2020年贵州省黔南州中考数学试卷(含答案解析)
2020年贵州省黔南中考数学试卷含答案-答案在前

2020年贵州省黔南州中考试卷数学答案解析一、1.【答案】A【解析】解:根据相反数的定义,可得3的相反数是:3-.故选:A .2.【答案】D【解析】解:A 、不是中心对称图形,故本选项错误;B 、不是中心对称图形,故本选项错误;C 、不是中心对称图形,故本选项错误;D 、是中心对称图形,故本选项正确.故选:D .3.【答案】C【解析】解:493 4009.3410=⨯.故选:C .4.【答案】D【解析】解:因为圆柱是矩形,圆锥是等腰三角形,球是圆,圆台是等腰梯形,故选:D .5.【答案】A【解析】解:A 、()4312a a =,故原题计算正确;B 、347a a a ⋅=,故原题计算错误;C 、2222a a a +=,故原题计算错误;D 、()222ab a b =,故原题计算错误;故选:A .6.【答案】D【解析】解:∵矩形纸条ABCD 中,AD BC ∥, '30AEG BGD ∠=∠=︒∴,18030150DEG ∠=︒-︒=︒∴,由折叠可得,111507522DEG ∠α∠==⨯︒=, 故选:D .7.【答案】B【解析】解:∵在Rt ADE △中,6DE =,1AE AB BE AB CD x =-=-=-,55ADE ∠=︒,sin55AE AD ︒=∴,cos55DE AD ︒=,1tan556AE x DE -︒==, 故选:B .8.【答案】C【解析】解:设该商品每件的进价为x 元,依题意,得:120.82x ⨯-=,解得:7.6x =.故选:C .9.【答案】D【解析】解:分两种情况:当腰为4时,449+<,所以不能构成三角形;当腰为9时,994+>,994-<,所以能构成三角形,周长是:99422++=.故选:D .10.【答案】C【解析】解:45∵,314∴<,1在3和4之间,即34a <<.故选:C .二、11.【答案】()2a ab -【解析】解:3222a a b ab -+, ()222a a ab b =-+,()2a ab =-.12.【答案】9【解析】解:27m n a b -+∵与443a b -的和仍是一个单项式,24m -=∴,74n +=,解得:6m =,3n =-,故()639m n -=--=.故答案为:9.13.【答案】4【解析】解:∵2,3,x ,1,5,7的众数为7,7x =∴,把这组数据从小到大排列为:1、2、3、5、6、7, 则中位数为3542+=; 故答案为:4.14.【答案】二【解析】解:由已知,得:0k >,0b <.故直线必经过第一、三、四象限.则不经过第二象限.故答案为:二.15.【答案】()【解析】解:∵直线443y x =+与x 轴、y 轴分别交于A 、B 两点, ∴点A 的坐标为()3,0,点B 的坐标为()0,4.过点C 作CE y ⊥轴于点E ,如图所示.BC OC OA ==∵,3OC =∴,2OE =,CE ==∴∴点C 的坐标为().故答案为:().16.【答案】10【解析】解:在Rt ABC △中,2AB =∵,1sin 3AB ACB AC ∠==, 1263AC =÷=∴ 在Rt ADC △中,AD =10=.故答案为:10.17.【答案】4【解析】解:如图所示:∵两条对角线的和为6,6AC BD +=∴,∵菱形的周长为,AB ∴AC BD ⊥,12AO AC =,12BO BD =, 3AO BO +=∴, 222AO BO AB +=∴,()29AO BO +=,即225AO BO +=,2229AO AO BO BO +⋅+=, 24AO BO ⋅=∴,∴菱形的面积1242AC BD AO BO =⋅=⋅=; 故答案为:4.18.【答案】12y x =【解析】解:如图,过点C 作CE y ⊥轴于E ,∵四边形ABCD 是正方形,10AB BC ==∴,90ABC ∠=︒,6OB ===∴,90ABC AOB ∠=∠=︒∵,90ABO CBE ∠+∠=︒∴,90ABO BAO ∠+∠=︒,BAO CBE ∠=∠∴,又90AOB BEC ∠=∠=︒∵,()ABO BCE AAS △≌△∴,6CE OB ==∴,8BE AO ==,2OE =∴,∴点()6,2C ,∵反比例函数()0ky k x =≠的图象过点C ,6212k =⨯=∴,∴反比例函数的解析式为12y x =, 故答案为:12y x =.19.【答案】5210258x y x y +=⎧⎨+=⎩【解析】解:根据题意得:5210258x y x y +=⎧⎨+=⎩.故答案为:5210258x y x y +=⎧⎨+=⎩. 20.【答案】0【解析】解:28160x x -+=,解得:4x =,即124x x ==,则2121?22*16160x x x x x =-=-=,故答案为0.三、21.【答案】解:(1)原式01232 2 0202⎛⎫=--⨯- ⎪⎝⎭ ()221 2 020=---02 2 019=--21=--1=--(2)解不等式312x -≤,得:1x ≥, 解不等式是324x +≥,得:23x ≥, 则不等式组的解集为1x ≥.【解析】具体解题过程参照答案。
2020年贵州省黔东南州中考数学试卷(解析版)

2020年贵州省黔东南州中考数学试卷参考答案与试题解析一.选择题(共10小题)1.﹣2020的倒数是()A.﹣2020B.﹣C.2020D.【分析】根据倒数的概念解答.【解答】解:﹣2020的倒数是﹣,故选:B.2.下列运算正确的是()A.(x+y)2=x2+y2B.x3+x4=x7C.x3•x2=x6D.(﹣3x)2=9x2【分析】直接利用完全平方公式以及合并同类项、同底数幂的乘法运算和积的乘方运算法则分别计算得出答案.【解答】解:A、(x+y)2=x2+2xy+y2,故此选项错误;B、x3+x4,不是同类项,无法合并,故此选项错误;C、x3•x2=x5,故此选项错误;D、(﹣3x)2=9x2,正确.故选:D.3.实数2介于()A.4和5之间B.5和6之间C.6和7之间D.7和8之间【分析】首先化简2=,再估算,由此即可判定选项.【解答】解:∵2=,且6<<7,∵6<2<7.故选:C.4.已知关于x的一元二次方程x2+5x﹣m=0的一个根是2,则另一个根是()A.﹣7B.7C.3D.﹣3【分析】根据根与系数的关系即可求出答案.【解答】解:设另一个根为x,则x+2=﹣5,解得x=﹣7.故选:A.5.如图,将矩形ABCD沿AC折叠,使点B落在点B′处,B′C交AD于点E,若∵l=25°,则∵2等于()A.25°B.30°C.50°D.60°【分析】由折叠的性质可得出∵ACB′的度数,由矩形的性质可得出AD∵BC,再利用“两直线平行,内错角相等”可求出∵2的度数.【解答】解:由折叠的性质可知:∵ACB′=∵1=25°.∵四边形ABCD为矩形,∵AD∵BC,∵∵2=∵1+∵ACB′=25°+25°=50°.故选:C.6.桌上摆着一个由若干个相同的小正方体组成的几何体,其主视图和左视图如图所示,则组成这个几何体的小正方体的个数最多有()A.12个B.8个C.14个D.13个【分析】易得此几何体有三行,三列,判断出各行各列最多有几个正方体组成即可.【解答】解:底层正方体最多有9个正方体,第二层最多有4个正方体,所以组成这个几何体的小正方体的个数最多有13个.故选:D.7.如图,∵O的直径CD=20,AB是∵O的弦,AB∵CD,垂足为M,OM:OC=3:5,则AB的长为()A.8B.12C.16D.2【分析】连接OA,先根据∵O的直径CD=20,OM:OD=3:5求出OD及OM的长,再根据勾股定理可求出AM的长,进而得出结论.【解答】解:连接OA,∵∵O的直径CD=20,OM:OD=3:5,∵OD=10,OM=6,∵AB∵CD,∵AM===8,∵AB=2AM=16.故选:C.8.若菱形ABCD的一条对角线长为8,边CD的长是方程x2﹣10x+24=0的一个根,则该菱形ABCD的周长为()A.16B.24C.16或24D.48【分析】解方程得出x=4,或x=6,分两种情况:∵当AB=AD=4时,4+4=8,不能构成三角形;∵当AB=AD=6时,6+6>8,即可得出菱形ABCD的周长.【解答】解:如图所示:∵四边形ABCD是菱形,∵AB=BC=CD=AD,∵x2﹣10x+24=0,因式分解得:(x﹣4)(x﹣6)=0,解得:x=4或x=6,分两种情况:∵当AB=AD=4时,4+4=8,不能构成三角形;∵当AB=AD=6时,6+6>8,∵菱形ABCD的周长=4AB=24.故选:B.9.如图,点A是反比例函数y═(x>0)上的一点,过点A作AC∵y轴,垂足为点C,AC交反比例函数y=的图象于点B,点P是x轴上的动点,则∵P AB的面积为()A.2B.4C.6D.8【分析】连接OA、OB、PC.由于AC∵y轴,根据三角形的面积公式以及反比例函数比例系数k的几何意义得到S∵APC=S∵AOC=3,S∵BPC=S∵BOC=1,然后利用S∵P AB=S∵APC﹣S∵APB进行计算.