高中化学晶体结构
高中化学晶体结构知识点

高中化学晶体结构知识点1、晶体类型判别:分子晶体:大部分有机物、几乎所有酸、大多数非金属单质、所有非金属氢化物、部分非金属氧化物。
原子晶体:仅有几种,晶体硼、晶体硅、晶体锗、金刚石、金刚砂(SiC)、氮化硅(Si3N4)、氮化硼(BN)、二氧化硅(SiO2)、氧化铝(Al2O3)、石英等;金属晶体:金属单质、合金;离子晶体:含离子键的物质,多数碱、大部分盐、多数金属氧化物;2、分子晶体、原子晶体、金属晶体、离子晶体对比表3、不同晶体的熔沸点由不同因素决定:离子晶体的熔沸点主要由离子半径和离子所带电荷数(离子键强弱)决定,分子晶体的熔沸点主要由相对分子质量的大小决定,原子晶体的熔沸点主要由晶体中共价键的强弱决定,且共价键越强,熔点越高。
4、金属熔沸点高低的比较:(1)同周期金属单质,从左到右(如Na、Mg、Al)熔沸点升高。
(2)同主族金属单质,从上到下(如碱金属)熔沸点降低。
(3)合金的熔沸点比其各成分金属的熔沸点低。
(4)金属晶体熔点差别很大,如汞常温为液体,熔点很低(-38.9℃),而铁等金属熔点很高(1535℃)。
5、原子晶体与金属晶体熔点比较:原子晶体的熔点不一定都比金属晶体的高,如金属钨的熔点就高于一般的原子晶体。
6、分子晶体与金属晶体熔点比较:分子晶体的熔点不一定就比金属晶体的低,如汞常温下是液体,熔点很低。
7、判断晶体类型的主要依据?一看构成晶体的粒子(分子、原子、离子);二看粒子间的相互作用;另外,分子晶体熔化时,化学键并未发生改变,如冰→水。
8、化学键:化学变化过程一定发生就化学键的断裂和新化学键的形成,但破坏化学键或形成化学键的过程却不一定发生化学变化,如食盐的熔化会破坏离子键,食盐结晶过程会形成离子键,但均不是化学变化过程。
9、判断晶体类型的方法?(1)依据组成晶体的微粒和微粒间的相互作用判断①离子晶体的构成微粒是阴、阳离子,微粒间的作用力是离子键。
②原子晶体的构成微粒是原子,微粒间的作用力是共价键。
高中化学竞赛专题讲解之晶体结构

⑶平面点阵指标(或晶面指标、密勒指标)册门
空间点阵可以划分为一组相互平行、间距相等的平面点阵。
设一组平而点阵和三个坐标轴相交,其中一个平面在三个轴上的截距分别为畑sb, tc, t称为截数。有时平面会及某个轴平行,这时,在该轴上的截距为无穷大,为了避免易截数进一步化 作互质的整数力;匕r,
【例】三维实例:金属Na。每个Na原子的周围环境都相同,结构基元应只含有1个Na原子。左侧的立方体中含有2个N&原子(每个顶点提供1/8个Na原子,中心提供1个Na原子),它不是结构基元,右侧图中虚线部分包围的平行六面体给出了一种正确的选法。
【例】三维实例:金属Cu(左图所示立方体的每个顶点和每个面的中心有一个Cu原子)。 每个Cu原子的周围环境都相同,结构基元只含有1个Cu原子。右侧图中虚线部分所示 平行六面体为一个结构基元。
按照选择的素向量,将点阵点连上线,把空间点阵划分并置堆砌的平行六面体(这时,
每个顶点被八个平行六面体共有),空间点阵形成的由线连成的格子称为晶格。
划分出的每个平行六面体为一个单位。平行六而体单位顶点上的点阵点,对每个单位的
平均贡献为1/8;面上的点阵点对每个单位的贡献为1/2,内部的点阵点,对每个单位的
2.周期性
3席秒很Ml就1%眩
