主成分分析完整版
主成分分析PPT课件

令
U
(u1 ,
,up )
u21
u22
u2
p
u p1 u p2
u
pp
则实对称阵 A 属于不同特征根所对应的特征向
量是正交的,即有UU UU I
二、主成分的推导
(一) 第一主成分
设X的协方差阵为
2 1
12
Σx
21
2 2
U为旋转变换矩阵,它是正交矩阵,即有
U U1, UU I
旋转变换的目的是为了使得n个样品点在
Fl轴方向上的离 散程度最大,即Fl的方差最大。 变量Fl代表了原始数据的绝大 部分信息,在研 究某经济问题时,即使不考虑变量F2也无损大 局。经过上述旋转变换原始数据的大部分信息
集中到Fl轴上,对数据中包含的信息起到了浓 缩作用。
平移、旋转坐标轴
x 2
F 1
主 成
F2
•• • • •
分 分 析 的 几 何
•• • •
•• •
•
• •
•••
•
•
•
• •••
• •• •
•• •
• ••
x 1
解
••
释
平移、旋转坐标轴
x 2
F 1
主 成 分 分 析 的 几 何
F2
•
•••
•••
• •
•
•••••••••••••••••••••••
主成分分析
•主成分分析 •主成分回归 •立体数据表的主成分分析
§1 基本思想
一项十分著名的工作是美国的统计学家斯通 (stone)在1947年关于国民经济的研究。他曾利用美 国1929一1938年各年的数据,得到了17个反映国民 收入与支出的变量要素,例如雇主补贴、消费资料 和生产资料、纯公共支出、净增库存、股息、利息 外贸平衡等等。
主成分分析课件ppt课件

•§1 主成分分析的基本思想与理论 •§2 主成分分析的几何意义 •§3 总体主成分及其性质 •§4 样本主成分的导出 •§5 有关问题的讨论 •§6 主成分分析步骤及框图 •§7 主成分分析的上机实现
2020/5/28
11
主成分分析
主成分分析(principal components analysis)也称主分量 分析,是由霍特林(Hotelling)于1933年首先提出的。主成 分分析是利用降维的思想,在损失很少信息的前提下把多个 指标转化为几个综合指标的多元统计方法。通常把转化生成 的综合指标称之为主成分,其中每个主成分都是原始变量的 线性组合,且各个主成分之间互不相关,这就使得主成分比 原始变量具有某些更优越的性能。这样在研究复杂问题时就 可以只考虑少数几个主成分而不至于损失太多信息,从而更 容易抓住主要矛盾,揭示事物内部变量之间的规律性,同时 使问题得到简化,提高分析效率。本章主要介绍主成分分析 的基本理论和方法、主成分分析的计算步骤及主成分分析的 上机实现。
2020/5/28
1100
目录 上页 下页 返回 结束
§2 主成分分析的几何意义
由第一节的介绍我们知道,在处理涉及多个指标问题的时 候,为了提高分析的效率,可以不直接对 p个指标构成的 p维 随机向量X (X1, X 2 , , X p )'进行分析,而是先对向量 X 进行线
性变换,形成少数几个新的综合变量Y1,Y2, ,YP ,使得各综
2020/5/28
99
目录 上页 下页 返回 结束
§1.2 主成分分析的基本理论
基于以上三条原则决定的综合变量 Y1,Y2, ,YP 分
别称为原始变量的第一、第二、…、第p 个主成分。
(完整版)主成分分析法的步骤和原理