【解答】解:如图,连接OA、OB、PC.∵AC∵y轴,∵S∵APC=S∵AOC=×|6|=3,S∵BPC=S∵BOC=×|2|=1,∵S∵P AB=S∵APC﹣S∵BPC=2.故选:A.10.如图,正方形ABCD的边长为2,O为对角线的交点,点E、F分别为BC、AD的中点.以C为圆心,2为半径作圆弧,再分别以E、F为圆心,1为半径作圆弧、,则图中阴影部分的面积为()A.π﹣1B.π﹣2C.π﹣3D.4﹣π【分析】根据题意和图形,可知阴影部分的面积是以2为半径的四分之一个圆的面积减去以1为半径的半圆的面积再减去2个以边长为1的正方形的面积减去以1半径的四分之一个圆的面积,本题得以解决.【解答】解:由题意可得,阴影部分的面积是:•π×22﹣﹣2(1×1﹣•π×12)=π﹣2,故选:B.二.填空题(共10小题)11.cos60°=.【分析】根据记忆的内容,cos60°=即可得出答案.【解答】解:cos60°=.故答案为:.12.2020年以来,新冠肺炎橫行,全球经济遭受巨大损失,人民生命安全受到巨大威胁.截止6月份,全球确诊人数约3200000人,其中3200000用科学记数法表示为 3.2×106.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值≥10时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:3200000=3.2×106.故答案为:3.2×106.13.在实数范围内分解因式:xy2﹣4x=x(y+2)(y﹣2).【分析】本题可先提公因式x,再运用平方差公式分解因式即可求解.【解答】解:xy2﹣4x=x(y2﹣4)=x(y+2)(y﹣2).故答案为:x(y+2)(y﹣2).14.不等式组的解集为2<x≤6.【分析】先根据解不等式的基本步骤求出每个不等式的解集,再根据“大小小大中间找”可确定不等式组的解集.【解答】解:解不等式5x﹣1>3(x+1),得:x>2,解不等式x﹣1≤4﹣x,得:x≤6,则不等式组的解集为2<x≤6,故答案为:2<x≤6.15.把直线y=2x﹣1向左平移1个单位长度,再向上平移2个单位长度,则平移后所得直线的解析式为y =2x+3.【分析】直接利用一次函数的平移规律进而得出答案.【解答】解:把直线y=2x﹣1向左平移1个单位长度,得到y=2(x+1)﹣1=2x+1,再向上平移2个单位长度,得到y=2x+3.故答案为:y=2x+3.16.抛物线y=ax2+bx+c(a≠0)的部分图象如图所示,其与x轴的一个交点坐标为(﹣3,0),对称轴为x =﹣1,则当y<0时,x的取值范围是﹣3<x<1.【分析】根据物线与x轴的一个交点坐标和对称轴,由抛物线的对称性可求抛物线与x轴的另一个交点,再根据抛物线的增减性可求当y<0时,x的取值范围.【解答】解:∵物线y=ax2+bx+c(a≠0)与x轴的一个交点坐标为(﹣3,0),对称轴为x=﹣1,∵抛物线与x轴的另一个交点为(1,0),由图象可知,当y<0时,x的取值范围是﹣3<x<1.故答案为:﹣3<x<1.17.以∵ABCD对角线的交点O为原点,平行于BC边的直线为x轴,建立如图所示的平面直角坐标系.若A点坐标为(﹣2,1),则C点坐标为(2,﹣1).【分析】根据平行四边形是中心对称图形,再根据∵ABCD对角线的交点O为原点和点A的坐标,即可得到点C的坐标.【解答】解:∵∵ABCD对角线的交点O为原点,A点坐标为(﹣2,1),∵点C的坐标为(2,﹣1),故答案为:(2,﹣1).18.某校九(1)班准备举行一次演讲比赛,甲、乙、丙三人通过抽签方式决定出场顺序,则出场顺序恰好是甲、乙、丙的概率是.【分析】首先根据题意画出树状图,然后由树状图求得所有等可能的结果与出场顺序恰好是甲、乙、丙的情况,再利用概率公式求解即可求得答案.【解答】解:画出树状图得:∵共有6种等可能的结果,其中出场顺序恰好是甲、乙、丙的只有1种结果,∵出场顺序恰好是甲、乙、丙的概率为,故答案为:.19.如图,AB是半圆O的直径,AC=AD,OC=2,∵CAB=30°,则点O到CD的距离OE为.【分析】在等腰∵ACD中,顶角∵A=30°,易求得∵ACD=75°;根据等边对等角,可得:∵OCA=∵A=30°,由此可得,∵OCD=45°;即∵COE是等腰直角三角形,则OE=.【解答】解:∵AC=AD,∵A=30°,∵∵ACD=∵ADC=75°,∵AO=OC,∵∵OCA=∵A=30°,∵∵OCD=45°,即∵OCE是等腰直角三角形,在等腰Rt∵OCE中,OC=2;因此OE=.故答案为:.20.如图,矩形ABCD中,AB=2,BC=,E为CD的中点,连接AE、BD交于点P,过点P作PQ∵BC 于点Q,则PQ=.【分析】根据矩形的性质得到AB∵CD,AB=CD,AD=BC,∵BAD=90°,根据线段中点的定义得到DE=CD=AB,根据相似三角形的性质即可得到结论.【解答】解:∵四边形ABCD是矩形,∵AB∵CD,AB=CD,AD=BC,∵BAD=90°,∵E为CD的中点,∵DE=CD=AB,∵∵ABP∵∵EDP,∵=,∵=,∵=,∵PQ∵BC,∵PQ∵CD,∵∵BPQ∵∵DBC,∵==,∵CD=2,∵PQ=,故答案为:.三.解答题(共6小题)21.(1)计算:()﹣2﹣|﹣3|+2tan45°﹣(2020﹣π)0;(2)先化简,再求值:(﹣a+1)÷,其中a从﹣1,2,3中取一个你认为合适的数代入求值.【分析】(1)先算负整数指数幂,绝对值,特殊角的三角函数值,零指数幂,再算加减法即可求解;(2)先通分,把除法转化成乘法,再把分式的分子与分母因式分解,然后约分,最后代入一个合适的数即可.【解答】解:(1)()﹣2﹣|﹣3|+2tan45°﹣(2020﹣π)0=4+﹣3+2×1﹣1=4+﹣3+2﹣1=2+;(2)(﹣a+1)÷=×==﹣a﹣1,要使原式有意义,只能a=3,则当a=3时,原式=﹣3﹣1=﹣4.22.某校对九年级学生进行一次综合文科中考模拟测试,成绩x分(x为整数)评定为优秀、良好、合格、不合格四个等级(优秀、良好、合格、不合格分别用A、B、C、D表示),A等级:90≤x≤100,B等级:80≤x <90,C等级:60≤x<80,D等级:0≤x<60.该校随机抽取了一部分学生的成绩进行调查,并绘制成如图不完整的统计图表.等级频数(人数)频率A a20%B1640%C b mD410%请你根据统计图表提供的信息解答下列问题:(1)上表中的a8,b=12,m=30%.(2)本次调查共抽取了多少名学生?请补全条形图.(3)若从D等级的4名学生中抽取两名学生进行问卷调查,请用画树状图或列表的方法求抽取的两名学生恰好是一男一女的概率.【分析】(1)根据题意列式计算即可得到结论;(2)用D等级人数除以它所占的百分比即可得到调查的总人数;(3)列表将所有等可能的结果列举出来,利用概率公式求解即可.【解答】解:(1)a=16÷40%×20%=8,b=16÷40%×(1﹣20%﹣40%﹣10%)=12,m=1﹣20%﹣40%﹣10%=30%;故答案为:8,12,30%;(2)本次调查共抽取了4÷10%=40名学生;补全条形图如图所示;(3)将男生分别标记为A,B,女生标记为a,b,A B a bA(A,B)(A,a)(A,b)B(B,A)(B,a)(B,b)a(a,A)(a,B)(a,b)b(b,A)(b,B)(b,a)∵共有12种等可能的结果,恰为一男一女的有8种,∵抽得恰好为“一男一女”的概率为=.23.如图,AB是∵O的直径,点C是∵O上一点(与点A,B不重合),过点C作直线PQ,使得∵ACQ=∵ABC.(1)求证:直线PQ是∵O的切线.(2)过点A作AD∵PQ于点D,交∵O于点E,若∵O的半径为2,sin∵DAC=,求图中阴影部分的面积.【分析】(1)连接OC,由直径所对的圆周角为直角,可得∵ACB=90°;利用等腰三角形的性质及已知条件∵ACQ=∵ABC,可求得∵OCQ=90°,按照切线的判定定理可得结论.(2)由sin∵DAC=,可得∵DAC=30°,从而可得∵ACD的度数,进而判定∵AEO为等边三角形,则∵AOE 的度数可得;利用S阴影=S扇形﹣S∵AEO,可求得答案.【解答】解:(1)证明:如图,连接OC,∵AB是∵O的直径,∵∵ACB=90°,∵OA=OC,∵∵CAB=∵ACO.∵∵ACQ=∵ABC,∵∵CAB+∵ABC=∵ACO+∵ACQ=∵OCQ=90°,即OC∵PQ,∵直线PQ是∵O的切线.(2)连接OE,∵sin∵DAC=,AD∵PQ,∵∵DAC=30°,∵ACD=60°.又∵OA=OE,∵∵AEO为等边三角形,∵∵AOE=60°.∵S阴影=S扇形﹣S∵AEO=S扇形﹣OA•OE•sin60°=×22﹣×2×2×=﹣.∵图中阴影部分的面积为﹣.24.黔东南州某超市购进甲、乙两种商品,已知购进3件甲商品和2件乙商品,需60元;购进2件甲商品和3件乙商品,需65元.(1)甲、乙两种商品的进货单价分别是多少?