上而两个图形均表现出周期性:沿直线方向,每隔相同的距离,就会出现相同的图案。 如果在图形中划出一个最小的重复单位(阴影部分所示),通过平移,将该单位沿直线向 两端周期性重复排列,就构成了上而的图形。
最小重复单位的选择不是唯一的,例如,在图Q)中,下而任何一个图案都可以作为最 小的重复单位。
日常生活中接触到的食盐、糖、洗涤用碱、金属、岩石、砂子、水泥等都主要由晶体组 成,这些物质中的的晶粒大小不一,如,食盐中的晶粒大小以毫米计,金属中的晶粒大 小以微米计。晶体有着广泛的应用。从日常电器到科学仪器,很多部件都是由各种天然 或人工晶体而成,如,石英钟、晶体管,电视机屏幕上的荧光粉,激光器中的宝石,计 算机中的磁芯等等。
高中化学新教材同步选择性必修第二册第3章微专题6:晶体结构的分析与计算

微专题6晶体结构的分析与计算1.常见共价晶体结构的分析晶体晶体结构结构分析金刚石(1)每个C与相邻4个C以共价键结合,形成正四面体结构(2)键角均为109°28′(3)最小碳环由6个C组成且6个C不在同一平面内(4)每个C参与4个C—C的形成,C原子数与C—C数之比为1∶2(5)密度=8×12 g·mol-1N A×a3 cm3(a为晶胞边长,N A为阿伏加德罗常数的值)SiO2(1)每个Si与4个O以共价键结合,形成正四面体结构(2)每个正四面体占有1个Si,4个“12O”,因此二氧化硅晶体中Si与O的个数比为1∶2(3)最小环上有12个原子,即6个O,6个Si(4)密度=8×60 g·mol-1N A×a3 cm3(a为晶胞边长,N A为阿伏加德罗常数的值)SiC、BP、AlN (1)每个原子与另外4个不同种类的原子形成正四面体结构(2)密度:ρ(SiC)=4×40 g·mol-1N A×a3 cm3;ρ(BP)=4×42 g·mol-1N A×a3 cm3;ρ(AlN)=4×41 g·mol-1N A×a3 cm3(a为晶胞边长,N A为阿伏加德罗常数的值)2.常见分子晶体结构的分析晶体晶体结构结构分析干冰(1)每8个CO2构成1个立方体且在6个面的面心又各有1个CO2(2)每个CO2分子周围紧邻的CO2分子有12个(3)密度=4×44 g·mol-1N A×a3 cm3(a为晶胞边长,N A为阿伏加德罗常数的值)白磷密度=4×124 g·mol-1N A×a 3 cm 3(a为晶胞边长,N A为阿伏加德罗常数的值)3.常见离子晶体结构的分析NaCl型CsCl型ZnS型CaF2型晶胞配位数684F-:8;Ca2+:4密度的计算(a为晶胞边长,N A为阿伏加德罗常数的值)4×58.5 g·mol-1N A×a3 cm3168.5 g·mol-1N A×a3 cm34×97 g·mol-1N A×a3 cm34×78 g·mol-1N A×a3 cm31.AB型化合物形成的晶体结构多种多样。
高中化学 几种常见晶体结构分析论文 新人教版选修3

几种常见晶体结构分析一、氯化钠、氯化铯晶体——离子晶体由于离子键无饱和性与方向性,所以离子晶体中无单个分子存在。
阴阳离子在晶体中按一定的规则排列,使整个晶体不显电性且能量最低。
离子的配位数分析如下:离子数目的计算:在每一个结构单元(晶胞)中,处于不同位置的微粒在该单元中所占的份额也有所不同,一般的规律是:顶点上的微粒属于该单元中所占的份额为18,棱上的微粒属于该单元中所占的份额为14,面上的微粒属于该单元中所占的份额为12,中心位置上(嚷里边)的微粒才完全属于该单元,即所占的份额为1。
