相似三角形的判定--知识讲解(基础) 打印

合集下载

相似三角形的性质及判定知识点总结+经典题型总结(学生版)学习资料

相似三角形的性质及判定知识点总结+经典题型总结(学生版)学习资料

中考要求板块考试要求A级要求B级要求C级要求相似三角形了解相似三角形掌握相似三角形的概念,判定及性质,以及掌握相关的模型会运用相似三角形相关的知识解决有关问题知识点睛、相似的有关概念1 •相似形具有相同形状的图形叫做相似形•相似形仅是形状相同,大小不一定相同•相似图形之间的互相变换称为相似变换.2 •相似图形的特性两个相似图形的对应边成比例,对应角相等.3. 相似比两个相似图形的对应角相等,对应边成比例.、相似三角形的概念1. 相似三角形的定义对应角相等,对应边成比例的三角形叫做相似三角形.如图,△ ABC与厶ABC相似,记作△ ABCABC,符号s读作相似于”2•相似比相似三角形对应边的比叫做相似比.全等三角形的相似比是1.全等三角形”一定是相似形” 相似形”不一定是全等形”、相似三角形的性质1.相似三角形的对应角相等如图,△ ABC与厶ABC相似,则有A A , B B , C C .2 •相似三角形的对应边成比例△ ABC与厶ABC相似,则有-AB BC AC k(k为相似比)AB BC AC3•相似三角形的对应边上的中线,高线和对应角的平分线成比例,都等于相似比.如图1,△ ABC与厶ABC相似,AM是厶ABC中BC边上的中线,AM 是厶ABC中BC边上的中线, 则有上邑匹竺k上也(k 为相似比).AB BC AC AM如图则有2, △ ABC与厶ABC相似,AB BC AC kAB BC AC AHAH3, △ ABC 与厶ABC分线,则有2AB -BCAB BC AC如图相似,AC k1AH是△ ABC中BC边上的高线,AH是厶ABC中BC边上的高线,(k为相似比).AD是厶ABC中BAC的角平分线,AD是厶ABC 竺(k为相似比).AD图2中BAC的角平4. 相似三角形周长的比等于相似比.如图4, △ ABC与厶ABC相似, 则有AB BC ACkAB B C AC(k为相似比).应用比例的等比性质有AB BC AC AB BC ACAB BC AC AB BC A C5•相似三角形面积的比等于相似比的平方.四、相似三角形的判定1 •平行于三角形一边的直线和其他两边(或两边的延长线)相交,所构成的三角形与原三角形相似.2 •如果一个三角形的两个角与另一个三角形的两个角对应相等,那么这两个三角形相似•可简单说成:两 角对应相等,两个三角形相似.3 •如果一个三角形的两边和另一个三角形的两边对应成比例,并且夹角相等,那么这两个三角形相似.4. 如果一个三角形的三条边与另一个三角形的你对应成比例,那么这两个三角形相似.可简单地说成:三 边对应成比例,两个三角形相似.5. 如果一个直角三角形的斜边和一条直角边与另一个直角三角形的斜边和一条直角边对应成比例,那么这 两个直角三角形相似. 6 •直角三角形被斜边上的高分成的两个直角三角形相似(常用但要证明)7 •如果一个等腰三角形和另一个等腰三角形的顶角相等或一对底角相等,那么这两个等腰三角形相似;如 果它们的腰和底对应成比例,那么这两个等腰三角形也相似.五、相似证明中的比例式或等积式、比例中项式、倒数式、复合式证明比例式或等积式的主要方法有三点定形法”.1 .横向定型法AB BC欲证一一 —一,横向观察,比例式中的分子的两条线段是AB 和BC ,三个字母A , B , C 恰为△ ABC 的顶BE BF点;分母的两条线段是 BE 和BF ,三个字母B , E , F 恰为△ BEF 的三个顶点.因此只需证 △ ABCEBF •2. 纵向定型法欲证一一 匹,纵向观察,比例式左边的比 AB 和BC 中的三个字母 A , B , C 恰为△ ABC 的顶点;右边的 BC EF 比两条线段是 DE 和EF 中的三个字母 D , E , F 恰为A DEF 的三个顶点.因此只需证 △ ABC DEF .AH 是厶ABC 中BC 边上的高线,则有ABBC AC k AH ( k 为相似比) .进而可得比ABCABBCACAHABC-BC AH BC 2BC 空k 2•AH如图5, △ ABC 与厶ABC 相似,AH 是厶ABC 中BC 边上的高线,如图:S A ABCACD 1BC AH21CD AH2BCCD如图:SA ABC12BC AHAHSA BCD1BC DG DG2S A ABD S A ABD S A AED AB AD AB AD SA ACESA AEDSA ACEAE AC AE AC3. 中间比法由于运用三点定形法时常会碰到三点共线或四点中没有相同点的情况,此时可考虑运用等线,等比或等积进行变换后,再考虑运用三点定形法寻找相似三角形•这种方法就是等量代换法•在证明比例式时,常用到中间比.比例中项式的证明,通常涉及到与公共边有关的相似问题。

