人教版初中数学第二十一章一元二次方程知识点复习课程
人教版初中九年级数学上册第二十一章《一元二次方程》知识点复习(含答案解析)(1)

一、选择题1.方程22(1)10m x -+-=是关于x 的一元二次方程,则m 的取值范围是( ) A .m≠±lB .m≥-l 且m≠1C .m≥-lD .m >-1且m≠1D 解析:D【分析】根据一元二次方程的定义及二次根式有意义的条件求解可得.【详解】∵方程22(1)10m x -+-=是关于x 的一元二次方程,∴210m -≠,解得1m ≠±,10m +≥,解得:1m ≥-,∴1m >-且1m ≠,故选:D .【点睛】本题考查了一元二次方程的概念,判断一个方程是否是一元二次方程,首先要看是否是整式方程,然后看化简后是否是只含有一个未知数且未知数的最高次数是2.2.某小区2018年屋顶绿化面积为22000m ,计划2020年屋顶绿化面积要达到22880m .设该小区2018年至2020年屋顶绿化面积的年平均增长率为x ,则可列方程为( )A .2000(12)2880x +=B .2000(1)2880x ⨯+=C .220002000(1)2000(1)2880x x ++++=D .22000(1)2880x +=D解析:D【分析】一般用增长后的量=增长前的量×(1+增长率),如果设绿化面积的年平均增长率为x ,根据题意即可列出方程.【详解】解:设平均增长率为x ,根据题意可列出方程为:2000(1+x )2=2880.故选:D .【点睛】此题考查了由实际问题抽象出一元二次方程,即一元二次方程解答有关平均增长率问题.对于平均增长率问题,在理解的基础上,可归结为a (1+x )2=b (a <b );平均降低率问题,在理解的基础上,可归结为a (1-x )2=b (a >b ).3.若用配方法解方程24121x x +=,通常要在此方程两边同时加上一个“适当”的数,则下面变形恰当的是( )A .2221212412122x x ⎛⎫⎛⎫++=+ ⎪ ⎪⎝⎭⎝⎭B .22241212112x x ++=+C .2412919x x ++=+D .241212112x x ++=+C解析:C【分析】 把原方程变形为2(2)621x x +⨯=,将2x 看成未知数,方程两边都加上一次项系数一半的平方即可.【详解】解:方程24121x x +=变形为2(2)621x x +⨯=, 2(2)62+91+9x x +⨯=∴2412919x x ++=+故选:C【点睛】本题考查了解一元二次方程的应用,关键是能正确配方.4.若整数a 使得关于x 的一元二次方程()2210a x -+=有两个实数根,并且使得关于y 的分式 方程32133ay y y y -+=--有整数解,则符合条件的整数a 的个数为( ) A .2B .3C .4D .5B 解析:B【分析】对于关于x 的一元二次方程()2210a x -+=有两个实数根,利用判别式的意义得到a-2≠0且2a+3≥0且△=2-4(a-2)≥0,解不等式组得到整数a 为:-1,0,1,3,4,5;接着解分式方程得到y=61a -,而y≠3,则61a -≠3,解得a≠3,从而得到当a=-1,0,4时,分式方程有整数解,然后求符合条件的所有a 的个数.【详解】解:∵整数a 使得关于x 的一元二次方程()2210a x -+=有两个实数根, ∴a-2≠0且2a+3≥0且△=2-4(a-2)≥0, ∴31122a -≤≤且a≠2, ∴整数a 为:-1,0,1,3,4,5;去分母得3-ay+3-y=-2y ,解得y=61a -,而y≠3,则61a -≠3,解得a≠3, 当a=-1,0,4时,分式方程有整数解,∴符合条件的所有a 的个数是3.故选:B .【点睛】本题考查了根的判别式:一元二次方程ax 2+bx+c=0(a≠0)的根与△=b 2-4ac 有如下关系:当△>0时,方程有两个不相等的实数根;当△=0时,方程有两个相等的实数根;当△<0时,方程无实数根.5.如图,在矩形ABCD 中,AB =a (a <2),BC =2.以点D 为圆心,CD 的长为半径画弧,交AD 于点E ,交BD 于点F .下列哪条线段的长度是方程2240x ax +-=的一个根( )A .线段AE 的长B .线段BF 的长C .线段BD 的长D .线段DF 的长B解析:B【分析】 根据勾股定理求出BF ,利用求根公式解方程,比较即可.【详解】解:∵四边形ABCD 是矩形∴CD=AB=a在Rt △BCD 中,由勾股定理得,2224BD BC CD a =++∴24a a +, 解方程2240x ax +-=得2224164x a a a a -±+=±=-+ ∴线段BF 的长是方程2240x ax +-=的一个根.故选:B .【点睛】本题考查的是勾股定理、一元二次方程的解法,掌握一元二次方程的求根公式、勾股定理是解题的关键.6.已知2x 2+x ﹣1=0的两根为x 1、x 2,则x 1•x 2的值为( )A .1B .﹣1C .12D .12-D 解析:D【分析】直接利用根与系数的关系解答.【详解】解:∵2x 2+x ﹣1=0的两根为x 1、x 2,∴x 1•x 2=12=﹣12. 故选:D .【点睛】 此题主要考查了根与系数的关系,一元二次方程ax 2+bx+c=0(a≠0)的根与系数的关系为:x 1+x 2=-b a ,x 1•x 2=c a. 7.有1人患了流感,经过两轮传染后共有81人患流感,则每轮传染中平均一个人传染了( )人.A .40B .10C .9D .8D解析:D【分析】设每轮传染中平均一个人传染了x 人,则一轮传染后共有(1+x )人被传染,两轮传染后共有[(1+x )+x(1+x)]人被传染,由题意列方程计算即可.