北师大版七年级数学上册 第三章《整式的加减》达标检测题

合集下载

第三章 整式及其加减 单元测试(含答案) 2024-2025学年北师大版数学 七年级上册

第三章 整式及其加减 单元测试(含答案) 2024-2025学年北师大版数学 七年级上册

第三章整式及其加减(单元测试)2024-2025学年七年级上册数学北师大版一、单选题1.将化简得( )A .B .C .D .2.下列运算中,正确的是( )A .B .C .D .3.如图1所示,一块瓷砖表面有四条分割线,由分割线可构成一个正方形图案.图2由两块瓷砖铺成,分割线可构成3个正方形.图3由四块瓷砖铺成,分割线可构成9个正方形.若用十二块瓷砖铺成长方形,则由分割线可构成的正方形数最多是( )A .33B .34C .35D .364.下列式子:,,,,,中,整式的个数是( )A .3B .4C .5D .65.如果,那么代数式的值为( )A .B .C .D .6.多项式2x 2﹣x ﹣3的项分别是( )A .x 2,x ,3B .2x 2,﹣x ,﹣3C .2x 2,x ,﹣3D .2x 2,x ,37.下列说法正确的是( )A .单项式的系数是,次数是B .多项式的是二次三项式C .单项式的次数是1,没有系数D .单项式的系数是,次数是8.下列各题正确的是( )A .B .()()2x y x y +-+x y +x y --+x y x y--23325x x x +=235x x +=2222ab b a -=()222a b a b--=-+3x 3a c32d +32y --034a 2a b +=-18762a b a b ⎛⎫+--- ⎪⎝⎭3113-11-25xy π-15-422231x y x -+-a 2-xy z 1-4336x y xy +=0x x --=C .D .9.如图,古希腊人常用小石子在沙滩上摆成各种形状来研究数.例如:称图中的数1,5,12,22…为五边形数,则第7个五边形数是( )A .62B .70C .84D .10810.多项式按字母的降幂排列正确的是( )A .B .C .D .二、填空题11.有一列数:1,3,2,,…,其规律是:从第二个数开始,每一个数都是其前后两个数之和,根据此规律,则第2023个数是12.已知a 是最小的正整数,b 是最大的负整数,c 是立方为的数,则 .13.单项式次数是 ,系数是 .14.已知,则.15.如图,点是线段上的一点,分别以、为边在的同侧作正方形和正方形,连接、、,当时,的面积记为,当,的面积记为,,以此类推,当时,的面积记为,则的值为 .16.已知两个代数式的和是,其中一个代数式是,则另一个为.17.用大小相同的棋子按如下规律摆放图形,第2022个图形的棋子数为 .396y y y -=22990a b ba -=2323573x y xy x y +--x 3232537x y x y xy -+-+2323537x y xy x y --+2323753x y xy x y +--2233735xy x y x y-+-1-27-abc =3213a bc -()2760m n ++-=()20m n +=C AB AC BC AB ACDE CBFG EG BG BE 1BC =BEG 1S 2BC =BEG 2S ⋯BC n =BEG n S 20232022S S -25412a a -+236a -18.如图,第(1)个多边形由正三角形“扩展”而来,边数记为,第(2)个多边形由正方形“扩展”而来,边数记为,…,依此类推,由正边形“扩展”而来的多边形的边数记为,则 .三、解答题19.先化简,再求值:(1)(6a ﹣3ab )+(ab ﹣2a )﹣2(ab +b ),其中a ﹣b =9,ab =6;(2)x ﹣2(x ﹣)+(﹣),其中|x +2|+(y ﹣1)2=0.20.先化简,再求值:,其中,.21.如图,在数轴上,三个有理数从左到右依次是:,x ,.(1)利用刻度尺或圆规,在数轴上画出原点;(2)直接写出x 的符号为______.(填“正号”或“负号”)22.七年级新学期,两摞规格相同准备发放的数学课本整齐地叠放在课桌面上,小英对其高度进行了测量,请根据图中所给出的数据信息,解答下列问题:312a =420a =n ()3n a n ≥10a =2312213y 23123x y +22221322212222a b ab ab a b ab ab ⎡⎤⎛⎫----+++ ⎪⎢⎥⎝⎭⎣⎦3a =-2b =1-1x +(1)每本数学课本的厚度是 cm ;(2)若课本数为(本),整齐叠放在桌面上的数学课本顶部距离地面的高度的整式为 (用含的整式表示);(3)现课桌面上有48本此规格的数学课本,整齐叠放成一摞,若从中取出13本,求余下的数学课本距离地面的高度.23.为了参加校园文化艺术节,书画社计划买一些宣纸和毛笔,现了解情况如下:甲、乙两家文具商店出售同样的毛笔和宣纸,毛笔每支20元,宣纸每张4元.甲商店的优惠办法是:买1支毛笔送1张宣纸;乙商店的优惠办法是:全部商品按定价的9折出售.书画社想购买毛笔10支,宣纸x 张.(1)若到甲商店购买,应付_____________元;若到乙商店购买,应付_____________元(用含x 的代数式表示);(2)若时,去哪家商店购买较合算?请计算说明;(3)若时,你能给出一种更为省钱的购买方案吗?试写出你的购买方案,并求出此时需付多少元?24.如图是一组有规律的图案,它们是由边长相等的等边三角形组合而成,第1个图案有4个三角形,第2个图案有7个三角形,第3个图案有10个三角形…照此规律摆下去:(1)照此规律,摆成第5个图案需要______个三角形.(2)照此规律,摆成第n 个图案需要______个三角形.(用含n 的代数式表示)(3)照此规律,摆成第2022个图案需要几个三角形?x x (10)x >30x =30x =参考答案:1.D2.D3.C4.B5.A6.B7.D8.D9.B10.A11.112.13.14.115.16.17.606918.11019.(1)2a ﹣2b ﹣3ab ,0;(2)﹣3x +y 2,7.20.,21.(1)略;(2)正号22.(1);(2);(3)23.(1),(2)到甲商店购买较为合算(3)先到甲商店购买10支毛笔,送10张宣纸,再到乙商店购买张宣纸,费用为272元24.(1)16;(2);(3)6067个3613-4045222418a a -+2ab -18-0.5850.5x +102.5cm()4160x +()3.6180x +20(31)n +。

北师大版七年级数学上册《第三章整式及其加减》单元测试卷(带答案)

北师大版七年级数学上册《第三章整式及其加减》单元测试卷(带答案)

北师大版七年级数学上册《第三章整式及其加减》单元测试卷(带答案)一、选择题1.小明比小强大2岁,比小华小4岁.如果小强y 岁.则小华( ) A .(y −2)岁B .(y +2)岁C .(y +4)岁D .(y +6)岁2.下列代数式中,是次数为3的单项式的是( ) A .−m 3nB .3C .4t 3−3D .x 2y 23.对于多项式−3x −2xy 2−1,下列说法中,正确的是( ) A .一次项系数是3 B .最高次项是2xy 2 C .常数项是−1D .是四次三项式4.下列各组单项式中,不是同类项的是( ) A .−2y 2a 3与12ay 2B .12x 3y 与−12xy 3 C .6a 2bn 与−a 2nbD .23与325.按如图所示的程序运算,如果输入x 的值为12,那么输出的值为( )A .3B .0C .−1D .−36.下列运算中,正确的是( ) A .3a +2b =5abB .2a 3+3a 2=5a 5C .5a 2−4a 2=1D .3a 2b −3ba 2=07.若关于x 的代数式2x 2+ax +b −(2bx 2−3x −1)的值与x 无关,则a −b 的值为( ) A .2B .4C .−2D .−48.观察下列关于m ,n 的单项式的特点:12m 2n ,23m 2n 2,34m 2n 3,45m 2n 4,56m 2n 5,……,按此规律,第n 个单项式是( ) A .nn+1m 2n n B .nn+1m n n nC .n−1nm 2n nD .n−1nm n n n二、填空题9.一支钢管需要a 元,一本管记本需要b 元,现买5支钢笔和8本笔记本共需要 元. 10.若x P +4x 3+qx 2+2x +5是关于x 的五次四项式,则qp = . 11.已知2x 6y 2和−x 3m y n 是同类项,则2m +n 的值是 .12.一种商品成本为a 元/件,商场在成本的基础上增加20%作为售价出售,现搞活动促销,按原售价的九折出售.设售出m件该商品时,总利润为元.13.已知a是−5的相反数,b比最小的正整数大4,c是相反数等于它本身的数,则a+b+c的值是.三、计算题14.计算:(1)4b−3a−3b+2a(2)(3x2−y2)−3(x2−2y2)+m2−3cd+5m的值.15.若a、b互为相反数,c、d互为倒数,|m|=3,求a+b4m四、解答题16.已知代数式A=x2+ax−2a(1)求2A−B;(2)若2A−B的值与x的取值无关,求a的值.17.如图,在一个直角三角形休闲广场的直角处设计一块四分之一圆形花坛,若圆形的半径为r米,广场一直角边长为2a米,另一直角边长为b米.(1)列式表示广场空地的面积(用含π的式子表示);(2)若a=150米,b=50米,r=20米,求广场空地的面积(π取3.14).18.滴滴快车是一种便捷的出行工具,计价规则如下表:计费项目里程费时长费远途费单价 1.8元/公里0.45元/分钟0.4元/公里注:车费由里程费、时长费、远途费三部分构成,其中里程费按行车的实际里程计算:时长费按行车的实际时间计算;远途费的收取方式为:行车里程10公里以内(含10公里)不收远途费,超过10公里的,超出部分每公里收0.4元.(1)若小东乘坐滴滴快车,行车里程为15公里,行车时间为20分钟,则需付车费多少元?(2)若小明乘坐滴滴快车,行车里程为a公里,行车时间为b分钟,则小明应付车费多少元(用含a、b的代数式表示,并化简)?(3)小王与小张各自乘坐滴滴快车,行车里程分别为9.5公里与14.5公里,但下车时两人所付车费相同,那么这两辆滴滴快车的行车时间相差多少分钟?参考答案1.D2.D3.C4.B5.C6.D7.D8.A9.(5a+8b)10.011.612.0.08am13.1014.(1)解:4b−3a−3b+2a=(4−3)b+(2−3)a=b−a(2)解:(3x2−y2)−3(x2−2y2)=3x2−y2−3x2+6y2=5y215.解:依题意得a+b=0,cd=1,m=±3.当m=3时,原式=0+32−3×1+5×3=9−3+15=21.当m=−3时,原式=0+(−3)2−3×1+5×(−3)=9−3−15=−9. 因此值为21或-9.16.(1)解:原式=4ax-x-4a+1(2)解:a=1417.(1)解:四分之一圆的面积为:14πr2;直角三角形的面积为:12×2a×b=ab;所以,广场空地的面积为:ab−14πr2;(2)解:当a=150米,b=50米,r=20米,π=3.14时ab−14πr2=150×50−14×3.14×202=7186(平方米)18.(1)解:1.8×15+0.45×20+0.4×(15−10)=38(元)答:需付车费38元.(2)解:当a≤10时,小明应付费(1.8a+0.45b)元;当a>10时,小明应付费1.8a+0.45b+0.4(a−10)=(2.2a+0.45b−4)元;(3)解:小王与小张乘坐滴滴快车分别为x分钟、y分钟1.8×9.5+0.45x=1.8×14.5+0.45y+0.4×(14.5−10)整理,得:0.45x−0.45y=10.8∴x−y=24因此,这两辆滴滴快车的行车时间相差24分钟.。