三角形相似(含方法步骤)

三角形相似(含方法步骤)

.相似三角形及相似条件1.【基础知识】1-1三角对应相等,三边对应成比例的三角形,叫相似三角形 1-2判定定理:定理1.两个角对应相等的两个三角形相似 定理2.三边对应成比例的两个三角形相似定理3.两边对应成比例且夹角相等的两个三角形相似1-3相似性质:相似三角形对应高的比,对应角的角平分线的比对应边的比周长比都等于相似比,面积比等于相似比的平方2. 【知识应用】题目要直接证明相似,边成比例或求边的比值,周长,面积的比值 方法:2-1.从问题中找出要证明的两个三角形,若没有则需作辅助线构造三角形2-2.若条件中出现角相等或平行线,垂线的,优先考虑用定理1 2-3.若条件中出现边长或边的比,则考虑定理2和定理32-4再根据所选定的定理,看还差什么条件,到已知中去找或者到图形中去找隐含条件,如对顶角,公共角,直角,公共边等从而证明出相似注意:1.写对应边比例式时,要遵循“横纵一致原则”即,横向看所有处在分子位置的边必须是属于同一个三角形,处在分母位置的边亦然,纵向看分子分母必须是一组对应边 2.在证明边成比例时,如果按步骤2-1仍然无法找到符合的三角形,则一般情况考虑用两组相似三角形,找出一个比例中间量,利用中间量证明边成比例 3.【综合应用】题目问边长3-1.看已知边和要求边同时出现在哪些三角形中,从而确定出相似的两个三角形 3-2.根据【知识应用】的方法,证明相似3-3利用对应边的比例关系,列出等式,解出所求注意:列比例关系时,一定要是对应边,再者等式两边比的先后顺序也要一致 【基础训练】1. 对应角___________,对应边_____________的三角形,叫做相似三角形.2. 如果~'''A B C A B C ∆∆,对应边6,''3,AB cm A B cm ==那么A B C ∆与'''A B C ∆的相似比为________;'''A B C ∆与A B C ∆的相似比为__________________3. A B C ∆的各边长之比为2:5:6,与其相似的另一个'''A B C ∆的最大边为18,cm 那么它的最小边为___________.4. 两个相似三角形的面积比为4:3,则相似比为_____________.5. ~''',ABC A B C ∆∆A B C ∆的三边长分别为3、4、5,'''A B C ∆的最大边长为15,则'''A B C S ∆=________.6. 下列说法正确的个数是( ) ① 相似三角形的对应角相等,对应边相等. ② 三角形全等是相似的特殊情况;③ 全等三角形是相似比等于1的相似三角形..0A .1B .2C .3D7. A B C ∆的三边长为3:4:5,与它相似的'''A B C ∆的最短边长为6,则'''A B C ∆的周长是( ).12A .18B .24C .36D8.两个相似多边形的相似比是2:3,它们的面积之差是302,cm 那么它们的面积之和为( )2.74A cm 2.76B c m 2.78C c m 2.80D c m9.下列说法错误的是( ).A 两个全等的三角形一定相似 .B 两个直角三角形一定相似.C 两个相似三角形的对应角相等,对应边成比例 .D 相似的两个三角形不一定全等10. ~''',ABC A B C ∆∆如果0055,100,A B ∠=∠=则'C ∠的度数等于( ).A 055 .B 0100 .C 025 .D 030【典型例题】例1.①已知~,ABC ACD ∆∆且5,4,AD BD ==则A C D ∆与A B C ∆的相似比是________. ②在R t A B C ∆中,D 是A C 的中点,D E 垂直于斜边,AB 点E 为垂足,则~,ABC ADE ∆∆若10,4,AB AE ==则AD =___________.1题图 2题图 3题图 4题图③如图所示,G 为A B C ∆的重心,作//D G A C 交B C 于,D 作//E G A B 交B C 于,E 则G D E ∆的面积与A C B ∆的面积比为___________.