【详解】解:设每轮传染中平均一个人传染了x 人,由题意,得:(1+x )+x(1+x)=81,即x 2+2x ﹣80=0,解得:x 1=8,x 2=﹣10(不符合题意,舍去),故每轮传染中平均一个人传染了8人,故选:D .【点睛】本题考查了一元二次方程的应用,解一元二次方程,理解题意,正确列出方程是解答的关键.8.已知a 、b 、m 、n 为互不相等的实数,且(a +m )( a +n )=2,(b +m )( b +n )=2,则ab ﹣mn 的值为( )A .4B .1C .﹣2D .﹣1C 解析:C【分析】先把已知条件变形得到a 2+ (m +n ) a +mn ﹣2=0,b 2+( m +n ) b +mn ﹣2=0,则可把a 、b 看作方程x 2+( m +n ) x +mn ﹣2=0的两实数根,利用根与系数的关系得到ab =mn ﹣2,从而得到ab ﹣mn 的值.【详解】解:∵(a +m )( a +n )=2,(b +m )( b +n )=2,∴a 2+( m +n )a +mn ﹣2=0,b 2+( m +n )b +mn ﹣2=0,而a 、b 、m 、n 为互不相等的实数,∴可以把a 、b 看作方程x 2+(m +n )x +mn ﹣2=0的两个实数根,∴ab =mn ﹣2,∴ab ﹣mn =﹣2.故选:C .【点睛】本题考查一元二次方程根与系数的关系及整式的乘法,理解代数思想,把“a 、b 看作方程x 2+(m +n )x +mn ﹣2=0的两实数根”是解题关键.9.实数,m n 分别满足方程2199910m m ++=和219990n n ++=,且1mn ≠,求代数式41mn m n++的值( ) A .5-B .5C .10319-D .10319A 解析:A【分析】 由219990n n ++=可得211199910n n⋅+⋅+=,进而可得1,m n 是方程2199910x x ++=的两个根,然后根据一元二次方程的根与系数的关系可求解.【详解】 解:由219990n n ++=可得211199910n n ⋅+⋅+=, ∴1,m n是方程2199910x x ++=的两个根, ∴19911,1919m m n n +=-⋅=, ∴4119914451919mn m m m n n n ++=+⋅+=-+⨯=-; 故选A .【点睛】本题主要考查一元二次方程根与系数的关系,熟练掌握一元二次方程根与系数的关系是解题的关键.10.若()()2222230xy x y ++--=,则22x y +的值是( ) A .3B .-1C .3或1D .3或-1A 解析:A【分析】用22a x y =+,解出关于a 的方程,取正值即为22x y +的值是.【详解】解:令22a x y =+,则(2)30a a --=,即2230a a --=,即(3)(1)0a a ,解得13a =,21a =-,又因为220a x y =+>,所以3a =故22x y +的值是3,故选:A .【点睛】本题考查解一元二次方程,掌握换元思想可以使做题简单,但需注意220a x y =+>. 二、填空题11.若关于x 的一元二次方程210(0)ax bx a +-=≠有一根为2020x =,则一元二次方程2(1)(1)1a x b x +++=必有一根为________.x=2019【分析】对于一元二次方程设t=x+1得到at2+bt=1利用at2+bt-1=0有一个根为t=2020得到x+1=2020从而可判断一元二次方程a (x-1)2+b (x-1)-1=0必有一解析:x=2019【分析】对于一元二次方程2(1)(1)1a x b x +++=,设t=x+1得到at 2+bt=1,利用at 2+bt-1=0有一个根为t=2020得到x+1=2020,从而可判断一元二次方程a (x-1)2+b (x-1)-1=0必有一根为x=2019.【详解】解:对于一元二次方程2(1)(1)1a x b x +++=,设t=x+1,所以at 2+bt=1,即at 2+bt-1=0,而关于x 的一元二次方程ax 2+bx-1=0(a≠0)有一根为x=2020,所以at 2+bt-1=0有一个根为t=2020,则x+1=2020,解得x=2019,所以2(1)(1)1a x b x +++=必有一根为x=2019.故答案为:x=2019.【点睛】本题考查了一元二次方程的解:能使一元二次方程左右两边相等的未知数的值是一元二次方程的解.12.对于任意实数a ,b ,定义:22a b a ab b =++◆.若方程()250x -=◆的两根记为m 、n ,则22m n +=______.6【分析】根据新定义可得出mn 为方程x2+2x ﹣1=0的两个根利用根与系数的关系可得出m+n=﹣2mn=﹣1将其代入m2+n2=(m+n )2﹣2mn 中即可得出结论【详解】解:∵(x ◆2)﹣5=x2+解析:6【分析】根据新定义可得出m 、n 为方程x 2+2x ﹣1=0的两个根,利用根与系数的关系可得出m+n=﹣2、mn=﹣1,将其代入m 2+n 2=(m+n )2﹣2mn 中即可得出结论.【详解】解:∵(x ◆2)﹣5=x 2+2x+4﹣5,∴m 、n 为方程x 2+2x ﹣1=0的两个根,∴m+n=﹣2,mn=﹣1,∴m 2+n 2=(m+n )2﹣2mn=6.故答案为6.【点睛】 本题考查了根与系数的关系,牢记两根之和等于﹣b a 、两根之积等于c a是解题的关键. 13.将一元二次方程(32)(1)83x x x -+=-化成一般形式是_____.【分析】先计算多项式乘以多项式并移项再合并同类项即可【详解】故答案为:【点睛】此题考查一元二次方程的一般形式掌握多项式乘以多项式合并同类项计算法则是解题的关键解析:23710x x -+=【分析】先计算多项式乘以多项式,并移项,再合并同类项即可.【详解】(32)(1)83x x x -+=-23322830x x x x +---+=23710x x -+=故答案为:23710x x -+=.