1.氯化钠晶体中每个Na +周围有6个C l -,每个Cl -周围有6个Na +,与一个Na +距离最近且相等的Cl -围成的空间构型为正八面体。
每个N a +周围与其最近且距离相等的Na +有12个。
见图1。
晶胞中平均Cl -个数:8×18 + 6×12 = 4;晶胞中平均Na +个数:1 + 12×14= 4 因此NaCl 的一个晶胞中含有4个NaCl (4个Na +和4个Cl -)。
2.氯化铯晶体中每个Cs +周围有8个Cl -,每个Cl -周围有8个Cs +,与一个Cs +距离最近且相等的Cs +有6个。
晶胞中平均Cs +个数:1;晶胞中平均Cl -个数:8×18= 1。
因此CsCl 的一个晶胞中含有1个CsCl (1个Cs +和1个Cl -)。
二、金刚石、二氧化硅——原子晶体1.金刚石是一种正四面体的空间网状结构。
每个C 原子以共价键与4个C 原子紧邻,因而整个晶体中无单个分子存在。
由共价键构成的最小环结构中有6个碳原子,不在同一个平面上,每个C 原子被12个六元环共用,每C —C 键共6个环,因此六元环中的平均C 原子数为6×112 = 12 ,平均C —C 键数为6×16 = 1。
C 原子数: C —C 键键数 = 1:2; C 原子数: 六元环数 = 1:2。
高中化学常见晶体结构

高中化学常见晶体结构
高中化学常见晶体结构
1、六方晶系
六方晶系是最常见的晶体结构形式,它是比较复杂的立方晶系的一种特殊晶系结构。
它有六个面对称,每个晶体晶面都与等边三角型对称,比如金刚石的晶体结构。
2、立方晶系
立方晶系结构是一种具有八个面对称的晶体结构,每个晶体晶面都与等边正方形对称,比如氯化钠的晶体结构。
3、非六方晶系
非六方晶系是指其他晶体体系,如柱晶系、针晶系、釉晶系等,这些晶体的晶面并不都与等边三角形或等边正方形对称,比如电镀银的晶体结构。
- 1 -。
高中化学【晶体结构与性质】

②离子晶体 一般地说,阴、阳离子的电荷数越多,离子半径越小,则离子 键越强,晶体的熔、沸点越高,如熔点:MgO>MgCl2,NaCl >CsCl。 ③分子晶体 a.分子间范德华力越大,物质的熔、沸点越高;具有氢键的 分子晶体熔、沸点反常高。如 H2O>H2Te>H2Se>H2S。 b.组成和结构相似的分子晶体,相对分子质量越大,熔、沸 点越高,如 SnH4>GeH4>SiH4>CH4。 c.组成和结构不相似的分子晶体(相对分子质量接近),其分子 的极性越大,熔、沸点越高,如 CH3Cl>CH3CH3。
C.晶体熔点由低到高:CO<KCl<SiO2
D.离子键键能由大到小:NaF>NaCl>NaBr>NaI
解析: A 项,金属离子的电荷越多、半径越小,金属晶体的 熔点越高,则熔点由高到低为 Al>Mg>Na,错误;B 项,键 长越短,键能越大,硬度越大,键长 C—C<C—Si<Si—Si, 则硬度由大到小为金刚石>碳化硅>晶体硅,正确;C 项,一 般情况下,分子晶体的熔点低于离子晶体的熔点,离子晶体的 熔点低于共价晶体的熔点,晶体熔点由低到高为 CO(分子晶体) <KCl(离子晶体)<SiO2(共价晶体),正确;D 项,电荷相同的 离子,离子半径越小,离子键键能越大,F-、Cl-、Br-、I-半 径由小到大,则离子键键能由大到小为 NaF>NaCl>NaBr> NaI,正确。 答案:A
