整式的加减单元测试卷1

合集下载

人教版七年级数学上册第二章整式的加减单元测试试题一

人教版七年级数学上册第二章整式的加减单元测试试题一

人教版七年级数学上册第二章整式的加减单元测试试题一.选择题1.在下列各式中,不是代数式的是()A.5x﹣y B.C.x=1D.12.已知2x n+1y3与x4y3是同类项,则n的值是()A.2B.3C.4D.53.一批电脑进价为a元,提价20%后出售,则售价为()A.a•(1+20%)B.a•(1﹣20%)C.a•20%D.a÷20%4.若整式2x2﹣3x的值为5,则整式﹣4x2+6x+9的值是()A.﹣1B.14C.5D.45.下列各式:①x•2;②30%a;③m﹣2℃;④;⑤a﹣b÷c.其中,不符合代数式书写要求的有()A.5个B.4个C.3个D.2个6.若﹣3a2b x与﹣3a y b是同类项,则y x的值是()A.1B.2C.3D.47.若与的和是单项式,则a+b=()A.﹣3B.0C.3D.68.若单项式2a m+6b2n+1与a5b7的和仍是单项式,则3mn+1的值为()A.﹣8B.﹣9C.﹣2D.109.如图,两个大小正方形的边长分别是4cm和xcm(0<x<4).用含x的式子表示图中阴影部分的面积为()cm2.A.B.C.D.10.按如图所示的运算程序,能使输出结果为25的是()A.x=﹣3,y=﹣4B.x=﹣3,y=2C.x=3,y=2D.x=3,y=﹣4二.填空题11.下列各式:ab•2,m÷2n,xy,1a,其中符合代数式书写规范的有个.12.一根长80cm的弹簧,一端固定.如果另一端挂上物体,那么在正常情况下物体的质量每增加1kg可使弹簧增长2cm,正常情况下,当挂着xkg的物体时,弹簧的长度是cm.(用含x的代数式表示)13.若代数式m﹣1值与﹣2互为相反数,则m的值是.14.若单项式2x m﹣1y2与单项式x2y n+1是同类项,则m+n=.15.若单项式2x2a+b y2与的和是单项式,则a﹣b=.三.解答题16.单项式5a9b x﹣y与﹣3a x+y b3的和仍是单项式,求代数式﹣+的值.17.数学中,运用整体思想方法在求代数式的值中非常重要.例如:已知:a2+2a=1,则代数式2a2+4a+4=2(a2+2a)+4=2×1+4=6.请你根据以上材料解答以下问题:(1)若x2﹣3x=2,求1+3x﹣x2的值;(2)当x=1时,代数式px3+qx+1的值是5,求当x=﹣1时,代数式px3+qx+1的值;(3)当x=2019时,代数式ax5+bx3+cx﹣5的值为m,求当x=﹣2019时,求代数式ax5+bx3+cx﹣5的值是多少?18.已知单项式x3y a与单项式﹣5x b y是同类项,c是多项式2mn﹣5m﹣n﹣3的次数.(1)写出a,b,c的值;(2)若关于x的二次三项式ax2+bx+c的值是3,求代数式2019﹣2x2﹣6x的值.19.某移动通讯公司开设了两种通讯业务:1.全球通:用户先交50元月租费,然后每通话1分钟付费0.4元(市内通话);2.快捷通:用户不交月租费,每通话1分钟,付话费0.6元(市内通话).按一个月通话x分钟计算,两种方式的话费分别为P,Q元.(1)请你写出P,Q与x之间的关系;(2)某用户一个月内通话时间为120分钟,你认为选择何种移动通讯较合适?20.如图,在数轴上A点表示数a,B点表示数b,C点表示数c.且a,b,c满足(c﹣7)2+|a+10|+|b﹣1|=0.(1)a=,b=,c=;(2)若将数轴折叠,使得A点与C点重合,则点B与表示的数的点重合;(3)点M以每秒3个单位长度的速度从点A向右运动,点N以每秒2个单位长度的速度从点B向右运动(点M、点N同时出发),经过几秒,点M、点N分别到点B的距离相等?。

人教版七年级上册第2章《整式的加减》单元测试卷(含答案)

人教版七年级上册第2章《整式的加减》单元测试卷(含答案)