【点睛】此题考查一元二次方程的一般形式,掌握多项式乘以多项式,合并同类项计算法则是解题的关键.14.一元二次方程(x +1)(x ﹣3)=3x +4化为一般形式可得_________.x2﹣5x ﹣7=0【分析】利用多项式乘多项式的法则展开再利用等式的性质进行移项合并进行计算【详解】(x +1)(x ﹣3)=3x +4x2﹣2x ﹣3=3x +4x2﹣5x ﹣7=0故答案是:x2﹣5x ﹣7=0解析:x 2﹣5x ﹣7=0 .【分析】利用多项式乘多项式的法则展开,再利用等式的性质进行移项、合并,进行计算.【详解】(x +1)(x ﹣3)=3x +4,x 2﹣2x ﹣3=3x +4,x 2﹣5x ﹣7=0.故答案是:x 2﹣5x ﹣7=0.【点睛】本题考查一元二次方程的变形,属于基础题型.15.已知()0n n ≠是一元二次方程240x mx n ++=的一个根,则m n +的值为______.【分析】根据一元二次方程的解的定义把代入得到继而可得的值【详解】∵是关于x 的一元二次方程的一个根∴即∵∴即故答案为:【点睛】本题考查了一元二次方程的解的定义因式分解的应用注意:能使一元二次方程左右两解析:4-【分析】根据一元二次方程的解的定义把x n =代入240x mx n ++=得到240n mn n ++=,继而可得m n +的值.【详解】∵n 是关于x 的一元二次方程240x mx n ++=的一个根,∴240n mn n ++=,即()40n n m ++=,∵0n ≠,∴4n m ++,即4m n +=-,故答案为:4-.【点睛】本题考查了一元二次方程的解的定义、因式分解的应用.注意:能使一元二次方程左右两边相等的未知数的值是一元二次方程的解.16.有一人患了流感,经过两轮传染后共有81人患了流感,若每轮传染中平均每个人传染的人数相同,那么第三轮过后,共有______人患有流感.729【分析】设每轮传染中平均每人传染了x 人根据经过两轮传染后共有81人患了流感可求出x 进而求出第三轮过后共有多少人感染【详解】设每轮传染中平均每个人传染的人数为x 人由题意可列得解得(舍去)即每轮传解析:729【分析】设每轮传染中平均每人传染了x 人,根据经过两轮传染后共有81人患了流感,可求出x ,进而求出第三轮过后,共有多少人感染.【详解】设每轮传染中平均每个人传染的人数为x 人,由题意可列得,()1181x x x +++=,解得18x =,210x =-(舍去),即每轮传染中平均每个人传染的人数为8人,经过三轮传染后患上流感的人数为:81881729+⨯=(人).故答案为:729.【点睛】本题考查理解题意的能力,先求出每轮传染中平均每人传染了多少人,然后求出三轮过后,共有多少人患病.17.若m 是方程210x x +-=的根,则2222018m m ++的值为__________2020【分析】根据m 是方程的根得代入求值【详解】解:∵m 是方程的根∴即原式故答案是:2020【点睛】本题考查一元二次方程的根解题的关键是掌握一元二次方程根的定义解析:2020【分析】根据m 是方程210x x +-=的根,得21m m +=,代入求值.【详解】解:∵m 是方程210x x +-=的根,∴210m m +-=,即21m m +=,原式()222018220182020m m =++=+=.故答案是:2020.【点睛】本题考查一元二次方程的根,解题的关键是掌握一元二次方程根的定义.18.已知关于x 的方程2x m =有两个相等的实数根,则m =________.0【分析】先将方程化成一般式然后再运用根的判别式求解即可【详解】解:∵关于的方程有两个相等的实数根∴关于的方程有两个相等的实数根∴△=02-4m=0解得m=0故答案为0【点睛】本题主要考查了一元二次解析:0【分析】先将方程化成一般式,然后再运用根的判别式求解即可.【详解】解:∵关于x 的方程2x m =有两个相等的实数根,∴关于x 的方程20x m -=有两个相等的实数根,∴△=02-4m=0,解得m=0.故答案为0.【点睛】本题主要考查了一元二次方程根的判别式,掌握“当△=0时,方程有两个相等的实数根”是解答本题的关键.19.“新冠肺炎”防治取得战略性成果.若有一个人患了“新冠肺炎”,经过两轮传染后共有16个人患了“新冠肺炎”,则每轮传染中平均一个人传染了______人.3【分析】设每轮传染中平均一个人传染了人则第一轮共有人患病第二轮后患病人数有人从而列方程再解方程可得答案【详解】解:设每轮传染中平均一个人传染了人则:或或经检验:不符合题意舍去取答:每轮传染中平均一解析:3【分析】设每轮传染中平均一个人传染了x 人,则第一轮共有()1x +人患病,第二轮后患病人数有()21x +人,从而列方程,再解方程可得答案.【详解】解:设每轮传染中平均一个人传染了x 人,则:()1+116,x x x ++=()2116,x ∴+=14x ∴+=或14,x +=- 3x ∴=或5,x =-经检验:5x =-不符合题意,舍去,取 3.x =答:每轮传染中平均一个人传染了3人.故答案为:3.【点睛】本题考查的是一元二次方程的应用,掌握一元二次方程的应用中的传播问题是解题的关键.20.当x=______时,−4x 2−4x+1有最大值.【分析】先根据完全平方公式将原式配方进而利用非负数的性质求出即可【详解】解:∵-4x2-4x+1=-(4x2+4x-1)=-(2x+1)2+2-(2x+1)2≤0∴当x=-时4x2-4x+1有最大值 解析:12- 【分析】先根据完全平方公式将原式配方,进而利用非负数的性质求出即可.【详解】解:∵-4x 2-4x+1=-(4x 2+4x-1)=-(2x+1)2+2,-(2x+1)2≤0,∴当x=-12时,4x 2-4x+1有最大值是2. 故答案为:-12. 