构成 微粒
__分__子__
__原__子__
粒子间 _范__德__华__力___
的相互 (某些含氢 __共__价__键__
作用力
键)
金属晶体 离子晶体 金属阳离 子、自由 __阴__、__阳__离__子__
高中化学选修3 第三章晶体结构与性质 讲义及习题

高中化学选修三第三章晶体结构与性质一、晶体常识1、晶体与非晶体比较2、获得晶体的三条途径①熔融态物质凝固.②气态物质冷却不经液态直接凝固(凝华)。
③溶质从溶液中析出.3、晶胞晶胞是描述晶体结构的基本单元。
晶胞在晶体中的排列呈“无隙并置”.4、晶胞中微粒数的计算方法-—均摊法某粒子为n个晶胞所共有,则该粒子有1/n属于这个晶胞。
中学常见的晶胞为立方晶胞.立方晶胞中微粒数的计算方法如下:①晶胞顶角粒子为8个晶胞共用,每个晶胞占1/8②晶胞棱上粒子为4个晶胞共用,每个晶胞占1/4③晶胞面上粒子为2个晶胞共用,每个晶胞占1/2④晶胞内部粒子为1个晶胞独自占有,即为1注意:在使用“均摊法”计算晶胞中粒子个数时要注意晶胞的形状。
二、构成物质的四种晶体1、四种晶体的比较晶体类型分子晶体原子晶体金属晶体离子晶体质硬度一般较软很硬一般较硬,少部分软较硬熔沸点很低很高一般较高,少部分低较高溶解性相似相溶难溶于任何溶剂难溶于常见溶剂(Na等与水反应)大多易溶于水等极性溶剂导电传热性一般不导电,溶于水后有的导电一般不具有导电性(除硅)电和热的良导体晶体不导电,水溶液或熔融态导电延展性无无良好无物质类别及实例气态氢化物、酸(如HCl、H2SO4)、大多数非金属单质(如P4、Cl2)、非金属氧化物(如SO2、CO2,SiO2除外)、绝大多数有机物(有机盐除外)一部分非金属单质(如金刚石、硅、晶体硼),一部分非金属化合物(如SiC、SiO2)金属单质与合金(Na、Mg、Al、青铜等)金属氧化物(如Na2O),强碱(如NaOH),绝大部分盐(如NaCl、CaCO3等)2、晶体熔、沸点高低的比较方法(1)不同类型晶体的熔、沸点高低一般规律:原子晶体>离子晶体>分子晶体.金属晶体的熔、沸点差别很大,如钨、铂等熔、沸点很高,汞、铯等熔、沸点很低。
(2)原子晶体由共价键形成的原子晶体中,原子半径小的键长短,键能大,晶体的熔、沸点高。
如熔点:金刚石>碳化硅>硅(3)离子晶体一般地说,阴阳离子的电荷数越多,离子半径越小,则离子间的作用力就越强,相应的晶格能大,其晶体的熔、沸点就越高。
高中化学-3-1晶体结构和性质(晶体常识)优秀课件

8×1/8+6×1/2+4=8
举一反三·分析 NaCl晶胞中氯离子和钠离子的个数
Cl- 顶点: ( 1/8 ) 8 = 1,
面心 : ( 1/2 ) 6 = 3 , 共4个
Na+ 棱上 : ( 1/4 ) 12 = 3 ,
体心 : 1 共4个
NaCl晶胞 ----Na+ ---- Cl-
2、推算晶体的化学式
思考与交流
1、某同学在网站上找到一张
玻璃的结构示意图,如右图,
这张图说明玻璃是不是晶体?
为什么?
玻璃的结构示意图
不是,质点不是有序排列
2、根据晶体的物理性质的各向异性的特点, 人们很容易识别用玻璃仿造的假宝石。你能列 举一些可能有效的方法鉴别假宝石吗?