人教版七年级上册第2章《整式的加减》单元测试卷满分100分姓名:___________班级:___________学号:___________成绩:___________一.选择题(共10小题,满分30分,每小题3分)1.下列整式中,单项式是()A.3a+1B.C.3a D.x=12.代数式1﹣的意义是()A.1与x的差的倒数B.1与x的倒数的差C.x的倒数与1的差D.1与1除以x的商3.下列说法正确的是()A.整式就是多项式B.π是单项式C.x4+2x3是七次二项次D.是单项式4.下列各式中,与x2y3能合并的单项式是()A.x3y2B.﹣x2y3C.3x3D.x2y25.下列运算正确的是()A.4m﹣m=3B.a3﹣a2=a C.2xy﹣yx=xy D.a2b﹣ab2=06.去括号1﹣(a﹣b)=()A.1﹣a+b B.1+a﹣b C.1﹣a﹣b D.1+a+b7.以下各组多项式按字母a降幂排列的是()A.3a﹣7a2+2﹣a3B.﹣7a2+3a+2﹣a3C.﹣a3+3a+2﹣7a2D.﹣a3﹣7a2+3a+28.李老师用长为6a的铁丝做了一个长方形教具,其中一边长为b﹣a,则另一边的长为()A.7a﹣b B.2a﹣b C.4a﹣b D.8a﹣2b9.如果M=x2+6x+22,N=﹣x2+6x﹣3,那么M与N的大小关系是()A.M>N B.M<N C.M=N D.无法确定10.已知a﹣b=3,c+d=2,则(a﹣d)﹣2(b﹣c)+(b+3d)的值为()A.7B.5C.1D.﹣5二.填空题(共6小题,满分24分,每小题4分)11.单项式的系数是m,多项式a2b+2ab﹣3的次数是n,则m+n=.12.若3x n y3和﹣x2y m是同类项,则n﹣m=.13.去括号7x3﹣[3x2﹣(x+1)]=.14.“直播带货”是今年的热词.某“爱心助农”直播间推出特产甜瓜,定价8元/千克,并规定直播期间一次下单超过5千克时,可享受九折优惠.李叔叔在直播期间购买此种甜瓜m千克(m>5),则他共需支付元.(用含m的代数式表示)15.若x2+3x=2,则代数式2x2+6x﹣4的值为.16.若多项式3mx2﹣x2+4x﹣2﹣(﹣4x2+4x﹣5)的值与x无关,则m=.三.解答题(共7小题,满分46分)17.(6分)把下列各代数式填在相应的大括号里.(只需填序号)(1)x﹣7,(2),(3)4ab,(4),(5)5﹣,(6)y,(7),(8)x+,(9),(10)x2++1,(11),(12)8a3x,(13)﹣1单项式集合{};多项式集合{};整式集合{}.18.(6分)合并同类项(1)3a+2a﹣7a (2)﹣4x2y+8xy2﹣9x2y﹣21xy2.19.(6分)如果关于x的多项式x4﹣(a﹣1)x3+5x2﹣(b+1)x﹣1不含x3项和x项,求a,b的值.20.(6分)先化简,再求值.4xy﹣[(x2+5xy﹣y2)﹣2(x2+3xy﹣y2)],其中:x=﹣1,y=2.21.(7分)学完了《整式的加减》后,小刚与小强玩起了数字游戏:小刚对小强说:你任意写一个两位数,满足十位数字比个位数字大2;然后交换十位数字与个位数字,得到一个新的两位数;最后用其中较大的两位数减去较小的两位数.我就能知道这个差是多少.你知道这是为什么吗?这个差是多少呢?22.(7分)已知A=a2﹣2b2+2ab﹣3,B=2a2﹣b2﹣ab﹣(1)求2(A+B)﹣3(2A﹣B)的值(结果用化简后的a、b的式子表示);(2)当a=﹣,b=0时,求(1)中式子的值.23.(8分)某国际化学校实行小班制教学,七年级四个班共有学生(6m﹣3n)人,一班有学生m人,二班人数比一班人数的两倍少n人,三班人数比二班人数的一半多12人.(1)求三班的学生人数(用含m,n的式子表示);(2)求四班的学生人数(用含m,n的式子表示);(3)若四个班共有学生120人,求二班比三班多的学生人数?参考答案一.选择题(共10小题,满分30分,每小题3分)1.