北师大版七年级数学上册第三章整式及其加减单元测试卷-带参考答案

北师大版七年级数学上册第三章整式及其加减单元测试卷-带参考答案

北师大版七年级数学上册第三章整式及其加减单元测试卷-带参考答案一、单选题 1.按照如图所示的运算程序,能使输出y 的值为5的是( )A .m =1,n =4B .2,5m n ==C .m =5,n =3D .m =2,n =2 2.关于代数式353a +,下列说法中正确的是( ) A .它的一次项系数是1B .它的常数项是5C .它是一个单项式D .它的次数是33.下列各组代数式:(1)a b -与a b --;(2)a b +与a b --;(3)1a +与1a -;(4)a b -+与a b -,其中互为相反数的有( )A .(2)(4)B .(1)(2)C .(1)(3)D .(3)(4)4.下列说法中正确的是( )A .a -表示负数;B .若x x =,则x 为正数C .单项式22xy 9-的系数为2- D .多项式2223a b 7a b 2ab 1-+-+的次数是45.若单项式3a m+1b 与-b n -1a 2m -2的和仍是单项式,则m ,n 的值分别为( )A .1,0B .3,0C .3,2D .1,26.下列从左到右的变形是因式分解的是( )A .B .C .D .7.1x 与2x ,3x …202x 是202个由1和1-组成的数,且满足12320222x x x x +++⋅⋅⋅+=,则()()()()22221232021111x x x x -+-+-+⋅⋅⋅+-的值为( ) A .408 B .462 C .360 D .3688.下列各组代数式中是同类项的是( )A .234a b -34ab -B .232x y -与323x yC .3512m n -与537n m - D .a 与c 9.某服装店出售一件衣服,标价为m 元,由于市场行情的变化,服装店进行了一次调价,在此基础上又进行了第二次调价,下列四种方案中,两次调价后售价最低的是( )A .第一次打八折,第二次打八折B .第一次提价30%,第二次打六折C .第一次提价50%,第二次降价50%D .第一次提价20%,第二次降价30%10.观察下列等式:133= 239= 3327= 4381= 53243= 63729= 732187=…解答下列问题:234202333333++++的末位数字是( )A .0B .2C .3D .9二、填空题11.观察2,﹣3,4,﹣5,6,﹣7,…这一列数,你能发现它们排列的规律吗?请根据你发现的规律,试写出第)21x ++=322221+-+-+23,12-…第10个数字是的值是、d 互为倒数,m 的绝对值等于.已知一个两位数,它的个位数字是x ,十位数字是三、解答题19.如图:(1)用含字母的式子表示阴影部分的面积;(2)当5a =,3b =时,阴影部分的面积是多少?20.观察下列按一定规律排列的三行数:第一行:﹣2,4,﹣8,16,﹣32,64,﹣128…第二行:3,9,﹣3,21,﹣27,69,﹣123…第三行:4,﹣2,10,﹣14,34,﹣62,130…(1)第一行数中的第11个数是 ;(2)第三行数中的第n 个数是 (用含n 的式子表示);(3)取每行数中的第m 个数,是否存在m 的值,使这三个数的和等于255?若存在,求出m 的值,若不存在,说明理由.21.已知:有理数a 、b 、c 在数轴上的位置如图所示,且c a >.(1)填空:a =___________;c =___________;ac =___________(2)化简:b c a c a b -++--22.如图,在一个长方形休闲广场的四角都设计一块半径相同的四分之一圆形的花坛,若圆形的半径为m r ,广场长为m a ,宽为m b .(m 为单位米)(1)列式表示广场空地的面积;参考答案: 1.D2.A3.A4.D5.C6.D7.C8.C9.A10.D11.﹣10112.113.1或3-/3-或1 14. 11n x +-/11n x +-+ 21213+ 15.15- 16.1617.13或7 18.11x +11y/11y+11x 19.(1)阴影部分面积为()2244a b a a b ππ+--;(2)阴影部分面积为17402π- 20.(1)-2048;(2)()22n --+;(3)不存在21.(1),,a c ac --(2)2c -22.(1)()22m ab r π-(2)()220000100m π- 23.(1)968-;(2)252ab -24.(1)666x y xy +-(2)9(3)6。

北师大版七年级上册数学第三章《整式及其加减》单元综合测试卷(含答案)

北师大版七年级上册数学第三章《整式及其加减》单元综合测试卷(含答案)

北师大版七年级上册数学第三章《整式及其加减》单元综合测试卷(含答案)一、选择题(每题3分,共30分)1.下列式子符合书写规范的是( )A .-1xB .115xyC .0.3÷xD .-52a 2.下列各式中,是单项式的是( )A .x 2-1B .a 2b C.πa +b D.x -y 3 3.单项式-π3a 2b 的系数和次数分别是( ) A .π3,3 B .-π3,3 C .-13,4 D.13,4 4.下列单项式中,与a 2b 是同类项的是( )A .2a 2bB .a 2b 2C .ab 2D .3ab5.如果多项式(a -2)x 4-12x b +x 2-3是关于x 的三次多项式,那么( ) A .a =0,b =3 B .a =1,b =3 C .a =2,b =3 D .a =2,b =16.下列去括号正确的是( )A .(a -b )-(c -d )=a -b -c -dB .-a -2(b -c )=-a -2b +2cC .-(a -b )+c =-a -b +cD .-2(a -b )-c =-2a +b -c7.【2021·台州】将x 克含糖10%的糖水与y 克含糖30%的糖水混合,混合后的糖水含糖( )A.20% B.x+y2×100% C.x+3y20×100% D.x+3y10x+10y×100%8.如图①是一个长为2m、宽为2n的长方形,其中m>n,先用剪刀沿图中虚线(对称轴)剪开,将它分成四个形状和大小都一样的小长方形,再将这四个小长方形拼成一个如图②的正方形,则中间空白部分的面积是( )A.2mn B.(m+n)2 C.(m-n)2 D.m2-n29.代数式2a2+3a+1的值是6,那么代数式6a2+9a+5的值是( ) A.20 B.18 C.16 D.1510.【教材P104复习题T16变式】【2020·德州】如图是用黑色棋子摆成的美丽图案,按照这样的规律摆下去,第10个这样的图案需要黑色棋子的个数为( )A.148 B.152 C.174 D.202二、填空题(每题3分,共24分)11.用代数式表示“比a的平方的一半小1的数”是____________.12.若单项式-2x3yn与4x m+2y5合并后的结果还是单项式,则m+n=________.13.【教材P101复习题T2变式】按照如图所示的步骤操作,若输入x的值为-4,则输出的值为________.14.在山东部分地区,大年初一常常包上几个装有硬币的饺子,吃到“钱馅”饺子的人,寓意新的一年财源滚滚、大吉大利.因为怕弄坏牙齿,朵朵的奶奶就把花生放在饺子里代替硬币,朵朵家有6口人,奶奶按照每人n 粒花生的规则包饺子(每个饺子包1粒),那么有花生的饺子有________个.15.若多项式2x 3-8x 2+x -1与多项式3x 3+2mx 2-5x +3的和不含x 2项,则m =________.16.某同学计算一个多项式加上xy -3yz -2xz 时,误认为减去此式,计算出的错误结果为xy -2yz +3xz ,则正确的结果是__________.17.已知有理数a ,b ,c 在数轴上对应点的位置如图所示,化简|a +c |-|c -b |-|a +b |的结果为________.18.【2021·怀化】观察等式:2+22=23-2,2+22+23=24-2,2+22+23+24=25-2……已知按一定规律排列的一组数:2100,2101,2102,…,2199,若2100=m ,用含m 的代数式表示这组数的和是__________.三、解答题(19,21,22题每题10分,其余每题12分,共66分)19.先去括号,再合并同类项:(1)2a -(5a -3b )+(4a -b ); (2)3x 2y -⎣⎢⎡⎦⎥⎤2xy 2-2⎝ ⎛⎭⎪⎫xy -32x 2y +xy +3xy 2.20.先化简,再求值:(1)7a 2b +(-4a 2b )-(2a 2b -2ab ),其中a =-2,b =1;(2)2x 2-⎣⎢⎡⎦⎥⎤3⎝ ⎛⎭⎪⎫-13x 2+23xy -2y 2-2(x 2-xy +2y 2),其中x =12,y =-1.21.【教材P 102复习题T 9变式】已知代数式A =2x 2+3xy -2x -1,B =-x 2+xy -1.(1)当x =y =-1时,求2A +4B 的值;(2)若2A +4B 的值与x 的取值无关,求y 的值.22.如图,某纪念馆要在两块紧挨在一起的长方形荒地上修建一个半圆形花圃,尺寸如图所示(单位:m).(1)求阴影部分的面积(用含x的代数式表示);(2)当x=9,π取3时,求阴影部分的面积.23.比较两个数的大小时,我们可以用“作差法”.它的基本思路是求a与b两数的差,当a-b>0时,a>b;当a-b<0时,a<b;当a-b=0时,a=b.试运用“作差法”解决下列问题:(1)比较2a+1与2(a+1)的大小;(2)比较a+b与a-b的大小.24.某家具厂生产一种课桌和椅子,课桌每张定价200元,椅子每把定价80元,厂方在开展促销活动期间,向客户提供两种优惠方案:方案一:每买一张课桌就赠送一把椅子;方案二:课桌和椅子都按定价的80%付款.某校计划添置100张课桌和x把椅子.(1)若x=100,请计算哪种方案划算;(2)若x>100,请用含x的代数式分别把两种方案的费用表示出来;(3)若x=300,如果两种方案可以同时使用,请帮助学校设计一种最省钱的方案.参考答案一、1.D 2.B 3.B 4.A 5.C 6.B 7.D8.C 9.A10.C点思路:根据图案知,第1个图案有12个棋子,第2个图案有22个棋子,第3个图案有34个棋子,…第n 个图案有2[1+2+…+(n +1)+(n +2)]+2(n -1)=(n +2)(n +3)+2(n -1)(个)棋子.故第10个这样的图案需要黑色棋子的个数为(10+2)(10+3)+2×(10-1)=174.二、11.12a 2-1 12.6 13.-6 14.6n 15.4 16.3xy -8yz -xz 点拨:由题意可知原多项式为(xy -2yz +3xz )+(xy -3yz-2xz )=2xy -5yz +xz ,则正确的结果为(2xy -5yz +xz )+(xy -3yz -2xz)=3xy -8yz -xz .17.2b -2c 点拨:由题图可知a +c <0,c -b >0,a +b <0,所以原式=-(a+c)-(c -b)-[-(a +b)]=-a -c -c +b +a +b =2b -2c.18.m 2-m点技巧:由题中规律,得2100+2101+2102+…+2199=(2+22+23+...+2199)-(2+22+23+ (299)=(2200-2)-(2100-2)=(2100)2-2100.因为2100=m ,所以原式=m 2-m .三、19.解:(1)原式=2a -5a +3b +4a -b =a +2b ;(2)原式=3x 2y -(2xy 2-2xy +3x 2y +xy )+3xy 2=3x 2y -2xy 2+2xy -3x 2y -xy +3xy 2=xy +xy 2.20.解:(1)7a 2b +(-4a 2b )-(2a 2b -2ab )=7a 2b -4a 2b -2a 2b +2ab =a 2b +2ab .把a =-2,b =1代入,得原式=(-2)2×1+2×(-2)×1=0.(2)2x 2-[3(-13x 2+23xy )-2y 2]-2(x 2-xy +2y 2)=2x 2-(-x 2+2xy -2y 2)-(2x 2-2xy +4y 2)=2x 2+x 2-2xy +2y 2-2x 2+2xy -4y 2=x 2-2y 2.把x =12,y =-1代入,得原式=⎝ ⎛⎭⎪⎫122-2×(-1)2=-74. 21.解:(1)2A +4B =2(2x 2+3xy -2x -1)+4(-x 2+xy -1)=4x 2+6xy -4x -2-4x 2+4xy -4=10xy -4x -6.当x =y =-1时,原式=10×(-1)×(-1)-4×(-1)-6=10+4-6=8.(2)2A +4B =10xy -4x -6=(10y -4)x -6.因为2A +4B 的值与x 的取值无关,所以10y -4=0,解得y =0.4.22.解:(1)由题图中各个部分面积之间的关系可得,阴影部分的面积=2(x -2)+4(x -2-2)-12π·⎝ ⎛⎭⎪⎫2+422=2x -4+4x -16-92π=⎝ ⎛⎭⎪⎫6x -20-92πm 2. (2)当x =9,π取3时,阴影部分的面积为54-20-272=412(m 2). 23.解:(1)因为2a +1-2(a +1)=2a +1-2a -2=-1<0,所以2a +1<2(a +1).(2)(a+b)-(a-b)=a+b-a+b=2b.①当b>0时,a+b>a-b;②当b<0时,a+b<a-b;③当b=0时,a+b=a-b.24.解:(1)当x=100时,方案一:100×200=20 000(元);方案二:100×(200+80)×80%=22 400(元).因为20 000<22 400,所以方案一划算.(2)当x>100时,方案一:100×200+80(x-100)=80x+12 000(元);方案二:(100×200+80x)×80%=64x+16 000(元).(3)当x=300时,①按方案一购买:80×300+12 000=36 000(元);②按方案二购买:64×300+16 000=35 200(元);③先按方案一购买100张课桌,同时送100把椅子,再按方案二购买200把椅子:100×200+80×200×80%=32 800(元),36 000>35 200>32 800,即先按方案一购买100张课桌,同时送100把椅子,再按方案二购买200把椅子最省钱。