(2)设甲商品的销售单价为x(单位:元/件),在销售过程中发现:当11≤x≤19时,甲商品的日销售量y (单位:件)与销售单价x之间存在一次函数关系,x、y之间的部分数值对应关系如表:销售单价x(元/件)1119日销售量y(件)182请写出当11≤x≤19时,y与x之间的函数关系式.(3)在(2)的条件下,设甲商品的日销售利润为w元,当甲商品的销售单价x(元/件)定为多少时,日销售利润最大?最大利润是多少?【分析】(1)设甲、乙两种商品的进货单价分别是a、b元/件,由题意得关于a、b的二元一次方程组,求解即可.(2)设y与x之间的函数关系式为y=k1x+b1,用待定系数法求解即可.(3)根据利润等于每件的利润乘以销售量列出函数关系式,然后写成顶点式,按照二次函数的性质可得答案.【解答】解:(1)设甲、乙两种商品的进货单价分别是a、b元/件,由题意得:,解得:.∵甲、乙两种商品的进货单价分别是10、15元/件.(2)设y与x之间的函数关系式为y=k1x+b1,将(11,18),(19,2)代入得:,解得:.∵y与x之间的函数关系式为y=﹣2x+40(11≤x≤19).(3)由题意得:w=(﹣2x+40)(x﹣10)=﹣2x2+60x﹣400=﹣2(x﹣15)2+50(11≤x≤19).∵当x=15时,w取得最大值50.∵当甲商品的销售单价定为15元/件时,日销售利润最大,最大利润是50元.25.如图1,∵ABC和∵DCE都是等边三角形.探究发现(1)∵BCD与∵ACE是否全等?若全等,加以证明;若不全等,请说明理由.拓展运用(2)若B、C、E三点不在一条直线上,∵ADC=30°,AD=3,CD=2,求BD的长.(3)若B、C、E三点在一条直线上(如图2),且∵ABC和∵DCE的边长分别为1和2,求∵ACD的面积及AD的长.【分析】(1)依据等式的性质可证明∵BCD=∵ACE,然后依据SAS可证明∵ACE∵∵BCD;(2)由(1)知:BD=AE,利用勾股定理计算AE的长,可得BD的长;(3)如图2,过A作AF∵CD于F,先根据平角的定义得∵ACD=60°,利用特殊角的三角函数可得AF的长,由三角形面积公式可得∵ACD的面积,最后根据勾股定理可得AD的长.【解答】解:(1)全等,理由是:∵∵ABC和∵DCE都是等边三角形,∵AC=BC,DC=EC,∵ACB=∵DCE=60°,∵∵ACB+∵ACD=∵DCE+∵ACD,即∵BCD=∵ACE,在∵BCD和∵ACE中,,∵∵ACE∵∵BCD(SAS);(2)如图3,由(1)得:∵BCD∵∵ACE,∵BD=AE,∵∵DCE都是等边三角形,∵∵CDE=60°,CD=DE=2,∵∵ADC=30°,∵∵ADE=∵ADC+∵CDE=30°+60°=90°,在Rt∵ADE中,AD=3,DE=2,∵AE===,∵BD=;(3)如图2,过A作AF∵CD于F,∵B、C、E三点在一条直线上,∵∵BCA+∵ACD+∵DCE=180°,∵∵ABC和∵DCE都是等边三角形,∵∵BCA=∵DCE=60°,∵∵ACD=60°,在Rt∵ACF中,sin∵ACF=,∵AF=AC×sin∵ACF=1×=,∵S∵ACD===,∵CF=AC×cos∵ACF=1×=,FD=CD﹣CF=2﹣,在Rt∵AFD中,AD2=AF2+FD2==3,∵AD=.26.已知抛物线y=ax2+bx+c(a≠0)与x轴交于A、B两点(点A在点B的左边),与y轴交于点C(0,﹣3),顶点D的坐标为(1,﹣4).(1)求抛物线的解析式.(2)在y轴上找一点E,使得∵EAC为等腰三角形,请直接写出点E的坐标.(3)点P是x轴上的动点,点Q是抛物线上的动点,是否存在点P、Q,使得以点P、Q、B、D为顶点,BD为一边的四边形是平行四边形?若存在,请求出点P、Q坐标;若不存在,请说明理由.【分析】(1)根据抛物线的顶点坐标设出抛物线的解析式,再将点C坐标代入求解,即可得出结论;(2)先求出点A,C坐标,设出点E坐标,表示出AE,CE,AC,再分三种情况建立方程求解即可;(3)利用平移先确定出点Q的纵坐标,代入抛物线解析式求出点Q的横坐标,即可得出结论.【解答】解:(1)∵抛物线的顶点为(1,﹣4),∵设抛物线的解析式为y=a(x﹣1)2﹣4,将点C(0,﹣3)代入抛物线y=a(x﹣1)2﹣4中,得a﹣4=﹣3,∵a=1,∵抛物线的解析式为y=a(x﹣1)2﹣4=x2﹣2x﹣3;(2)由(1)知,抛物线的解析式为y=x2﹣2x﹣3,令y=0,则x2﹣2x﹣3=0,∵x=﹣1或x=3,∵B(3,0),A(﹣1,0),令x=0,则y=﹣3,∵C(0,﹣3),∵AC=,设点E(0,m),则AE=,CE=|m+3|,∵∵ACE是等腰三角形,∵∵当AC=AE时,=,∵m=3或m=﹣3(点C的纵坐标,舍去),∵E(3,0),∵当AC=CE时,=|m+3|,∵m=﹣3±,∵E(0,﹣3+)或(0,﹣3﹣),∵当AE=CE时,=|m+3|,∵m=﹣,∵E(0,﹣),即满足条件的点E的坐标为(0,3)、(0,﹣3+)、(0,﹣3﹣)、(0,﹣);(3)如图,存在,∵D(1,﹣4),∵将线段BD向上平移4个单位,再向右(或向左)平移适当的距离,使点B的对应点落在抛物线上,这样便存在点Q,此时点D的对应点就是点P,∵点Q的纵坐标为4,设Q(t,4),将点Q的坐标代入抛物线y=x2﹣2x﹣3中得,t2﹣2t﹣3=4,∵t=1+2或t=1﹣2,∵Q(1+2,4)或(1﹣2,4),分别过点D,Q作x轴的垂线,垂足分别为F,G,∵抛物线y=x2﹣2x﹣3与x轴的右边的交点B的坐标为(3,0),且D(1,﹣4),∵FB=PG=3﹣1=2,∵点P的横坐标为(1+2)﹣2=﹣1+2或(1﹣2)﹣2=﹣1﹣2,即P(﹣1+2,0)、Q(1+2,4)或P(﹣1﹣2,0)、Q(1﹣2,4).多送一套2019年北京卷,不喜欢可以删除2019年北京市中考数学试卷一、选择题(本题共16分,每小题2分)第1-8题均有四个选项,符合题意的选项只有一个.1.4月24日是中国航天日,1970年的这一天,我国自行设计、制造的第一颗人造地球卫星“东方红一号”成功发射,标志着中国从此进入了太空时代,它的运行轨道,距地球最近点439 000米.将439 000用科学记数法表示应为(A)60.43910(B)64.3910(C)54.3910(D)3439102.下列倡导节约的图案中,是轴对称图形的是(A)(B)(C)(D)3.正十边形的外角和为(A)180(B)360(C)720(D)14404.在数轴上,点A ,B 在原点O 的两侧,分别表示数a ,2,将点A 向右平移1个单位长度,得到点C .若CO=BO ,则a 的值为(A )3(B )2 (C )1 (D )15.已知锐角∵AOB 如图,(1)在射线OA 上取一点C ,以点O 为圆心,OC 长为半径作,交射线OB 于点D ,连接CD ;(2)分别以点C ,D 为圆心,CD 长为半径作弧,交于点M ,N ;(3)连接OM ,MN .根据以上作图过程及所作图形,下列结论中错误的是 (A )∵COM=∵COD (B )若OM=MN ,则∵AOB=20°(C )MN∵CD(D )MN=3CD6.如果1m n +=,那么代数式()22221m n m n m mn m +⎛⎫+⋅- ⎪-⎝⎭的值为(A )3-(B )1-(C )1 (D )37.用三个不等式a b >,0ab >,11a b <中的两个不等式作为题设,余下的一个不等式作为结论组成一个命题,组成真命题的个数为(A )0 (B )1 (C )2 (D )38.某校共有200名学生,为了解本学期学生参加公益劳动的情况,收集了他们参加公益劳动时间(单位:小时)等数据,以下是根据数据绘制的统计图表的一部分.B下面有四个推断:∵这200名学生参加公益劳动时间的平均数一定在24.5-25.5之间 ∵这200名学生参加公益劳动时间的中位数在20-30之间∵这200名学生中的初中生参加公益劳动时间的中位数一定在20-30之间 ∵这200名学生中的高中生参加公益劳动时间的中位数可能在20-30之间 所有合理推断的序号是 (A )∵∵(B )∵∵(C )∵∵∵ (D )∵∵∵∵二、填空题(本题共16分,每小题2分)9.若分式1x x -的值为0,则x 的值为______.10.如图,已知ABC ,通过测量、计算得ABC 的面积约为______cm2.(结果保留一位小数)11.在如图所示的几何体中,其三视图中有矩形的是______.(写出所有正确答案的序号)12.如图所示的网格是正方形网格,则PAB PBA ∠∠+=__________°(点A ,B ,P 是网格线交点).学生类别5第10题图CBA第11题图③圆锥②圆柱①长方体第12题图13.在平面直角坐标系xOy 中,点A ()a b ,()00a b >>,在双曲线1k y x =上.点A 关于x 轴的对称点B 在双曲线2k y x =上,则12k k +的值为______.14.把图1中的菱形沿对角线分成四个全等的直角三角形,将这四个直角三角形分别拼成如图2,图3所示的正方形,则图1中菱形的面积为______.15.小天想要计算一组数据92,90,94,86,99,85的方差20s .