④ 如图所示,在A B C ∆中,//,DE BC 且分A B C ∆为面积相等的两个部分,则:D E B C =_. ⑤如果111~,ABC A B C ∆∆且相似比为2,3111222~A B C A B C ∆∆且相似比为5,4则A B C ∆与222A B C ∆的相似比是( ) 5.6A 6.5B 5.6C 或658.15D例2.如图所示,已知~,4,2,ACP ABC AC AP ∆∆==求A B 的长.例3、①一个三角形的三边长分别为5,12和13,与其相似的三角形的最大边长为39,那么较大三角形的周长是多少?两个三角形的周长比是多少?②已知一个三角形框架,其边长分别为4,5,6,现在要做一个与其相似的三角形框架,已知现有一根长为2的木条,则其他两根木条应取多长?例4.已知,边长为2的正三角形,//,:1:4,BC D ABC ABC D E BC S S ∆∆=求C E 的长.例5.如图,在A B C ∆中,,AB AC =B D 为腰A C 上的高.求证:212C D C A B C ⋅=例 6.①如图,梯形A B C D 中,0//,90,A B D C B E ∠=为B C 上一点,且,A E E D ⊥若12,BC =7,:1:2,DC BE EC ==求A B 的长.②已知如图,在梯形A B C D 中,0//,90,7,2,3,AD BC A AB AD BC ∠====在线段A B 上是否存在点P ,使得以,,P A D 为顶点的三角形与以,,P B C 为顶点的三角形相似?若不存在,说明理由;若存在,求出这样的P 点有几个,并计算出A P 的长度.例7.如图所示,在A B C ∆中,090,6C AC ∠==厘米,8B C =厘米,斜边10A B =厘米,点P 从点B 出发,沿B C 向点C 以2厘米秒的速度移动,点Q 从点C 出发,沿C A 向点A以1厘米秒的速度移动,如果,P Q 分别从,B C 同时出发.(1)经过多少秒时,~;CPQ CBA ∆∆(2)经过多少秒时,以,,C P Q 为顶点的三角形与A B C ∆相似.例8.如图,一个边长为3厘米、4厘米、5厘米的直角三角形的一个顶点与正方形顶点B 重合,另两个顶点分别在正方形的两条边,AD DC 上,那么这个正方形的面积是___平方厘米.【课堂练习】1、如果~,ABC FDE ∆∆则A ∠=_________,C ∠=_______,A B B C=___________.2、如图,~,10,13,8,ABC DCA AB BC AC ∆∆===则AD =_____,D C =______.3、如图A D 是A B C ∆的角平分线,,,12,20,BE AD CF AD CF BE ⊥⊥==64,AB AC +=则A B =_______.2题 3题4、直角三角形斜边上的高分斜边为3:2两段,斜边上的高为6,cm 则斜边上的中线长为____.5、已知~''',ABC A B C ∆∆且:''1:1,AB A B =则A B C ∆和'''A B C ∆的关系是________.6、已知~,ABC DEF ∆∆且3,2A B D E=则这两个三角形对应中线之比为________,面积之比为__________.7、在A B C ∆中,12,8,AB cm AC cm ==点,D E 分别在,AB AC 上,如果AD E ∆与A B C ∆能够相似,且4A D cm =时,则A E =______________cm .8、E 是平行四边形A B C D 的B C 边上一点,A E 交B D 于,F 且:4:5,BE EC =求B F F D和A F F E的值.9、在锐角A B C ∆中,F 是A C 上一点,且1,2A F G F C=是B F 中点,连结A G 并延长,交B C与.E (1)求B E E C的值。