北师大版七年级数学上册《第三章整式及其加减》单元测试卷及答案

北师大版七年级数学上册《第三章整式及其加减》单元测试卷及答案

北师大版七年级数学上册《第三章整式及其加减》单元测试卷及答案(时间:120分钟满分:120分)班级: 姓名: 成绩:一、选择题(本大题共10小题,每小题3分,共30分)1.下列说法正确的是()A. mm23的系数是−3 B. −m2m2的次数是3C. mm2−63的常数项是2 D. −5m2m与mm2是同类项2.代数式m+mm的意义是()A. m与m除以m的和B. m与m,m的商的和C. m与m除以m的商的和D. m与m的和除以m的商3.下列各式运算正确的是()A. 3m+2m=5mmB. 3m2m−3mm2=0C. m2+m2=m4D. −mm+3mm=2mm4.多项式−m2−12m−1的各项分别是()A. −m2,12m,1 B. −m2,−12m,−1 C. m2,12m,1 D. m2,−12m,−15.下列各组中的两个单项式能合并的是()A. 4和4mB. 3m2m3和−m2m3C. 2mm2和100mm2mD. m和m26.下列去括号的过程(1)m−(m+m)=m−m−m,(2)m−(m−m)=m−m+m,(3)m+(m−m)= m+m−m,(4)m−(m−m)=m+m+m,其中正确的个数为()A. 4B. 3C. 2D. 17.多项式4mm−3m2−mm+m2+m2与多项式3mm+2m−2m2的差的值()A. 与m,m有关B. 与m,m无关C. 只与m有关D. 只与m有关8.实数m,m在数轴上的对应点的位置如图所示,计算|m−m|的结果为()A. m+mB. m−mC. m−mD. −m−m9.元旦在中国也被称为“阳历年”.为庆祝元旦,郑州某商场举行促销活动,促销的方法是“消费超过300元时,所购买的商品按原价打8折后,再减50元”.若某商品的原价为m元(m>300),则活动期间购买该商品实际付的钱数是()A. (80%m−50)元B. [80%(m−50)]元C. (50%m−80)元D. [50%(m−80)]元10.下列图形都是用同样大小的闪电图案按一定规律组成的,其中第①个图形中共有5个闪电图案,第②个图形中共有9个闪电图案,第③个图形中共有13个闪电图案,按此规律摆放下去,则第⑦个图形中闪电图案的个数为()A. 29B. 30C. 31D. 32二、填空题(本大题共5小题,每小题3分,共15分)11.多项式−3mm+5m3m−2m2m3+5的次数是____,最高次项的系数是________,常数项是________.12.已知m,m是常数,若3mm m和−m m m3是同类项,则2m−m=____.13.一桶方便面为m元,一瓶矿泉水比一桶方便面便宜2元,小明准备买2桶方便面和3瓶矿泉水,小明一共花的钱数为____________元.14.有一个多项式与3m2−m−1的和是−m2+m+3,则这个多项式是____________________.15.一列有理数按照以下规律排列:-1,2,-2,0,3,-1,1,4,0,2,⋯,根据以上你发现的规律,请问第2 024个数是____.三、解答题(一):本大题共3小题,每小题3分,共21分.16.计算:(1)−3m2m+3mm2−2mm2+2m2m;(2)2m2−5m+m2+6+4m−3m2.17.先化简,再求值:(3m2−4mm−4m2)−4(m2−mm+2m2),其中m=2,m=−1.218.张华在一次测验中计算一个多项式加上5mm−3mm+2mm时,误认为减去此式,计算出错误结果为2mm−6mm+mm,试求出正确答案.四、解答题(二):本大题共3小题,每小题9分,共27分.19.已知某轮船顺水航行3小时,逆水航行2小时.(1)设轮船在静水中前进的速度是m千米/时,水流的速度是m千米/时,则轮船共航行多少千米?(2)若轮船在静水中前进的速度是80千米/时,水流的速度是3千米/时,则轮船共航行多少千米?20.为了节约用水,某自来水公司采取以下收费方法:若每户每月用水不超过15吨,则每吨水收费2元;若每户每月用水超过15吨,则超过部分按每吨2.5元收费.9月份小明家用水m吨(m> 15).(1)请用代数式表示小明家9月份应交的水费;(2)当m=20时,小明家9月份应交水费多少元?21.小明装饰新家,为自己房间的长方形窗户选择了一种装饰物,如图所示的阴影部分.(1)挂上这种装饰物后,窗户中能射进阳光的部分的面积是多少?(2)当m=5m,m=2m时,求窗户中能射进阳光的部分的面积是多少.(结果保留π)五、解答题(三):本大题共2小题,第22题13分,第23题14分,共27分. 22.(1)已知m=3时,多项式mm3−mm+5的值是1,当m=−3时,求mm3−mm+5的值;(2)如果关于字母m的二次多项式−3m2+mm+mm2−m+3的值与m的取值无关,求(m+m)(m−m)的值.23.阅读材料:求31+32+33+34+35+36的值.解:设m=31+32+33+34+35+36①则3m=32+33+34+35+36+37.②②−①,得3m−m=(32+33+34+35+36+37)−(31+32+33+34+35+36)=37−3.所以2m=37−3,即m=37−32.所以31+32+33+34+35+36=37−32.以上方法我们称为“错位相减法”.请利用上述材料,解决下列问题.这是一个很著名的故事:阿基米德与国王下棋,国王输了,国王问阿基米德想要什么奖赏,阿基米德对国王说:“我只要在棋盘上第一格放一粒米,第二格放两粒米,第三格放四粒米,第四格放八粒米……按这个方法摆满整个棋盘就行.”国王以为要不了多少米,就随口答应了,结果国王错了.(1)国际象棋棋盘共有64个格子,则在第64格中应放__________粒米;(用幂表示)(2)设国王输给阿基米德的米粒数为m,求m.参考答案一、选择题(本大题共10小题,每小题3分,共30分)1.下列说法正确的是()A. mm23的系数是−3 B. −m2m2的次数是3C. mm2−63的常数项是2 D. −5m2m与mm2是同类项【答案】B2.代数式m+mm的意义是()A. m与m除以m的和B. m与m,m的商的和C. m与m除以m的商的和D. m与m的和除以m的商【答案】C3.下列各式运算正确的是()A. 3m+2m=5mmB. 3m2m−3mm2=0C. m2+m2=m4D. −mm+3mm=2mm 【答案】D4.多项式−m2−12m−1的各项分别是()A. −m2,12m,1 B. −m2,−12m,−1 C. m2,12m,1 D. m2,−12m,−1【答案】B5.下列各组中的两个单项式能合并的是()A. 4和4mB. 3m2m3和−m2m3C. 2mm2和100mm2mD. m和m2【答案】D6.下列去括号的过程(1)m−(m+m)=m−m−m,(2)m−(m−m)=m−m+m,(3)m+(m−m)= m+m−m,(4)m−(m−m)=m+m+m,其中正确的个数为()A. 4B. 3C. 2D. 1【答案】B7.多项式4mm−3m2−mm+m2+m2与多项式3mm+2m−2m2的差的值()A. 与m,m有关B. 与m,m无关C. 只与m有关D. 只与m有关【答案】D8.实数m,m在数轴上的对应点的位置如图所示,计算|m−m|的结果为()A. m+mB. m−mC. m−mD. −m−m【答案】C9.元旦在中国也被称为“阳历年”.为庆祝元旦,郑州某商场举行促销活动,促销的方法是“消费超过300元时,所购买的商品按原价打8折后,再减50元”.若某商品的原价为m元(m>300),则活动期间购买该商品实际付的钱数是()A. (80%m−50)元B. [80%(m−50)]元C. (50%m−80)元D. [50%(m−80)]元【答案】A10.下列图形都是用同样大小的闪电图案按一定规律组成的,其中第①个图形中共有5个闪电图案,第②个图形中共有9个闪电图案,第③个图形中共有13个闪电图案,按此规律摆放下去,则第⑦个图形中闪电图案的个数为()A. 29B. 30C. 31D. 32【答案】A二、填空题(本大题共5小题,每小题3分,共15分)11.多项式−3mm+5m3m−2m2m3+5的次数是____,最高次项的系数是________,常数项是________.【答案】5 −2+512.已知m,m是常数,若3mm m和−m m m3是同类项,则2m−m=____.【答案】513.一桶方便面为m元,一瓶矿泉水比一桶方便面便宜2元,小明准备买2桶方便面和3瓶矿泉水,小明一共花的钱数为____________元.【答案】(5m−6)14.有一个多项式与3m2−m−1的和是−m2+m+3,则这个多项式是____________________. 【答案】−4m2+2m+415.一列有理数按照以下规律排列:-1,2,-2,0,3,-1,1,4,0,2,⋯,根据以上你发现的规律,请问第2024个数是____.【答案】676三、解答题(一):本大题共3小题,每小题3分,共21分.16.计算:(1)−3m2m+3mm2−2mm2+2m2m;(2)2m2−5m+m2+6+4m−3m2.【答案】(1)解:−3m2m+3mm2−2mm2+2m2m=(−3m2m+2m2m)+(3mm2−2mm2)=−m2m+mm2.(2)解:2m2−5m+m2+6+4m−3m2=(2m2+m2−3m2)+(4m−5m)+6=−m+6..17.先化简,再求值:(3m2−4mm−4m2)−4(m2−mm+2m2),其中m=2,m=−12解:原式=3m2−4mm−4m2−4m2+4mm−8m2=−m2−12m2当m=2,m=−1时2)2=−4−3=−7.原式=−22−12×(−1218.张华在一次测验中计算一个多项式加上5mm−3mm+2mm时,误认为减去此式,计算出错误结果为2mm−6mm+mm,试求出正确答案.解:设原来的整式为m,则m−(5mm−3mm+2mm)=2mm−6mm+mm得m=7mm−9mm+3mmm+(5mm−3mm+2mm)=7mm−9mm+3mm+(5mm−3mm+2mm)=12mm−12mm+5mm.∴原题的正确答案为12mm−12mm+5mm.四、解答题(二):本大题共3小题,每小题9分,共27分.19.已知某轮船顺水航行3小时,逆水航行2小时.(1)设轮船在静水中前进的速度是m千米/时,水流的速度是m千米/时,则轮船共航行多少千米?(2)若轮船在静水中前进的速度是80千米/时,水流的速度是3千米/时,则轮船共航行多少千米?【答案】(1)解:轮船共航行的路程为(m+m)×3+(m−m)×2=(5m+m)(千米).(2)把m=80,m=3代入(1)中的式子,得5×80+3=403(千米).答:轮船共航行403千米.20.为了节约用水,某自来水公司采取以下收费方法:若每户每月用水不超过15吨,则每吨水收费2元;若每户每月用水超过15吨,则超过部分按每吨2.5元收费.9月份小明家用水m吨(m> 15).(1)请用代数式表示小明家9月份应交的水费;(2)当m=20时,小明家9月份应交水费多少元?【答案】(1)解:小明家9月份应交的水费为2×15+2.5(m−15)=(2.5m−7.5)(元);(2)当m=20时,2.5×20−7.5=42.5(元),所以小明家9月份应交水费42.5元. 21.小明装饰新家,为自己房间的长方形窗户选择了一种装饰物,如图所示的阴影部分.(1)挂上这种装饰物后,窗户中能射进阳光的部分的面积是多少?(2)当m=5m,m=2m时,求窗户中能射进阳光的部分的面积是多少.(结果保留π)【答案】(1)解:由题意可知窗户的面积可表示为m(m+m2+m2)=2mm装饰物的面积可表示为π⋅(m2)2=π4m2所以窗户中能射进阳光的部分的面积是2mm−π4m2.(2)将m=5m,m=2m代入(1)中的代数式可得2mm−π4m2=2×5×2−π4×22=(20−π)(m2)所以窗户中能射进阳光的部分的面积是(20−π)m2.五、解答题(三):本大题共2小题,第22题13分,第23题14分,共27分. 22.(1)已知m=3时,多项式mm3−mm+5的值是1,当m=−3时,求mm3−mm+5的值; (2)如果关于字母m的二次多项式−3m2+mm+mm2−m+3的值与m的取值无关,求(m+m)(m−m)的值.【答案】(1)解:∵m=3时,多项式mm3−mm+5的值是1∴27m−3m+5=1∴27m−3m=−4∴m=−3时−27m+3m+5=4+5=9.(2)−3m2+mm+mm2−m+3=(−3+m)m2+(m−1)m+3∵关于字母m的二次多项式的值与m的取值无关∴−3+m=0m−1=0解得m=3m=1代入(m+m)(m−m)得(1+3)×(1−3)=4×(−2)=−8.23.阅读材料:求31+32+33+34+35+36的值.解:设m=31+32+33+34+35+36①则3m=32+33+34+35+36+37.②②−①,得3m−m=(32+33+34+35+36+37)−(31+32+33+34+35+36)=37−3. 所以2m=37−3,即m=37−3.2.所以31+32+33+34+35+36=37−32以上方法我们称为“错位相减法”.请利用上述材料,解决下列问题.这是一个很著名的故事:阿基米德与国王下棋,国王输了,国王问阿基米德想要什么奖赏,阿基米德对国王说:“我只要在棋盘上第一格放一粒米,第二格放两粒米,第三格放四粒米,第四格放八粒米……按这个方法摆满整个棋盘就行.”国王以为要不了多少米,就随口答应了,结果国王错了.(1)国际象棋棋盘共有64个格子,则在第64格中应放__________粒米;(用幂表示)(2)设国王输给阿基米德的米粒数为m,求m.【答案】(1)263(2)解:设m=20+21+⋯+263①则2m=21+22+23+⋯+263+264②②−①得2m−m=21+22+⋯+264−20−21−22−⋯−263=264−20=264−1即m= 264−1.【解析】(1)国际象棋共有64个格子,则在第64格中应放263粒米.故答案为263.。

