8.C 9.D 提示:根据y=kx+b的图像之间的关系可知,将y=-32x•的图像向下平移4个单位就可得到y=-32x-4的图像.10.C 提示:∵函数y=(m-5)x+(4m+1)x中的y与x成正比例,∴5,50,1410,,4mmm m≠⎧-≠⎧⎪⎨⎨+==-⎩⎪⎩即∴m=-14,故应选C.11.B 12.C 13.B 提示:∵a b b c c ac a b+++===p,∴①若a+b+c≠0,则p=()()()a b b c c aa b c+++++++=2;②若a+b+c=0,则p=a b cc c+-==-1,∴当p=2时,y=px+q过第一、二、三象限;当p=-1时,y=px+p过第二、三、四象限,综上所述,y=px+p一定过第二、三象限.14.D 15.D 16.A 17.C 18.C 19.C20.A 提示:依题意,△=p2+4│q│>0,||k b pk b qk b+=-⎫⎪=-⇒⎬⎪≠⎭ggk·b<0,一次函数y=kx+b中,y随x的增大而减小kkb<⎫⇒<⇒⇒⎬>⎭一次函数的图像一定经过一、二、四象限,选A.二、1.-5≤y≤19 2.2<m<3 3.如y=-x+1等.4.m≥0.提示:应将y=-2x+m的图像的可能情况考虑周全.5.(13,3)或(53,-3).提示:∵点P到x轴的距离等于3,∴点P的纵坐标为3或-3当y=3时,x=13;当y=-3时,x=53;∴点P的坐标为(13,3)或(53,-3).提示:“点P到x轴的距离等于3”就是点P的纵坐标的绝对值为3,故点P的纵坐标应有两种情况.6.y=x-6.提示:设所求一次函数的解析式为y=kx+b.∵直线y=kx+b与y=x+1平行,∴k=1,∴y=x+b.将P(8,2)代入,得2=8+b,b=-6,∴所求解析式为y=x-6.7.解方程组92,,83323,,4xy xy x y⎧=⎧⎪=⎪⎪⎨⎨⎪⎪=-+=⎩⎪⎩得∴两函数的交点坐标为(98,34),在第一象限.8.222()aq bpbp aq--. 9.y=2x+7或y=-2x+3 10.10042009三、1.(1)由题意得:202 44a b ab b+==-⎧⎧⎨⎨==⎩⎩解得∴这个一镒函数的解析式为:y=-2x+4(•函数图象略).(2)∵y=-2x+4,-4≤y≤4,∴-4≤-2x+4≤4,∴0≤x≤4.2.(1)∵z与x成正比例,∴设z=kx(k≠0)为常数,则y=p+kx.将x=2,y=1;x=3,y=-1分别代入y=p+kx,得2131k pk p+=⎧⎨+=-⎩解得k=-2,p=5,∴y与x之间的函数关系是y=-2x+5;(2)∵1≤x≤4,把x1=1,x2=4分别代入y=-2x+5,得y1=3,y2=-3.∴当1≤x≤4时,-3≤y≤3.另解:∵1≤x≤4,∴-8≤-2x≤-2,-3≤-2x+5≤3,即-3≤y≤3.3.(1)设一次函数为y=kx+b,将表中的数据任取两取,不防取(37.0,70.0)和(42.0,78.0)代入,得21 31 k pk p+=⎧⎨+=-⎩∴一次函数关系式为y=1.6x+10.8.(2)当x=43.5时,y=1.6×43.5+10.8=80.4.∵77≠80.4,∴不配套.4.(1)由图象可知小明到达离家最远的地方需3小时;此时,他离家30千米.(2)设直线CD的解析式为y=k1x+b1,由C(2,15)、D(3,30),代入得:y=15x-15,(2≤x≤3).当x=2.5时,y=22.5(千米)答:出发两个半小时,小明离家22.5千米.(3)设过E、F两点的直线解析式为y=k2x+b2,由E(4,30),F(6,0),代入得y=-15x+90,(4≤x≤6)过A、B两点的直线解析式为y=k3x,∵B(1,15),∴y=15x.(0≤x≤1),•分别令y=12,得x=265(小时),x=45(小时).答:小明出发小时265或45小时距家12千米.5.设正比例函数y=kx,一次函数y=ax+b,∵点B在第三象限,横坐标为-2,设B(-2,yB),其中yB<0,∵S△AOB=6,∴12AO·│yB│=6,∴yB=-2,把点B(-2,-2)代入正比例函数y=kx,•得k=1.把点A(-6,0)、B(-2,-2)代入y=ax+b,得1 062 223a b aa bb⎧=-+=-⎧⎪⎨⎨-=-+⎩⎪=-⎩解得∴y=x,y=-12x-3即所求.6.延长BC交x轴于D,作DE⊥y轴,BE⊥x轴,交于E.先证△AOC≌△DOC,∴OD=OA=•1,CA=CD,∴= 5.7.当x≥1,y≥1时,y=-x+3;当x≥1,y<1时,y=x-1;当x<1,y≥1时,y=x+1;当x<•1,y<1时,y=-x+1.,面积为2.8.∵点A、B分别是直线y=3与x轴和y轴交点,∴A(-3,0),B(0),∵点C坐标(1,0)由勾股定理得,设点D的坐标为(x,0).(1)当点D在C点右侧,即x>1时,∵∠BCD=∠ABD,∠BDC=∠ADB,∴△BCD∽△ABD,∴BC CDAB BD=,∴=①∴22321112x xx-+=+,∴8x2-22x+5=0,∴x1=52,x2=14,经检验:x1=52,x2=14,都是方程①的根,∵x=14,不合题意,∴舍去,∴x=52,∴D•点坐标为(52,0).设图象过B、D两点的一次函数解析式为y=kx+b,5 52b kk bb⎧⎧==-⎪⎪∴⎨⎨+=⎪⎪=⎩⎩∴所求一次函数为y=-5.(2)若点D在点C左侧则x<1,可证△ABC∽△ADB,∴AD BDAB CB=,∴=②∴8x2-18x-5=0,∴x1=-14,x2=52,经检验x1=14,x2=52,都是方程②的根.∵x2=52不合题意舍去,∴x1=-14,∴D点坐标为(-14,0),∴图象过B、D(-14,0)两点的一次函数解析式为,综上所述,满足题意的一次函数为y=-5或.9.直线y=12x-3与x轴交于点A(6,0),与y轴交于点B(0,-3),∴OA=6,OB=3,∵OA ⊥OB ,CD ⊥AB ,∴∠ODC=∠OAB ,∴cot ∠ODC=cot ∠OAB ,即OD OA OC OB =,∴OD=463OC OA OB ⨯=g =8.∴点D 的坐标为(0,8), 设过CD 的直线解析式为y=kx+8,将C (4,0)代入0=4k+8,解得k=-2.∴直线CD :y=-2x+8,由2213524285x y x y x y ⎧=⎧⎪=-⎪⎪⎨⎨⎪⎪=-+=-⎩⎪⎩解得 ∴点E 的坐标为(225,-45).10.把x=0,y=0分别代入y=43x+4得0,3,4;0.x x y y ==-⎧⎧⎨⎨==⎩⎩ ∴A 、B 两点的坐标分别为(-3,0),(0,4)•.•∵OA=3,OB=4,∴AB=5,BQ=4-k ,QP=k+1.当QQ ′⊥AB 于Q ′(如图), 当QQ ′=QP 时,⊙Q 与直线AB 相切.由Rt △BQQ′∽Rt △BAO ,得`BQ QQ BQ QP BA AO BA AO ==即.∴4153k k -+=,∴k=78.∴当k=78时,⊙Q 与直线AB 相切.11.(1)y=200x+74000,10≤x≤30(2)三种方案,依次为x=28,29,30的情况.12.设稿费为x元,∵x>7104>400,∴x-f(x)=x-x(1-20%)20%(1-30%)=x-x·45·15·710x=111125x=7104.∴x=7104×111125=8000(元).答:这笔稿费是8000元.13.(1)设预计购买甲、乙商品的单价分别为a元和b元,则原计划是:ax+by=1500,①.由甲商品单价上涨1.5元,乙商品单价上涨1元,并且甲商品减少10个情形,得:(a+1.5)(x-10)+(b+1)y=1529,②再由甲商品单价上涨1元,而数量比预计数少5个,乙商品单价上涨仍是1元的情形得:(a+1)(x-5)+(b+1)y=1563.5,③.由①,②,③得:1.51044,568.5.x y ax y a+-=⎧⎨+-=⎩④-⑤×2并化简,得x+2y=186.(2)依题意有:205<2x+y<210及x+2y=186,得54<y<552 3.由于y是整数,得y=55,从而得x=76.14.设每月用水量为xm3,支付水费为y元.则y=8,08(),c x ab x ac x a+≤≤⎧⎨+-+≥⎩由题意知:0<c≤5,∴0<8+c≤13.从表中可知,第二、三月份的水费均大于13元,故用水量15m3、22m3均大于最低限量am3,将x=15,x=22分别代入②式,得198(15)338(22)b a cb a c=+-+⎧⎨=+-+⎩解得b=2,2a=c+19,⑤.再分析一月份的用水量是否超过最低限量,不妨设9>a,将x=9代入②,得9=8+2(9-a)+c,即2a=c+17,⑥.⑥与⑤矛盾.故9≤a,则一月份的付款方式应选①式,则8+c=9,∴c=1代入⑤式得,a=10.综上得a=10,b=2,c=1. ()15.(1)由题设知,A市、B市、C市发往D市的机器台数分x,x,18-2x,发往E市的机器台数分别为10-x,10-x,2x-10.于是W=200x+300x+400(18-2x)+800(10-x)+700(10-x)+500(2x-10)=-800x+17200.又010,010, 01828,59, x xx x≤≤≤≤⎧⎧∴⎨⎨≤-≤≤≤⎩⎩∴5≤x≤9,∴W=-800x+17200(5≤x≤9,x是整数).由上式可知,W是随着x的增加而减少的,所以当x=9时,W取到最小值10000元;•当x=5时,W取到最大值13200元.(2)由题设知,A市、B市、C市发往D市的机器台数分别为x,y,18-x-y,发往E市的机器台数分别是10-x,10-y,x+y-10,于是W=200x+800(10-x)+300y+700(10-y)+•400(19-x-y)+500(x+y-10)=-500x-300y-17200.又010,010, 010,010, 0188,1018, x xy yx y x y ≤≤≤≤⎧⎧⎪⎪≤≤∴≤≤⎨⎨⎪⎪≤--≤≤+≤⎩⎩∴W=-500x-300y+17200,且010,010,018.xyx y≤≤⎧⎪≤≤⎨⎪≤+≤⎩(x,y为整数).W=-200x-300(x+y)+17200≥-200×10-300×18+17200=9800.当x=•10,y=8时,W=9800.所以,W的最小值为9800.又W=-200x-300(x+y)+17200≤-200×0-300×10+17200=14200.当x=0,y=10时,W=14200,所以,W的最大值为14200.。