【点睛】此题主要考查了配方法的应用以及非负数的性质,正确配方得出是解题关键.三、解答题21.若a 为方程2(16x =的一个正根,b 为方程22113y y -+=的一个负根,求+a b 的值.解析:a+b= 5【分析】先求出2(16x =的根4x ,由a 为方程2(16x =的一个正根,得4a =+,再求22113y y -+=的根=1y ±b 为方程22113y y -+=的一个负根,得1b =+a b 即可.【详解】2(16x -=,4x -=±,4x ,a为方程2(16x =的一个正根,4a =+,22113y y -+=,()2113y -=,1y -==1y ±b 为方程22113y y -+=的一个负根,1b =415a b +=+=.【点睛】本题考查一元二次方程的解法,会比较方程根的正负与大小,掌握一元二次方程的解法是解题关键.22.解方程:(1)x 2+10x +9=0;(2)x 2=14.解析:(1)121,9x x =-=-;(2)1222,22x x == 【分析】(1)运用因式分解法求解即可(2)运用公式法求解即可.【详解】解:(1)∵x 2+10x +9=0,∴(x +1)(x +9)=0,则x +1=0或x +9=0,解得x 1=﹣1,x 2=﹣9;(2)x 2=14整理,得:x 2﹣14=0, ∵a =1,b c =﹣14, ∴△2﹣4×1×(﹣14)=4>0,则x =22,即x 1=22,x 2=22-. 【点睛】此题考查了一元二次方程的解法,熟练掌握一元二次方程的解法是解答此题的关键. 23.某地区2018年投入教育经费2000万元,2020年投入教育经费2420万元(1)求2018年至2020年该地区投入教育经费的年平均增长率;(2)按照义务教育法规定,教育经费的投入不低于国民生产总值的百分之四,结合该地区国民生产总值的增长情况,该地区到2022年需投入教育经费2900万元,如果按(1)中教育经费投入的增长率,到2022年该地区投入的教育经费是否能达到2900万元?请说明理由.解析:(1)10%;(2)可以,理由见解析【分析】(1)设年平均增长率是x ,列式()2200012420x +=,求出结果;(2)利用(1)中算出的增长率算出2022年的教育经费,看是否超过2900万元.【详解】解:(1)设年平均增长率是x , ()2200012420x +=1 1.1x +=±10.1x =,2 2.1x =-(舍去),答:年平均增长率是10%;(2)2022年的教育经费是()2242010.12928.2⨯+=(万元), 2928.22900>,答:教育经费可以达到2900万元.【点睛】本题考查一元二次方程的应用,解题的关键是掌握增长率问题的列式方法.24.用配方法解方程:22450x x +-=.解析:121,122x x =-+=-- 【分析】 利用完全平方公式进行配方解一元二次方程即可得.【详解】22450x x +-=,2245x x +=,2522x x +=, 252112x x ++=+, ()2712x +=,12x +=±,1x =-±,即121,122x x =-+=--. 【点睛】 本题考查了利用配方法解一元二次方程,熟练掌握配方法是解题关键.25.回答下列问题.(1(2|1-. (3)计算:102(1)-++. (4)解方程:2(1)90x +-=.解析:(13;(21+;(3)44)12x =,24x =-. 【分析】 (1)利用用二次根式的性质化成最简二次根式,再合并同类二次根式即可;(2)根据二次根式的乘除法则以及绝对值的性质计算,再合并同类二次根式即可;(3)根据零指数幂,负整数指数幂以及完全平方公式计算,再合并同类二次根式即可;(4)移项,利用直接开平方法即可求解.【详解】(13 3=+3 =;(2|11)=-1=1=;(3)102(1)-++121=+-4=-(4)2(1)90x+-=,移项得:2(1)9x+=,∴13x+=或13x+=-,12x=,24x=-.【点睛】本题考查了解一元二次方程-直接开平方法,二次根式的混合运算,掌握运算法则是解答本题的关键.26.(12.(2)解一元二次方程:x2﹣4x﹣5=0.解析:(1)2;(2)125, 1.x x==-【分析】(1)根据二次根式的混合运算法则计算即可;(2)根据因式分解的方法解方程即可.解:(1|2|3+23=2 (2)x 2﹣4x ﹣5=0,(x ﹣5)(x +1)=0,∴x ﹣5=0或x +1=0,∴x 1=5,x 2=﹣1.【点睛】本题考查二次根式的混合运算以及解一元二次方程的方法,属于基础题 。
人教版九年级数学上册第二十一章一元二次方程专题复习

一元二次方程复习(1)一、复习目标:1.能说出一元二次方程的概念。
2会用直接开平方法、配方法、公式法、因式分解法解简单的一元二次方程。
3.能由已知一元二次方程的一根去求另一根.4.会用根的判别式判断一元二次方程的根的情况5.会用一元二次方程根与系数的关系解决有关问题.二、知识回顾,展示交流(疏理知识点)1、一元二次方程的概念 ,一般形式 。
2、一元二次方程的解法:(1) (2) (3) (4)3、一元二次方程 20(0)ax bx c a ++=≠根的判别式:△= 当 △>0时,方程有 实数当△=0时,方程有 实数根当△<0时,方程有 实数根;4、根与系数的关系如果一元二次方程20(0)ax bx c a ++=≠有两个实数根12,x x ,那么1212.x x x x += 常见式子的变形:222121212()2x x x x x x +=+-; 12121211x x x x x x ++= 三、基础训练考点一、一元二次方程的概念1、下列方程中,是关于x 的一元二次方程的是 ( ).A .3(x +1)2=2(x +1)B .211x x +-2=0 C .ax 2+bx +c =0D .X 2+2x =x 2-1 考点二:一元二次方程根的概念2. 如果在-1是方程x 2+mx -1=0的一个根,那么m 的值为( )A .-2B .-3C .0D .2考点三:一元二次方程的解法。