北师版七年级数学上册第三章《整式的加减》单元检测试卷

北师版七年级数学上册第三章《整式的加减》单元检测试卷

北师版七年级数学上册第三章《整式的加减》单元检测试卷一、选择题(本大题共有10个小题,每小题3分,共30分)1.单项式21a b 2−的次数是( ) A .2 B .3 C .4 D .52.下面不是同类项的是( )A .-2与12B .22a b −与2a bC .2m 与2nD .22x y −与2212x y3.若2(1)|2|0a b −+−=,则2018()a b −的值是( )A .-1B .1C .0D .20164.已知2x 3y 2和﹣x 3m y 2是同类项,则式子4m ﹣24的值是( ) A .20 B .﹣20 C .28 D .﹣285.下列合并同类项正确的是( )A .437a a +=B .222358m n mn mn +=C .3343m m −=D .22265x x x −+=6.化简()m n m n −−+的结果是( ) A .0 B .2m C .2n − D .22m n −7.多项式y -x ²y +2的项数、次数分别是( )A .3,2B .3,4C .3,3D .2,38.下列说法正确的是( )A .单项式223x y −的系数是-2,次数是3 B .单项式a 的系数是0,次数是1 C .多项式-6x 2y +4x -1的常数项是 1 D .多项式 xy 2+4x 2y 3-x 3+2的次数是 59.一个长方形的长是2a ,宽是1a +,则这个长方形的周长等于( )A .61a +B .222a a +C .6aD .62a +10.用棋子摆出下列一组图形:按照这种规律摆下去,第n 个图形用的棋子个数为( )A .3nB .6nC .3n +6D .3n +3二、填空题(本大题共有8个小题,每小题3分,共24分)1.单项式22x yπ−的系数是 .2.若46a b +=,324a b +=,则a b −的值为 .3.若3a x y +−与43b x y +是同类项,则()2023a b += .4.按照下图所示的操作步骤,若输出y 的值为22,则输入的值x 为 .5.有理数a ,b ,c 在数轴上的位置如图所示,则a c a b b c −−−−−= .6.老师在黑板上书写了一个正确的演算过程,随后用手掌捂住了一个多项式,形式如 ()2222143x x x x −+−−−=−:则所捂住的多项式是 .7.按一定规律排列的单项式:2,4,8,16,32a a a a a −−−,…,则第2022个单项式是 .8.如下图所示:用火柴棍摆“金鱼”按照上面的规律,摆n 个“金鱼”需用火柴棒的根数为_____ __三、解答题(本大题共有7个小题,共46分)19.化简:(1)(53)(2)a a b a b +−−−; (2)52()x y x y −−−.20.已知有理数 a 、b 、c 在数轴上的对应点的位置如图所示, 化简:2|a -b |-3|b -c |+3|a +c |.21.小马虎在计算一个多项式减去225a a +−的差时,因一时疏忽忘了对两个多项式用括号括起来, 因此减去后面两项没有变号,结果得到的差是231a a +−.(1)求这个多项式;(2)算出此题的正确的结果.22.探索规律:用棋子按如图所示的方式摆正方形.①②③……(1)按图示规律填写下表:图形编号①②③④⑥棋子个数(2)按照这种方式摆下去,摆第20个正方形需要多少个棋子?(3)按照这种方式摆下去,摆第n个正方形需要多少个棋子?23.某商场销售一种西装和领带,西装每套定价800元,领带每条定价200元.国庆节期间商场决定开展促销活动,活动期间向客户提供两种优惠方案.方案一:买一套西装送一条领带;方案二:西装和领带都按定价的90%付款.现某客户要到该商场购买西装2套,领带x条(x>2).(1)若该客户按方式一购买,需付款元(用含x的式子表示);若该客户按方式二购买,需付款元.(用含x的式子表示)(2)若x=5,通过计算说明此时按哪种方案购买较为合算?(3)当x=5时,你能给出一种更为省钱的购买方案吗?请直接写出你的购买方案,并算出所需费用.24.先化简,再求值.(1)()()2254542x x x x −+++−+,其中2x =−;(2)()()()222222222233x y x y x x y y −−+++,其中=1x −,2y =.25.观察下列等式:第1个等式:11111323⎛⎫=⨯− ⎪⨯⎝⎭; 第2个等式:111135235⎛⎫=⨯− ⎪⨯⎝⎭; 第3个等式:111157257⎛⎫=⨯− ⎪⨯⎝⎭; 第4个等式:111179279⎛⎫=⨯− ⎪⨯⎝⎭; ……请解答下列问题:(1)按以上规律列出第5个等式:___________=____________.(2)用含n 的代数式表示第n 个等式;__________=___________(n 为正整数).(3)求1111133557199201+++⋯+⨯⨯⨯⨯的值.。