在计算平均数的过程中,将这组数据中的每一个数都减去90,得到一组新数据2,0,4,-4,9,-5.记这组新数据的方差为21s ,则21s ______2s . (填“>”,“=”或“<”)16.在矩形ABCD 中,M ,N ,P ,Q 分别为边AB ,BC ,CD ,DA 上的点(不与端点重合). 对于任意矩形ABCD ,下面四个结论中, ∵存在无数个四边形MNPQ 是平行四边形; ∵存在无数个四边形MNPQ 是矩形; ∵存在无数个四边形MNPQ 是菱形; ∵至少存在一个四边形MNPQ 是正方形. 所有正确结论的序号是______.三、解答题(本题共68分,第17-21题,每小题5分,第22-24题,每小题6分,第25题5分,第26题6分,第27-28题,每小题7分)解答应写出文字说明、演算步骤或证明过程.17.计算:()1142604sin π----++().图3图2图118.解不等式组:4(1)2,7.3x x x x -<+⎧⎪+⎨>⎪⎩19.关于x 的方程22210x x m -+-=有实数根,且m 为正整数,求m 的值及此时方程的根.20.如图,在菱形ABCD 中,AC 为对角线,点E ,F 分别在AB ,AD 上,BE=DF ,连接EF . (1)求证:AC∵EF ;(2)延长EF 交CD 的延长线于点G ,连接BD 交AC 于点O ,若BD=4,tanG=12,求AO 的长.21.国家创新指数是反映一个国家科学技术和创新竞争力的综合指数.对国家创新指数得分排名前40的国家的有关数据进行收集、整理、描述和分析.下面给出了部分信息:a .国家创新指数得分的频数分布直方图(数据分成7组:30≤x <40,40≤x <50,50≤x <60,60≤x <70,70≤x <80,80≤x <90,90≤x≤100);b .国家创新指数得分在60≤x <70这一组的是:61.7 62.4 63.6 65.9 66.4 68.5 69.1 69.3 69.5 c .40个国家的人均国内生产总值和国家创新指数得分情况统计图:d .中国的国家创新指数得分为69.5.(以上数据来源于《国家创新指数报告(2018)》) 根据以上信息,回答下列问题:(1)中国的国家创新指数得分排名世界第______;(2)在40个国家的人均国内生产总值和国家创新指数得分情况统计图中,包括中国在内的少数几个国家所对应的点位于虚线1l的上方.请在图中用“”圈出代表中国的点;(3)在国家创新指数得分比中国高的国家中,人均国内生产总值的最小值约为______万美元;(结果保留一位小数)(4)下列推断合理的是______.∵相比于点A ,B 所代表的国家,中国的国家创新指数得分还有一定差距,中国提出“加快建设创新型国家”的战略任务,进一步提高国家综合创新能力;∵相比于点B ,C 所代表的国家,中国的人均国内生产总值还有一定差距,中国提出“决胜全面建成小康社会”的奋斗目标,进一步提高人均国内生产总值.22.在平面内,给定不在同一直线上的点A ,B ,C ,如图所示.点O 到点A ,B ,C 的距离均等于a(a 为常数),到点O 的距离等于a 的所有点组成图形G ,∠ABC 的平分线交图形G 于点D ,连接AD ,CD .(1)求证:AD=CD ;(2)过点D 作DE ⊥BA ,垂足为E ,作DF ⊥BC ,垂足为F ,延长DF 交图形G 于点M ,连接CM .若AD=CM ,求直线DE 与图形G 的公共点个数./万元23.小云想用7天的时间背诵若干首诗词,背诵计划如下: ∵将诗词分成4组,第i 组有i x 首,i =1,2,3,4;∵对于第i 组诗词,第i 天背诵第一遍,第(1i )天背诵第二遍,第(3i )天背诵第三遍,三遍后完成背诵,其它天无需背诵,i =1,2,3,4;∵每天最多背诵14首,最少背诵4首.解答下列问题: (1)填入3x 补全上表;(2)若14x =,23x =,34x =,则4x 的所有可能取值为_________;(3)7天后,小云背诵的诗词最多为______首.24.如图,P 是与弦AB 所围成的图形的外部的一定点,C 是上一动点,连接PC 交弦AB 于点D .CBA小腾根据学习函数的经验,对线段PC ,PD ,AD 的长度之间的关系进行了探究. 下面是小腾的探究过程,请补充完整: (1)对于点C 在上的不同位置,画图、测量,得到了线段PC ,PD ,AD 的长度 的几组值,如下表:在PC ,PD ,AD 的长度这三个量中,确定的长度是自变量,的长度和 的长度都是这个自变量的函数;(2)在同一平面直角坐标系xOy 中,画出(1)中所确定的函数的图象;(3)结合函数图象,解决问题:当PC=2PD 时,AD 的长度约为______cm .AB25. 在平面直角坐标系xOy 中,直线l :()10y kx k =+≠与直线x k =,直线y k =-分别交于点A ,B ,直线x k =与直线y k =-交于点C .(1)求直线l 与y 轴的交点坐标;(2)横、纵坐标都是整数的点叫做整点.记线段AB BC CA ,,围成的区域(不含边界)为W . ∵当2k=时,结合函数图象,求区域W 内的整点个数;∵若区域W 内没有整点,直接写出k 的取值范围.26.在平面直角坐标系xOy 中,抛物线21y axbxa 与y 轴交于点A ,将点A 向右平移2个单位长度,得到点B ,点B 在抛物线上.(1)求点B 的坐标(用含a 的式子表示); (2)求抛物线的对称轴;(3)已知点11(,)2P a ,(2,2)Q .若抛物线与线段PQ 恰有一个公共点,结合函数图象,求a 的取值范围.27.已知30AOB ∠=︒,H 为射线OA 上一定点,1OH+,P 为射线OB 上一点,M 为线段OH 上一动点,连接PM ,满足OMP ∠为钝角,以点P 为中心,将线段PM 顺时针旋转150︒,得到线段PN ,连接ON . (1)依题意补全图1;(2)求证:OMP OPN ∠=∠;(3)点M 关于点H 的对称点为Q ,连接QP .写出一个OP 的值,使得对于任意的点M 总有ON=QP ,并证明.28.在∵ABC 中,D ,E 分别是ABC 两边的中点,如果上的所有点都在∵ABC 的内部或边上,则称为∵ABC 的中内弧.例如,下图中是∵ABC 的一条中内弧.(1)如图,在Rt∵ABC 中,22AB AC D E ==,,分别是AB AC ,的中点.画出∵ABC 的最长的中内弧,并直接写出此时的长;备用图图1BAOB ABCDE(2)在平面直角坐标系中,已知点()()()()0,20,04,00A B C t t >,,,在∵ABC 中,D E ,分别是AB AC ,的中点.∵若12t =,求∵ABC 的中内弧所在圆的圆心P 的纵坐标的取值范围; ∵若在∵ABC 中存在一条中内弧,使得所在圆的圆心P 在∵ABC 的内部或边上,直接写出t的取值范围.AED CB2019年北京市中考数学答案参考答案与试题解析一. 选择题.二. 填空题.9. 1 10. 测量可知11. ∵∵ 12. 45°13. 0 14. 12 15. =16. ∵∵∵三. 解答题.17.【答案】18.【答案】2 x<19.【答案】m=1,此方程的根为121x x== 20.【答案】(1)证明:∵四边形ABCD为菱形∵AB=AD,AC平分∵BAD∵BE=DF∵AB BE AD DF-=-∵AE=AF∵∵AEF是等腰三角形∵AC平分∵BAD∵AC∵EF(2)AO =1.21. 【答案】 (1)17 (2)(3)2.7 (4)∵∵ 22. 【答案】 (1)∵BD 平分∠ABC ∵∠=∠ABD CBD∵AD=CD(2)直线DE 与图形G 的公共点个数为1. 23. 【答案】 (1)如下图 第1天 第2天 第3天 第4天 第5天 第6天 第7天 第1组 第2组第3组 3x3x3x第4组(2)4,5,6 (3)23 24. 【答案】(1)AD , PC ,PD ; (2)(3)2.29或者3.98 25. 【答案】 (1)()0,1(2)∵6个 ∵10k -≤<或2k =-26. 【答案】(1)1(2,)B a ;(2)直线1x;(3)1a ≤2. 27. 【答案】(1)见图(2) 在∵OPM中,=180150OMP POM OPM OPM ∠︒-∠-∠=︒-∠ 150OPN MPN OPM OPM ∠=∠-∠=︒-∠ OMP OPN ∴∠=∠(3)OP=2. 28. 【答案】 (1)如图:1801180180n r l πππ===(2)∵1P y ≥或12P y ≤; ∵02t <≤BCD E。
贵州省黔东南州2020年中考数学试题(Word版,含答案与解析)

贵州省黔东南州2020年中考数学试卷一、选择题(共10题;共20分)1.﹣2020的倒数是()A. ﹣2020B. ﹣12020 C. 2020 D. 12020【答案】B【考点】有理数的倒数【解析】【解答】解:﹣2020的倒数是﹣12020.故答案为:B.【分析】根据“乘积为1的两个数互为倒数”即可判断求解。