(一)主成分分析法的基本思想主成分分析(Principal Component Analysis )是利用降维的思想,将多个变量转化为少数几个综合变量(即主成分),其中每个主成分都是原始变量的线性组合,各主成分之间互不相关,从而这些主成分能够反映始变量的绝大部分信息,且所含的信息互不重叠。
[2]采用这种方法可以克服单一的财务指标不能真实反映公司的财务情况的缺点,引进多方面的财务指标,但又将复杂因素归结为几个主成分,使得复杂问题得以简化,同时得到更为科学、准确的财务信息。
(二)主成分分析法代数模型假设用p 个变量来描述研究对象,分别用X 1,X 2…X p 来表示,这p 个变量构成的p 维随机向量为X=(X 1,X 2…X p )t 。
设随机向量X 的均值为μ,协方差矩阵为Σ。
对X 进行线性变化,考虑原始变量的线性组合: Z 1=μ11X 1+μ12X 2+…μ1p X pZ 2=μ21X 1+μ22X 2+…μ2p X p…… …… ……Z p =μp1X 1+μp2X 2+…μpp X p主成分是不相关的线性组合Z 1,Z 2……Z p ,并且Z 1是X 1,X 2…X p 的线性组合中方差最大者,Z 2是与Z 1不相关的线性组合中方差最大者,…,Z p 是与Z 1,Z 2 ……Z p-1都不相关的线性组合中方差最大者。
(三)主成分分析法基本步骤第一步:设估计样本数为n ,选取的财务指标数为p ,则由估计样本的原始数据可得矩阵X=(x ij )m ×p ,其中x ij 表示第i 家上市公司的第j 项财务指标数据。
第二步:为了消除各项财务指标之间在量纲化和数量级上的差别,对指标数据进行标准化,得到标准化矩阵(系统自动生成)。
第三步:根据标准化数据矩阵建立协方差矩阵R ,是反映标准化后的数据之间相关关系密切程度的统计指标,值越大,说明有必要对数据进行主成分分析。
其中,R ij (i ,j=1,2,…,p )为原始变量X i 与X j 的相关系数。
主成分分析法

四、主成份分析法旳环节
1)数据归一化处理:数据原则化(Z) 2)Βιβλιοθήκη 算有关系数矩阵R: 3)计算特征值;
特征值越大阐明主要程度越大。
4)计算主成份贡献率及方差旳合计贡献率; 5)计算主成份载荷与特征向量:
主成份旳负荷值大小反应了主成份因子对可测变量旳影响程 度;载荷值越大阐明此变量对主成份旳解释越多,及贡献越大。
• 因子分析 优点:第一它不是对原有变量旳取舍,而是根据原始变 量旳信息进行重新组合,找出影响变量旳共同因子,化简 数据;第二,它经过旋转使得因子变量更具有可解释性, 命名清楚性高。 缺陷 :在计算因子得分时,采用旳是最小二乘法,此法 有时可能会失效。
总之,主成份分析是因子分析旳一种特例。
谢 谢 观 看!
旋转后旳主成份因子载荷矩阵
景区满意度旋转前后成份矩阵图对比
5、碎石图分析
选用主成份旳个数,急转处是拟定主成份旳个数处。
景区满意度碎石图
八、与因子分析法旳区别
1、基本概念
➢ 主成份分析就是将多项指标转化为少数几项综合 指标,用综合指标来解释多变量旳方差- 协方差构 造。综合指标即为主成份。所得出旳少数几种主 成份,要尽量多地保存原始变量旳信息,且彼此 不有关。
注意:进行主成份旳变量之间必须要有有关性, 经过分析后变量之间独立。
二、主成份分析法基本原理
主成份分析就是设法将原来众多具有一定有关性 旳变量(如p个变量),重新组合成一组新旳相互无 关旳综合变量来替代原来变量。怎么处理?
一般数学上旳处理就是将原来p个变量作线性组合 作为新旳综合变量。怎样选择?
假如将选用旳第一种线性组合即第一种综合变量 记为F1,自然希望F1尽量多旳反应原来变量旳信 息。怎样反应?
主成分分析报告PCA(含有详细推导过程以及案例分析报告matlab版)