解:A、3a+1是多项式,故此选项不合题意;B、是分式,故此选项不合题意;C、3a是单项式,符合题意;D、x=1是方程,故此选项不合题意.故选:C.2.解:由代数式的定义得,代数式1﹣表示1与x的倒数的差,故B答案正确.故选:B.3.解:A、根据整式的概念可知,单项式和多项式统称为整式,故A错误;B、π是单项式,故B正确;C、x4+2x3是4次二项式,故C错误;D、是多项式,故D错误.故选:B.4.解:﹣x2y3与x2y3是同类项,是与x2y3能合并的单项式,故选:B.5.解:(A)原式=3m,故A错误;(B)原式=a3﹣a2,故B错误;(D)原式=a2b﹣ab2,故D错误;故选:C.6.解:1﹣(a﹣b)=1﹣a+b,故选:A.7.解:多项式按字母a降幂排列的是﹣a3﹣7a2+3a+2.故选:D.8.解:另一边长=3a﹣(b﹣a)=3a﹣b+a=4a﹣b.故选:C.9.解:∵M=x2+6x+22,N=﹣x2+6x﹣3,∴M﹣N=x2+6x+22﹣(﹣x2+6x﹣3)=x2+6x+22+x2﹣6x+3=2x2+25,∵x2≥0,∴2x2+25>0,∴M>N.故选:A.10.解:原式=a﹣d﹣2b+2c+b+3d=(a﹣b)+2(c+d),当a﹣b=3,c+d=2时,原式=3+4=7,故选:A.二.填空题(共6小题,满分24分,每小题4分)11.解:∵单项式的系数是m,∴m=﹣,∵多项式a2b+2ab﹣3的次数是n,∴n=3,则m+n=3﹣=.故答案为:.12.解:根据题意可得:n=2,m=3,∴n﹣m=2﹣3=﹣1.故答案为:﹣1.13.解:7x3﹣[3x2﹣(x+1)]=7x3﹣(3x2﹣x﹣1)=7x3﹣3x2+x+1.故答案为:7x3﹣3x2+x+1.14.解:由题意得:8×0.9m=7.2m,则他共需支付7.2m元.故答案为:7.2m.15.解:2x2+6x﹣4=2(x2+3x)﹣4把x2+3x=2代入上式,得原式=2×2﹣4=0故答案为016.解:3mx2﹣x2+4x﹣2﹣(﹣4x2+4x﹣5)的值=3mx2﹣x2+4x﹣2+4x2﹣4x+5=(3m+3)x2+3,∵多项式3mx2﹣x2+4x﹣2﹣(﹣4x2+4x﹣5)的值与x无关,∴3m+3=0,∴m=﹣1,故答案为:﹣1.三.解答题(共7小题,满分46分)17.解:单项式有:,4ab,y,8a3x,﹣1;多项式有:x﹣7,x+,,x2++1;整式有:x﹣7,,4ab,y,x+,,x2++1,8a3x,﹣1.故答案为:(2)(3)(6)(12)(13);(1)(8)(9)(10);(1)(2)(3)(6)(8)(9)(10)(12)(13).18.解:(1)原式=(3+2﹣7)a=﹣2a;(2)原式=(﹣4﹣9)x2y+(8﹣21)xy2=﹣13x2y﹣13xy2.19.解:根据题意得﹣(a﹣1)=0,﹣(b+1)=0,解得a=1,b=﹣1.20.解:原式=4xy﹣[x2+5xy﹣y2﹣2x2﹣6xy+y2]=4xy﹣[﹣x2﹣xy]=x2+5xy,当x=﹣1,y=2时,原式=x2+5xy=(﹣1)2+5×(﹣1)×2=﹣9.21.解:设原来的十位数,十位数字为x,则个位数字为:(x﹣2),故两位数是:10x+x﹣2=11x﹣2,交换十位数字与个位数字,得到的十位数是:10(x﹣2)+x=11x﹣20,故11x﹣2﹣(11x﹣20)=18,即较大的两位数减去较小的两位数的差为18.22.解:(1)2(A+B)﹣3(2A﹣B)=2A+2B﹣6A+3B=﹣4A+5B=﹣4(a2﹣2b2+2ab﹣3)+5(2a2﹣b2﹣ab﹣)=﹣4a2+8b2﹣8ab+12+10a2﹣5b2﹣2ab﹣1=6a2+3b2﹣10ab+11;(2)∵a=﹣,b=0,∴6a2+3b2﹣10ab+11=6×+11=12.23.解:(1)一班人数为:m人.二班人数为:(2m﹣n)人.三班人数为:人;(2)四班人数为:==;(3)由题意可得:6m﹣3n=120,则2m﹣n=40,故二班比三班多的学生数为:===20﹣12=8(人)答:二班比三班多8人.。