(四)鉴别晶体和非晶体
〔1〕性质差异 ------外形、硬度、熔点、折光率等
顶点:1/8
位于顶点上的粒子为8个小立方体所共有,每个 立方体拥有其1/8
棱心:1/4
位于棱心上的离子为4个小立方体所 共有,每个立方体拥有其1/4
面心: 1/2
位于面心上的离子为2个小立方体所 共有,每个立方体拥有其1/2
体心:1
位于体心上的离子为1个小立方体所 有,每个立方体拥有1个离子
立方晶胞对粒子〔质点〕的占有率:
----求晶体中微粒个数最简整数比
例题1 下图所示是晶体结构中具有代表性的最小重 复单元(晶胞)的排列方式,其对应的化学式正确的
是(图中:O-X,●-Y,○-Z)( )C
XY
X3Y
XY3Z
例题 2 2001年报道的硼和镁形成的化合物刷新了金 属化合物超导温度的最高记录。如下图的是该化合物 的晶体结构单元:镁原子间形成正六棱柱,且棱柱的 上下底面还各有1个镁原子,6个硼原子位于棱柱内。 那么该化合物的化学式可表示为( )
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
体的普
平 面
遍特征, 叫做平
点
移对称
阵
性
三、晶体的微观特征
概念:在晶体内部原子或分子周期性地排列的每个重复 单位的相同位置上定一个点,这些点按一定周期性规律 排列在空间,这些点构成一个点阵。
在晶体的点阵结构中每个点阵所代表的具体内容 -结构基元,包括原子或分子的种类和数量及其在空间 按一定方式排列的结构。
一般说来,三维晶胞都是平行六面体(二维平面上的晶胞 则是平行四边形)-叫做布拉维晶胞。整块晶体可以看成 是无数晶胞无隙并置而成。
晶胞结构图
平行六面体的几何 特征可用边长关系 和夹角关系确定。
布拉维晶胞的边长 与夹角叫做晶胞参 数。
注意不要弄错夹角 与边的相互关系
共有七种不同几何特征的三维晶胞,称为布拉维 系。
• 空间利用率:指构成晶体的原子、离子或分子在 整个晶体空间中所占有的体积百分比。
• • 空间利用率= •
球体积 晶胞体积
100%
简单立方堆积:在立方体顶点的 微粒为8个晶胞共享, 微粒数为:8×1/8 = 1
空间利用率: 4лr3/3 = 52.36% (2r)3
Ⅱ. 体心立方堆积
配位数:8
体对角线 = 4r
导热性
由于金属晶体中自由电子运动时与金属离子
碰撞并把能量从温度高的部分传导温度低的 部分,从而使整块金属达到相同的温度
延展性
由于金属晶体中金属键是没有方向性的,各原 子层之间发生相对滑动以后,仍保持金属键的 作用,因而在一定外力作用下,只发生形变而 不断裂
密堆积:
由无方向性的金属键、离子键和范德华力等 结合的晶体中,原子、离子或分子等微观粒 子总是趋向于相互配位数高,能充分利用空 间的堆积密度最大的那些结构。
c αβ a bγ
c ba
c ba
立方 Cubic
a=b=c, = = =90°
四方 Tetragonal
a=b c, = = =90°
正交 Rhombic
a b c, = = =90°
c
ba
c
ba
三方 Rhombohedral a=b=c, = = 90°
a=b c, = =90° =120°
六方 Hexagonal
一、金属晶体
金属的通性 金属具有一定的通性:有金属光泽,导电性,导热 性,延展性
金属键对金属通性的解释
通常情况下金属晶体内部电子的运动是自 由流动的,但在外加电场的作用下会定向 移动形成电流
共性
金属晶体与性质的关系
导电性
在金属晶体中,存在许多自由电子,自由电子 在外加电场的作用下,自由电子定向运动,因 而形成电流
晶体结构 = 点阵 + 结构基元
四、晶胞
晶胞是晶体的代表,是晶体中的最小单位。晶胞并 置起来,则得到晶体。