主成分分析法(PCA)在实际问题中,我们经常会遇到研究多个变量的问题,而且在多数情况下,多个变量之间常常存在一定的相关性。
由于变量个数较多再加上变量之间的相关性,势必增加了分析问题的复杂性。
如何从多个变量中综合为少数几个代表性变量,既能够代表原始变量的绝大多数信息,又互不相关,并且在新的综合变量基础上,可以进一步的统计分析,这时就需要进行主成分分析。
I. 主成分分析法(PCA)模型(一)主成分分析的基本思想主成分分析是采取一种数学降维的方法,找出几个综合变量来代替原来众多的变量,使这些综合变量能尽可能地代表原来变量的信息量,而且彼此之间互不相关。
这种将把多个变量化为少数几个互相无关的综合变量的统计分析方法就叫做主成分分析或主分量分析。
主成分分析所要做的就是设法将原来众多具有一定相关性的变量,重新组合为一组新的相互无关的综合变量来代替原来变量。
通常,数学上的处理方法就是将原来的变量做线性组合,作为新的综合变量,但是这种组合如果不加以限制,则可以有很多,应该如何选择呢?如果将选取的第一个线性组合即第一个综合变量记为1F ,自然希望它尽可能多地反映原来变量的信息,这里“信息”用方差来测量,即希望)(1F Var 越大,表示1F 包含的信息越多。
因此在所有的线性组合中所选取的1F 应该是方差最大的,故称1F 为第一主成分。
如果第一主成分不足以代表原来p 个变量的信息,再考虑选取2F 即第二个线性组合,为了有效地反映原来信息,1F 已有的信息就不需要再出现在2F 中,用数学语言表达就是要求0),(21=F F Cov ,称2F 为第二主成分,依此类推可以构造出第三、四……第p 个主成分。
(二)主成分分析的数学模型对于一个样本资料,观测p 个变量p x x x ,,21,n 个样品的数据资料阵为:⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=np n n p p x x x x x x x x x X212222111211()p x x x ,,21=其中:p j x x x x nj j j j ,2,1,21=⎪⎪⎪⎪⎪⎭⎫ ⎝⎛= 主成分分析就是将p 个观测变量综合成为p 个新的变量(综合变量),即⎪⎪⎩⎪⎪⎨⎧+++=+++=+++=ppp p p p p p p p x a x a x a F x a x a x a F x a x a x a F 22112222121212121111 简写为:p jp j j j x x x F ααα+++= 2211p j ,,2,1 =要求模型满足以下条件:①j i F F ,互不相关(j i ≠,p j i ,,2,1, =)②1F 的方差大于2F 的方差大于3F 的方差,依次类推③.,2,1122221p k a a a kp k k ==+++于是,称1F 为第一主成分,2F 为第二主成分,依此类推,有第p 个主成分。
主成分分析完整版

X的两个主成分分别为 第一主成分的贡献率为
Y1 0.040X1 0.999X2, Y2 0.999X1 0.040X2.
1 100.16 99.2% 1 2 101
R 型分析
R型分析的概念
为消除量纲影响,在计算之前先将原始数据标准化。标准
4. 由此我们可以写出三个主成分的表达式:
F1 0.56(x1 161 .2) 0.42(x2 77.3) 0.71(x3 51.2) F2 0.81(x1 161 .2) 0.33(x2 77.3) 0.48(x3 51.2) F3 0.03(x1 161 .2) 0.85(x2 77.3) 0.53(x3 51.2)
主 旋转坐标轴
x 2
F 1
成 分 分 析 的 几 何 解
F 2
•
•••
•••
• •
•
•••••••••••••••••••••••
• •
F1 x1 cos x2 sin
F2 x1 sin x2 cos
F1
F2
cos sin
sin x1
cos
x2
x2
旋转变换的目的是为了使得n个
很显然,识辨系统在一个低维空间要比在一个高维空间容 易得多。
在力求数据信息丢失最少的原则下,对高维的变量空间降 维,即研究指标体系的少数几个线性组合,并且这几个线性 组合所构成的综合指标将尽可能多地保留原来指标变异方面 的信息。这些综合指标就称为主成分。要讨论的问题是:
(1) 基于相关系数矩阵/协方差矩阵做主成分分析? (2) 选择几个主成分? (3) 如何解释主成分所包含的实际意义?
2. 求解协方差矩阵的特征方程 S I 0
第六章-主成分分析法精选全文

可编辑修改精选全文完整版第六章 主成分分析法主成分分析法是将高维空间变量指标转化为低维空间变量指标的一种统计方法。
由于评价对象往往具有多个属性指标,较多的变量对分析问题会带来一定的难度和复杂性。
然而,这些指标变量彼此之间常常又存在一定程度的相关性,这就使含在观测数据中的信息具有一定的重叠性。
正是这种指标间的相互影响和重叠,才使得变量的降维成为可能。
即在研究对象的多个变量指标中,用少数几个综合变量代替原高维变量以达到分析评价问题的目的。
当然,这少数指标应该综合原研究对象尽可能多的信息以减少信息的失真和损失,而且指标之间彼此相互独立。
第一节 引言主成分分析,也称主分量分析,由皮尔逊(Pearson )于1901年提出,后由霍特林(Hotelling )于1933年发展了,这也正是现在多元统计分析中的一种经典统计学观点。
经典统计学家认为主成分分析是确定一个多元正态分布等密度椭球面的主轴,这些主轴由样本来估计。
然而,现代越来越多的人从数据分析的角度出发,用一种不同的观点来考察主成分分析。
这时,不需要任何关于概率分布和基本统计模型的假定。
这种观点实际上是采用某种信息的概念,以某种代数或几何准则最优化技术对一个数据阵的结构进行描述和简化。
主成分分析方法的主要目的就是通过降维技术把多个变量化为少数几个主要成分进行分析的统计方法。
这些主要成分能够反映原始变量的绝大部分信息,它们通常表示为原始变量的某种线性组合。
为了使这些主要成分所含的信息互不重迭,应要求它们互不相关。
当分析结束后,最后要对主成分做出解释。
当主成分用于回归或聚类时,就不需要对主成分做出解释。
另外,主成分还有简化变量系统的统计数字特征的作用。
对于任意p 个变量,描述它们自身及其相互关系的数字特征包括均值、方差、协方差等,共有)1(21-+p p p 个参数。
经过主成分分析后,每个新变量的均值和协方差都为零,所以,变量系统的数字特征减少了)1(21-+p p p 个。
主成分分析方法PPT课件