整式的加减单元测试卷

整式的加减单元测试卷

整式的加减单元测试卷一、选择题(每题3分,共30分)1. 下列式子中,整式有()个。

x + 1,(1)/(x),π,- 2a,0,x^2-y^2A. 4B. 5C. 6D. 7.2. 单项式-3x^2y的系数和次数分别是()A. -3,2B. -3,3C. 3,3D. 3,2.3. 下列各组单项式中,是同类项的是()A. 2a^2b与2ab^2B. 3x与3x^2C. - 5xy^2与5y^2xD. -a与- 24. 化简3x - 2(x - y)的结果是()A. x - 2yB. x + 2yC. 5x - 2yD. x - y5. 一个多项式与x^2-2x + 1的和是3x - 2,则这个多项式为()A. -x^2+5x - 3B. -x^2+x - 1C. x^2-5x + 3D. x^2-x + 16. 若A = 3x^2-2x + 1,B = 5x^2-3x + 2,则A - B等于()A. -2x^2+x - 1B. -2x^2-x + 1C. 2x^2-x - 1D. 2x^2+x + 17. 当a = - 1,b = 2时,(a + b)(a - b)+b^2的值为()A. -1B. 1C. 3D. -3.8. 已知m - n = 100,x + y=-1,则代数式(n + x)-(m - y)的值是()A. -99B. -101C. 99D. 101.9. 若2x^m + 1y^2与-3x^3y^n - 1是同类项,则m + n的值是()A. 3B. 4C. 5D. 6.10. 若多项式2x^3-8x^2+x - 1与多项式3x^3+2mx^2-5x + 3相加后不含二次项,则m的值为()A. 2B. -2C. 4D. -4.二、填空题(每题3分,共18分)1. 单项式(2)/(3)π r^2的次数是_____。

2. 多项式3x^2y - 4xy^2+x^3-5y^3按y的降幂排列为_____。

新北师大版《整式的加减》单元测试卷及答案

新北师大版《整式的加减》单元测试卷及答案

《整式的加减》单元测试卷班级 姓名 座号一.1.在代数式222515,1,32,,,1x x x x x x π+--+++中,整式有( )A.3个B.4个C.5个D.6个 2.单项式233xy z π-的系数和次数分别是( )A.-3,5B.-1,6C.-3π,6D.-3,7 3.下面计算正确的是( )A .2233x x -= B.235325a a a += C.33x x += D.10.2504ab ab -+= 4.多项式2112x x ---的各项分别是( ) A.21,,12x x - B.21,,12x x --- C.21,,12x x D.21,,12x x --5.下列去括号正确的是( )A.()5252+-=--x xB.()222421+-=+-x x C.()n m n m +=-323231D. x m x m 232232--=⎪⎭⎫ ⎝⎛--6.下列各组中的两个单项式能合并的是( ) A .4和4x B .32323x y y x -和C .c ab ab 221002和D .m 和2m7.如果51=-n m ,则-3()m n -的值是 ( )A .-53 B.35 C.53 D.1518.已知-51x 3y 2n 与2x 3m y 2是同类项,则mn 的值是( )A .1B .3C .6D .9二.填空题(每小题3分,共18分)9.任写两个与b a 221-是同类项的单项式: ; .10.多项式5253323+-+-y x y x xy 的次数是 ,最高次项系数是 _.11.多项式y x 23-与多项式y x 24-的差是 .12.张强同学到文具商店为学校美术组的10名同学购买铅笔和橡皮,已知铅笔每支m 元,橡皮每块n 元,若给每名同学买3支铅笔和4块橡皮,则一共需付款 元.13.已知单项式32b a m 与-3214-n b a 的和是单项式,则m = ,n = . 14.观察下列算式:;1010122=+=- 3121222=+=-; 5232322=+=-;7343422=+=-; 9454522=+=-; ……若字母n 表示自然数,请把你观察到的规律用含n 的式子表示出来: . 三.解答题(共58分) 15.计算(每题4分共16分) (1)b a b a b a 2222134+-(2) (x -3y )-(y -2x )(3)()()222243258ab b a ab b a --- (4)ab ab a ab a 21]421[2122-)-(-+16.先化简,后求值(每题6分共12分) (1)()()ab b a b a 245352323+++-,其中21,1=-=b a(2)1]242[6422+y x xy xy y x )--(--,其中1,21==y x -.17.(7分)已知某船顺水航行2小时,逆水航行3小时,(1)已知轮船在静水中前进的速度是x 千米/时,水流的速度是y 千米/时,则轮船共航行多少千米?(2)轮船在静水中前进的速度是60千米/时,水流的速度是5千米/时,则轮船共航行多少千米?18.(7分)有这样一道题:“当a =2010,b =-2011时,求多项式 201292842853233233++++a b a b a a b a b a a ---的值.”小颖说:本题中a =2009,b =—2010是多余的条件;小彤马上反对说:这不可能,多项式中含有a 和b ,不给出b a ,的值怎么能求出多项式的值呢? 你同意哪名同学的观点?请说明理由.参考答案第二章《整式的加减》单元测试卷一、选择题1.B2.C3.D4.B5.A6.D7.C8.A 二.填空题9.b a 2,b a 22 (答案不唯一) 10.5,-2 11.x -12.n m 4030+ 13.4, 3 14.12122+=+n n n -)( 三.解答题15.(1)b a 223(2)y x 43- (3)2232ab b a + (4)ab a 52-16.(1)化简得ab b 22+,值=43- (2)化简得3252-xy y x +,值=47-17.(1)y x -5 (2)295千米 18.同意小颖的观点,因为该式化简得2012,所以值与b a ,无关.。