勾股定理习题及答案

勾股定理习题及答案

勾股定理习题及答案勾股定理习题及答案勾股定理是数学中的一条重要定理,它描述了直角三角形中三边之间的关系。

在数学教育中,勾股定理常常作为基础知识进行教学,并且在习题中广泛应用。

本文将介绍一些关于勾股定理的习题,并提供详细的解答。

1. 习题一:已知直角三角形的斜边长为5,一条直角边长为3,求另一条直角边的长度。

解答:根据勾股定理,斜边的平方等于两直角边平方和。

设另一条直角边长度为x,则有5^2 = 3^2 + x^2。

化简得25 = 9 + x^2,进一步得到x^2 = 16。

因此,x的取值可以是正负4。

但由于长度不能为负数,所以另一条直角边的长度为4。

2. 习题二:已知直角三角形的两条直角边分别为6和8,求斜边的长度。

解答:同样利用勾股定理,斜边的平方等于两直角边平方和。

设斜边长度为y,则有y^2 = 6^2 + 8^2。

计算得到y^2 = 36 + 64,进一步得到y^2 = 100。

因此,斜边的长度为10。

3. 习题三:已知直角三角形的两条直角边分别为3和4,求斜边的长度。

解答:同样利用勾股定理,斜边的平方等于两直角边平方和。

设斜边长度为z,则有z^2 = 3^2 + 4^2。

计算得到z^2 = 9 + 16,进一步得到z^2 = 25。

因此,斜边的长度为5。

通过以上习题的解答,我们可以看到勾股定理在求解直角三角形问题中的应用。

它帮助我们确定了三角形的边长关系,从而解决了许多实际问题。

除了直角三角形,勾股定理还可以应用于其他几何形状。

例如,我们可以利用勾股定理计算矩形的对角线长度。

设矩形的长为a,宽为b,对角线的长度为c。

根据勾股定理,c^2 = a^2 + b^2。

这个公式可以帮助我们求解矩形的对角线长度,从而在实际问题中应用矩形的性质。

勾股定理的应用不仅限于几何学,它还可以在其他学科中发挥作用。

例如,物理学中的力学问题中,常常需要求解物体的速度、加速度等。

通过应用勾股定理,我们可以计算出物体在不同时间点的速度和加速度之间的关系,从而解决力学问题。

中考数学总复习《几何综合问题(一次函数的实际综合应用)》专项提升训练(带答案)