晶胞的代表性体现在以下两个方面: 一是代表晶体 的化学组成;二是代表晶体的对称性
• 晶胞是描述晶体微观结构的基本单元,但不一定是最小 单元。晶胞有素晶胞和复晶胞之分。素晶胞,符号P, 是晶体微观空间中的最小单位,不可能再小。素晶胞中 的原子集合相当于晶体微观空间中的原子作周期性平移 的最小集合,叫做结构基元。复晶胞是素晶胞的多倍体
边长=4 3r/3
体心立方:在立方体顶点的微粒为8个 晶胞共享,处于体心的金属原子全部属 于该晶胞。
微粒数为:8×1/8 + 1 = 2
4лr3/3×2
(4 3 r/3)3
=68%
不是最密堆积
密置层堆积
第二层 : 对第一层来讲最紧密的堆积方式是将 球对准1,3,5 位。 ( 或对准 2,4,6 位,其情形是一 样的 )
A
A
B
B
A
A
各层均为密置层
六方最密堆积分解图
包含6个球 空间利用率:74%
包含2个球
12
6
3
54
12
6
3
54
12
6
3
54
A B C
Ⅳ. 面心立方密堆积
A
第四层再排 A,于是形成
ABC ABC 三层一个周期。
C
这种堆积方式可划分出面心
立方晶胞。
B
12
6
3
54
配位数 12 ( 同层 6, 上下层各 3 )
配制明矾饱和溶液,在容器中央挂一条来自,浸 入溶液的线段悬一小块明矾晶体(晶种),尽量 保持恒温令溶液慢慢挥发,数天后,会发现线 端的晶种长大了,呈现八面体外形。
一、晶体的定义
“晶体是由原子或分子在空间按一定规律周期性 地重复排列构成的固体物质。” 注意:
(1)一种物质是否是晶体是由其内部结构决定 的,而非由外观判断;
(2)周期性是晶体结构最基本的特征。
二、晶体性质
• ⑴均匀性 • ⑵各向异性 • ⑶自发地形成多面体外形 F+V=E+2 • 其中,F-晶面,V-顶点,E-晶棱 • ⑷有明显确定的熔点 • ⑸有特定的对称性 • ⑹使X射线产生衍射
可以发现,相
隔一定的距离,
总有完全相同
的原子排列出
直 线
现。
点
阵
这是晶
12
6
3
54
12
6
3
54
,
AB
关键是第三层,对第一、二层来说,第三层可以有两种 最紧密的堆积方式。
12
6
3
54
Ⅲ.六方密堆积 第一种: 将第三层球对准第一层的球
A
12
6
3
B
54
A
B
于是每两层形成一个周
A
期,即 AB AB 堆积方式,
形成六方紧密堆积。
上图是此种六方 紧密堆积的前视图
配位数 12 ( 同层 6,上下层各 3 )
密堆积方式因充分利用了空间,而使体系的 势能尽可能降低,而结构稳定。
金属堆积方式
一维堆积
➢ 二维平面堆积方式
I型
II 型
★
★
配位数:4 非密置层
行列对齐四球一空 非最紧密排列
配位数:6 密置层
行列相错三球一空 最紧密排列
➢ 三维空间堆积方式
Ⅰ. 简单立方堆积
边长 = 2r 配位数:6
空间利用率的计算
晶体的结构与性质
部分基本概念和基本结构
重晶石 BaSO4
莹石 CaF2
胆矾 CuSO4·5H2O
食盐 NaCl
黄铁矿
萤石
水晶
绿色鱼眼石
菱锰矿
图片2
晶体是真正意义的固体,在宏观上,晶体有 别于橡胶、玻璃、琥珀、树脂等非晶态的最 普遍的本质特征是它的“自范性”:
即:晶体能够自发地呈现封闭的规则凸多面 体的外形。
a=b c, = =90°,
=120°
c
c
ba
a b
单斜 Monoclinic
abc = =90°,
90°
三斜 Triclinic
abc = = =90°
晶胞中原子数目的计算(均摊法)
顶点占1/8
棱占1/4
面心占1/2 体心占1
第二部分 晶体的分类
按成键特点分为: 原子晶体:金刚石 离子晶体:NaCl 分子晶体:冰 金属晶体: Cu