3.4 整式的加减 北师大版七年级数学上册素养基础达标(含解析)

3.4 整式的加减 北师大版七年级数学上册素养基础达标(含解析)

3.4整式的加减【素养基础达标】2023-2024学年北师大版数学七年级上册二、整式的加减1.同类项:所含字母相同,并且相同字母的指数也相同的项叫做同类项.所有的常数项都是同类项.注意:辨别同类项要把准“两相同,两无关”:(1)“两相同”是指:①所含字母相同;②相同字母的指数相同;(2)“两无关”是指:①与系数无关;②与字母的排列顺序无关.2.合并同类项:把多项式中的同类项合并成一项,叫做合并同类项.(1)合并同类项时,只是系数相加减,所得结果作为系数,字母及字母的指数保持不变.(2)合并同类项时要注意以下三点:①要掌握同类项的概念,会辨别同类项,并准确地掌握判断同类项的两条标准:带有相同系数的代数项;字母和字母指数;②明确合并同类项的含义是把多项式中的同类项合并成一项,经过合并同类项,式的项数会减少,达到化简多项式的目的;③“合并”是指同类项的系数的相加,并把得到的结果作为新的系数,要保持同类项的字母和字母的指数不变.3.去括号法则:括号前面是“+”,把括号和它前面的“+”去掉后,原括号里各项的符号都不改变;括号前面是“-”,把括号和它前面的“-”号去掉后,原括号里各项的符号都要改变.4.添括号法则:添括号后,括号前面是“+”,括号内各项的符号都不改变;添括号后,括号前面是“-”,括号内各项的符号都要改变.5.整式的加减运算法则:几个整式相加减,通常用括号把每一个整式括起来,再用加、减号连接,然后去括号,合并同类项.整式的加减实质上就是合并同类项.一.选择题(共10小题)1.下列各式中,能与合并同类项的是 A.B.C.D.2.下列各算式中,从左到右变形正确的是 A.B.C.D.3.若与是同类项,则的值为 A.1B.5C.6D.4.下列运算正确的是 A.B.C.D.5.下列各项中,去括号正确的是 A.B.C.D.6.多项式的值与字母的取值无关,则的值是 A.B.C.D.77.如果多项式中不含项,则的值为 A.2或B.C.0D.28.已知,,则下列说法正确的是 A.B.C.、可能相等D.、大小不能确定9.已知,对多项式任意添加绝对值(不可添加为单个字母的绝对值或绝对值中含有绝对值的情况)后仍只含加减法运算,称这种操作为“添绝对值操作”,例如:,等,下列结论正确的个数是 ①至少存在一种“添绝对值操作”,使化简其结果与原多项式相等;②存在某种“添绝对值操作”,使其结果与原多项式之和为0;③若只添加一个绝对值,则所有可能的化简结果共有8种.A.0B.1C.2D.310.下列计算,结果正确的是 A.B.C.D.二.填空题(共8小题)11.下列计算正确的是: .①;②;③;④.12.已知:,,若的值与的取值无关,则的值为 .13.若关于,的多项式与的差的值与字母的取值无关,则 .14.有三堆棋子,数目相等,每堆至少有5枚,从左堆中取出4枚放入中堆,从右堆中取出5枚放入中堆,再从中堆中取出与左堆剩余棋子数相同的棋子数放入左堆,这时中堆的棋子数是 .15.某居民生活用水收费标准:每月用水量不超过20立方米,每立方米元;超过部分每立方米元.该区某家庭上月用水量为25立方米,则应缴水费 元.16.若与是同类项,则 , .17.已知,为两个整式,其中,,且的结果中不含项,则的值为 .18.已知,,,则代数式的值为 .三.解答题(共8小题)19.材料一:若一个四位数的各个数位数字之和为16,并且千位数字与十位数字之差的绝对值等于2,百位数字与个位数字之差的绝对值等于2,则这个四位数为“差2数”.例如:,,且,是“差2数”.又如:,,不是“差2数”.材料二:若一个四位数的各个数位数字成比例,则这个四位数为“成比例数”.例如:,各个数位数字由小到大排列后为1,2,3,6,满足,为“成比例数”.又如:,各个数位数字由小到大排列后为1,2,3,4,,不是“成比例数”.(1)1735是“差2数”吗?是“成比例数”吗?请说明理由;(2)若一个四位数既是“差2数”,又是“成比例数”,请求出所有满足条件的.20.“计算的值,其中,”.甲同学把“”错抄成“”,但他计算的最后结果,与其他同学的正确结果都一样.试说明理由,并求出这个结果21.小琦同学在自习课准备完成以下题目时:化简□发现系数“□”印刷不清楚.(1)他把“□”猜成2,请你化简;(2)老师见到说:“你猜错了,我看到该题标准答案的结果是常数”,请你通过计算说明原题中“□”是几.22.先化简,再求值:.其中,,.23.在整式的加减练习课中,已知,嘉淇错将“”看成“”,得到的结果是.请你解决下列问题.(1)求整式;(2)若为最大的负整数,为的倒数,求该题的正确值.24.化简:(1);(2).25.【阅读理解】我们在分析解决某些数学问题时,经常要比较两个数或代数式的大小,解决问题的策略一般都是进行一定的转化,其中“作差法”就是常用的方法之一.作差法:就是通过作差、变形,利用差的符号确定它们的大小.即要比较代数式、的大小,只要算的值,若,则;若,则;若,则.【知识运用】(1)请用上述方法比较下列代数式的大小(直接在空格中填写答案)①当时, ;②若,则 ;(2)试比较与的大小,并说明理由;【拓展运用】(3)甲、乙两班同学同时从学校沿同一路线到离学校的研学基地参加研学甲班有一半路程以的速度行进,另一半路程以的速度行进:乙班有一半叶间以的速度行进,另一半时间以的速度行进.设甲、乙两班同学从学校到研学基地所用的时间分别为,.①试用含,,的代数式分别表示和,则 , .②请你判断甲、乙两班中哪一个班的同学先到达研学基地,并说明理由.26.先化简,再求值:,其中,.3.4整式的加减【素养基础达标】2023-2024学年北师大版数学七年级上册二、整式的加减1.同类项:所含字母相同,并且相同字母的指数也相同的项叫做同类项.所有的常数项都是同类项.注意:辨别同类项要把准“两相同,两无关”:(1)“两相同”是指:①所含字母相同;②相同字母的指数相同;(2)“两无关”是指:①与系数无关;②与字母的排列顺序无关.2.合并同类项:把多项式中的同类项合并成一项,叫做合并同类项.(1)合并同类项时,只是系数相加减,所得结果作为系数,字母及字母的指数保持不变.(2)合并同类项时要注意以下三点:①要掌握同类项的概念,会辨别同类项,并准确地掌握判断同类项的两条标准:带有相同系数的代数项;字母和字母指数;②明确合并同类项的含义是把多项式中的同类项合并成一项,经过合并同类项,式的项数会减少,达到化简多项式的目的;③“合并”是指同类项的系数的相加,并把得到的结果作为新的系数,要保持同类项的字母和字母的指数不变.3.去括号法则:括号前面是“+”,把括号和它前面的“+”去掉后,原括号里各项的符号都不改变;括号前面是“-”,把括号和它前面的“-”号去掉后,原括号里各项的符号都要改变.4.添括号法则:添括号后,括号前面是“+”,括号内各项的符号都不改变;添括号后,括号前面是“-”,括号内各项的符号都要改变.5.整式的加减运算法则:几个整式相加减,通常用括号把每一个整式括起来,再用加、减号连接,然后去括号,合并同类项.整式的加减实质上就是合并同类项.一.选择题(共10小题)1.下列各式中,能与合并同类项的是 A.B.C.D.【答案】【分析】根据同类项的定义,所含字母相同,相同字母的指数也相同,判断即可.【解答】解:、与不是同类项,不能合并,故不符合题意;、与不是同类项,不能合并,故不符合题意;、与是同类项,能合并,故符合题意;、与不是同类项,不能合并,故不符合题意;故选:.2.下列各算式中,从左到右变形正确的是 A.B.C.D.【答案】【分析】依据添括号法则进行解答即可.添括号法则:添括号时,如果括号前面是正号,括到括号里的各项都不变号,如果括号前面是负号,括号括号里的各项都改变符号.【解答】解:.,原计算错误,故此选项不符合题意;.,原计算错误,故此选项不符合题意;.,原计算错误,故此选项不符合题意;.,原计算正确,故此选项符合题意.故选:.3.若与是同类项,则的值为 A.1B.5C.6D.【答案】【分析】根据同类项的定义,得到关于、的等式,然后求出、的值并计算即可得到答案.【解答】解:由同类项的概念可知:,,解得:,,,故选:.4.下列运算正确的是 A.B.C.D.【答案】【分析】分别运用积的乘方、合并同类项、同底数幂相乘和同底数幂除法进行逐一计算、辨别.【解答】解:,选项符合题意;,选项不符合题意;,选项不符合题意;,选项不符合题意;故选:.5.下列各项中,去括号正确的是 A.B.C.D.【答案】【分析】根据去括号法则,逐一进行判断即可.【解答】解:、,选项错误,不符合题意;、,选项错误,不符合题意;、,选项错误,不符合题意;、,选项正确,符合题意.故选:.6.多项式的值与字母的取值无关,则的值是 A.B.C.D.7【答案】【分析】去括号、合并同类项,令含的项的系数为0,即可解出、的值,再代入所求式子运算即可.【解答】解:,多项式的值与字母的取值无关,,,解得:,,.故选:.7.如果多项式中不含项,则的值为 A.2或B.C.0D.2【答案】【分析】根据合并同类项法则将原式化为,再令项的系数为0即可.【解答】解:多项式,由于不含项,,,故选:.8.已知,,则下列说法正确的是 A.B.C.、可能相等D.、大小不能确定【答案】【分析】根据,进而判断即可.【解答】解:,,故选:.9.已知,对多项式任意添加绝对值(不可添加为单个字母的绝对值或绝对值中含有绝对值的情况)后仍只含加减法运算,称这种操作为“添绝对值操作”,例如:,等,下列结论正确的个数是 ①至少存在一种“添绝对值操作”,使化简其结果与原多项式相等;②存在某种“添绝对值操作”,使其结果与原多项式之和为0;③若只添加一个绝对值,则所有可能的化简结果共有8种.A.0B.1C.2D.3【答案】【分析】根据绝对值的意义求解.【解答】解:①,故①正确;②,则,添绝对值变为16,则之和为0,②正确;③③,可得:的符号不变,、、、的符号会发生变化,列举法得到化简后的结果为:,,,,,,,,共八种,故③正确,故选:.10.下列计算,结果正确的是 A.B.C.D.【答案】【分析】根据合并同类项的法则进行计算即可得到答案.【解答】解:.,计算错误,不符合题意;.与不是同类项,计算错误,不符合题意;.,计算正确,符合题意;.与不是同类项,计算错误,不符合题意;故选:.二.填空题(共8小题)11.下列计算正确的是: ③④ .①;②;③;④.【答案】③④.【分析】根据合并同类项的运算法则逐一判断即可.【解答】解:①不能合并,故错误,不符合题意;②不能合并,故错误,不符合题意;③,计算正确,符合题意;④,计算正确,符合题意;故答案为:③④.12.已知:,,若的值与的取值无关,则的值为 7 .【答案】7.【分析】先化简,然后根据多项式的值与字母取值无关,可知的系数为0,从而可以求得的值.【解答】解:,,,多项式的值与字母取值无关,,得,即的值是7.故答案为:7.13.若关于,的多项式与的差的值与字母的取值无关,则 3 .【答案】3.【分析】先算,然后根据多项式与的差的值与字母的取值无关,即可求得、的值.【解答】解:,多项式与的差的值与字母的取值无关,,,解得,,故答案为:3.14.有三堆棋子,数目相等,每堆至少有5枚,从左堆中取出4枚放入中堆,从右堆中取出5枚放入中堆,再从中堆中取出与左堆剩余棋子数相同的棋子数放入左堆,这时中堆的棋子数是 13枚 .【答案】13枚.【分析】根据题意,可以用代数式表示出最后中堆棋子的枚数,然后化简,即可解答本题.【解答】解:设原来每堆的棋子有枚,则最后的中堆棋子有:(枚,故答案为:13枚.15.某居民生活用水收费标准:每月用水量不超过20立方米,每立方米元;超过部分每立方米元.该区某家庭上月用水量为25立方米,则应缴水费 元.【答案】.【分析】根据所给的收费标准进行求解即可.【解答】解:由题意得,该区某家庭上月用水量为25立方米,则应缴水费元.故答案为:.16.若与是同类项,则 5 , .【分析】利用同类项的定义求出与的值即可.【解答】解:与是同类项,,,解得:,.故答案为:5;1.17.已知,为两个整式,其中,,且的结果中不含项,则的值为 2 .【答案】2.【分析】先合并同类项,根据结果中不含项,得到项的系数为0,进行计算即可.【解答】解:,,;结果中不含项,,;故答案为:2.18.已知,,,则代数式的值为 .【答案】.【分析】去括号、合并同类项化简后,再将条件化为,,整体代入计算即可.【解答】解:原式,由,,可得,,,所以原式.故答案为:.三.解答题(共8小题)19.材料一:若一个四位数的各个数位数字之和为16,并且千位数字与十位数字之差的绝对值等于2,百位数字与个位数字之差的绝对值等于2,则这个四位数为“差2数”.例如:,,且,是“差2数”.又如:,,不是“差2数”.材料二:若一个四位数的各个数位数字成比例,则这个四位数为“成比例数”.例如:,各个数位数字由小到大排列后为1,2,3,6,满足,为“成比例数”.又如:,各个数位数字由小到大排列后为1,2,3,4,,不是“成比例数”.(1)1735是“差2数”吗?是“成比例数”吗?请说明理由;(2)若一个四位数既是“差2数”,又是“成比例数”,请求出所有满足条件的.【答案】(1)是“差2数”,不是“成比例数”,理由见详解;(2)3355、5533、3553、5335.【分析】(1)根据“差2数”和“成比例数”的定义直接判断即可;(2)设有四个小于10的正整数:、、、,且,即、、、的平均数为4,结合“差2数”和“成比例数”的特点,设、、、满足,当,时,可得,即有,,此时依据“成比例数”的定义判断即可;当,时,可得,即有,,则,,此时依据“成比例数”的定义判断即可作答,问题随之得解.【解答】解:(1),且,是“差2数”,各个数位数字由小到大排列后为1,3,5,7,且,不是“成比例数”;(2)设有四个小于10的正整数:、、、,且,即、、、的平均数为4,显然当时,组成的数字4444不是“差2数”,当、、、,有三个数大于4时,这四个是必为:5、5、5、1,则5、5、5、1组成的数既无法是“差2数”,也无法是“成比例数”;当、、、,有三个数小于4时,这四个是必为:3、3、3、7,则3、3、3、7组成的数既无法是“差2数”,也无法是“成比例数”;结合“差2数”和“成比例数”的特点,设、、、满足,当,时,,,,,,,,将、、、从小达到排列为1,3,5,7,且,,3,5,7,无法组成“成比例数”,故此种情况舍去;当,时,,,,,,,,得到四个数字:3、3、5、5,组成的数字必定是“成比例数”,此时可以组成的“差2数”有:3355、5533、3553、5335;综上:满足条件的有:3355、5533、3553、5335.20.“计算的值,其中,”.甲同学把“”错抄成“”,但他计算的最后结果,与其他同学的正确结果都一样.试说明理由,并求出这个结果【分析】先去括号,合并同类项化简原式,再将的值代入计算可得.【解答】解:原式,由结果可知:化简结果与无关,所以答案一样,所以原式.21.小琦同学在自习课准备完成以下题目时:化简□发现系数“□”印刷不清楚.(1)他把“□”猜成2,请你化简;(2)老师见到说:“你猜错了,我看到该题标准答案的结果是常数”,请你通过计算说明原题中“□”是几.【答案】(1);(2)5.【分析】(1)先去括号,再合并同类项即可;(2)结果为常数,则其他项的系数为0,据此可求解.【解答】解:(1);(2)设“□”是,则有:,答案的结果是常数,,解得:,即“□”.22.先化简,再求值:.其中,,.【答案】,12.【分析】先将原式去括号,再合并同类项,然后将代入计算即可.【解答】解:,,原式.23.在整式的加减练习课中,已知,嘉淇错将“”看成“”,得到的结果是.请你解决下列问题.(1)求整式;(2)若为最大的负整数,为的倒数,求该题的正确值.【答案】(1);(2),4.【分析】(1)直接用即可得到答案;(2)先求出,再求出、的值,最后代值计算即可.【解答】解:(1)由题意得,,;(2),,,为最大的负整数,为的倒数,,,原式.24.化简:(1);(2).【答案】(1);(2).【分析】(1)先把同类型放在一起,然后合并同类项即可;(2)先去括号,然后合并同类项即可.【解答】解:(1);(2).25.【阅读理解】我们在分析解决某些数学问题时,经常要比较两个数或代数式的大小,解决问题的策略一般都是进行一定的转化,其中“作差法”就是常用的方法之一.作差法:就是通过作差、变形,利用差的符号确定它们的大小.即要比较代数式、的大小,只要算的值,若,则;若,则;若,则.【知识运用】(1)请用上述方法比较下列代数式的大小(直接在空格中填写答案)①当时, ;②若,则 ;(2)试比较与的大小,并说明理由;【拓展运用】(3)甲、乙两班同学同时从学校沿同一路线到离学校的研学基地参加研学甲班有一半路程以的速度行进,另一半路程以的速度行进:乙班有一半叶间以的速度行进,另一半时间以的速度行进.设甲、乙两班同学从学校到研学基地所用的时间分别为,.①试用含,,的代数式分别表示和,则 , .②请你判断甲、乙两班中哪一个班的同学先到达研学基地,并说明理由.【答案】(1)①;②;(2);(3)①,;②当时,甲、乙同时到达;当时,乙先到;当时,乙先到,理由见解析.【分析】(1)根据材料提示,运用“作差法”即可求解;(2)运用“作差法”,乘法公式,不等式的性质,即可求解;(3)①根据行程问题的数量关系即可求解;②根据“作差法“,整式的混合运算法则进行计算即可.【解答】解:(1)①,,,;②,,,,,;故答案为:(1)①;②;(2).理由如下:,,;(3)路程为,①甲班有一半路程以的速度行进,另一半路程以的速度行进,,乙班有一半时间以的速度行进,另一半时间以的速度行进,,则,故答案为:,;②,,,,,,,当时,甲、乙同时到达;当时,乙先到;当时,乙先到.26.先化简,再求值:,其中,.【答案】2.【分析】原式去括号合并同类项得到最简代数式,把与的值代入计算即可求出值【解答】解:;当,时,原式.。