中考数学总复习《几何综合问题(一次函数的实际综合应用)》专项提升训练(带答案)学校:___________班级:___________姓名:___________考号:___________1.点P 是平面直角坐标系中的一点且不在坐标轴上,过点P 向x 轴,y 轴作垂线段,若垂线段的长度的和为2,则点P 叫做“好垂点”.例如:如图中的()11P ,是“好垂点”.(1)在点()1,2A ,()133522B C ⎛⎫-- ⎪⎝⎭,,,中,是“好垂点”的点为 ; (2)求函数21y x =-+的图象上的“好垂点”的坐标.(3)若二次函数223y x bx =+-的图象上存在4个“好垂点”,求b 的取值范围.(4)已知T 的圆心T 的坐标为()10-,,半径为r . 若T 上存在“好垂点”,则r 的取值范围是 .2.如图,在平面直角坐标系中,直线2y x =+与x 轴、y 轴分别交于A 、B 两点,点()2,C m 为直线2y x =+上一点,直线y x b =-+过点C .(1)求m 和b 的值;(2)直线y x b =-+与x 轴交于点D ,动点P 从点D 开始以每秒1个单位的速度向x 轴负方向运动(点P 不与点D ,点A 重合).若点P 在线段DA 上,设点P 的运动时间为t 秒. ①若ACP △的面积为10,求t 的值;②是否存在t 的值,使ACP △是以AP 为腰的等腰三角形?若存在,求出t 的值;若不存在,请说明理由.为顶点的三角形与BCO相似?若存在,求、C分别在>.AB BC为顶点的三角形与OAC相似?两点,点(2C,(1)求m 和b 的值;(2)直线12y x b =-+与x 轴交于点D ,动点P 从点D 开始以每秒1个单位的速度向x 轴负方向运动.设点P 的运动时间为t 秒.①若点P 在线段DA 上,且ACP △的面积为10,求t 的值;②是否存在t 的值,使ACP △为等腰三角形?若存在,直接写出t 的值;若不存在请说明理由. 6.如图,在平面直角坐标系中,正方形ABCD 的顶点A 为()2,0,顶点D 为()0,4.(1)直接写出直线BC 的解析式:____________;(2)点M 与点A 关于y 轴对称,点N 为正方形边上一点,且45DMN ∠=,直接写出点N 的坐标:____________;(3)将正方形沿y 轴向下平移(0)t t >个单位,直至点D 落在x 轴上.设正方形在x 轴下方的部分面积为S ,求S 关于t 的函数关系式,并写出相应自变量t 的取值范围.7.如图,在平面直角坐标系中,直线24y x =-+与x 轴交于点A ,与y 轴交于点B ,过点B 的直线交x 轴于C (点C 在A 左侧),且ABC 面积为10.(1)求点C的坐标及直线BC的解析式;(2)如图1,设点F为线段AB中点,点G为y轴上一动点,连接FG,以FG为边向FG左侧作等腰直角FGQ,其中90∠=︒,在G点的运动过程中,当顶点Q落在直线BC上时,求点G的坐FGQ标;(3)如图2,若M为线段BC上一点,且满足AMB AOB=S S△△,点E为直线AM上一动点,在x轴上是否存在点D,使以点D,E,B,C为顶点的四边形为平行四边形?若存在,请求出点D的坐标;若不存在,请说明理由.8.在同一平面直角坐标系中,我们规定点的两种移动方式:从点(,)x y移动到点(2,1)++称为x y一次甲方式移动;从点(,)x y移动到点(1,3)x y++称为一次乙方式移动.(1)若原点O经过两次甲方式移动,得到点M;原点O经过两次乙方式移动,得到点N.设过点M,N的直线为1l,求直线1l的解析式;(2)若原点O连续移动10次(每次按甲方式或乙方式移动),最终移动到点Q.试说明:无论每次按甲方式还是乙方式移动,最终点Q都落在一条确定的直线上;设这条直线为2l,请求出直线2l的解析式;(3)将(2)中的直线2l向下平移30个单位得到直线3l.分别在上述直线1l2l3l上取点AB C设点A B C的横坐标分别为a b c且a b试探究:当A B C三点共线时a b c之间有何数量关系?说明理由.9.【问题提出】△的面积为3 则ABC的面积(1)如图①点D为ABC的边AC的中点连接BD若ABD为_______;【问题探究】(2)如图②在平面直角坐标系中点A在第一象限连接OA作AB x⊥轴于点B若2AB OB = 25OA = 过点B 的直线l 将OAB 分成面积相等的两部分 求直线l 的函数表达式;【问题解决】(3)如图③ 在平面直角坐标系中 四边形OABC 是某市将要筹建的高新技术开发区用地示意图 其中O 为坐标原点 ()()()24,728,425,0A B C ,, 为了方便驻区单位 计划过点O 修一条笔直的道路1l (路宽不计) 并且使直线1l 将四边形OABC 分成面积相等的两部分 记直线1l 与AB 所在直线的交点为D 再过点A 修一条笔直的道路2l (路宽不计) 并且使直线2l 将OAD △分成面积相等的两部分 你认为直线1l 和2l 是否存在?若存在 请求出直线1l 和2l 的函数表达式;若不存在 请说明理由.10.如图 在矩形ABCD 中 4AD = 6AB = 动点P Q 均以每秒1个单位长度的速度分别从点D 点C 同时出发 其中点P 沿折线D A B →→方向运动 点Q 沿折线C B A →→方向运动 当两者相遇时停止运动.运动时间为t 秒 PQD 的面积为y .(1)请直接写出y 关于t 的函数表达式并注明自变量t 的取值范围;(2)在给定的直角坐标系中画出这个函数的图象 并写出该函数的一条性质; (3)结合函数图象 直接写出PQD 的面积大于4时t 的取值范围.11.如图 在平面直角坐标系中 直线AB 交x 轴 y 轴于(,0)A a 和(0,)B b 两点 其中a 和b 是方程212320x x -+=的两个实数根 且b a >.使PBC的面积最大?若存在PBC面积的最大值.若没有13.如图点()4,C t在第四象限段OB上.连接于点E交折线段(1)求点A B的坐标;(2)设点E F的纵坐标分别为1y2y当04≤≤时12m-为定值求t的值;y y(3)在(2)的条件下分别过点E F作EG FH垂直于y轴垂足分别为点G H当06≤≤时求长方形EGHF周长的最大值.m14.已知四边形OABC是边长为4的正方形分别以OA OC、所在的直线为x轴y轴建立如图所示的平面直角坐标系直线l经过A C、两点.(1)求直线l的函数表达式;(2)如下图若点D是OC的中点E是直线l上的一个动点求使OE DE+取得最小值时点E的坐标.(3)如下图过点O作AC的垂线垂足为点M点P是直线l上的一个点点Q是y轴上的一个点以,,O P Q为顶点的三角形与OMP全等请直接写出所有符合条件的点P的坐标.15.如图1 在平面直角坐标系xoy中等腰直角AOB的斜边OB在x轴上顶点A的坐标为()2,2与AOB重叠部分为轴对称图形时轴交于点(4,0)A-使得QAB为等腰直角三角形?若存在参考答案:5b<(4)2-或8423.(1)1 (2)4 (3)352+或352或32或3132+或3132-+4.(1)()4,8- (2)16y x=- (3)存在 ()()()()0,2,0,4,0,6,0,12---5.(1)4m = 5b = (2)①7 ②存在 4t =秒或()1242-秒或()1242+秒或8秒6.(1)214=-+y x (2):10877,⎛⎫ ⎪⎝⎭或401877⎛⎫⎪⎝⎭, (3)当02t <≤时 254S t =;当24t <≤时 55S t =-7.(1)443y x =+ ()3,0C -; (2)1230,7G ⎛⎫ ⎪⎝⎭或()20,1G -; (3)19,03⎛⎫- ⎪⎝⎭或1,03⎛⎫ ⎪⎝⎭或31,03⎛⎫ ⎪⎝⎭. 8.(1)210y x =-+ (2)250y x =-+ (3)43b c a =-9.(1)6;(2)24y x =-+;(3)存在 直线1l 的函数表达式为17y x = 直线2l 的函数表达式为152y x =- 10.(1)()()30442847t t y t t ⎧<≤⎪=⎨-+<<⎪⎩ (2)当04x <≤时 y 随x 的增大而增大 当47x <≤时 y 随x 的增大而减小 (3)463t <<解题过程:(1)解:依题意 44614AD BC AB ++=++=则相遇时间为14711=+; DP CQ t ==当04t <≤时 点P 在AD 上 Q 在BC 上 ∴1632y t t =⨯=当47t <≤时 142PQ t =-∴()11414222y PQ AD t =⨯=⨯⨯-428t =-+4∴4a = 8b =∴224845AB =+=;(2)设OBD ∠的度数为m ︒ 而90BOE ∠=︒ ∴90BEO m ∠=︒-︒∴90FED BEO m ∠=∠=︒-︒∵DE 的垂直平分线交x 轴负半轴于点F∴FE FD =∴90FED FDE m ∠=∠=︒-︒∴()1802902DFE m m ∠=︒-︒-︒=︒;(3)如图 过B 作BQ DF ⊥于Q 过D 作DT BO ⊥于T由(2)得90FDE FED m ∠=∠=︒-︒∵BF BD =∴90BFD BDF m ∠=∠=︒-︒∴()1802902FBD m m ∠=︒-︒-︒=︒∵BF BD = BQ DF ⊥∴FBQ DBQ DBT m ∠=∠=∠=︒而DT BO ⊥ DQ BQ ⊥∴FQ DQ DT == 设FQ DQ DT x === OT y =FOD BOD S S = DFE BOE S S =2OE xy = 解得4xy OE =FOD BOD S S =可得:24xy y x ⎛⎫+ ⎪28320y +-=解得:434y =-12.(1)223y x x =--+(2)存在()1,2Q -使得QAC △的周长最小(3)存在31524P ⎛⎫- ⎪⎝⎭,使得PBC 面积最大 最大为278 解题过程:(1)解:将1,0A ()3,0B -代入2y x bx c =-++中得10930b c b c -++=⎧⎨--+=⎩ ∴23b c =-⎧⎨=⎩. ∴抛物线解析式为:223y x x =--+;(2)解:∵抛物线解析式为()222314y x x x =--+=-++ ∴抛物线的对称轴为直线=1x -连接BQ由对称性可知BQ AQ =∴AQC 的周长CA AC AQ AC CQ BQ =++=++ ∵A C 为定点∴AC 为定值∴当CQ BQ +最小时 AQC 的周长最小∴当B C Q 三点共线时 CQ BQ +最小 即AQC 的周长最小在223y x x =--+中 当0x =时 2233y x x =--+=C ∴的坐标为()0,3设直线BC 解析式为y kx b '=+∴303k b b ''-+=⎧⎨=⎩∴13k b =⎧⎨='⎩3yx 3y x 中 当时 1y =-+()1,2-∴存在()1,2Q -使得QAC 的周长最小;)解:设()PBPC S S =△∴当S 四边形BPCO S ∴四边形12BE =⋅∴点P 坐标为31524⎛⎫- ⎪⎝⎭,∴存在31524P ⎛⎫- ⎪⎝⎭,使得PBC 面积最大 最大为278.13.(1)()0,9A ()6,0B(2)6-(3)26解题过程:(1)解:∵直线392y x =-+交y 轴于点A 交x 轴于点B∴当0y =时 得:3902x -+= 解得:6x =当0x =时 得:9y =∴()0,9A ()6,0B ;(2)设OC 的解析式为y kx = 过点()4,C t ∴4t k =∴4tk =∴OC 的解析式为()04ty x t =<∵点(),0P m 在线段OB 上 过点P 作x 轴的垂线 交边AB 于点E 交折线段OCB 于点F 且点EF 的纵坐标分别为1y 2y 04m ≤≤∴1392y m =-+ 24ty m =∴1233992424t t y y m m m ⎛⎫-=-+-=-+ ⎪⎝⎭∵12y y -为定值 即3924t m ⎛⎫-+ ⎪⎝⎭为定值∴3024t+=解得:6t =-;(3)①当04m ≤≤时129EF y y =-=(定长) 在点P 运动到图中点P ' 此时直线经过点C 即4m =∴044k b b=+⎧⎨=⎩ 解得14k b =-⎧⎨=⎩ 直线l 的函数表达式4y x =-+;(2)解:如图所示 连接BE BD ,由正方形的性质可得OA BA BC OC ===又∵AC AC =∴()SSS OAC BAC △≌△∴OAE BAE ∠=∠又∵AE AE =∴()SAS OAE BAE △≌△∴OE BE =∴DE OE DE BE +=+∴当B D E 、、三点共线时 DE BE +最小 即此时OE DE +取得最小值 设DB 所在直线为()1110y k x b k =+≠∵点D 是OC 的中点 ()04C ,∴()02D ,又∵()44B ,∴111442k b b =+⎧⎨=⎩∴11122k b ⎧=⎪⎨⎪=⎩ ∴直线DB 为122y x =+33⎝⎭∴()224x x +=∴422x =-在4y x =-+中 当422x =-时 22y =∴P 点坐标为()42222-,; 如图所示 当POM OPQ △≌△时同理可得PQ CQ OM CM === 24OC OM == ∴22PQ CQ OM CM ====∴422OQ =+∴P 点坐标为()22422-+,; 如图所示 当OMP PQO ≌△△时∴PM OQ OM PQ ==,同理可得2222OM CM OC === 设OQ PM x == 则4CQ PQ x ==- 242222CP CQ x CM MP x ==-=+=+ 解得422x =-直线AOB COP S S S ∆∆=-1122AM OB OP PC =⋅-⋅2111424222m m m =⨯⨯-⋅=-.当24m <<时 如图②.COB AOP S S S ∆∆=-1122PC OB OP AM =⋅-⋅114222m m m =⨯⨯-⨯=.当4m >时 如图③COP AOB S S ∆∆=-1122PC OP OB AM =-2111424222m m m =-⨯⨯=-.与AOB重叠部分为轴对称图形无重叠部分(3)Q 的坐标为(3,7)-或(7,4)-或7(2-7)2 解题过程:(1)在94y x =中 令2x =得92y =9(2,)2C ∴; 设直线1l 的解析式为y kx b =+ 把(4,0)A - 9(2,)2C 代入得: 40922k b k b -+=⎧⎪⎨+=⎪⎩解得343k b ⎧=⎪⎨⎪=⎩ ∴直线1l 的解析式为334y x =+; (2)如图:设(,0)M m 则3(,3)4D m m + 9(,)4E m m 2DE =39|3|244m m ∴+-= 3322m ∴-=或3322m -=- 解得23m =或103m = M ∴的坐标为2(3 0)或10(3 0); (3)在334y x =+中 令0x =得3y =(0,3)B ∴①当B 为直角顶点时 过B 作BH y ⊥轴于H 如图:QAB 为等腰直角三角形 AB QB ∴= 90QBA ∠=︒ 90ABO QBH BQH ∴∠=︒-∠=∠ 90AOB QHB ∠=︒=∠ (AAS)ABO BQH ∴≌ 4OA BH ∴== 3OB QH == 7OH OB BH ∴=+= Q ∴的坐标为(3,7)-; ②当A 为直角顶点时,过Q 作QT x ⊥轴于T , 如图:同理可得(AAS)AQT BAO ≌ 3AT OB ∴== 4QT OA == 7OT OA AT ∴=+= Q ∴的坐标为(7,4)-; ③当Q 为直角顶点时,过Q 作WG y ⊥轴于G 过A 作AW WG ⊥于W ,如图:同理可得(AAS)AQW QBG ≌ AW QG ∴= QW BG = 设(,)Q p q ∴(4)3q p p q =-⎧⎨--=-⎩ 解得7272p q ⎧=-⎪⎪⎨⎪=⎪⎩Q ∴的坐标为7(2-, 7)2; 综上所述 Q 的坐标为(3,7)-或(7,4)-或7722⎛⎫- ⎪⎝⎭,。