3. 方程2(3)5(3)x x x -=-的解是( )12553 3, 322A xB xC x xD x ⋅=⋅=⋅==⋅=-4、解下列方程(1)2)32(-x -25=0 (2)x 2+2x-3=0(3)2x 2-7x-2=0 (4)3x (2x+1)=4x+2考点四:一元二次方程根的判别式5、 当_________m 时,方程032)1(2=+++-m mx x m 有两个实数根;变式:当_________m 时,方程032)1(2=+++-m mx xm 有实数根考点五:一元二次方程根与系数的关系 6、方程0132=+-x x 的两根是21,x x ;则:=+2111x x ,=+2221x x 四、拓展延伸7、关于x 的一元二次方程x 2+kx+4k 2-3=0的两个实数根分别是x 1、x 2, 且满足x 1+x 2=x 1x 2,求k 的值8、(2014湖北十堰)已知关于x 的一元二次方程x 2+2(m +1)x +m 2-1=0.(1)若方程有实数根,求实数m 的取值范围;(2)若方程两实数根分别为x 1、x 2,且满足(x 1-x 2)2=16-x 1x 2,求实数m 的值五、小结反思。
人教版九年级数学上册第二十一章一元二次方程复习课件

5. 解下列方程: x2-2x=0;
解:分解因式得: x(x-2)=0 x=0或x-2=0 x1=0,x2=2
x2-2x+2=0. 解:x2-2x+1=-1
(x-1)2=-1 方程无解
6. 某商店经销一种销售成本为每千克40元的水产 品,据市场分析,若以每千克50元销售,一个月能 售出500kg,销售单价每涨1元,月销售量就减少 10kg,针对这种水产品情况,商店想在月销售成 本不超过10000元的情况下,使得月销售利润到达 8000元,销售单价应为多少?
一个未知数
一 概念 最高次是2
元
整式方程
二
次 一般情势: ax2 + bx + c =0(a≠0)
方
程
二次项系数
常数项
一次项系数
Δ>0,方程有两个不等的实数根
根的判别式Δ=b2-4ac Δ=0,方程有两个相等的实数根
Δ<0,方程无实数根
根
b
根与系数的x1 x2 a
因式分解法: 若A·B=0,则A=0或B=0
方案设计问题
数字问题
随堂演练
1.方程(2x+1)(x-3)=x2+1化成一般情势为
,
二次x2项-5x系-4数=0、一次项系数和常数项分别是
.
2. 用配方法解下列方程,其中应在左右两边同1,时-加5,上-44的
是( )
A.x2-C2x=5
B.2x2-4x=5
C.x2+4x=5
D.x2+2x=5
3. 一个小组若干人,新年互送贺卡,若全组共送贺卡72 张,则这个小组共有( C) A.12人 B.18人 C.9人 D.10人
4. 某超市一月份的营业额为200万元,一、二、三月份的 总营业额为1000万元,设平均每月营业额的增长率为x, 则由题意列方程为( D ) A.200+200×2x=1000 B.200(1+x)2=1000 C.200+200×3x=1000 D.200[1+(1+x)+(1+x)2]=1000
人教版九年级数学上册同步备课 第二十一章 一元二次方程(章末总结)(课件)

变形为
可以直接开平方
解的一元二次方程
01
基础巩固(配方法)
通过配方法解一元二次方程的步骤:
1)移项:将含有x的项移到方程的左边,常数项移到方程的右边;
2)二次项系数化为1:两边同除以二次项的系数;
3)配方:方程两边都加上一次项系数一半的平方;
4)将原方程变成(x+n)2=p的形式;
x1=-n- ,x2=-n+
______________________;
x1=x2=-n
相等
2)当p=0时,方程①有两个________________的实数根______________________;
≥
无
3)当p<0时,因为对于任意实数x,都有(x+n)2____0,所以方程①_______实数根。
课前导入
本章重点内容:
1.理解与掌握一元二次方程及其有关的概念。
2.用配方法、公式法、因式分解法解一元二次方程。
3.利用一元二次方程解决实际问题。
本章难点内容:
1.理解用根的判别式判别根的情况。
2.一元二次方程求根公式的推导。
3.一元二次方程根与系数的关系。
章节简介
解一元二次方程方法为本章基础内容,它的计算量相对较大,对正确率要
4)最后求出原方程的解。
01
基础巩固(因式分解法)
两个一次式乘积等于0
先因式分解,使一元二次方程转化为____________________的形式,
降次
从而实现________,这种解一元二次方程的方法叫做因式分解法。
01
基础巩固(因式分解法)
通过因式分解法解一元二次方程的步骤:
1.移项。使一元二次方程等式右边为0;
人教版九年级数学上册第二十一章《一元二次方程》复习参考课件 (共25张ppt)

2
2) 6 0
2
9x 6x 1 0
2016/11/16
2.配方法
我们通过配成完全平方式的方法,得到了一元二次方程 的根,这种解一元二次方程的方法称为配方法
用配方法解一元二次方程的步骤: 1.化1:把二次项系数化为1(方程两边都除以二次项系数); 2.移项:把常数项移到方程的右边; 3.配方:方程两边都加上一次项系数绝对值一半的平方; 4.变形:方程左分解因式,右边合并同类; 5.开方:根据平方根意义,方程两边开平方; 6.求解:解一元一次方程; 7.定解:写出原方程的解.
,
x1x2=
c a
.
2016/11/16
回顾与复习 5 • 列方程解应用题的一般步骤是:
解应用题
• 1.审:审清题意:已知什么,求什么?已,未知之间有什么关系?