2.下列运算正确的是()A. (x+y)2=x2+y2B. x3+x4=x7C. x3•x2=x6D. (﹣3x)2=9x2【答案】 D【考点】同底数幂的乘法,完全平方公式及运用,合并同类项法则及应用,积的乘方【解析】【解答】解:A、(x+y)2=x2+2xy+y2,故此选项错误;B、x3+x4,不是同类项,无法合并,故此选项错误;C、x3•x2=x5,故此选项错误;D、(﹣3x)2=9x2,故此选项正确.故答案为:D.【分析】(1)由完全平方公式展开后的结果应该是一个三项式,从而即可判断;(2)x3与x4不是同类项,无法合并,从而即可判断;(3)由“同底数幂相乘底数不变指数相加”即可判断;(4)由“积的乘方等于把每一个因式分别乘方,再把所得的幂相乘”即可判断D.3.实数2 √10介于()A. 4和5之间B. 5和6之间C. 6和7之间D. 7和8之间【答案】C【考点】估算无理数的大小【解析】【解答】解:∵2 √10=√40,且6<√40<7,∴6<2 √10<7.故答案为:C.【分析】首先由二次根式的性质将2 √10变形为√40,再估算出√40的大小即可判断求解.4.已知关于x的一元二次方程x2+5x﹣m=0的一个根是2,则另一个根是()A. ﹣7B. 7C. 3D. ﹣3【答案】A【考点】一元二次方程的根与系数的关系【解析】【解答】解:设另一个根为x,则x+2=﹣5,解得x=﹣7.故答案为:A.”可得关于另一个根的方程,解这个方程即可求解.【分析】根据根与系数的关系“两根之和等于−ba5.如图,将矩形ABCD沿AC折叠,使点B落在点B′处,B′C交AD于点E,若∠l=25°,则∠2等于()A. 25°B. 30°C. 50°D. 60°【答案】C【考点】矩形的性质,翻折变换(折叠问题)【解析】【解答】解:由折叠的性质可知:∠ACB′=∠1=25°.∵四边形ABCD为矩形,∴AD∥BC,∴∠2=∠1+∠ACB′=25°+25°=50°.故答案为:C.【分析】由折叠的性质可得∠ACB′=∠1,由矩形的性质可得出AD∥BC,再根据“两直线平行,内错角相等”可求出∠2的度数.6.桌上摆着一个由若干个相同的小正方体组成的几何体,其主视图和左视图如图所示,则组成这个几何体的小正方体的个数最多有()A. 12个B. 8个C. 14个D. 13个【答案】 D【考点】由三视图判断几何体【解析】【解答】解:底层正方体最多有9个正方体,第二层最多有4个正方体,所以组成这个几何体的小正方体的个数最多有13个.故答案为:D.【分析】由主视图知:左右两边最高有3层,中间最高有2层;由左视图知第一排和第三排最高有3层,中间最高有2层;由此可判断出各行各列最多有几个正方体组成即可求解.7.如图,⊙O的直径CD=20,AB是⊙O的弦,AB⊥CD,垂足为M,OM:OD=3:5,则AB的长为()A. 8B. 12C. 16D. 2 √91【答案】C【考点】垂径定理【解析】【解答】解:连接OA,∵⊙O的直径CD=20,OM:OD=3:5,∴OD=10,OM=6,∵AB⊥CD,∴AM=√OA2−OM2=√102−62=8,∴AB=2AM=16.故答案为:C.【分析】连接OA,先根据已知条件OM:OD=3:5易求出OD及OM的长,再用勾股定理可求出AM的长,然后结合垂径定理可求解.8.若菱形ABCD的一条对角线长为8,边CD的长是方程x2﹣10x+24=0的一个根,则该菱形ABCD的周长为()A. 16B. 24C. 16或24D. 48【答案】B【考点】因式分解法解一元二次方程,菱形的性质【解析】【解答】解:如图所示:∵四边形ABCD是菱形,∴AB=BC=CD=AD,∵x2﹣10x+24=0,因式分解得:(x﹣4)(x﹣6)=0,解得:x=4或x=6,分两种情况:①当AB=AD=4时,4+4=8,不能构成三角形;②当AB=AD=6时,6+6>8,∴菱形ABCD的周长=4AB=24.故答案为:B.【分析】用因式分解法解一元二次方程可得x=4,或x=6,分两种情况:①当AB=AD=4时,根据三角形三边关系定理可知不能构成三角形;②当AB=AD=6时,6+6>8,符合题意,再根据菱形的性质即可求得菱形ABCD的周长.9.如图,点A是反比例函数y═6x(x>0)上的一点,过点A作AC⊥y轴,垂足为点C,AC交反比例函数y=2x的图象于点B,点P是x轴上的动点,则△PAB的面积为()A. 2B. 4C. 6D. 8【答案】A【考点】反比例函数系数k的几何意义【解析】【解答】解:如图,连接OA、OB、PC.∵AC⊥y轴,∴S△APC=S△AOC=12×|6|=3,S△BPC=S△BOC=12×|2|=1,∴S△PAB=S△APC﹣S△BPC=2.故答案为:A.【分析】连接OA、OB、PC.由于AC⊥y轴,根据三角形的面积公式以及反比例函数比例系数k的几何意义得到S△APC=S△AOC=3,S△BPC=S△BOC=1,然后根据图形的构成S△PAB=S△APC﹣S△APB进行计算即可求解. 10.如图,正方形ABCD的边长为2,O为对角线的交点,点E、F分别为BC、AD的中点.以C为圆心,2为半径作圆弧BD⌢,再分别以E、F为圆心,1为半径作圆弧BO⌢、OD⌢,则图中阴影部分的面积为()A. π﹣1B. π﹣2C. π﹣3D. 4﹣π【答案】 B【考点】正方形的性质,扇形面积的计算【解析】【解答】解:由题意可得,阴影部分的面积是: 14 •π×22﹣ 12·π×12 ﹣2(1×1﹣ 14 •π×12)=π﹣2,故答案为:B.【分析】根据题意和图形的构成,可知阴影部分的面积是以2为半径的四分之一个圆的面积减去以1为半径的半圆的面积再减去2个以边长为1的正方形的面积减去以1半径的四分之一个圆的面积,代入计算即可求解. 二、填空题:(每小题3分,10个小题,共30分)(共10题;共30分)11.cos60°=________.【答案】 0.5【考点】特殊角的三角函数值【解析】【解答】特殊角的锐角三角函数值求解即可.cos60°=0.5.【分析】根据特殊角的三角函数值即可求解。
2020年贵州省黔西南州中考数学试卷(解析版)

2020年贵州省黔西南州中考数学试卷一、选择题(本题10小题,每题4分,共40分)1.(4分)2的倒数是()A.﹣2 B.2 C.﹣D.【分析】根据倒数的定义:乘积是1的两数互为倒数.一般地,a•=1 (a≠0),就说a(a≠0)的倒数是.【解答】解:2的倒数是,故选:D.2.(4分)某市为做好“稳就业、保民生”工作,将新建保障性住房360000套,缓解中低收入人群和新参加工作大学生的住房需求.把360000用科学记数法表示应是()A.0.36×106B.3.6×105C.3.6×106D.36×105【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.【解答】解:360000=3.6×105,故选:B.3.(4分)如图,由6个相同的小正方体组合成一个立体图形,它的俯视图为()A.B.C.D.【分析】找到从上面看所得到的图形即可.【解答】解:从上面看可得四个并排的正方形,如图所示:故选:D.4.(4分)下列运算正确的是()A.a3+a2=a5B.a3÷a=a3C.a2•a3=a5D.(a2)4=a6【分析】直接利用同底数幂的乘除运算法则以及幂的乘方运算法则分别化简得出答案.【解答】解:A、a3+a2,不是同类项,无法合并,故此选项错误;B、a3÷a=a2,故此选项错误;C、a2•a3=a5,正确;D、(a2)4=a8,故此选项错误;故选:C.5.(4分)某学校九年级1班九名同学参加定点投篮测试,每人投篮六次,投中的次数统计如下:4,3,5,5,2,5,3,4,1,这组数据的中位数、众数分别为()A.4,5 B.5,4 C.4,4 D.5,5【分析】根据众数及中位数的定义,结合所给数据即可作出判断.【解答】解:将数据从小到大排列为:1,2,3,3,4,4,5,5,5,这组数据的中位数为4;众数为5.故选:A.6.(4分)如图,将一块三角板的直角顶点放在直尺的一边上,当∠2=37°时,∠1的度数为()A.37°B.43°C.53°D.54°【分析】根据平行线的性质,可以得到∠2和∠3的关系,从而可以得到∠3的度数,然后根据∠1+∠3=90°,即可得到∠1的度数.【解答】解:∵AB∥CD,∠2=37°,∴∠2=∠3=37°,∵∠1+∠3=90°,∴∠1=53°,故选:C.7.(4分)如图,某停车场入口的栏杆AB,从水平位置绕点O旋转到A′B′的位置,已知AO的长为4米.若栏杆的旋转角∠AOA′=α,则栏杆A端升高的高度为()A.米B.4sinα米C.米D.4cosα米【分析】过点A′作A′C⊥AB于点C,根据锐角三角函数的定义即可求出答案.【解答】解:过点A′作A′C⊥AB于点C,由题意可知:A′O=AO=4,∴sinα=,∴A′C=4sinα,故选:B.8.(4分)已知关于x的一元二次方程(m﹣1)x2+2x+1=0有实数根,则m的取值范围是()A.m<2 B.m≤2C.m<2且m≠1D.m≤2且m≠1【分析】根据二次项系数非零及根的判别式△≥0,即可得出关于m的一元一次不等式组,解之即可得出m 的取值范围.