勾股定理练习题及答案

勾股定理练习题及答案1. 直角三角形1.1 已知直角三角形的两个直角边分别为3cm和4cm,求斜边的长度。

解答:根据勾股定理,斜边的长度可以通过以下公式计算:c = √(a^2 + b^2)其中,a和b分别为两个直角边的长度。

代入已知值,可以得到:c = √(3^2 + 4^2) = √(9 + 16) = √25 = 5cm所以,斜边的长度为5cm。

1.2 已知直角三角形的斜边长度为10cm,其中一条直角边的长度为6cm,求另一条直角边的长度。

解答:同样根据勾股定理,可以得到以下公式:c^2 = a^2 + b^2将已知值代入,可以得到:10^2 = 6^2 + b^2100 = 36 + b^2b^2 = 100 - 36b^2 = 64b = √64 = 8cm所以,另一条直角边的长度为8cm。

2. 直角三角形的应用2.1 一根长度为12cm的电话线在地面上拉出了一个直角三角形,其中一条直角边长为9cm,求另一条直角边和斜边的长度。

解答:根据勾股定理,可以得到以下公式:c^2 = a^2 + b^2已知直角边的长度为9cm,将已知值代入公式,可以得到:c^2 = 9^2 + b^2c^2 = 81 + b^2又已知三角形的斜边是长为12cm的电话线,所以可以得到另一个公式:c = 12将这两个公式结合,可以得到以下方程:81 + b^2 = 12^281 + b^2 = 144b^2 = 144 - 81b^2 = 63b = √63 ≈ 7.94cm所以,另一条直角边的长度约为7.94cm,斜边的长度为12cm。

2.2 一根高度为10m的电线杆倒在地面上形成了一个直角三角形,其中一条直角边长为8m,求另一条直角边和斜边的长度。

解答:同样根据勾股定理,可以得到以下公式:c^2 = a^2 + b^2已知直角边的长度为8m,将已知值代入公式,可以得到:c^2 = 8^2 + b^2c^2 = 64 + b^2又已知三角形的斜边是高度为10m的电线杆,所以可以得到另一个公式:c = 10将这两个公式结合,可以得到以下方程:64 + b^2 = 10^264 + b^2 = 100b^2 = 100 - 64b^2 = 36b = √36 = 6m所以,另一条直角边的长度为6m,斜边的长度为10m。