北师大版七年级数学上册《第三章 整式及其加减》单元测试题(附答案)

北师大版七年级数学上册《第三章 整式及其加减》单元测试题(附答案)

北师大版七年级数学上册《第三章整式及其加减》单元测试题(附答案)一、选择题1.下列说法正确的是()A.单项式−xy2的系数是-2B.单项式−3x2y与4x是同类项C.单项式−x2yz的次数是4D.多项式2x3−x2−1是三次三项式2.下列运算正确的是()A.2a+3b=5ab B.x2y−xy2=0C.−0.25ab+14ab=0D.3a−a=33.如果3a m+3b4与a2b n是同类项,则mn的值为()A.4B.-4C.8D.12 4.下列代数式符合书写要求的是()A.ab4B.315a C.ab3D.15÷t5.数学兴趣小组的一位同学用棋子摆图形探究规律.如图所示,若按照他的规律继续摆下去,第n个图案中用了2025颗棋子,则n的值为()A.506B.507C.508D.5096.如图是一个数值转换机的示意图,若输入x的值为3,y的值为-2,则输出的结果为()A.-6B.5C.-5D.67.按如图所示的运算程序,能使输出y值为5的是()A.m=2,n=1B.m=2,n=0C.m=2,n=2D.m=38.正整数按如图所示的规律排列,则第9行、第10列的数字是()A.90B.86C.92D.109.已知a−2b=−1,则代数式1−2a+4b的值是()A.-3B.-1C.2D.310.已知整数a1,a2,a3,a4……满足下列条件:a1=0。