整式的加减单元测试卷

整式的加减单元测试卷

整式的加减单元测试卷第一部分:选择题1. 根据题意,将下列有理数等式化简,得到的结果是()A. -9x^2 - 5x - 2B. -9x^2 + 5x + 2C. 9x^2 + 5x - 2D. 9x^2 - 5x + 22. 化简表达式:(3a^2 - 2a + 5) + (5a^2 + 3a - 1)。

A. 8a^2 + a + 4B. 8a^2 - 5a + 4C. 8a^2 + a - 4D. 8a^2 - 5a - 43. 下列哪个式子等于 (5x^2 + 3x - 2) - (2x^2 - 4x + 1)?A. 3x^2 + 7x - 3B. 3x^2 - 7x + 1C. 3x^2 + 7x - 1D. 3x^2 - 7x - 34. 缩写:(4x^2 - 5x + 2) + (-2x^2 + 4x - 1) 等于()。

A. 2x^2 - x + 3B. 2x^2 - x + 1C. 2x^2 - 9x + 3D. 2x^2 - 9x + 1第二部分:填空题1. 化简表达式:(7x^2 - 3x + 4) + (4x - 2x^2 + 5) = ______________。

2. 缩写:(6x^3 - 2x^2 + 3x) + (-4x^3 + 5x^2 - 2x) = ______________。

3. 下列哪个式子等于 (-7x^2 + 3x - 2) - (-2x^2 + 3x - 5)?4. 根据题意,将下列有理数等式化简,得到的结果是:(2x^2 + 3x -5) - (-3x^2 + 2x - 1) = ______________。