X
x21
x22
x2
p
xn1
xn 2
xnp
❖ 当p较大时,在p维空间中考察问题比较麻烦。 为了克服这一困难,就需要进行降维处理. 要求:较少的几个综合指标尽量多地反映原来较 多变量指标所反映的信息,同时它们之间又是彼 此独立的
例,成绩数据
❖ 100个学生的数学、物理、化学、语文、历 史、英语的成绩如下表(部分)。
p
lk2j 1, (k 1,2,, m)
j 1
Rlk lk (R E)lk 0
计算主成分贡献率及累计贡献率
▲贡献率:
k
p
i
(k 1,2,, p)
i 1
▲累计贡献率:
k
p
j1 j / i1 i
一般取累计贡献率达85—95%的特征值 1, 2 ,, m 所对应的第一、第二、…、第m(m≤p)个主成分
6
6
样方
1
物种X1 1
物种X2 5
2 3 4 5 6 总和 2 0 2 -4 -1 0 2 1 0 -4 -4 0
种X2
X2
12
10
8
6
4
2
0
0
1
2
3
4
5
6
7
种X1
6 5 4 3 2 1 0 -5 -4 -3 -2 -1-1 0 1 2 3 4 5 6 -2 -3 -4 -5
X1
中心化后的原始数据矩阵
X
1 5
2 2
0 1
2 0
4 4
1 4
❖ 把坐标轴X1、 X2刚性地旋转 一个角度,得
到图中新坐标
轴Y1和Y2
X2
6
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
主成分分析完整版
一、主成分分析的原理
1.标准化数据:先对原始数据进行标准化处理,以确保不同变量的尺
度一致。
2.计算协方差矩阵:对标准化后的数据计算协方差矩阵,矩阵中的元
素表示不同变量之间的相关性。
3.计算特征值和特征向量:对协方差矩阵进行特征值分解,得到特征
值和对应的特征向量。
4.选择主成分:按照特征值的大小选择最重要的k个特征值和它们对
应的特征向量,称之为主成分。
5.数据转换:将原始数据投影到选取的主成分上,得到降维后的数据。
二、主成分分析的方法
1.方差解释比:主成分分析通过特征值展示了每个主成分的重要性。
方差解释比是计算每个主成分的方差所占总方差的比例。
选择解释总方差
的比例较高的主成分,可以保留更多的信息。
2.累计方差解释比:累计方差解释比是计算前n个主成分的方差解释
比之和。
通过选择累计方差解释比较高的主成分,可以保留更多的原始数
据信息。
3.维度选择:主成分分析可以通过选择合适的主成分数来实现数据降维。
通过观察特征值的大小和累计方差解释比,可以选择合适的主成分数。
三、主成分分析的应用
1.数据可视化:主成分分析可以将高维度的数据转换为低维度的数据,从而方便可视化。
通过在二维或三维空间中绘制主成分,可以更好地理解
数据的分布和关系。
2.特征提取:主成分分析可以提取数据中的最重要特征,从而减少数
据维度并保留主要信息。
特征提取可以在分类、聚类等问题中提高算法的
效果。
3.数据压缩:主成分分析可以将高维度的数据压缩为低维度的数据,
从而节省存储空间和计算时间。
压缩后的数据可以用于后续分析和处理。
4.噪音过滤:主成分分析通过保留数据中最重要的特征,可以减少噪
音的影响。
通过滤波后的数据可以提高实验测量的准确性和稳定性。
综上所述,主成分分析是一种强大的数据降维技术,可以在许多领域
中应用。
熟悉主成分分析的原理、方法和应用,对于理解数据和提升数据
分析的能力具有重要意义。