勾股定理练习题及答案

勾股定理练习题及答案勾股定理是中学数学中的一个重要定理,它描述了在直角三角形中,直角边的平方和等于斜边的平方。

熟练掌握勾股定理的应用,可以帮助我们解决与三角形相关的问题。

本文将提供一些勾股定理的练习题,并提供相应的答案供参考。

1. 练习题:已知一个直角三角形,斜边长为5cm,一直角边长为3cm,求另一直角边的长度。

解答:根据勾股定理,直角边的平方和等于斜边的平方,即3^2 +x^2 = 5^2,其中x表示另一直角边的长度。

解方程得到x^2 = 25 - 9,进一步计算得到x = 4。

所以另一直角边的长度为4cm。

2. 练习题:已知直角三角形的两个直角边分别为6cm和8cm,求斜边的长度。

解答:根据勾股定理,斜边的平方等于直角边的平方和,即x^2 =6^2 + 8^2,其中x表示斜边的长度。

计算得到x^2 = 36 + 64,进一步计算得到x = 10。

所以斜边的长度为10cm。

3. 练习题:已知一个直角三角形,斜边长为10cm,一直角边长为6cm,求另一直角边的长度。

解答:根据勾股定理,直角边的平方和等于斜边的平方,即6^2 +x^2 = 10^2,其中x表示另一直角边的长度。

解方程得到x^2 = 100 - 36,进一步计算得到x = 8。

所以另一直角边的长度为8cm。

通过以上练习题的解答,我们可以看到勾股定理在解决直角三角形的相关问题时起到了重要的作用。

熟练掌握勾股定理的应用,将在解决实际问题中大有裨益。

此外,还可以通过勾股定理的推广形式,解决其他类型的三角形问题。

总结:勾股定理是解决直角三角形相关问题的重要工具。

通过练习题的解答,我们可以进一步巩固和应用该定理。

希望本文提供的勾股定理练习题及答案对您的学习有所帮助。

初二数学一次函数综合习题提高训练及答案详解

一次函数提高训练一、选择题:1.已知y与x+3成正比例,并且x=1时,y=8,那么y与x之间的函数关系式为()(A)y=8x (B)y=2x+6 (C)y=8x+6 (D)y=5x+32.若直线y=kx+b经过一、二、四象限,则直线y=bx+k不经过()(A)一象限(B)二象限(C)三象限(D)四象限3.直线y=-2x+4与两坐标轴围成的三角形的面积是()(A)4 (B)6 (C)8 (D)164.若甲、乙两弹簧的长度y(cm)与所挂物体质量x(kg)之间的函数解析式分别为y=k1x+a1和y=k2x+a2,如图,所挂物体质量均为2kg时,甲弹簧长为y1,乙弹簧长为y2,则y1与y2的大小关系为()(A)y1>y2 (B)y1=y2(C)y1<y2 (D)不能确定5.设b>a,将一次函数y=bx+a与y=ax+b的图象画在同一平面直角坐标系内,•则有一组a,b的取值,使得下列4个图中的一个为正确的是()6.若直线y=kx+b经过一、二、四象限,则直线y=bx+k不经过第()象限.(A)一(B)二(C)三(D)四7.一次函数y=kx+2经过点(1,1),那么这个一次函数()(A)y随x的增大而增大(B)y随x的增大而减小(C)图像经过原点(D)图像不经过第二象限8.无论m为何实数,直线y=x+2m与y=-x+4的交点不可能在()(A)第一象限(B)第二象限(C)第三象限(D)第四象限9.要得到y=-32x-4的图像,可把直线y=-32x().(A)向左平移4个单位(B)向右平移4个单位(C)向上平移4个单位(D)向下平移4个单位10.若函数y=(m-5)x+(4m+1)x2(m为常数)中的y与x成正比例,则m 的值为()(A)m>-14(B)m>5 (C)m=-14(D)m=511.若直线y=3x-1与y=x-k的交点在第四象限,则k的取值范围是().(A)k<13(B)13<k<1 (C)k>1 (D)k>1或k<1312.过点P(-1,3)直线,使它与两坐标轴围成的三角形面积为5,•这样的直线可以作()(A)4条(B)3条(C)2条(D)1条13.已知abc≠0,而且a b b c c ac a b+++===p,那么直线y=px+p一定通过()(A)第一、二象限(B)第二、三象限(C)第三、四象限(D)第一、四象限14.当-1≤x≤2时,函数y=ax+6满足y<10,则常数a的取值范围是()(A)-4<a<0 (B)0<a<2(C)-4<a<2且a≠0 (D)-4<a<215.在直角坐标系中,已知A(1,1),在x轴上确定点P,使△AOP为等腰三角形,则符合条件的点P共有()(A)1个(B)2个(C)3个(D)4个16.一次函数y=ax+b(a为整数)的图象过点(98,19),交x轴于(p,0),交y轴于(•0,q),若p为质数,q为正整数,那么满足条件的一次函数的个数为()(A)0 (B)1 (C)2 (D)无数17.在直角坐标系中,横坐标都是整数的点称为整点,设k为整数.当直线y=x-3与y=kx+k的交点为整点时,k的值可以取()(A)2个(B)4个(C)6个(D)8个18.在直角坐标系中,横坐标都是整数的点称为整点,设k为整数,当直线y=x-3与y=kx+k的交点为整点时,k的值可以取()(A)2个(B)4个(C)6个(D)8个19.甲、乙二人在如图所示的斜坡AB上作往返跑训练.已知:甲上山的速度是a米/分,下山的速度是b米/分,(a<b);乙上山的速度是12a米/分,下山的速度是2b米/分.如果甲、乙二人同时从点A出发,时间为t(分),离开点A 的路程为S(米),•那么下面图象中,大致表示甲、乙二人从点A出发后的时间t(分)与离开点A的路程S(米)•之间的函数关系的是()20.若k、b是一元二次方程x2+px-│q│=0的两个实根(kb≠0),在一次函数y=kx+b中,y随x的增大而减小,则一次函数的图像一定经过()(A)第1、2、4象限(B)第1、2、3象限(C)第2、3、4象限(D)第1、3、4象限二、填空题1.已知一次函数y=-6x+1,当-3≤x≤1时,y的取值范围是________.2.已知一次函数y=(m-2)x+m-3的图像经过第一,第三,第四象限,则m 的取值范围是________.3.某一次函数的图像经过点(-1,2),且函数y的值随x的增大而减小,请你写出一个符合上述条件的函数关系式:_________.4.已知直线y=-2x+m不经过第三象限,则m的取值范围是_________.5.函数y=-3x+2的图像上存在点P,使得P•到x•轴的距离等于3,•则点P•的坐标为__________.6.过点P(8,2)且与直线y=x+1平行的一次函数解析式为_________.7.y=23x与y=-2x+3的图像的交点在第_________象限.8.某公司规定一个退休职工每年可获得一份退休金,•金额与他工作的年数的算术平方根成正比例,如果他多工作a年,他的退休金比原有的多p元,如果他多工作b年(b≠a),他的退休金比原来的多q元,那么他每年的退休金是(以a、b、p、•q•)表示______元.9.若一次函数y=kx+b,当-3≤x≤1时,对应的y值为1≤y≤9,•则一次函数的解析式为________.10.(湖州市南浔区2005年初三数学竞赛试)设直线kx+(k+1)y-1=0(为正整数)与两坐标所围成的图形的面积为Sk(k=1,2,3,……,2008),那么S1+S2+…+S2008=_______.三、解答题1.已知一次函数y=ax+b的图象经过点A(2,0)与B(0,4).(1)求一次函数的解析式,并在直角坐标系内画出这个函数的图象;(2)如果(1)中所求的函数y的值在-4≤y≤4范围内,求相应的y的值在什么范围内.2.已知y=p+z,这里p是一个常数,z与x成正比例,且x=2时,y=1;x=3时,y=-1.(1)写出y与x之间的函数关系式;(2)如果x的取值范围是1≤x≤4,求y的取值范围.3.为了学生的身体健康,学校课桌、凳的高度都是按一定的关系科学设计的.•小明对学校所添置的一批课桌、凳进行观察研究,发现它们可以根据人的身高调节高度.于是,他测量了一套课桌、凳上相对应的四档高度,得到如下数据:(1一次函数的关系式;(不要求写出x的取值范围);(2)小明回家后,•测量了家里的写字台和凳子,写字台的高度为77cm,凳子的高度为43.5cm,请你判断它们是否配套?说明理由.4.小明同学骑自行车去郊外春游,下图表示他离家的距离y(千米)与所用的时间x(小时)之间关系的函数图象.(1)根据图象回答:小明到达离家最远的地方需几小时?此时离家多远?(2)求小明出发两个半小时离家多远?(3)•求小明出发多长时间距家12千米?5.已知一次函数的图象,交x轴于A(-6,0),交正比例函数的图象于点B,且点B•在第三象限,它的横坐标为-2,△AOB的面积为6平方单位,•求正比例函数和一次函数的解析式.6.如图,一束光线从y轴上的点A(0,1)出发,经过x轴上点C反射后经过点B(3,3),求光线从A点到B点经过的路线的长.7.由方程│x-1│+│y-1│=1确定的曲线围成的图形是什么图形,其面积是多少?8.在直角坐标系x0y中,一次函数y=3的图象与x轴,y轴,分别交于A、B两点,•点C坐标为(1,0),点D在x轴上,且∠BCD=∠ABD,求图象经过B、D•两点的一次函数的解析式.9.已知:如图一次函数y=12x-3的图象与x轴、y轴分别交于A、B两点,过点C(4,0)作AB的垂线交AB于点E,交y轴于点D,求点D、E的坐标.10.已知直线y=43x+4与x轴、y轴的交点分别为A、B.又P、Q两点的坐标分别为P(•0,-1),Q(0,k),其中0<k<4,再以Q点为圆心,PQ长为半径作圆,则当k取何值时,⊙Q•与直线AB相切?11.(2005年宁波市蛟川杯初二数学竞赛)某租赁公司共有50台联合收割机,其中甲型20台,乙型30台.现将这50台联合收割机派往A、B两地收割小麦,其中30•台派往A地,20台派往B地.两地区与该租赁公司商定的每天的租赁价格如下:(1)设派往A地x台乙型联合收割机,租赁公司这50台联合收割机一天获得的租金为y(元),请用x表示y,并注明x的范围.(2)若使租赁公司这50台联合收割机一天获得的租金总额不低于79600元,•说明有多少种分派方案,并将各种方案写出.12.已知写文章、出版图书所获得稿费的纳税计算方法是f(x)=(800)20%(130%),400(120%)20%(130%),400x xx x--≤⎧⎨-->⎩其中f(x)表示稿费为x元应缴纳的税额.假如张三取得一笔稿费,缴纳个人所得税后,得到7104元,•问张三的这笔稿费是多少元?13.某中学预计用1500元购买甲商品x个,乙商品y个,不料甲商品每个涨价1.5元,乙商品每个涨价1元,尽管购买甲商品的个数比预定减少10个,总金额多用29元.•又若甲商品每个只涨价1元,并且购买甲商品的数量只比预定数少5个,那么买甲、乙两商品支付的总金额是1563.5元.(1)求x、y的关系式;(2)若预计购买甲商品的个数的2倍与预计购买乙商品的个数的和大于205,但小于210,求x,y的值.14.某市为了节约用水,规定:每户每月用水量不超过最低限量am3时,只付基本费8元和定额损耗费c元(c≤5);若用水量超过am3时,除了付同上的基本费和损耗费外,超过部分每1m3付b元的超额费.某市一家庭今年一月份、二月份和三月份的用水量和支付费用如下表所示:15.A市、B市和C市有某种机器10台、10台、8台,•现在决定把这些机器支援给D市18台,E市10.已知:从A市调运一台机器到D市、E市的运费为200元和800元;从B•市调运一台机器到D市、E市的运费为300元和700元;从C市调运一台机器到D市、E市的运费为400元和500元.