第三部分:解答题1. 将多项式 (3x^2 + 2x - 1) 和 (2x^2 - x + 3) 相加,并化简结果。

2. 求解:(4x^3 - 3x^2 + 2x - 1) - (-2x^3 - x^2 - 3x + 1)。

3. 将表达式 (5x^2 - 3x + 2) 和 (4x^2 - x + 1) 相减,并化简结果。

整式的加减单元测试卷1

整式的加减单元测试卷1

整式的加减全章姓名 学号 班别 评价一、选择题(各5分,共30分)1.下列式子中,是单项式的为( )(A)x +3 (B )3m (C )a 2 -3 (D )3y2.正方形的边长为x ,则它的周长与面积分别为( )(A)4x 与2x (B )4x 与2x (C )4+x 与2x (D )4+x 与2x 3.单项式-102xy 2的系数和次数分别为( )(A)-10,3 (B)-1,2 (C)-1,3 (D)-210,34.下列去括号正确的是( )(A)z y x z y x -+=---)( (B)z y x z y x +-=+-)( (C)z y x z y x -+=-+)( (D)z y x z y x --=+--)( 5.下列每两项中为同类项的是( )(A)42m 与42n (B)212a b 与212ab (C)33ax 与-33x (D)33ax 与-317x a 中 6.若x 、y 互为相反数,则2x -3y -(3x -2y )的值为( )(A)0 (B)1 (C)-1 (D)随x 、y 的不同而不同二、填空题(各5分,共30分) 7.单项式3xyπ-的系数是 ,次数为 . 8.在多项式22221325324x xy x y x y x --+-中,与-32x y 是同类项的项是 ,没有同类项的项是 . 9.多项式25212x y xy x -++-是 次 项式,最高次项是 ,常数项为 .10.一个两位数,它的十位数字为a ,个位数字为b ,则这个两位数为 ,若把它的十位数字和个位数字对调,则新的两位数为 .11.在一次植树劳动中,已知甲组植了总共x 棵,乙组植树的数目是甲的2倍少5棵,则乙组植了 棵,两组合计共植树为 棵.12.若一个多项式加上22x x -+-得21x -,则这个多项式应为 .三、解答题(满分40分)13.(满分6分)当x =132,y =-1时,求单项式2149x y 的值.14.(每小题5分,共15分)请列式表示下列关系: (1)m的23与n的积; (2)比x的倒数大1的数; (3)甲数为x ,乙数为y .甲、乙两数平方的和除以甲、乙两数和的平方的商.15.(每小题6分,共12分)化简:(1)(3a-b)+(-3a+3b) (2)522224(1)9()3m m m +--+16.(满分7分)先化简,再求值: )21x 2x 23(2)4x x 2(22-+---+-,其中2-=x ;附加题(各10分,共20分)1.已知2a ab +=-3,2ab b +=7,试求222a ab b ++与22a b -的值;2.“三个连续整数的和可以被3整除”,这个结论对吗?若结论正确,请你用本章所学的知识,说明这个结论的正确性;若不正确,请举出反例说明.。

人教版七年级上册数学第2章《整式的加减》单元测试卷(Word版,含答案)

人教版七年级上册数学第2章《整式的加减》单元测试卷(Word版,含答案)

人教版七年级上册数学第2章《整式的加减》单元测试卷题号一二三 总分 19 2021 22 23 24分数一.选择题(每题3分,共30分) 1.下列关于多项式﹣3a 2b +ab ﹣2的说法中,正确的是( ) A .最高次数是5 B .最高次项是﹣3a 2b C .是二次三项式D .二次项系数是02.下列说法中,不正确的是( ) A .﹣ab 2c 的系数是﹣1,次数是4 B .﹣1是整式C .6x 2﹣3x +1的项是6x 2、﹣3x ,1D .2πR +πR 2是三次二项式3.如果单项式3a m b 2c 是6次单项式,那么m 的值是( ) A .2B .3C .4D .54.若代数式2x |m |﹣(m +3)x +7是关于x 的三次二项式,那么m 的值为( ) A .﹣3B .3C .±3D .05、已知a ﹣b=3,c+d=2,则(b+c )﹣(a ﹣d )的值为( ) A 、1 B 、-1 C 、-5 D 、56、多项式1+2xy ﹣3xy 2的次数及最高次项的系数分别是( ) A 、3,﹣3 B 、2,﹣3 C 、5,﹣3 D 、2,37.当2x =时,多项式35ax bx -+的值是4,求当2x =-时,多项式35ax bx -+的是为( ) A .4-B .6C .5D .98.已知:||3a =,||4b =,则a b -的值是( ) A .1-B .1-或7-C .1±或7±D .1或79.设237M x x =++,234N x x =-+-,那么M 与N 的大小关系是( ) A .M N <B .M N =C .M N >D .无法确定10.下面是小芳做的一道多项式的加减运算题,但她不小心把一滴墨水滴在了上面.222221131(3)(4)2222x xy y x xy y x -+---+-=-2y +,阴影部分即为被墨迹弄污的部分.那么被墨汁遮住的一项应是( ) A .7xy -B .7xy +C .xy -D .xy +二、 填空题(每题3分,共24分) 11.若与是同类项,则a 的值是______.12.若多项式是关于x ,y 的三次多项式,则______.13.已知﹣5x 3y |a |﹣(a ﹣5)x ﹣6是关于x 、y 的八次三项式,则a 的值为 . 14.多项式3﹣2xy 2+4x 2yz 的次数是 .15.如果单项式2x m ﹣1y 2与﹣3x 2y n +1是同类项,那么m +n = . 16.计算:2a 2﹣(a 2+2)= . 17.多项式中不含xy 项,则常数k 的值是 .18.如图所示的运算程序中,如果开始输入的x 值为,我们发现第1次输出的结果为,第2次输出的结果为,,第2021次输出的结果为 .三.解答题(共46分,19题6分,20 ---24题8分) 19.化简:(1)(5a 2+2a ﹣1)﹣4[3﹣2(4a +a 2)]. (2)3x 2﹣[7x ﹣(4x ﹣3)﹣2x 2].20.先化简,再求值:2ab +6(a 2b +ab 2)﹣[3a 2b ﹣2(1﹣ab ﹣2ab 2)],其中a 为最大的负整数,b 为最小的正整数.。