• 2.设:设未知数,语句要完整,有单位(同一)的要注明单位;
• 3.列:列代数式,列方程; • 4.解:解所列的方程; • 5.验:是否是所列方程的根;是否符合题意; • 6.答:答案也必需是完事的语句,注明单位且要贴近生活. • 列方程解应用题的关键是: • 找出相等关系.
2 b b 4 ac 2 2016/11/16 x . b 4 ac 0 . 2a
4.因式分解法
当一元二次方程的一边是0,而另一边易于分解成两 个一次因式的乘积时,我们就可以用分解因式的方法 求解.这种用分解因式解一元二次方程的方法你为因 式分解法. 老师提示: 1.用因式分解法的条件是:方程左边易于分解,而右 边等于零; 2.关键是熟练掌握因式分解的知识; 3.理论依旧是“如果两个因式的积等于零,那么至少 有一个因式等于零.”
人教版九年级数学上册第21章《一元二次方程》知识点小结与复习

当 a 0 时,它不是一元二次方程.
方程2ax2 -2bx+a=4x2, (1)在什么条件下此方程为一元二次方程? (2)在什么条件下此方程为一元一次方程?
解: 原方程转化为(2a-4)x2 -2bx+a=0 当a≠2时是一元二次方程; 当a=2,b≠0时是一元一次方程;
m=
。
3、当m
时,关于x的方程3x2-
2(3m+1)x+3m2-1=0有两个不相等的实数
根。
4、关于x的一元二次方程mx2+(2m-1)x-
2=0的根的判别式的值等于4,则m=
。
一元二次方程的根与系数的关系: (韦达定理)
如果方程ax2+bx+c=0(a≠0)的两个根是X1 , X2 ,
那么X1+x2= -
2(a-2)x+a2-5=0有实数根,且两 根之积等于两根之和的2倍,求a的值。
【例4】已知x1,x2是关于x的方程 x2+px+q=0的两根,x1+1,x2+1是关 于x的方程x2+qx+p=0的两根,求常 数p、q的值。
拓展练习:
1、当a,c异号时,一元二次方程ax2+bx+c=0的根的
情况是
一元二次方程的解法:(公式法)
例:(3) 2x2 3x 4 0
解: a 2,b 3,c 4
b2 4ac 32 4 24
9 32 41
3 41
x 22
3 41 3 41 x1 4 , x2 4
注:当一元二次方程二次项系数不为1且
难以用因式分解时常用公式法比较简便。
b2 4ac 0,
2024九年级数学上册“第二十一章一元二次方程“必背知识点

2024九年级数学上册“第二十一章一元二次方程”必背知识点一、一元二次方程的定义定义:等号两边都是整式,只含有一个未知数 (一元),并且未知数的最高次数是2(二次)的方程,叫做一元二次方程。
一般形式:ax² + bx + c = 0(a ≠ 0)。
其中,ax²是二次项,a是二次项系数;bx是一次项,b是一次项系数;c 是常数项。
方程的解:使一元二次方程左右两边相等的未知数的值叫做一元二次方程的解,也叫做一元二次方程的根。
二、一元二次方程的解法1. 配方法步骤:一移 (把常数项移到等号的右边)、二除 (方程两边都除以二次项系数)、三配 (方程两边都加上一次项系数一半的平方,把左边配成完全平方式)、四开 (若等号右边为非负数,直接开平方求出方程的解)。
2. 公式法求根公式:对于一元二次方程ax² + bx + c = 0(a ≠。
0),如果b²-4ac ≥ 0,则方程的两个根为x1,2=−b±√b2−4ac2a 根的判别式:Δ = b² - 4ac。
当Δ > 0时,方程有两个不相等的实数根。
当Δ = 0时,方程有两个相等的实数根。
当Δ < 0时,方程无实数根。
3. 直接开平方法适用条件:如果方程的一边可以化成含未知数的代数式的平方,另一边是非负数,可以直接开平方。
步骤:移项、使二次项系数或含有未知数的式子的平方项的系数为1、两边直接开平方。
4. 因式分解法方法:把一元二次方程的一边化为0,而另一边分解成两个一次因式的积,进而转化为求两个一元一次方程的解。
三、一元二次方程的根与系数的关系对于一元二次方程ax² + bx + c = 0(a ≠ 0),若其两个根为x₁和x₂,则有:x₁ + x₂ = -b/ax₁x₂ = c/a四、一元二次方程的实际应用列一元二次方程解应用题的一般步骤:审:读懂题目,弄清题意,明确哪些是已知量,哪些是未知量以及它们之间的等量关系。
2022年九年级数学上册 第二十一章 一元二次方程知识点总结素材 (新版)新人教版

一元二次方程知识点1:一元二次方程的概念一元二次方程:只含有一个未知数,未知数的最高次数是2,且系数不为 0,这样的方程叫一元二次方 程.一般形式:ax 2+bx+c=0(a ≠0)。
注意:判断某方程是否为一元二次方程时,应首先将方程化为一般形式。
知识点2:一元二次方程的解法1.直接开平方法:对形如(x+a )2=b (b ≥0)的方程两边直接开平方而转化为两个一元一次方程的方法。
X+a=±b∴1x =-a+b 2x =-a-b2.配方法:用配方法解一元二次方程:ax 2+bx+c=0(k ≠0)的一般步骤是:①化为一般形式;②移项,将常数项移到方程的右边;③化二次项系数为1,即方程两边同除以二次项系数;④配方,即方程两边都加上一次项系数的一半的平方;化原方程为(x+a )2=b 的形式;⑤如果b ≥0就可以用两边开平方来求出方程的解;如果b<0,则原方程无解.3.公式法:公式法是用求根公式求出一元二次方程的解的方法.它是通过配方推导出来的.一元二次方程的求根公式是a ac b b x 242-±-=(b 2-4ac ≥0)。
步骤:①把方程转化为一般形式;②确定a ,b ,c 的值;③求出b 2-4ac 的值,当b 2-4ac ≥0时代入求根公式。