(1)设从A市、B市各调x台到D市,当28台机器调运完毕后,求总运费W(元)关于x(台)的函数关系式,并求W的最大值和最小值.(2)设从A市调x台到D市,B市调y台到D市,当28台机器调运完毕后,用x、y表示总运费W(元),并求W的最大值和最小值.答案:1.B 2.B 3.A 4.A5.B 提示:由方程组y bx ay ax b=+⎧⎨=+⎩的解知两直线的交点为(1,a+b),•而图A中交点横坐标是负数,故图A不对;图C中交点横坐标是2≠1,故图C不对;图D•中交点纵坐标是大于a,小于b的数,不等于a+b,故图D不对;故选B.6.B 提示:∵直线y=kx+b经过一、二、四象限,∴0,kb<⎧⎨>⎩对于直线y=bx+k,∵0,kb<⎧⎨>⎩∴图像不经过第二象限,故应选B.7.B 提示:∵y=kx+2经过(1,1),∴1=k+2,∴y=-x+2,∵k=-1<0,∴y随x的增大而减小,故B正确.∵y=-x+2不是正比例函数,∴其图像不经过原点,故C错误.∵k<0,b=•2>0,∴其图像经过第二象限,故D错误.8.C 9.D 提示:根据y=kx+b的图像之间的关系可知,将y=-32x•的图像向下平移4个单位就可得到y=-32x-4的图像.10.C 提示:∵函数y=(m-5)x+(4m+1)x中的y与x成正比例,∴5,50,1410,,4mmm m≠⎧-≠⎧⎪⎨⎨+==-⎩⎪⎩即∴m=-14,故应选C.11.B 12.C 13.B 提示:∵a b b c c ac a b+++===p,∴①若a+b+c≠0,则p=()()()a b b c c aa b c+++++++=2;②若a+b+c=0,则p=a b cc c+-==-1,∴当p=2时,y=px+q过第一、二、三象限;当p=-1时,y=px+p过第二、三、四象限,综上所述,y=px+p一定过第二、三象限.14.D 15.D 16.A 17.C 18.C 19.C20.A 提示:依题意,△=p2+4│q│>0,||k b pk b qk b+=-⎫⎪=-⇒⎬⎪≠⎭k·b<0,一次函数y=kx+b中,y随x的增大而减小kkb<⎫⇒<⇒⇒⎬>⎭一次函数的图像一定经过一、二、四象限,选A.二、1.-5≤y≤19 2.2<m<3 3.如y=-x+1等.4.m≥0.提示:应将y=-2x+m的图像的可能情况考虑周全.5.(13,3)或(53,-3).提示:∵点P到x轴的距离等于3,∴点P的纵坐标为3或-3当y=3时,x=13;当y=-3时,x=53;∴点P的坐标为(13,3)或(53,-3).提示:“点P到x轴的距离等于3”就是点P的纵坐标的绝对值为3,故点P的纵坐标应有两种情况.6.y=x-6.提示:设所求一次函数的解析式为y=kx+b.∵直线y=kx+b与y=x+1平行,∴k=1,∴y=x+b.将P(8,2)代入,得2=8+b,b=-6,∴所求解析式为y=x-6.7.解方程组92,,83323,,4xy xy x y⎧=⎧⎪=⎪⎪⎨⎨⎪⎪=-+=⎩⎪⎩得∴两函数的交点坐标为(98,34),在第一象限.8.222()aq bpbp aq--. 9.y=2x+7或y=-2x+3 10.10042009三、1.(1)由题意得:202 44a b ab b+==-⎧⎧⎨⎨==⎩⎩解得∴这个一镒函数的解析式为:y=-2x+4(•函数图象略).(2)∵y=-2x+4,-4≤y≤4,∴-4≤-2x+4≤4,∴0≤x≤4.2.(1)∵z与x成正比例,∴设z=kx(k≠0)为常数,则y=p+kx.将x=2,y=1;x=3,y=-1分别代入y=p+kx,得2131k pk p+=⎧⎨+=-⎩解得k=-2,p=5,∴y与x之间的函数关系是y=-2x+5;(2)∵1≤x≤4,把x1=1,x2=4分别代入y=-2x+5,得y1=3,y2=-3.∴当1≤x≤4时,-3≤y≤3.另解:∵1≤x≤4,∴-8≤-2x≤-2,-3≤-2x+5≤3,即-3≤y≤3.3.(1)设一次函数为y=kx+b,将表中的数据任取两取,不防取(37.0,70.0)和(42.0,78.0)代入,得21 31 k pk p+=⎧⎨+=-⎩∴一次函数关系式为y=1.6x+10.8.(2)当x=43.5时,y=1.6×43.5+10.8=80.4.∵77≠80.4,∴不配套.4.(1)由图象可知小明到达离家最远的地方需3小时;此时,他离家30千米.(2)设直线CD的解析式为y=k1x+b1,由C(2,15)、D(3,30),代入得:y=15x-15,(2≤x≤3).当x=2.5时,y=22.5(千米)答:出发两个半小时,小明离家22.5千米.(3)设过E、F两点的直线解析式为y=k2x+b2,由E(4,30),F(6,0),代入得y=-15x+90,(4≤x≤6)过A、B两点的直线解析式为y=k3x,∵B(1,15),∴y=15x.(0≤x≤1),•分别令y=12,得x=265(小时),x=45(小时).答:小明出发小时265或45小时距家12千米.5.设正比例函数y=kx,一次函数y=ax+b,∵点B在第三象限,横坐标为-2,设B(-2,yB),其中yB<0,∵S△AOB=6,∴12AO·│yB│=6,∴yB=-2,把点B(-2,-2)代入正比例函数y=kx,•得k=1.把点A(-6,0)、B(-2,-2)代入y=ax+b,得1 062 223a b aa bb⎧=-+=-⎧⎪⎨⎨-=-+⎩⎪=-⎩解得∴y=x,y=-12x-3即所求.6.延长BC交x轴于D,作DE⊥y轴,BE⊥x轴,交于E.先证△AOC≌△DOC,∴OD=OA=•1,CA=CD,∴= 5.7.当x≥1,y≥1时,y=-x+3;当x≥1,y<1时,y=x-1;当x<1,y≥1时,y=x+1;当x<•1,y<1时,y=-x+1.,面积为2.8.∵点A、B分别是直线y=3与x轴和y轴交点,∴A(-3,0),B(0),∵点C坐标(1,0)由勾股定理得,设点D的坐标为(x,0).(1)当点D在C点右侧,即x>1时,∵∠BCD=∠ABD,∠BDC=∠ADB,∴△BCD∽△ABD,∴BC CDAB BD=,∴=①∴22321112x xx-+=+,∴8x2-22x+5=0,∴x1=52,x2=14,经检验:x1=52,x2=14,都是方程①的根,∵x=14,不合题意,∴舍去,∴x=52,∴D•点坐标为(52,0).设图象过B、D两点的一次函数解析式为y=kx+b,5 52b kk bb⎧⎧==-⎪⎪∴⎨⎨+=⎪⎪=⎩⎩∴所求一次函数为y=-5.(2)若点D在点C左侧则x<1,可证△ABC∽△ADB,∴AD BDAB CB=,∴=②∴8x2-18x-5=0,∴x1=-14,x2=52,经检验x1=14,x2=52,都是方程②的根.∵x2=52不合题意舍去,∴x1=-14,∴D点坐标为(-14,0),∴图象过B、D(-14,0)两点的一次函数解析式为,综上所述,满足题意的一次函数为y=-5或.9.直线y=12x-3与x轴交于点A(6,0),与y轴交于点B(0,-3),∴OA=6,OB=3,∵OA ⊥OB ,CD ⊥AB ,∴∠ODC=∠OAB ,∴cot ∠ODC=cot ∠OAB ,即OD OA OC OB =,∴OD=463OC OA OB ⨯==8.∴点D 的坐标为(0,8), 设过CD 的直线解析式为y=kx+8,将C (4,0)代入0=4k+8,解得k=-2.∴直线CD :y=-2x+8,由2213524285x y x y x y ⎧=⎧⎪=-⎪⎪⎨⎨⎪⎪=-+=-⎩⎪⎩解得 ∴点E 的坐标为(225,-45).10.把x=0,y=0分别代入y=43x+4得0,3,4;0.x x y y ==-⎧⎧⎨⎨==⎩⎩ ∴A 、B 两点的坐标分别为(-3,0),(0,4)•.•∵OA=3,OB=4,∴AB=5,BQ=4-k ,QP=k+1.当QQ ′⊥AB 于Q ′(如图), 当QQ ′=QP 时,⊙Q 与直线AB 相切.由Rt △BQQ′∽Rt △BAO ,得`BQ QQ BQ QP BA AO BA AO ==即.∴4153k k -+=,∴k=78.∴当k=78时,⊙Q 与直线AB 相切.11.(1)y=200x+74000,10≤x≤30(2)三种方案,依次为x=28,29,30的情况.12.设稿费为x元,∵x>7104>400,∴x-f(x)=x-x(1-20%)20%(1-30%)=x-x·45·15·710x=111125x=7104.∴x=7104×111125=8000(元).答:这笔稿费是8000元.13.(1)设预计购买甲、乙商品的单价分别为a元和b元,则原计划是:ax+by=1500,①.由甲商品单价上涨1.5元,乙商品单价上涨1元,并且甲商品减少10个情形,得:(a+1.5)(x-10)+(b+1)y=1529,②再由甲商品单价上涨1元,而数量比预计数少5个,乙商品单价上涨仍是1元的情形得:(a+1)(x-5)+(b+1)y=1563.5,③.由①,②,③得:1.51044,568.5.x y ax y a+-=⎧⎨+-=⎩④-⑤×2并化简,得x+2y=186.(2)依题意有:205<2x+y<210及x+2y=186,得54<y<552 3.由于y是整数,得y=55,从而得x=76.14.设每月用水量为xm3,支付水费为y元.则y=8,08(),c x ab x ac x a+≤≤⎧⎨+-+≥⎩由题意知:0<c≤5,∴0<8+c≤13.从表中可知,第二、三月份的水费均大于13元,故用水量15m3、22m3均大于最低限量am3,将x=15,x=22分别代入②式,得198(15)338(22)b a cb a c=+-+⎧⎨=+-+⎩解得b=2,2a=c+19,⑤.再分析一月份的用水量是否超过最低限量,不妨设9>a,将x=9代入②,得9=8+2(9-a)+c,即2a=c+17,⑥.⑥与⑤矛盾.故9≤a,则一月份的付款方式应选①式,则8+c=9,∴c=1代入⑤式得,a=10.综上得a=10,b=2,c=1. ()15.(1)由题设知,A市、B市、C市发往D市的机器台数分x,x,18-2x,发往E市的机器台数分别为10-x,10-x,2x-10.于是W=200x+300x+400(18-2x)+800(10-x)+700(10-x)+500(2x-10)=-800x+17200.又010,010, 01828,59, x xx x≤≤≤≤⎧⎧∴⎨⎨≤-≤≤≤⎩⎩∴5≤x≤9,∴W=-800x+17200(5≤x≤9,x是整数).由上式可知,W是随着x的增加而减少的,所以当x=9时,W取到最小值10000元;•当x=5时,W取到最大值13200元.(2)由题设知,A市、B市、C市发往D市的机器台数分别为x,y,18-x-y,发往E市的机器台数分别是10-x,10-y,x+y-10,于是W=200x+800(10-x)+300y+700(10-y)+•400(19-x-y)+500(x+y-10)=-500x-300y-17200.又010,010, 010,010, 0188,1018, x xy yx y x y ≤≤≤≤⎧⎧⎪⎪≤≤∴≤≤⎨⎨⎪⎪≤--≤≤+≤⎩⎩∴W=-500x-300y+17200,且010,010,018.xyx y≤≤⎧⎪≤≤⎨⎪≤+≤⎩(x,y为整数).W=-200x-300(x+y)+17200≥-200×10-300×18+17200=9800.当x=•10,y=8时,W=9800.所以,W的最小值为9800.又W=-200x-300(x+y)+17200≤-200×0-300×10+17200=14200.当x=0,y=10时,W=14200,所以,W的最大值为14200.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