【解答】解:∵关于x的一元二次方程(m﹣1)x2﹣2x+1=0有实数根,∴,解得:m≤2且m≠1.故选:D.9.(4分)如图,在菱形ABOC中,AB=2,∠A=60°,菱形的一个顶点C在反比例函数y═(k≠0)的图象上,则反比例函数的解析式为()A.y=﹣B.y=﹣C.y=﹣D.y=【分析】根据菱形的性质和平面直角坐标系的特点可以求得点C的坐标,从而可以求得k的值,进而求得反比例函数的解析式.【解答】解:∵在菱形ABOC中,∠A=60°,菱形边长为2,∴OC=2,∠COB=60°,∴点C的坐标为(﹣1,),∵顶点C在反比例函数y═的图象上,∴=,得k=﹣,即y=﹣,故选:B.10.(4分)如图,抛物线y=ax2+bx+4交y轴于点A,交过点A且平行于x轴的直线于另一点B,交x轴于C,D两点(点C在点D右边),对称轴为直线x=,连接AC,AD,BC.若点B关于直线AC的对称点恰好落在线段OC上,下列结论中错误的是()A.点B坐标为(5,4)B.AB=ADC.a=﹣D.OC•OD=16【分析】由抛物线y=ax2+bx+4交y轴于点A,可得点A的坐标,然后由抛物线的对称性可得点B的坐标,由点B关于直线AC的对称点恰好落在线段OC上,可知∠ACO=∠ACB,再结合平行线的性质可判断∠BAC =∠ACB,从而可知AB=AD;过点B作BE⊥x轴于点E,由勾股定理可得EC的长,则点C坐标可得,然后由对称性可得点D的坐标,则OC•OD的值可计算;由勾股定理可得AD的长,由双根式可得抛物线的解析式,根据以上计算或推理,对各个选项作出分析即可.【解答】解:∵抛物线y=ax2+bx+4交y轴于点A,∴A(0,4),∵对称轴为直线x=,AB∥x轴,∴B(5,4).故A无误;如图,过点B作BE⊥x轴于点E,则BE=4,AB=5,∵AB∥x轴,∴∠BAC=∠ACO,∵点B关于直线AC的对称点恰好落在线段OC上,∴∠ACO=∠ACB,∴∠BAC=∠ACB,∴BC=AB=5,∴在Rt△BCE中,由勾股定理得:EC=3,∴C(8,0),∵对称轴为直线x=,∴D(﹣3,0)∵在Rt△ADO中,OA=4,OD=3,∴AD=5,∴AB=AD,故B无误;设y=ax2+bx+4=a(x+3)(x﹣8),将A(0,4)代入得:4=a(0+3)(0﹣8),∴a=﹣,故C无误;∵OC=8,OD=3,∴OC•OD=24,故D错误.综上,错误的只有D.故选:D.二、填空题(本题10小题,每题3分,共30分)11.(3分)把多项式a3﹣4a分解因式,结果是a(a+2)(a﹣2).【分析】首先提公因式a,再利用平方差进行二次分解即可.【解答】解:原式=a(a2﹣4)=a(a+2)(a﹣2).故答案为:a(a+2)(a﹣2).12.(3分)若7a x b2与﹣a3b y的和为单项式,则y x=8.【分析】直接利用合并同类项法则进而得出x,y的值,即可得出答案.【解答】解:∵7a x b2与﹣a3b y的和为单项式,∴7a x b2与﹣a3b y是同类项,∴x=3,y=2,∴y x=23=8.故答案为:8.13.(3分)不等式组的解集为﹣6<x≤13.【分析】首先分别计算出两个不等式的解集,再确定不等式组的解集即可.【解答】解:,解①得:x>﹣6,解②得:x≤13,不等式组的解集为:﹣6<x≤13,故答案为:﹣6<x≤13.14.(3分)如图,在Rt△ABC中,∠C=90°,点D在线段BC上,且∠B=30°,∠ADC=60°,BC=3,则BD的长度为2.【分析】首先证明DB=AD=CD,然后再由条件BC=3可得答案.【解答】解:∵∠C=90°,∠ADC=60°,∴∠DAC=30°,∴CD=AD,∵∠B=30°,∠ADC=60°,∴∠BAD=30°,∴BD=AD,∴BD=2CD,∵BC=3,∴CD+2CD=3,∴CD=,∴DB=2,故答案为:2.15.(3分)如图,正比例函数的图象与一次函数y=﹣x+1的图象相交于点P,点P到x轴的距离是2,则这个正比例函数的解析式是y=﹣2x.【分析】根据图象和题意,可以得到点P的纵坐标,然后代入一次函数解析式,即可得到点P的坐标,然后代入正比例函数解析式,即可得到这个正比例函数的解析式.【解答】解:∵点P到x轴的距离为2,∴点P的纵坐标为2,∵点P在一次函数y=﹣x+1上,∴2=﹣x+1,得x=﹣1,∴点P的坐标为(﹣1,2),设正比例函数解析式为y=kx,则2=﹣k,得k=﹣2,∴正比例函数解析式为y=﹣2x,故答案为:y=﹣2x.16.(3分)如图,对折矩形纸片ABCD,使AB与DC重合得到折痕EF,将纸片展平,再一次折叠,使点D落到EF上点G处,并使折痕经过点A,已知BC=2,则线段EG的长度为.【分析】直接利用翻折变换的性质以及直角三角形的性质得出∠2=∠4,再利用平行线的性质得出∠1=∠2=∠3,进而得出答案.【解答】解:如图所示:由题意可得:∠1=∠2,AN=MN,∠MGA=90°,则NG=AM,故AN=NG,∴∠2=∠4,∵EF∥AB,∴∠4=∠3,∴∠1=∠2=∠3=∠4=×90°=30°,∵四边形ABCD是矩形,对折矩形纸片ABCD,使AB与DC重合得到折痕EF,∴AE=AD=BC=1,∴AG=2,∴EG==,故答案为:.17.(3分)如图,是一个运算程序的示意图,若开始输入x的值为625,则第2020次输出的结果为1.【分析】依次求出每次输出的结果,根据结果得出规律,即可得出答案.【解答】解:当x=625时,x=125,当x=125时,x=25,当x=25时,x=5,当x=5时,x=1,当x=1时,x+4=5,当x=5时,x=1,…依此类推,以5,1循环,(2020﹣2)÷2=1009,能够整除,所以输出的结果是1,故答案为:118.(3分)有一人患了流感,经过两轮传染后,共有121人患了流感,每轮传染中平均每人传染了10个人.【分析】设每轮传染中平均每人传染了x人.开始有一人患了流感,第一轮的传染源就是这个人,他传染了x人,则第一轮后共有(1+x)人患了流感;第二轮传染中,这些人中的每个人又传染了x人,则第二轮后共有[1+x+x(x+1)]人患了流感,而此时患流感人数为121,根据这个等量关系列出方程.【解答】解:设每轮传染中平均每人传染了x人.依题意,得1+x+x(1+x)=121,即(1+x)2=121,解方程,得x1=10,x2=﹣12(舍去).答:每轮传染中平均每人传染了10人.19.(3分)如图图形都是由同样大小的菱形按照一定规律所组成的,其中第①个图形中一共有3个菱形,第②个图形中一共有7个菱形,第③个图形中一共有13个菱形,…,按此规律排列下去,第⑦个图形中菱形的个数为57.【分析】根据图形的变化规律即可得第⑦个图形中菱形的个数.【解答】解:第①个图形中一共有3个菱形,即2+1×1=3;第②个图形中一共有7个菱形,即3+2×2=7;第③个图形中一共有13个菱形,即4+3×3=13;…,按此规律排列下去,所以第⑦个图形中菱形的个数为:8+7×7=57.故答案为:57.20.(3分)如图,在△ABC中,CA=CB,∠ACB=90°,AB=2,点D为AB的中点,以点D为圆心作圆心角为90°的扇形DEF,点C恰在弧EF上,则图中阴影部分的面积为﹣.【分析】连接CD,作DM⊥BC,DN⊥AC,证明△DMG≌△DNH,则S四边形DGCH=S四边形DMCN,求得扇形FDE的面积,则阴影部分的面积即可求得.【解答】解:连接CD,作DM⊥BC,DN⊥AC.∵CA=CB,∠ACB=90°,点D为AB的中点,∴DC=AB=1,四边形DMCN是正方形,DM=.则扇形FDE的面积是:=.∵CA=CB,∠ACB=90°,点D为AB的中点,∴CD平分∠BCA,又∵DM⊥BC,DN⊥AC,∴DM=DN,∵∠GDH=∠MDN=90°,∴∠GDM=∠HDN,在△DMG和△DNH中,,∴△DMG≌△DNH(AAS),∴S四边形DGCH=S四边形DMCN=.则阴影部分的面积是:﹣.故答案为﹣.三、解答题(本题6小题,共80分)21.(12分)(1)计算(﹣2)2﹣|﹣|﹣2cos45°+(2020﹣π)0;(2)先化简,再求值:(+),其中a=﹣1.【分析】(1)直接利用零指数幂的性质以及特殊角的三角函数值、绝对值的性质分别化简得出答案;(2)直接将括号里面通分运算进而利用分式的混合运算法则计算得出答案.【解答】解:(1)原式=4﹣﹣2×+1=4﹣﹣+1=5﹣2;(2)原式=[+]•=•=,当a=﹣1时,原式==.22.(12分)规定:在平面内,如果一个图形绕一个定点旋转一定的角度α(0°<α≤180°)后能与自身重合,那么就称这个图形是旋转对称图形,转动的这个角度α称为这个图形的一个旋转角.例如:正方形绕着两条对角线的交点O旋转90°或180°后,能与自身重合(如图1),所以正方形是旋转对称图形,且有两个旋转角.根据以上规定,回答问题:(1)下列图形是旋转对称图形,但不是中心对称图形的是B;A.矩形B.正五边形C.菱形D.