4.因式分解法:用因式分解的方法求一元二次方程的根的方法叫做因式分解法.理论根据:若ab=0,则a=0或b=0。
步骤是:①将方程右边化为0;②将方程左边分解为两个一次因式的乘积;③令每个因式等于0,得到两个一元一次方程乘积的形式,解这两个一元一次方程,它们的解就是原一元二次方程的解.因式分解的方法:提公因式、公式法、十字相乘法。
5.一元二次方程的注意事项:⑴ 在一元二次方程的一般形式中要注意,强调a ≠0.因当a=0时,不含有二次项,即不是一元二次方程.⑵ 应用求根公式解一元二次方程时应注意:①先化方程为一般形式再确定a ,b ,c 的值;②若b 2-4ac <0,则方程无解.⑶ 利用因式分解法解方程时,方程两边绝不能随便约去含有未知数的代数式.如-2(x +4)2 =3(x +4)中,不能随便约去x +4。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第二十一章 一元二次方程21.1一元二次方程1、一元二次方程:等号两边都是整式,只含有一个未知数(一元),并且未知数的最高次数是2(二次)的方程。
形如:()200ax bx c a ++=≠ 例1.关于x 的方程(m -4)x2+(m+4)x+2m+3=0,当m__________时,是一元二次方程,当m__________时,是一元一次方程.【答案】≠4,=4【解析】试题分析:根据一元二次方程、一元一次方程的定义即可求得结果.由题意得当m≠4时,是一元二次方程,当m=4时,是一元一次方程.考点:一元二次方程,一元一次方程点评:熟练掌握各种方程的基本特征是学好数学的基础,很重要,但此类问题往往知识点比较独立,故在中考中不太常见,常以填空题、选择题形式出现,属于基础题,难度一般.例2.关于x 的方程(m2-m-2)x2+mx+n=0是一元二次方程的条件为___________.【答案】m ≠-1且m ≠2【解析】试题分析:一元二次方程的一般形式为ax2+bx+c=0(a≠0),由a≠0即可得到m2-m-2≠0,从而得到结果。
由题意得m2-m-2≠0,解得m ≠-1且m ≠2.考点:本题考查的是一元二次方程成立的条件点评:解答本题的关键是掌握一元二次方程的一般形式:ax2+bx+c=0(a≠0),尤其注意a≠0.2、a 是二次项系数,b 是一次项系数,c 是常数项3、使方程左右两边相等的未知数的值就是这个一元二次方程的解,一元二次方程的解也叫作一元二次方程的根。
例1.一元二次方程3x2-6x+1=0中,二次项系数、一次项系数及常数项分别是 ( )A .3,-6,1B .3,6,1C .3x2,6x ,1D .3x2,-6x ,1【答案】A【解析】试题解析:3x2-6x+1=0的二次项系数是3,一次项系数是-6,常数项是1.故选A .考点:一元二次方程的一般形式.例2.若关于x 的方程0142=--x ax 是一元二次方程,则a 满足的条件是( )A .a >0B .0≠aC .0<aD .4≠a【答案】B【解析】试题分析:本题考查了一元二次方程的定义,注意:一元二次方程的一般形式是ax2+bx+c=0(a b c 都是常数,且a ≠0).根据一元二次方程的定义得出a ≠0即可.考点:一元二次方程的定义.例3.请你写出一个有一根为1的一元二次方程____________________.【答案】(x+1)(x -1)=0(不唯一)【解析】试题分析:本题利用因式分解法,保证其中有一个解为x=1就可以.考点:一元二次方程的解.例4.关于x 的方程053)2(2=-+-x x m 是一元二次方程,则m 的取值范围是 . 【答案】m ≠2.【解析】试题解析:由一元二次方程的定义可得m-2≠0,解得m ≠2.考点:一元二次方程的定义.例5.关于x 的方程221(1)50a a a x x --++-=是一元二次方程,则a=_________.【答案】3.【解析】试题分析:221(1)a a a x --+是方程二次项,即221210a a a ⎧--=⎨+≠⎩,解得:a=3.故答案为:3. 考点:一元二次方程的定义.21.2解一元二次方程21.2.1 配方法配方法:通过配成完全平方形式来解一元二次方程的方法。
例1.用配方法解一元二次方程x 2﹣6x ﹣4=0,下列变形正确的是( )A .(x ﹣6)2=﹣4+36B .(x ﹣6)2=4+36C .(x ﹣3)2=﹣4+9D .(x ﹣3)2=4+9【答案】D【解析】试题分析:本题考查了利用配方法解一元二次方程,一般步骤:第一步:使方程左边为二次项和一次项,右边为常数项;第二步:方程两边同时除以二次项系数;第三步:方程两边都加上一次项系数一半的平方,把原方程化为(x±m )2=n 的形式;第四步:用直接开平方解变形后的方程.解:x 2﹣6x ﹣4=0,移项,得x 2﹣6x=4,配方,得(x ﹣3)2=4+9.故选:D .考点:解一元二次方程-配方法.例2.若把代数式223x x --化为2()x m k -+的形式,其中m k ,为常数,则m k += .【答案】-3【解析】配方得223x x --=4)1(2--x ,所以m=1,k=-4,则m k +=-3.例3.用配方法解方程:01422=--x x【答案】11x =+ 21x = 【解析】 2122x x -=23(1)2x -=∴ 11x =+ 21x =- 例4.用配方法解方程0562=+-x x【答案】2694x x -+=2(3)4x -=32x -=± 15x =,21x =【解析】利用配方法求解21.2.2 公式法1. 24b ac ∆=-(1)120,x x ∆>==(2)120,2b x x a∆===- (3)0∆<,方程无实数根求根公式:x = 例1.一元二次方程2x 2+3x+1=0的根的情况是( )A .