七年级初一上册数学人教版单元测试《整式的加减》 练习试题 测试卷(含答案)(1)

七年级初一上册数学人教版单元测试《整式的加减》 练习试题 测试卷(含答案)(1)

第2章《整式的加减》单元训练卷班级姓名一、选择题1.下列各式正确的是()A.5xy2﹣3y2x=2xy2B.4a2b2﹣5ab=﹣aC.7m2n﹣7mn2=0D.2x2+3x4=5x62.长方形的一边为2a﹣3b,另一边比它小a﹣b,则此长方形的另一边为()A.3a﹣4b B.3a﹣2b C.a﹣2b D.a﹣4b3.已知﹣2x m﹣1y3与x n y m+n是同类项,那么(n﹣m)2021的值是()A.1B.﹣1C.22021D.04.下列各题中去括号正确的是()A.1﹣3(x+1)=1﹣3x﹣1B.C.D.5(x﹣2)﹣2(y﹣1)=5x﹣10﹣6y﹣25.已知关于x的多项式mx2﹣mx﹣2与3x2+mx+m的和是单项式,则代数式m2﹣4m+4的值是()A.25B.0C.2或﹣3D.25或06.将两边长分别为a和b(a>b)的正方形纸片按图1、图2两种方式置于长方形ABCD 中,(图1、图2中两张正方形纸片均有部分重叠),长方形中未被这两张正方形纸片覆盖的部分用阴影表示,设图1上中阴影部分的周长为C1,图2中阴部分的周长为C2,则C1﹣C2的值()A.0B.a﹣b C.2a﹣2b D.2b﹣2a二、填空题7.如果2x4n y6与﹣3x m﹣3y6是同类项,那么12n﹣3m+3的值是.8.单项式与﹣2x2y3m﹣n是同类项,则m+n=.9.计算4a+2a﹣a的结果等于.10.计算2a2+3a2﹣a2的结果等于.11.已知3x3m+5n+9与﹣x4m+6n﹣7是同类项,则m+n=.12.化简:2x2+1﹣3x+7﹣2x2+5x=.13.若代数式(2x2+ax﹣y+6)﹣(2bx2﹣3x﹣5y﹣1)的值与字母x的取值无关,则代数式a2b的值为.14.已知A=x2﹣ax﹣1,B=2x2﹣ax﹣1,且多项式A﹣B的值与字母x取值无关,则a 的值为.15.若多项式x2﹣4kxy+5y2﹣xy+9不含有xy项,则k=.16.若多项式x2+2kxy﹣5y2﹣2x﹣6xy+4中不含xy项,则k=.17.若a+b=4,a+c=,则(b﹣c)2﹣2(b﹣c)+=.18.若代数式3b﹣2a的值是5,则代数式2(a﹣b)﹣3(3b﹣2a)﹣b+1的值为.19.若mn=m﹣3,则mn+4m+8﹣5mn=.20.化简﹣3(a﹣2b+1)的结果为.21.﹣[a﹣(b﹣c)]去括号应得.22.=3x2﹣2x+5.三、解答题23.先化简,再求值:﹣(2x﹣3y2)+(2x﹣2y2)﹣x,其中,.24.先化简,再求值:(4a2b﹣3ab2)﹣(﹣a2b+2ab2),其中a=1,b=2.25.先化简,再求值:(1)5(3a2b﹣ab2)﹣4(﹣ab2+3a2b)+ab2,其中a=﹣,b=﹣1.(2)5x2﹣[2xy﹣3(xy+2)+5x2],其中|2x﹣1|+(3y+2)2=0.参考答案1.A 2.C 3.B 4.B 5.D 6.A7.﹣6 8.﹣2 9.5a 10.4a2 11.16 12.2x+8 13.9 14.0 15.16.3 17.6 18.﹣19 19.20 20.﹣3a+6b﹣3 21.﹣a+b﹣c 22.﹣x2+x﹣4.23.解:原式=﹣2x+3y2+2x﹣2y2﹣x=y2﹣x,当x=﹣,y=时,原式=()2﹣(﹣)==.24.解:(4a2b﹣3ab2)﹣(﹣a2b+2ab2)=4a2b﹣3ab2+a2b﹣2ab2=5a2b﹣5ab2,当a=1,b=2时,原式=5×12×2﹣5×1×22=10﹣20=﹣10.25.解:(1)原式=15a2b﹣5ab2+4ab2﹣12a2b+ab2=3a2b,∵,b=﹣1,∴原式==;(2)原式=5x2﹣(2xy﹣xy﹣6+5x2)=5x2﹣xy+6﹣5x2=﹣xy+6,∵|2x﹣1|+(3y+2)2=0,∴2x﹣1=0,3y+2=0,∴,,∴=.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