正六边形(2)下列图形中,是旋转对称图形,且有一个旋转角是60度的有:(1)(3)(5)(填序号);(3)下列三个命题:①中心对称图形是旋转对称图形;②等腰三角形是旋转对称图形;③圆是旋转对称图形.其中真命题的个数有C个;A.0B.1C.2D.3(4)如图2的旋转对称图形由等腰直角三角形和圆构成,旋转角有45°,90°,135°,180°,将图形补充完整.【分析】(1)根据旋转图形,中心对称图形的定义判断即可.(2)旋转对称图形,且有一个旋转角是60度判断即可.(3)根据旋转图形的定义判断即可.(4)根据要求画出图形即可.【解答】解:(1)是旋转图形,不是中心对称图形是正五边形,故选B.(2)是旋转对称图形,且有一个旋转角是60度的有(1)(3)(5).故答案为(1)(3)(5).(3)命题中①③正确,故选C.(4)图形如图所示:23.(14分)新学期,某校开设了“防疫宣传”“心理疏导”等课程.为了解学生对新开设课程的掌握情况,从八年级学生中随机抽取了部分学生进行了一次综合测试.测试结果分为四个等级:A级为优秀,B级为良好,C级为及格,D级为不及格.将测试结果绘制了如图两幅不完整的统计图.根据统计图中的信息解答下列问题:(1)本次抽样测试的学生人数是40名;(2)扇形统计图中表示A级的扇形圆心角α的度数是54°,并把条形统计图补充完整;(3)该校八年级共有学生500名,如果全部参加这次测试,估计优秀的人数为75人;(4)某班有4名优秀的同学(分别记为E、F、G、H,其中E为小明),班主任要从中随机选择两名同学进行经验分享.利用列表法或画树状图法,求小明被选中的概率.【分析】(1)由题意可得本次抽样测试的学生人数是:12÷30%=40(人),(2)首先可求得A级人数的百分比,继而求得∠α的度数,然后补出条形统计图;(3)根据A级人数的百分比,列出算式即可求得优秀的人数;(4)首先根据题意画出树状图,然后由树状图求得所有等可能的结果与选中小明的情况,再利用概率公式即可求得答案.【解答】解:(1)本次抽样测试的学生人数是:12÷30%=40(人);(2)∵A级的百分比为:×100%=15%,∴∠α=360°×15%=54°;C级人数为:40﹣6﹣12﹣8=14(人).如图所示:(3)500×15%=75(人).故估计优秀的人数为75人;(4)画树状图得:∵共有12种等可能的结果,选中小明的有6种情况,∴选中小明的概率为.故答案为:40;54°;75人.24.(14分)随着人们“节能环保,绿色出行”意识的增强,越来越多的人喜欢骑自行车出行,也给自行车商家带来商机.某自行车行经营的A型自行车去年销售总额为8万元.今年该型自行车每辆售价预计比去年降低200元.若该型车的销售数量与去年相同,那么今年的销售总额将比去年减少10%,求:(1)A型自行车去年每辆售价多少元?(2)该车行今年计划新进一批A型车和新款B型车共60辆,且B型车的进货数量不超过A型车数量的两倍.已知A型车和B型车的进货价格分别为1500元和1800元,计划B型车销售价格为2400元,应如何组织进货才能使这批自行车销售获利最多?【分析】(1)设去年A型车每辆售价x元,则今年售价每辆为(x﹣200)元,由卖出的数量相同建立方程求出其解即可;(2)设今年新进A型车a辆,则B型车(60﹣a)辆,获利y元,由条件表示出y与a之间的关系式,由a 的取值范围就可以求出y的最大值.【解答】解:(1)设去年A型车每辆售价x元,则今年售价每辆为(x﹣200)元,由题意,得=,解得:x=2000.经检验,x=2000是原方程的根.答:去年A型车每辆售价为2000元;(2)设今年新进A型车a辆,则B型车(60﹣a)辆,获利y元,由题意,得y=(1800﹣1500)a+(2400﹣1800)(60﹣a),y=﹣300a+36000.∵B型车的进货数量不超过A型车数量的两倍,∴60﹣a≤2a,∴a≥20.∵y=﹣300a+36000.∴k=﹣300<0,∴y随a的增大而减小.∴a=20时,y有最大值∴B型车的数量为:60﹣20=40辆.∴当新进A型车20辆,B型车40辆时,这批车获利最大.25.(12分)古希腊数学家毕达哥拉斯认为:“一切平面图形中最美的是圆”.请研究如下美丽的圆.如图,线段AB是⊙O的直径,延长AB至点C,使BC=OB,点E是线段OB的中点,DE⊥AB交⊙O于点D,点P是⊙O上一动点(不与点A,B重合),连接CD,PE,PC.(1)求证:CD是⊙O的切线;(2)小明在研究的过程中发现是一个确定的值.回答这个确定的值是多少?并对小明发现的结论加以证明.【分析】(1)连接OD、DB,由已知可知DE垂直平分OB,则DB=DO,再由圆的半径相等,可得DB=DO=OB,即△ODB是等边三角形,则∠BDO=60°,再由等腰三角形的性质及三角形的外角性质可得∠CDB =30°,从而可得∠ODC=90°,按照切线的判定定理可得结论;(2)连接OP,先由已知条件得OP=OB=BC=2OE,再利用两组边成比例,夹角相等来证明△OEP∽△OPC,按照相似三角形的性质得出比例式,则可得答案.【解答】解:(1)连接OD、DB,∵点E是线段OB的中点,DE⊥AB交⊙O于点D,∴DE垂直平分OB,∴DB=DO.∵在⊙O中,DO=OB,∴DB=DO=OB,∴△ODB是等边三角形,∴∠BDO=∠DBO=60°,∵BC=OB=BD,且∠DBE为△BDC的外角,∴∠BCD=∠BDC=∠DBO.∵∠DBO=60°,∴∠CDB=30°.∴∠ODC=∠BDO+∠BDC=60°+30°=90°,∴CD是⊙O的切线;(2)答:这个确定的值是.连接OP,如图:由已知可得:OP=OB=BC=2OE.∴==,又∵∠COP=∠POE,∴△OEP∽△OPC,∴==.26.(16分)已知抛物线y=ax2+bx+6(a≠0)交x轴于点A(6,0)和点B(﹣1,0),交y轴于点C.(1)求抛物线的解析式和顶点坐标;(2)如图(1),点P是抛物线上位于直线AC上方的动点,过点P分别作x轴、y轴的平行线,交直线AC 于点D,E,当PD+PE取最大值时,求点P的坐标;(3)如图(2),点M为抛物线对称轴l上一点,点N为抛物线上一点,当直线AC垂直平分△AMN的边MN时,求点N的坐标.【分析】(1)将点A,B坐标代入抛物线解析式中,解方程组即可得出结论;(2)先求出OA=OC=6,进而得出∠OAC=45°,进而判断出PD=PE,即可得出当PE的长度最大时,PE+PD取最大值,设出点E坐标,表示出点P坐标,建立PE=﹣t2+6t=﹣(t﹣3)2+9,即可得出结论;(3)先判断出NF∥x轴,进而求出点N的纵坐标,即可建立方程求解得出结论.【解答】解:(1)∵抛物线y=ax2+bx+6经过点A(6,0),B(﹣1,0),∴,∴,∴抛物线的解析式为y=﹣x2+5x+6=﹣(x﹣)2+,∴抛物线的解析式为y=﹣x2+5x+6,顶点坐标为(,);(2)由(1)知,抛物线的解析式为y=﹣x2+5x+6,∴C(0,6),∴OC=6,∵A(6,0),∴OA=6,∴OA=OC,∴∠OAC=45°,∵PD平行于x轴,PE平行于y轴,∴∠DPE=90°,∠PDE=∠DAO=45°,∴∠PED=45°,∴∠PDE=∠PED,∴PD=PE,∴PD+PE=2PE,∴当PE的长度最大时,PE+PD取最大值,∵A(6,0),C(0,6),∴直线AC的解析式为y=﹣x+6,设E(t,﹣t+6)(0<t<6),则P(t,﹣t2+5t+6),∴PE=﹣t2+5t+6﹣(﹣t+6)=﹣t2+6t=﹣(t﹣3)2+9,当t=3时,PE最大,此时,﹣t2+5t+6=12,∴P(3,12);(3)如图(2),设直线AC与抛物线的对称轴l的交点为F,连接NF,∵点F在线段MN的垂直平分线AC上,∴FM=FN,∠NFC=∠MFC,∵l∥y轴,∴∠MFC=∠OCA=45°,∴∠MFN=∠NFC+∠MFC=90°,∴NF∥x轴,由(2)知,直线AC的解析式为y=﹣x+6,当x=时,y=,∴F(,),∴点N的纵坐标为,设N的坐标为(m,﹣m2+5m+6),∴﹣m2+5m+6=,解得,m=或m=,∴点N的坐标为(,)或(,).。
2020年贵州省黔东南州中考数学试卷解析版