1.3 第一课时 相似三角形的判定及性质 课件(人教A选修4-1)

1.3 第一课时 相似三角形的判定及性质 课件(人教A选修4-1)

证明:如图,连接 BD. AE AF ∵EB=FD, ∴EF∥BD. BG DH 又∵GC=HC,∴GH∥BD. ∴EF∥GH. ∴∠EFO=∠HGO,∠OHG=∠OEF. ∴△OEF∽△OHG.
3.已知,如图,在正方形ABCD中,P是 BC上的点,且BP=3PC,Q是CD的中点. 求证:△ADQ∽△QCP.
1.相似三角形
(1)定义:对应角相等,对应边成比例的两个三角形叫
做 相似三角形 ,相似三角形对应边的比值叫做 相似比 或 (相似系数). (2)预备定理:平行于三角形一边的直线和其他两边(或 两边的延长线)相交,所构成的三角形与原三角形相似 .
2.相似三角形的判定定理 (1)判定定理1:对于任意两个三角形,如果一个三角形 的两个角与另一个三角形的两个角对应相等,那么这两个
判定两三角形相似,可按下面顺序进行:(1)有平
行截线,用预备定理;(2)有一对等角时,①找另一对
等角,②找夹这个角的两边对应成比例;(3)有两对应 边成比例时,①找夹角相等,②找第三边对应成比例, ③找一对直角.
1. 如图,在▱ABCD中,E、F分别在AD 与CB的延长线 上,请写出图中所有 的相似三角形.
解:∵AB∥CD, ∴△EDH∽△EAG,
△CHM∽△AGM,
△FBG∽△FCH. ∵AD∥BC, ∴△AEM∽△CFM, △AEG∽△BFG,
△EDH∽△FCH.
∴图中相似的三角形有: △AEM∽△CFM,△CHM∽△AGM, △EDH∽△EAG∽△FBG∽△FCH.
2.如图,在四边形 ABCD 中, AE AF BG DH EB=FD,GC=HC. 求证:△OEF∽△OHG.
不仅可以由平行线得到比例式,也可以根据比 例式的成立确定两直线的平行关系.有时用它来证 明角与角之间的数量关系,线段之间的数量关系.

(完整word版)九年级数学相似三角形知识点及习题

(完整word版)九年级数学相似三角形知识点及习题

相似三角形要点一、本章的两套定理第一套(比例的有关性质): b a n d b m c a n d b n m d c b a =++++++⇒≠+++=== :)0(等比性质 涉及概念:①第四比例项②比例中项③比的前项、后项,比的内项、外项④黄金分割等。

二、有关知识点:1.相似三角形定义: 对应角相等,对应边成比例的三角形,叫做相似三角形。

2.相似三角形的表示方法:用符号“∽”表示,读作“相似于”。

3.相似三角形的相似比: 相似三角形的对应边的比叫做相似比。

4.相似三角形的预备定理:平行于三角形一边的直线和其他两边(或两边的延长线)相交,所截成的三角形与原三角形相似。

5.相似三角形的判定定理:(1)三角形相似的判定方法与全等的判定方法的联系列表如下:类型斜三角形 直角三角形 全等三角形的判定 SASSSS AAS (ASA ) HL 相似三角形的判定 两边对应成比例夹角相等 三边对应成比例 两角对应相等一条直角边与斜边对应成比例 从表中可以看出只要将全等三角形判定定理中的“对应边相等”的条件改为“对应边成比例”就可得到相似三角形的判定定理,这就是我们数学中的用类比的方法,在旧知识的基础上找出新知识并从中探究新知识掌握的方法。