a2=−|a1+1|,a3=−|a2+2|,a4=−|a3+3|……依次类推,则a2017的值为()A.−1009B.−1008C.−2017D.−201611.如图,将三种大小不同的正方形纸片①,②,③和一张长方形纸片④,平铺长方形桌面,重叠部分(图中阴影部分)是正方形,若要求长方形桌面长与宽的差,只需知道()A.正方形①的边长B.正方形②的边长C.阴影部分的边长D.长方形④的周长12.在计算:M-(5x2-3x-6)时,嘉琪同学将括号前面的“-”号抄成了“+”号,得到的运算结果是-2x2+3x-4,你认为多项式M是()A.-7x2+6x+2B.-7x2-6x-2C.-7x2+6x-2D.-7x2-6x+213.有一道题目是一个多项式A减去多项式2x2+5x﹣3,小胡同学将2x2+5x﹣3抄成了2x2+5x+3,计算结果是﹣x2+3x﹣7,这道题目的正确结果是()A.x2+8x﹣4B.﹣x2+3x﹣1C.﹣3x2﹣x﹣7D.x2+3x﹣714.将一列有理数−1 , 2 , −3 , 4 , −5 , 6……如图所示有序排列.根据图中的排列规律可知,“峰1”中峰顶的位置(C的位置)是有理数4,那么,“峰6”中C的位置是有理数____,2022应排在A、B、C、D、E中____的位置.正确的选项是()A.-29,A B.30,D C.029,B D.-31二、填空题15.单项式−2x4y的系数是.16.若−2a m b4与5a3b2+n是同类项,则−m+n的值是.17.若整式2x2+5x的值为8,那么整式6x2+15x−10的值是.18.有理数a、b、c在数轴上的位置如图所示,请化简:|−a+c|−|b−a|+|c−b|=.19.当k=时,代数式x6−5kx4y3−4x6+15x4y3+10中不含x4y3项.20.一本笔记本原价a元,降价后比原来便宜了b元,小玲买了3本这样的笔记本,比原来便宜了元.21.已知x2−2x−3=0,则7+x2−2x=.三、计算题22.化简:(1)5x−4y−3x+y(2)2a−(4a+5b)+2(3a−4b)23.(1)化简:m−n+5m−4n(2)化简:3(x2−2y)−12(6x2−14y)+10.(3)先化简,再求值:2x2+4y2+(2y2−3x2)−2(y2−2x2),,其中x=−1,y=12.四、解答题24.先化简,再求值:(2a 2−3a +1)+3(a −2a 2−13),其中a =−1.25.先化简,再求值:5(3a 2b −ab 2)−4(−ab 2+3a 2b),其中a =−2,b =1.26.若多项式2x 2−ax +3y −b +bx 2+2x −6y +5的值与字母x 无关,试求多项式3(a 2−2ab −b 2)−2(2a 2−3ab −b 2)的值.五、综合题27.2022年秋季因我县七年级生源的增加,某校计划添置100张课桌和一批椅子(椅子不少于100把),现从A 、B 两家公司了解到:同一款式的产品价格相同,课桌每张300元,椅子每把100元.且A 公司的优惠政策为:每买一张课桌赠送一把椅子,其余部分按原价结算;B 公司的优惠政策为:课桌和椅子都实行8折优惠.(1)若购买课桌的同时买x 把椅子,到A 公司和B 公司购买分别需要付款多少元?(2)如果购买课桌的同时买150把椅子,并且可以到A 、B 两公司分别购买,请你设计一种购买方案,使所付金额最少.28.如图是一组有规律的图案,它们是由边长相等的等边三角形组合而成,第1个图案有4个三角形,第2个图案有7个三角形,第3个图案有10个三角形,……照此规律摆下去.(1)第5个图案有 个三角形;(2)第n 个图案有 个三角形;(用含n 的式子表示) (3)第2022个图案有几个三角形?29.利用图形来表示数量或数量关系,也可以利用数量或数量关系来描述图形特征或图形之间的关系,这种思想方法称为数形结合.请你尝试利用数形结合的思想方法解决下列问题(1)如图①,一个边长为1的正方形,依次取正方形面积的12,14,18⋯12n ,根据图示我们可以知道:12+14+18+116+⋯+12n = .(用含有n 的式子表示)(2)如图②,一个边长为1的正方形,第一次取正方形面积的23,然后依次取剩余部分的23,根据图示:计算:23+29+227+⋯+23n = .(用含有n 的式子表示)(3)如图③是一个边长为1的正方形,根据图示:计算:13+29+427+881+⋯+2n−13n= .(用含有n 的式子表示)30.为了提高居民的宜居环境,某小区规划修建一个广场(平面图如图中阴影部分所示).(1)用含m ,n 的式子表示广场(阴影部分)的周长C 和面积S ;(2)若m =30米,n =20米,修建每平方米需费用200元,求修建广场的总费用W 的值.31.某商场销售一种西装和领带,西装每套定价1000元,领带每条定价200元.“国庆节”期间商场决定开展促销活动,活动期间向客户提供两种优惠方案(客户只能选择其中一种): 方案一:买一套西装送一条领带;方案二:西装和领带都按定价的90%付款.现某客户要到该商场购买西装20套,领带x 条(x>20)(1)若该客户按方案一购买,需付款 元;若该客户按方案二购买,需付款 元,(用含 x 的代数式表示)(2)若x=30,通过计算说明此时按哪种方案购买较为合算.32.问题提出:某校要举办足球赛,若有5支球队进行单循环比赛(即全部比赛过程中任何一队都要分别与其他各队比赛一场且只比赛一场),则该校一共要安排多少场比赛? 构建模型:生活中的许多实际问题,往往需要构建相应的数学模型,利用模型的思想来解决问题.为解决上述问题,我们构建如下数学模型:(1)如图①,我们可以在平面内画出5个点(任意3个点都不在同一条直线上),其中每个点各代表一支足球队,两支球队之间比赛一场就用一条线段把它们连接起来.由于每支球队都要与其他各队比赛一场,即每个点与另外4个点都可连成一条线段,这样一共连成5×4条线段,而每两个点之间的线段都重复计算了一次,实际只有=10条线段,所以该校一共要安排10场比赛.(2)若学校有6支足球队进行单循环比赛,借助图②,我们可知该校一共要安排场比赛;(3)根据以上规律,若学校有n支足球队进行单循环比赛,则该校一共要安排场比赛.(4)实际应用:9月1日开学时,老师为了让全班新同学互相认识,请班上42位新同学每两个人都相互握一次手,全班同学总共握手次.(5)拓展提高:往返于青岛和济南的同一辆高速列车,中途经青岛北站、潍坊、青州、淄博4个车站(每种车票票面都印有上车站名称与下车站名称),那么在这段线路上往返行车,要准备车票的种数为种33.观察归纳和应用(1)(x−1)(x+1)=(2)(x−1)(x2+x+1)=(3)(x−1)(x3+x2+x+1)=(4)(x−1)(x99+x98+⋯⋯+x+1)=(5)计算299+298+297+⋯⋯+2+1(要求有过程)答案解析部分1.【答案】D2.【答案】C3.【答案】B4.【答案】A5.【答案】A6.【答案】B7.【答案】C8.【答案】A9.【答案】D10.【答案】B11.【答案】B12.【答案】A13.【答案】B14.【答案】A15.【答案】−216.【答案】-117.【答案】1418.【答案】2a-2c19.【答案】125或0.0420.【答案】3b21.【答案】1022.【答案】(1)解:原式=(5−3)x+(−4+1)y=2x−3y;(2)解:原式=2a−4a−5b+6a−8b=(2−4+6)a+(−5−8)b =4a−13b.23.【答案】(1)解:m−n+5m−4n=6m−5n(2)解:3(x2−2y)−12(6x2−14y)+10=3x2−6y−3x2+7y+10=y+10.(3)解:原式=2x2+4y2+2y2−3x2−2y2+4x2 =3x2+4y2;当x=−1,y=1 2时原式=3×(−1)2+4×(12)2=3+1=4.24.【答案】解:原式=2a2−3a+1+3a−6a2−1=−4a2当a=−1时原式=−4×1=−4.25.【答案】解:原式=15a2b−5ab2+4ab2−12a2b=3a2b−ab2当a=−2,b=1时,原式=3×(−2)2×1−(−2)×12=12+2=14.26.【答案】解:2x2−ax+3y−b+bx2+2x−6y+5=(2+b)x2+(2−a)x+(3−6)y+5−b∵多项式的值与字母x无关∴2+b=0,2﹣a=0解得:b=﹣2,a=23(a2−2ab−b2)−2(2a2−3ab−b2)=3a2−6ab−3b2−4a2+6ab+2b2=−a2−b2.当b=﹣2,a=2时原式=−22−(−2)2=−8.27.【答案】(1)解:A公司付款:300×100+100×(x−100)=100x+20000;B公司付款:(300×100+100x)×0.8=80x+24000;答:购买课桌的同时买x把椅子,到A公司和B公司购买分别需要付款(100x+20000)元,(80x+ 24000)元;(2)解:当x=150时A公司付款为100×150+20000=35000(元)B 公司付款为:80×150+24000=36000(元)到A ,B 公司分别购买,到A 公司买100张课桌,用300×100=30000(元),赠100把椅子,再到B 公司买50把椅子,100×50×0.8=4000(元)一共用30000+4000=34000(元),此方案所付金额最少.28.【答案】(1)16(2)(3n +1)(3)解:当n =2022时a 2022=3×2022+1=6067 ∴摆成第2022个图案需要6067个三角形.29.【答案】(1)1−12n(2)1−13n(3)1−2n3n30.【答案】(1)解:根据题意有解:广场的周长:C =2×4m +2×2n +2×n =8m +6n广场的面积:S =4m ×2n −n ×(4m −m −2m)=8mn −mn =7mn ; ∴C =8m +6n ,S =7mn ; (2)解:当m =30米,n =20米时 S =7mn =7×30×20=4200(平方米) W =200×4200=840000(元) ∴修建广场的总费用W 的值为840000元.31.【答案】(1)(200x+16000);(180x+18000);(2)解:方案一合算.理由: 当x =30时该客户按方案一购买,需付款:16000+200×30=22000(元) 该客户按方案二购买,需付款:18000+180×30=23400(元). ∵22000<23400 ∴方案一合算.32.【答案】(1)解:由图①可知,图中共有10条线段,所以该校一共要安排10场比赛.(2)15 (3)n(n−1)2(4)861(5)解:因为行车往返存在方向性,所以不需要除去每两个点之间的线段都重复计算了一次的情况将n=6代入n(n−1)中解得n×(n−1)=6×(6−1)=30∴要准备车票的种数为30种.33.【答案】(1)x2−1(2)x3−1(3)x4−1(4)x100−1(5)解:299+298+297+⋯⋯+2+1=(2−1)(299+298+297+⋯⋯+2+1)=2100−1。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