有两个不相等的实数根B .有两个相等的实数根C .没有实数根D .无法确定【答案】A【解析】试题分析:根据一元二次方程的根的判别式,可由24b ac =-V =9-8=1>0,可知其有两个不相等的实数根. 故选A考点:根的判别式例2.方程x 2+4x -2=0的根的情况是( )A .两个不相等的实数根B .两个相等的实数根C .没有实数根D .无法确定【答案】A【解析】试题分析:先进行判别式的值,然后根据判别式的意义判断方程根的情况. ∵2441(2)240=-⨯⨯-=>△,∴方程有两个不相等的实数根.故选答案:A考点:根的判别式.例3.若关于x 的方程(m -1)x 2-2mx +(m +2)=0有两个不相等的实根,则m 的取值范围是________.【答案】m <2且m≠1.【解析】试题解析:根据题意列出方程组()()()22412010m m m m ---+⎧⎡⎤⎪⎣⎦⎪≠⎨-⎩> 解之得m <2且m≠1.考点:1.根的判别式;2.一元二次方程的定义.21.2.3 因式分解法先因式分解,使方程化为两个一次式的乘积等于0的形式,再使这两个一次式分别等于0,从而实现降次,这种解一元二次方程的方法叫做因式分解法。
韦达定理:1212,b c x x x x a a+=-⋅= 例1.用因式分解法解方程9=x 2-2x+1(1)移项得__________;(2)方程左边化为两个平方差,右边为零得__________;(3)将方程左边分解成两个一次因式之积得__________;(4)分别解这两个一次方程得x 1=__________,x 2=__________.【答案】9-(x 2-2x+1)=0,32-(x -1)2=0,(3-x+1)(3+x -1)=0,4,-2【解析】试题分析:根据因式分解法解方程的步骤依次分析即可得到结果.用因式分解法解方程9=x 2-2x+1(1)移项得9-(x 2-2x+1)=0;(2)方程左边化为两个平方差,右边为零得32-(x -1)2=0;(3)将方程左边分解成两个一次因式之积得(3-x+1)(3+x -1)=0;(4)分别解这两个一次方程得x 1=4,x 2=-2.考点:因式分解法解一元二次方程点评:熟练掌握各种解方程的一般方法是学习数学的基础,因而此类问题在中考中比较常见,常以填空题、选择题形式出现,属于基础题,难度一般.例2.用因式分解法解方程03722=+-x x【答案】(21)(3)0x x --=112x =,23x = 【解析】利用因式分解法求解。
例3.用因式分解法解方程:x 2x+3=0;【答案】x 1=x 2【解析】试题分析:先根据完全平方公式分解因式,即可解出方程。
x 2x+3=0(2=0解得x 1=x 2考点:本题考查的是解一元二次方程点评:解答本题的关键是熟练掌握完全平方公式:.)(2222b a b ab a ±=+± 21.3实际问题与一元二次方程实际问题要符合实际,看方程的根符合实际吗?不符合要舍去例1.一件商品的原价是100元,经过两次提价后的价格为121元,如果每次提价的百分率都是x ,根据题意,下面列出的方程正确的是( )A .100(1+x )=121B .100(1﹣x )=121C .100(1+x )2=121D .100(1﹣x )2=121【答案】C【解析】试题解析:设平均每次提价的百分率为x ,根据题意得:100(1+x )2=121,故选C .考点:由实际问题抽象出一元二次方程.例2.在一次学习交流会上,每两名学生握手一次,经统计共握手253次.若设参加此会的学生为x 名,根据题意可列方程为 ( )A .253)1(=+x xB .253)1(=-x xC .253)1(2=-x xD .506)1(=-x x【答案】D .【解析】试题分析:参加此会的学生有x 名,则每名同学需握手(x-1)次,x 名同学一共握手x (x-1)次,而两名学生握手一次,所以应将重复的握手次数去掉,由此可列出方程21x (x-1)=253,即506)1(=-x x ,故答案选D . 考点:一元二次方程的应用.例3.某种手机经过四、五月份连续两次降价,每部手机由3200元降到2500元。
设平均每月降价的百分率为x ,则根据题意列出的方程是( ).A 、 2500)1(32002=-xB 、2500)1(32002=+xC 、2500)21(3200=-xD 、250032002=-x【答案】A.【解析】试题分析:依题意得:两次降价后的售价为3200(1-x )2=2500.故选:A.考点:由实际问题抽象出一元二次方程.例4.某学校准备建一个面积为200平方米的矩形花圃,它的长比宽多10米,设花圃的宽为x 米,则可列方程为:( )A 、x (x-10)=200B 、2x+2(x-10)=200C 、x (x+10)=200D 、2x+2(x+10)=200【答案】C【解析】试题分析:宽为x 米,则长为(x+1)米.S=长×宽,即x (x+10)=200.考点:一元二次方程的应用.例5.某商场将进货单价为18元的商品,按每件20元售出时,每天可销售100件,如果每件提高1元,日销售量就要减少10件,若使商场投资少,收益大,那么该商品的售出价格定为多少元时,才能使每天获得350元?【答案】25元.【解析】试题分析:设售价定为每件x 元,由:利润=每件利润×销售量,列方程求解.试题解析:解:设售价定为每件x 元,则每件利润为(x ﹣8)元,销售量为[100﹣(x ﹣10)×10],依题意,得(x ﹣8)[100﹣(x ﹣10)×10]=360,整理,得2281960x x -+=,解得12x x ==14.答:他将售出价定为每件14元时,才能使每天所赚利润为360元.考点:一元二次方程的应用.。