整式的加减全章
姓名 学号 班别 评价
一、选择题(各5分,共30分)
1.下列式子中,是单项式的为( )
(A)x +3 (B )3m (C )a 2 -3 (D )3y
2.正方形的边长为x ,则它的周长与面积分别为( )
(A)4x 与2x (B )4x 与2x (C )4+x 与2x (D )4+x 与2x 3.单项式-102xy 2的系数和次数分别为( )
(A)-10,3 (B)-1,2 (C)-1,3 (D)-2
10,3
4.下列去括号正确的是( )
(A)z y x z y x -+=---)( (B)z y x z y x +-=+-)( (C)z y x z y x -+=-+)( (D)z y x z y x --=+--)( 5.下列每两项中为同类项的是( )
(A)42m 与42
n (B)212a b 与212
ab (C)33ax 与-33x (D)33ax 与-317x a 中 6.若x 、y 互为相反数,则2x -3y -(3x -2y )的值为( )
(A)0 (B)1 (C)-1 (D)随x 、y 的不同而不同
二、填空题(各5分,共30分) 7.单项式3
xy
π-的系数是 ,次数为 . 8.在多项式22221325324
x xy x y x y x --+-中,与-32x y 是同类项的项是 ,没有同类项的项是 . 9.多项式25212
x y xy x -++-是 次 项式,最高次项是 ,常数项为 .
10.一个两位数,它的十位数字为a ,个位数字为b ,则这个两位数为 ,若把它的十位数字和个位数字对调,则新的两位数为 .
11.在一次植树劳动中,已知甲组植了总共x 棵,乙组植树的数目是甲的2倍少5棵,则乙组植了 棵,两组合计共植树为 棵.
12.若一个多项式加上22x x -+-得2
1x -,则这个多项式应为 .
三、解答题(满分40分)
13.(满分6分)当x =132
,y =-1时,求单项式2149x y 的值.
14.(每小题5分,共15分)请列式表示下列关系: (1)m的23
与n的积; (2)比x的倒数大1的数; (3)甲数为x ,乙数为y .甲、乙两数平方的和除以甲、乙两数和的平方的商.
15.(每小题6分,共12分)化简:
(1)(3a-b)+(-3a+3b) (2)522224(1)9()3
m m m +--+
16.(满分7分)先化简,再求值: )2
1x 2x 23(2)4x x 2(22-+---+-,其中2-=x ;
附加题(各10分,共20分)
1.已知2a ab +=-3,2ab b +=7,试求222a ab b ++与22
a b -的值;
2.“三个连续整数的和可以被3整除”,这个结论对吗?若结论正确,请你用本章所学的知识,说明这个结论的正确性;若不正确,请举出反例说明.。

相关文档
最新文档