北师大版七年级数学上册 第三章达标检测题(考试时间:120分钟 满分:120分)第Ⅰ卷(选择题 共18分)一、选择题(本大题共6小题,每小题3分,共18分)1.下列各式:①2x -2020;②0;③S =πR 2;④x<y ;⑤st ;⑥x 2.其中代数式有( )A .3个B .4个C .5个D .6个2.下列说法中,正确的是( ) A.m 2n 4不是整式B .-3abc 2的系数是-3,次数是3C .3是单项式D .多项式2x 2y -xy 是五次二项式 3.下列计算正确的是( ) A .3a -2a =1 B .x 2y -2xy 2=-xy 2 C .3a 2+5a 2=8a 4 D .3ax -2xa =ax 4.下列叙述中,错误的是( )A .代数式x 2+y 2的意义是x ,y 的平方和B .代数式5(a +b)的意义是5与(a +b)的积C .x 的5倍与y 的和的一半,用代数式表示是5x +y2D .x 的12与y 的13的差,用代数式表示是12x -13y5.如图①,把一个长为m ,宽为n 的长方形(m>n)沿虚线剪开,拼成图②,成为在一角去掉一个小正方形后的一个大正方形,则去掉的小正方形的边长为( )A.m -n 2B .m -nC.m 2D.n 26.填在下面各正方形中的四个数之间都有相同的规律,根据这种规律,m 的值应是( )A .110B .158C .168D .178第Ⅱ卷(非选择题 共102分)二、填空题(本大题共6小题,每小题3分,共18分)7.多项式 与m 2+m -2的和为m 2-2m. 8.某仓库有存粮85吨,第一天运走a 吨,第二天又运来3车,每车b 吨,此时仓库有存粮 吨. 9.化简:m -[n -2m -(m -n)]的结果为 . 10.若4x m y n 与-3x 6y 2的和是单项式,则mn = .11.若a -b =1,则(a -b)2-2a +2b 的值是 .12.如图是一组有规律的图案:第1个图案由四个▲组成,第2个图案由7个▲组成,第3个图案由10个▲组成,第4个图案由13个▲组成,…,则第n(n 为正整数)个图案由 个▲组成.三、(本大题共5小题,每小题6分,共30分)13.计算:(1)3x 2+4x -2x 2-x +x 2-3x -1;(2)2x 2-(-4x +5)+[4x 2-(3x 2-2x)-6x -5].14.先化简,再求值:-(9x 3-4x 2+5)-(-3-8x 3+3x 2),其中x =-3.15.按照下图所示的程序计算当x 分别为-3,0时的输出值.16.求12m 2n +2mn -3nm 2-3nm +4m 2n 的值,其中m 是最小的正整数,n 是绝对值等于1的数.17.已知:a3b n+2+ab3+6是一个六次多项式,单项式x3n y7-m的次数与该多项式相同,求m,n的值.四、(本大题共3小题,每小题8分,共24分)18.已知代数式x4+ax3+3x2+5x3-7x2-bx2+6x-2合并同类项后不含x3,x2项,求2a+3b的值.19.一个花坛的形状如图所示,它的两端是半径相等的半圆.(1)求花坛的周长l;(2)求花坛的面积S;(3)若a=8 m,r=5 m,求此时花坛的周长及面积(π取3.14).20.已知A=5a+3b,B=3a2-2a2b,C=a2+7a2b-2,当a=1,b=2时,求A-2B+3C的值.五、(本大题共2小题,每小题9分,共18分)21.某公司的某种产品由一家商店代销,双方协议不论这种产品销售情况如何,该公司每月给商店a 元代销费,同时商店每销售一件产品有b 元提成,该商店一月份销售了m 件,二月份销售了n 件. (1)用式子表示这两个月该公司应付给商店的钱数;(2)假设代销费为每月200元,每件产品的提成为2元,该商店一月份销售了200件,二月份销售了250件,求该商店这两个月销售此种产品的收益.22.如果在关于x ,y 的多项式(ax 2-3x +by -1)-2⎝⎛⎭⎫3-y -32x +x 2中,无论x ,y 取何有理数,多项式的值都不变,求4(a 2-ab +b 2)-3(2a 2+b 2+5)的值.六、(本题共12分)23.观察下面数表:12 3 43 4 5 6 74 5 6 7 8 9 10 ……(1)依此规律:第六行最后一个数字是________,第n 行最后一个数字是________.(2)其中某一行最后一个数字可能是2 020吗?若不可能,请说明理由;若可能,请求出是第几行?参考答案第Ⅰ卷(选择题 共18分)二、选择题(本大题共6小题,每小题3分,共18分)1.下列各式:①2x -2020;②0;③S =πR 2;④x<y ;⑤st ;⑥x 2.其中代数式有( B )A .3个B .4个C .5个D .6个2.下列说法中,正确的是( C ) A.m 2n 4不是整式B .-3abc 2的系数是-3,次数是3C .3是单项式D .多项式2x 2y -xy 是五次二项式 3.下列计算正确的是( D ) A .3a -2a =1 B .x 2y -2xy 2=-xy 2 C .3a 2+5a 2=8a 4 D .3ax -2xa =ax 4.下列叙述中,错误的是( C )A .代数式x 2+y 2的意义是x ,y 的平方和B .代数式5(a +b)的意义是5与(a +b)的积C .x 的5倍与y 的和的一半,用代数式表示是5x +y2D .x 的12与y 的13的差,用代数式表示是12x -13y5.如图①,把一个长为m ,宽为n 的长方形(m>n)沿虚线剪开,拼成图②,成为在一角去掉一个小正方形后的一个大正方形,则去掉的小正方形的边长为( A )A.m -n 2B .m -nC.m 2D.n 26.填在下面各正方形中的四个数之间都有相同的规律,根据这种规律,m 的值应是( B )A .110B .158C .168D .178第Ⅱ卷(非选择题 共102分)二、填空题(本大题共6小题,每小题3分,共18分)7.多项式 -3m +2 与m 2+m -2的和为m 2-2m.8.某仓库有存粮85吨,第一天运走a 吨,第二天又运来3车,每车b 吨,此时仓库有存粮 (85-a +3b) 吨.9.化简:m -[n -2m -(m -n)]的结果为 4m -2n . 10.若4x m y n 与-3x 6y 2的和是单项式,则mn = 12 . 11.若a -b =1,则(a -b)2-2a +2b 的值是 -1 .12.如图是一组有规律的图案:第1个图案由四个▲组成,第2个图案由7个▲组成,第3个图案由10个▲组成,第4个图案由13个▲组成,…,则第n(n 为正整数)个图案由 (3n +1) 个▲组成.三、(本大题共5小题,每小题6分,共30分)13.计算:(1)3x 2+4x -2x 2-x +x 2-3x -1; 解:原式=2x 2-1.(2)2x 2-(-4x +5)+[4x 2-(3x 2-2x)-6x -5]. 解:原式=2x 2+4x -5+(4x 2-3x 2+2x -6x -5) =3x 2-10.14.先化简,再求值:-(9x 3-4x 2+5)-(-3-8x 3+3x 2),其中x =-3. 解:原式=-9x 3+4x 2-5+3+8x 3-3x 2 =-x 3+x 2-2.当x =-3时,原式=-(-3)3+(-3)2-2=27+9-2 =34.15.按照下图所示的程序计算当x 分别为-3,0时的输出值.解:程序对应的代数式为2(5x -2).当x =-3时,2(5x -2)=2×[5×(-3)-2] =2×(-17)=-34;当x =0时,2(5x -2)=2×(5×0-2)=-4.16.求12m 2n +2mn -3nm 2-3nm +4m 2n 的值,其中m 是最小的正整数,n 是绝对值等于1的数.解:12m 2n +2mn -3nm 2-3nm +4m 2n=32m 2n -mn. 由题意知:m =1,n =±1, 当m =1,n =1时,原式=12;当m =1,n =-1时,原式=-12.综上,该代数式的值为12或-12.17.已知:a3b n+2+ab3+6是一个六次多项式,单项式x3n y7-m的次数与该多项式相同,求m,n的值.解:因为a3b n+2+ab3+6是一个六次多项式,所以3+n+2=6,解得n=1,所以3n+7-m=6,即3+7-m=6,所以m=4,即m,n的值分别为4,1.四、(本大题共3小题,每小题8分,共24分)18.已知代数式x4+ax3+3x2+5x3-7x2-bx2+6x-2合并同类项后不含x3,x2项,求2a+3b的值.解:原式=x4+(ax3+5x3)+(3x2-7x2-bx2)+6x-2=x4+(a+5)x3+(-4-b)x2+6x-2.由题意,得a+5=0,-4-b=0,解得a=-5,b=-4,所以2a+3b=2×(-5)+3×(-4)=-22.19.一个花坛的形状如图所示,它的两端是半径相等的半圆.(1)求花坛的周长l;(2)求花坛的面积S;(3)若a=8 m,r=5 m,求此时花坛的周长及面积(π取3.14).解:(1)l=2πr+2a.(2)S=πr2+2ar.(3)当a=8 m,r=5 m时,l=2π×5+2×8=10π+16≈47.4 m,S=π×52+2×8×5=25π+80≈158.5 m2.20.已知A=5a+3b,B=3a2-2a2b,C=a2+7a2b-2,当a=1,b=2时,求A-2B+3C的值.解:∵A=5a+3b,B=3a2-2a2b,C=a2+7a2b-2,∴A-2B+3C=(5a+3b)-2(3a2-2a2b)+3(a2+7a2b-2)=5a+3b-6a2+4a2b+3a2+21a2b-6=-3a2+25a2b+5a+3b-6.当a=1,b=2时,原式=-3×12+25×12×2+5×1+3×2-6=52.五、(本大题共2小题,每小题9分,共18分)21.某公司的某种产品由一家商店代销,双方协议不论这种产品销售情况如何,该公司每月给商店a 元代销费,同时商店每销售一件产品有b 元提成,该商店一月份销售了m 件,二月份销售了n 件. (1)用式子表示这两个月该公司应付给商店的钱数;(2)假设代销费为每月200元,每件产品的提成为2元,该商店一月份销售了200件,二月份销售了250件,求该商店这两个月销售此种产品的收益.解:(1)这两个月该公司应付给商店的钱数为[2a +(m +n)b]元. (2)当a =200,b =2,m =200,n =250时,2a +(m +n)b =1 300元.答:该商店这两个月销售此种产品的收益为1 300元.22.如果在关于x ,y 的多项式(ax 2-3x +by -1)-2⎝⎛⎭⎫3-y -32x +x 2中,无论x ,y 取何有理数,多项式的值都不变,求4(a 2-ab +b 2)-3(2a 2+b 2+5)的值.解:(ax 2-3x +by -1)-2⎝⎛⎭⎫3-y -32x +x 2 =ax 2-3x +by -1-6+2y +3x -2x 2=(a -2)x 2+(b +2)y -7. 根据题意得a =2,b =-2, 原式=4a 2-4ab +4b 2-6a 2-3b 2-15 =-2a 2-4ab +b 2-15. 当a =2,b =-2时,-2a 2-4ab +b 2-15=-2×22-4×2×(-2)+(-2)2-15 =-8+16+4-15 =-3.六、(本题共12分)23.观察下面数表:12 3 43 4 5 6 74 5 6 7 8 9 10 ……(1)依此规律:第六行最后一个数字是________,第n 行最后一个数字是________.(2)其中某一行最后一个数字可能是2 020吗?若不可能,请说明理由;若可能,请求出是第几行? 解:(1)因为第一行最后的数字为1, 第二行最后的数字为4, 第三行最后的数字为7, 第四行最后的数字为10,所以根据数据排列的规律,可得到每一行的最后一个数字与它前一行最后一个数字的差为3. 所以按照这个规律可得到第n 行的最后的数字为1+3(n -1)=3n -2. 所以第六行最后一个数字是3×6-2=16. (2)可能是2 020,因为由3n -2=2 020, 解得n =32022=674, ∴最后一个数字可能是2 020,是第674行.。

相关文档
最新文档