综合练习学校:________ 姓名:________一、单选题(3小题)1.在△ABC中,AB=15,AC=13,高AD=12,则BC等于()A.14 B.4 C.14或4 D.9或52.如图Rt△ABC,∠C=90°,分别以各边为直径作半圆,图中阴影部分在数学史上称为“希波克拉底月牙”;当AC=3,BC=4时,计算阴影部分的面积为()A.6 B.6πC.10πD.123.下列结论:①横坐标为﹣3的点在经过点(﹣3,0)且平行于y轴的直线上;②当m≠0时,点P(m2,﹣m)在第四象限;③与点(﹣3,4)关于y轴对称的点的坐标是(﹣3,﹣4);④在第一象限的点N到x轴的距离是1,到y轴的距离是2,则点N的坐标为(2,1).其中正确的是()A.①③B.②④C.①④D.②③二、填空题(5小题)1.如图,在Rt△ABC中,∠C=90°,AB=5cm,AC=3cm,动点P从点B出发,沿射线BC以2cm/s的速度移动设运动的时间为ts当t=时,△ABP为直角三角形.2.如图,CD是Rt△ABC斜边AB上的高,若AB=5,AC=4,则BD=.3.若m=,则m5﹣2m3﹣2015m3=.4.已知a2+5a=﹣2,b2+2=﹣5b,且a≠b,则化简b+a=﹣.5.把直线y=x+1向右平移个单位可得到直线y=x﹣2.三、解答题(4小题)1.如图是一块正方形纸片.(1)如图1,若正方形纸片的面积为1dm2,则此正方形的对角线AC的长为dm.(2)若一圆的面积与这个正方形的面积都是2πcm2,设圆的周长为C圆,正方形的周长为C正,则C圆C正(填“=”或“<”或“>”号)(3)如图2,若正方形的面积为16cm2,李明同学想沿这块正方形边的方向裁出一块面积为12cm2的长方形纸片,使它的长和宽之比为3:2,他能裁出吗?请说明理由?2.(1)写出点A、B的坐标.(2)线段CD先向平移个单位长度,再向平移个单位长度,平移后的线段与线段EG重合.(3)已知在y轴上存在点P与G、F围成的三角形面积为6,请写出P的坐标.3.甲、乙两地相距300千米,一辆货车和一辆轿车先后从甲地出发驶向乙地,如图,线段OA表示货车离甲地距离y(千米)与时间x(小时)之间的函数关系;折线BCD表示轿车离甲地距离y(千米)与时间x(小时)之间的函数关系.请你根据图中给出的信息,解决下列问题:(1)货车的速度为千米/小时;(2)货车出发小时后与轿车第1次相遇,此时距甲千米;(3)若轿车到达乙地后,立即沿原路以CD段速度返回,货车从甲地出发后多少小时后第2次与轿车相遇?4.(1)问题提出:如图已知直线OA的解析式是y=2x,OC⊥OA,求直线OC的函数解析式.甲同学提出了他的想法:在直线y=2x上取一点M,过M作x轴的垂线垂足为D设点M的横坐标为m,则点M的纵坐标为2m.即OD=m,MD=2m,然后在OC上截取ON=OM,过N作x轴的垂线垂足为B.则点N的坐标为,直线OC的解析式为.(2)拓展:已知直线OA的解析式是y=kx,OC⊥OA,求直线OC的函数解析式.(3)应用:直接写出经过P(2,3),且垂直于直线y=﹣x+2的直线解析式。