6.直角三角形相似:(1)直角三角形被斜边上的高分成两个直角三角形和原三角形相似。

(2)如果一个直角三角形的斜边和一条直角边与另一个直角三角形的斜边和一条直角边对应成比例,那么这两个直角三角形相似。

7.相似三角形的性质定理:(1)相似三角形的对应角相等。

(2)相似三角形的对应边成比例。

(3)相似三角形的对应高线的比,对应中线的比和对应角平分线的比都等于相似比。

(4)相似三角形的周长比等于相似比。

(5)相似三角形的面积比等于相似比的平方。

8.相似三角形的传递性 如果△ABC ∽△A 1B 1C 1,△A 1B 1C 1∽△A 2B 2C 2,那么△ABC ∽A 2B 2C 2三、注意1、相似三角形的基本定理,它是相似三角形的一个判定定理,也是后面学习的相似三角形的判定定理的基础,这个定理确定了相似三角形的两个基本图形“A ”型和“ X ”型。

1.3.1 相似三角形的判定 课件(人教A选修4-1)

1.3.1 相似三角形的判定 课件(人教A选修4-1)

所以∠BEC=∠ADE.所以△ADE∽△BEC.
返回
[悟一法]
(1)在证明直角三角形相似时,要特别注意直角这一
隐含条件的应用. (2)直角三角形被斜边上的高分成的两个直角三角形 与原三角形相似.
返回
[通一类] 2.如图,BD、CE是△ABC的高. 求证:△ADE∽△ABC.
证明:∵BD、CE 是△ABC 的高, ∴∠AEC=∠ADB=90° . 又∵∠A=∠A, ∴△AEC∽△ADB, AD AE ∴AB =AC. 又∵∠A=∠A, ∴△ADE∽△ABC.
证明:连接PC,在△ABC中, 因为AB=AC,D为BC中点,
所以AD垂直平分BC.
所以PB=PC,∠1=∠2. 因为AB=AC, 所以∠ABC=∠ACB, 所以∠ABC-∠1=∠ACB-∠2, 即∠3=∠4. 因为CF∥AB,
所以∠3=∠F,所以∠4=∠F.
返回
又因为∠EPC=∠CPF, 所以△PCE∽△PFC, PC PF 所以 = ,所以 PC2=PE· PF. PE PC 因为 PC=PB, 所以 PB2=PE· PF.
2.如果两个三角形的两边对应成比例,且有一角相等,
那么这两个三角形相似吗? 提示:不一定.只有当这个角是对应成比例的两边的
夹角时,这两个三角形才相似.
返回
[例1]
[研一题] 如图,等腰梯形ABCD中,AD
∥BC,AD=3 cm,BC=7 cm,∠B=60°, P为下底BC上一点(不与B、C重合),连接 AP,过P点作PE交DC于E,使得∠APE=∠B.
返回
OD OF 由①②知 = ,而∠FOD=∠COA, OA OC DF OD ∴△FOD∽△COA.∴ = . AC OA DE EF DF ∴在△ABC 和△DEF 中,有 = = . AB BC AC