综合练习参考答案一、单选题(3小题)1.【解答】解:(1)如图,锐角△ABC中,AB=15,AC=13,BC边上高AD=12,在Rt△ABD中AB=15,AD=12,由勾股定理得:BD2=AB2﹣AD2=152﹣122=81,∴BD=9,在Rt△ACD中AC=13,AD=12,由勾股定理得CD2=AC2﹣AD2=132﹣122=25,∴CD=5,∴BC的长为BD+DC=9+5=14;(2)钝角△ABC中,AB=15,AC=13,BC边上高AD=12,在Rt△ABD中AB=15,AD=12,由勾股定理得:BD2=AB2﹣AD2=152﹣122=81,∴BD=9,在Rt△ACD中AC=13,AD=12,由勾股定理得:CD2=AC2﹣AD2=132﹣122=25,∴CD=5,∴BC的长为DC﹣BD=9﹣5=4.故BC长为14或4.故选:C.2.【解答】解:在Rt△ACB中,∠ACB=90°,AC=3,BC=4,由勾股定理得:所以阴影部分的面积S=×π×()2+×()2+﹣×π×()2=6,故选:A.3.【解答】解:①横坐标为﹣3的点在经过点(﹣3,0)且平行于y轴的直线上,故正确;②当m≠0时,点P(m2,﹣m)在第四象限或第一象限,故错误;③与点(﹣3,4)关于y轴对称的点的坐标是(3,4),故错误;④在第一象限的点N到x轴的距离是1,到y轴的距离是2,则点N的坐标为(2,1),故正确.故选:C.二、填空题(5小题)1.【解答】解:∵∠C=90°,AB=5cm,AC=3cm,∴BC=4 cm.①当∠APB为直角时,点P与点C重合,BP=BC=4 cm,∴t=4÷2=2s.②当∠BAP为直角时,BP=2tcm,CP=(2t﹣4)cm,AC=3 cm,在Rt△ACP中,AP2=32+(2t﹣4)2,在Rt△BAP中,AB2+AP2=BP2,∴52+[32+(2t﹣4)2]=(2t)2,解得t=s.综上,当t=2s或s时,△ABP为直角三角形.故答案为:2s或s.2.【解答】解:在Rt△ABC中,AB=5,AC=4,根据勾股定理得:BC==3,又CD是Rt△ABC斜边AB上的高,且S△ABC=BC•AC=AB•CD,∴CD===2.4,在Rt△BCD中,CD=2.4,BC=3,根据勾股定理得:BD===1.8.故答案为:1.8∴原式=m3(m2﹣2m﹣2015)=m3[(m﹣1)2﹣2016]=m3[(+1﹣1)2﹣2016]=0,故答案为:0.4.【解答】解:∵a2+5a=﹣2,b2+2=﹣5b,即a2+5a+2=0,b2+5b+2=0,且a≠b,∴a、b可看做方程x2+5x+2=0的两不相等的实数根,则a+b=﹣5,ab=2,∴a<0,b<0,则原式=﹣﹣=﹣=﹣=﹣=﹣,故答案为:﹣.5.【解答】解:由“左加右减”的原则可知:直线y=x+1向右平移n个单位,得到直线的解析式为:y=(x﹣n)+1,又∵平移后的直线为y=x﹣2,∴(x﹣n)+1=x﹣2,解得n=4,故答案为:4.三、解答题(4小题)1.【解答】(1)解:由已知AB2=1,则AB=1,由勾股定理,AC=;故答案为:可得圆半径为,周长为,正方形周长为4.;故答案为:<(3)不能;由已知设长方形长和宽为3xcm和2xcm∴长方形面积为:2x•3x=12∴解得x=∴长方形长边为3>4∴他不能裁出.2.【解答】解:(1)A点坐标为(﹣5,4)、B点坐标为(﹣1,4);(2)线段CD先向右平移4个单位长度,再向上平移1个单位长度,平移后的线段与线段EG重合,故答案为:右、4、上、1.(3)设点P坐标为(0,m),根据题意知×3×|m﹣1|=6,解得:m=5或m=﹣3,则点P的坐标为(0,5)或(0,﹣3).3.【解答】解:(1)线段OA表示货车离甲地距离y(千米)与时间x(小时)之间的函数关系,则火车速度=300÷5=60(千米/小时),则直线OA的方程为:y OA=60x,故:应该填60;(2)折线BCD表示轿车离甲地距离y(千米)与时间x(小时)之间的函数关系,在CD段轿车的速度=(300﹣80)÷(4.5﹣2.5)=110(千米/小时),故直线CD的斜率k=110,把斜率k和C点坐标(2.5,80)代入直线方程y=kx+b,得直线CD的方程为y=110x﹣195,则方程组,解为第一次相遇点的坐标,x=3.9(小时),y=234(千米),故:应该填3.9、234.(3)从第一次相遇到第二次相遇时,轿车和货车共走了(300﹣234)×2=132千米,a=132÷(110+60)≈0.776(小时),则:第二次相遇时总时间为3.9+0.776≈4.68(小时),答:货车从甲地出发4.68小时后第2次与轿车相遇.4.【解答】解:(1)在第一象限直线y=2x上取一点M,过M作x轴的垂线垂足为D,在第二象限OC上截取ON=OM,过N作x轴的垂线垂足为B.∴∠ODM=∠OBN=90°,∴∠DOM+∠DMO=90°,∵OA⊥OC,∴∠DOM+∠BON=90°,∴∠DMO=∠BON,在△ODM和△NBO中,,∴△ODM≌△NBO(AAS),∴DM=OB,OD=BN,∵设点M的横坐标为m,则点M的纵坐标为2m.∴OD=m,MD=2m,∴OB=2m,BN=m,∴N(﹣2m,m),设直线OC的解析式为y=kx,∴﹣2mk=m,∴k=﹣,∴直线OC的解析式为y=﹣x,故答案为(﹣2m,m),y=﹣x;(2)当k>0时,在在第一象限直线y=kx上取一点M,过M作x轴的垂线垂足为D,在第二象限OC上截取ON=OM,过N作x轴的垂线垂足为B.∴∠ODM=∠OBN=90°,∴∠DOM+∠DMO=90°,∵OA⊥OC,∴∠DOM+∠BON=90°,∴∠DMO=∠BON,在△ODM和△NBO中,,∴△ODM≌△NBO(AAS),∴DM=OB,OD=BN,∵设点M的横坐标为m,则点M的纵坐标为km.∴OD=m,MD=km,∴OB=km,BN=m,∴N(﹣km,m),设直线OC的解析式为y=k'x,∴﹣2km•k'=m,∴k=﹣,∴直线OC的解析式为y=﹣x;当k<0时,同理可得,直线OC的解析式为y=﹣x;即:直线OC的解析式为y=﹣x;(3)同(2)的方法得,直线y=kx与直线y=k'x垂直,可得k•k'=﹣1,设过点P的直线解析式为y=kx+b,∵经过P(2,3),且垂直于直线y=﹣x+2,∴k=3,∴过点P的直线解析式为y=3x+b,∴3×2+b=3,∴b=﹣3,∴过点P的直线解析式为y=3x﹣3,故答案为y=3x﹣3.。

相关文档
最新文档