相似三角形的性质及应用(基础)—知识讲解

相似三角形的性质及应用(基础)—知识讲解

相似三角形的性质及应用--知识讲解(基础)责编:康红梅 【学习目标】1、探索相似三角形的性质,能运用性质进行有关计算;2、通过典型实例认识现实生活中物体的相似,能运用图形相似的知识解决一些简单的实际问题(如何把实际问题抽象为数学问题). 【要点梳理】要点一、相似三角形的性质【高清课程名称:相似三角形的性质及应用 高清ID 号: 394500 关联的位置名称(播放点名称):相似形的性质】 1.相似三角形的对应角相等,对应边的比相等. 2. 相似三角形中的重要线段的比等于相似比.相似三角形对应高,对应中线,对应角平分线的比都等于相似比. 要点诠释:要特别注意“对应”两个字,在应用时,要注意找准对应线段. 3. 相似三角形周长的比等于相似比∽,则由比例性质可得:4. 相似三角形面积的比等于相似比的平方∽,则分别作出与的高和,则21122=1122ABC A B C BC AD k B C k A D S k S B C A D B C A D '''''''⋅⋅⋅⋅=='''''''''⋅⋅△△要点诠释:相似三角形的性质是通过比例线段的性质推证出来的. 要点二、三角形的重心三角形三条中线的交点叫做三角形的重心,三角形的重心分每一条中线成1:2的两条线段.即12OD OE OF OA OB OC === . 要点诠释:1.测量高度测量不能到达顶部的物体的高度,通常使用“在同一时刻物高与影长的比例相等”的原理解决.【高清课程名称:相似三角形的性质及应用 高清ID 号:394500 关联的位置名称(播放点名称):应用举例及总结】要点诠释:测量旗杆的高度的几种方法:平面镜测量法 影子测量法 手臂测量法 标杆测量法2.测量距离测量不能直接到达的两点间的距离,常构造如下两种相似三角形求解。

《相似三角形》全章复习与巩固(基础)-知识讲解

《相似三角形》全章复习与巩固(基础)-知识讲解

《相似三角形》全章复习与巩固(基础)知识讲解【学习目标】(1)了解比例的基本性质,了解线段的比、成比例线段的概念;(2)通过具体实例认识图形的相似,探索相似图形的性质,知道相似多边形的对应角相等,对应边成比例,周长的比等于对应边的比,面积的比等于对应边比的平方;(3)了解两个三角形相似的概念,探索两个三角形相似的条件;(4)通过典型实例观察和认识现实生活中物体的相似,利用图形的相似解决一些实际问题( 如利用相似测量旗杆的高度);(5)理解实数与向量相乘的定义及向量数乘的运算律。

【知识网络】【要点梳理】要点一、比例线段及比例的性质1。

比例线段:(1)线段的比:如果选用同一长度单位量得两条线段a,b的长度分别是m,n,那么就说这两条线段的比是a:b=m:n,或写成,其中a叫做比的前项;b叫做比的后项.(2)成比例线段:在四条线段中,如果其中两条线段的比等于另外两条线段的比,那么这四条线段叫做成比例线段,简称比例线段.(3)比例的项:已知四条线段a,b,c,d,如果,那么a,b,c,d,叫做组成比例的项,线段a,d叫做比例外项,线段b,c叫做比例内项,线段d还叫做a,b,c的第四比例项.(4)比例中项:如果作为比例线段的内项是两条相同的线段,即a:b=b:c或,那么线段b叫做线段a和c的比例中项.要点诠释:通常四条线段a,b,c,d的单位应该一致,但有时为了计算方便,a,b的单位一致,c,d的单位一2。

比例的性质(1)比例的基本性质:(2)反比性质:(3)更比性质: 或(4)合比性质:(5)等比性质: 且3。

平行线分线段成比例定理(1)三角形一边的平行线性质定理:平行于三角形一边的直线截其他两边(或两边的延长线)所得的对应线段成比例。

(2)三角形一边的平行线性质定理推论:平行于三角形一边并且和其他两边相交的直线,所截得的三角形的三边与原三角形三边的对应成比例.(3)三角形一边的平行线判定定理:如果一条直线截三角形的两边所得的对应线段成比例,那么这条直线平行于三角形的第三边。

相似三角形的判定方法五种

相似三角形的判定方法五种

相似三角形的判定方法五种
1、两角分别对应相等的两个三角形相似。

2、两边成比例且夹角相等的两个三角形相似。

3、三边成比例的两个三角形相似。

4、一条直角边与斜边成比例的两个直角三角形相似。

5、用一个三角形的两边去比另一个三角形与之相对应的两边,分别对应成比例,如果三组对应边相比都相同,则三角形相似。

相似三角形介绍
三角分别相等,三边成比例的两个三角形叫做相似三角形。

相似三角形是几何中重要的证明模型之一,是全等三角形的推广。

全等三角形可以被理解为相似比为1的相似三角形。

相似三角形其实是一套定理的集合,它主要描述了在相似三角形是几何中两个三角形中,边、角的关系。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档