2020年贵州省黔东南州中考数学试卷题号一二三四总分得分一、选择题(本大题共10小题,共40.0分)1.-2020的倒数是()A. -2020B. -C. 2020D.2.下列运算正确的是()A. (x+y)2=x2+y2B. x3+x4=x7C. x3•x2=x6D. (-3x)2=9x23.实数2介于()A. 4和5之间B. 5和6之间C. 6和7之间D. 7和8之间4.已知关于x的一元二次方程x2+5x-m=0的一个根是2,则另一个根是()A. -7B. 7C. 3D. -35.如图,将矩形ABCD沿AC折叠,使点B落在点B′处,B′C交AD于点E,若∠l=25°,则∠2等于()A. 25°B. 30°C. 50°D. 60°6.桌上摆着一个由若干个相同的小正方体组成的几何体,其主视图和左视图如图所示,则组成这个几何体的小正方体的个数最多有()A. 12个B. 8个C. 14个D. 13个7.如图,⊙O的直径CD=20,AB是⊙O的弦,AB⊥CD,垂足为M,OM:OC=3:5,则AB的长为()A. 8B. 12C. 16D. 28.若菱形ABCD的一条对角线长为8,边CD的长是方程x2-10x+24=0的一个根,则该菱形ABCD的周长为()A. 16B. 24C. 16或24D. 489.如图,点A是反比例函数y═(x>0)上的一点,过点A作AC⊥y轴,垂足为点C,AC交反比例函数y=的图象于点B,点P是x轴上的动点,则△PAB的面积为()A. 2B. 4C. 6D. 810.如图,正方形ABCD的边长为2,O为对角线的交点,点E、F分别为BC、AD的中点.以C为圆心,2为半径作圆弧,再分别以E、F为圆心,1为半径作圆弧、,则图中阴影部分的面积为()A. π-1B. π-2C. π-3D. 4-π二、填空题(本大题共10小题,共30.0分)11.计算cos60°=______.12.2020年以来,新冠肺炎橫行,全球经济遭受巨大损失,人民生命安全受到巨大威胁.截止6月份,全球确诊人数约3200000人,其中3200000用科学记数法表示为______.13.在实数范围内分解因式:xy2-4x=______.14.不等式组的解集为______.15.把直线y=2x-1向左平移1个单位长度,再向上平移2个单位长度,则平移后所得直线的解析式为______.16.抛物线y=ax2+bx+c(a≠0)的部分图象如图所示,其与x轴的一个交点坐标为(-3,0),对称轴为x=-1,则当y<0时,x的取值范围是______.17.以▱ABCD对角线的交点O为原点,平行于BC边的直线为x轴,建立如图所示的平面直角坐标系.若A点坐标为(-2,1),则C点坐标为______.18.某校九(1)班准备举行一次演讲比赛,甲、乙、丙三人通过抽签方式决定出场顺序,则出场顺序恰好是甲、乙、丙的概率是______.19.如图,AB是半圆O的直径,AC=AD,OC=2,∠CAB=30°,则点O到CD的距离OE为______.20.如图,矩形ABCD中,AB=2,BC=,E为CD的中点,连接AE、BD交于点P,过点P作PQ⊥BC于点Q,则PQ=______.三、计算题(本大题共2小题,共26.0分)21.(1)计算:()-2-|-3|+2tan45°-(2020-π)0;(2)先化简,再求值:(-a+1)÷,其中a从-1,2,3中取一个你认为合适的数代入求值.22.如图,AB是⊙O的直径,点C是⊙O上一点(与点A,B不重合),过点C作直线PQ,使得∠ACQ=∠ABC.(1)求证:直线PQ是⊙O的切线.(2)过点A作AD⊥PQ于点D,交⊙O于点E,若⊙O的半径为2,sin∠DAC=,求图中阴影部分的面积.四、解答题(本大题共4小题,共54.0分)23.某校对九年级学生进行一次综合文科中考模拟测试,成绩x分(x为整数)评定为优秀、良好、合格、不合格四个等级(优秀、良好、合格、不合格分别用A、B、C、D表示),A等级:90≤x≤100,B等级:80≤x<90,C等级:60≤x<80,D等级:0≤x<60.该校随机抽取了一部分学生的成绩进行调查,并绘制成如图不完整的统计图表.等级频数(人数)频率A a20%B1640%C b mD410%请你根据统计图表提供的信息解答下列问题:(1)上表中的a______,b=______,m=______.(2)本次调查共抽取了多少名学生?请补全条形图.(3)若从D等级的4名学生中抽取两名学生进行问卷调查,请用画树状图或列表的方法求抽取的两名学生恰好是一男一女的概率.24.黔东南州某超市购进甲、乙两种商品,已知购进3件甲商品和2件乙商品,需60元;购进2件甲商品和3件乙商品,需65元.(1)甲、乙两种商品的进货单价分别是多少?(2)设甲商品的销售单价为x(单位:元/件),在销售过程中发现:当11≤x≤19时,甲商品的日销售量y(单位:件)与销售单价x之间存在一次函数关系,x、y 之间的部分数值对应关系如表:销售单价x(元/件)1119日销售量y(件)182(3)在(2)的条件下,设甲商品的日销售利润为w元,当甲商品的销售单价x(元/件)定为多少时,日销售利润最大?最大利润是多少?25.如图1,△ABC和△DCE都是等边三角形.探究发现(1)△BCD与△ACE是否全等?若全等,加以证明;若不全等,请说明理由.拓展运用(2)若B、C、E三点不在一条直线上,∠ADC=30°,AD=3,CD=2,求BD的长.(3)若B、C、E三点在一条直线上(如图2),且△ABC和△DCE的边长分别为1和2,求△ACD的面积及AD的长.26.已知抛物线y=ax2+bx+c(a≠0)与x轴交于A、B两点(点A在点B的左边),与y轴交于点C(0,-3),顶点D的坐标为(1,-4).(1)求抛物线的解析式.(2)在y轴上找一点E,使得△EAC为等腰三角形,请直接写出点E的坐标.(3)点P是x轴上的动点,点Q是抛物线上的动点,是否存在点P、Q,使得以点P、Q、B、D为顶点,BD为一边的四边形是平行四边形?若存在,请求出点P、Q坐标;若不存在,请说明理由.答案和解析1.【答案】B【解析】解:-2020的倒数是-,故选:B.根据倒数的概念解答.本题考查的是求一个数的倒数,掌握求一个整数的倒数,就是写成这个整数分之一是解题的关键.2.【答案】D【解析】解:A、(x+y)2=x2+2xy+y2,故此选项错误;B、x3+x4,不是同类项,无法合并,故此选项错误;C、x3•x2=x5,故此选项错误;D、(-3x)2=9x2,正确.故选:D.直接利用完全平方公式以及合并同类项、同底数幂的乘法运算和积的乘方运算法则分别计算得出答案.此题主要考查了完全平方公式以及合并同类项、同底数幂的乘法运算和积的乘方运算,正确掌握相关运算法则是解题关键.3.【答案】C【解析】解:∵2=,且6<<7,∴6<2<7.故选:C.首先化简2=,再估算,由此即可判定选项.此题主要考查了无理数的估算,现实生活中经常需要估算,估算应是我们具备的数学能力,“夹逼法”是估算的一般方法,也是常用方法.4.【答案】A【解析】解:设另一个根为x,则x+2=-5,解得x=-7.故选:A.根据根与系数的关系即可求出答案.本题考查根与系数的关系,解题的关键是熟练运用根与系数的关系,本题属于基础题型.5.【答案】C【解析】解:由折叠的性质可知:∠ACB′=∠1=25°.∵四边形ABCD为矩形,∴AD∥BC,∴∠2=∠1+∠ACB′=25°+25°=50°.故选:C.由折叠的性质可得出∠ACB′的度数,由矩形的性质可得出AD∥BC,再利用“两直线平行,内错角相等”可求出∠2的度数.本题考查了平行线的性质以及矩形的性质,牢记“两直线平行,内错角相等”是解题的关键.6.【答案】D【解析】解:底层正方体最多有9个正方体,第二层最多有4个正方体,所以组成这个几何体的小正方体的个数最多有13个.故选:D.易得此几何体有三行,三列,判断出各行各列最多有几个正方体组成即可.本题考查了由三视图判断几何体的知识,解决本题的关键是利用“主视图疯狂盖,左视图拆违章”找到所需最多正方体的个数.7.【答案】C【解析】解:连接OA,∵⊙O的直径CD=20,OM:OD=3:5,∴OD=10,OM=6,∵AB⊥CD,∴AM===8,∴AB=2AM=16.故选:C.连接OA,先根据⊙O的直径CD=20,OM:OD=3:5求出OD及OM的长,再根据勾股定理可求出AM的长,进而得出结论.本题考查的是垂径定理,根据题意作出辅助线,构造出直角三角形是解答此题的关键.8.【答案】B【解析】解:如图所示:∵四边形ABCD是菱形,∴AB=BC=CD=AD,∵x2-10x+24=0,因式分解得:(x-4)(x-6)=0,解得:x=4或x=6,分两种情况:①当AB=AD=4时,4+4=8,不能构成三角形;②当AB=AD=6时,6+6>8,∴菱形ABCD的周长=4AB=24.故选:B.解方程得出x=4,或x=6,分两种情况:①当AB=AD=4时,4+4=8,不能构成三角形;②当AB=AD=6时,6+6>8,即可得出菱形ABCD的周长.本题考查了菱形的性质、一元二次方程的解法、三角形的三边关系;熟练掌握菱形的性质,由三角形的三边关系得出AB是解决问题的关键.9.【答案】A【解析】解:如图,连接OA、OB、PC.∵AC⊥y轴,∴S△APC=S△AOC=×|6|=3,S△BPC=S△BOC=×|2|=1,∴S△PAB=S△APC-S△BPC=2.故选:A.连接OA、OB、PC.由于AC⊥y轴,根据三角形的面积公式以及反比例函数比例系数k的几何意义得到S△APC=S△AOC=3,S△BPC=S△BOC=1,然后利用S△PAB=S△APC-S△APB进行计算.本题考查了反比例函数y=(k≠0)系数k的几何意义:即图象上的点与原点所连的线段、坐标轴、向坐标轴作垂线所围成的直角三角形面积S的关系即S=|k|.也考查了三角形的面积.10.【答案】B【解析】解:由题意可得,阴影部分的面积是:•π×22--2(1×1-•π×12)=π-2,故选:B.根据题意和图形,可知阴影部分的面积是以2为半径的四分之一个圆的面积减去以1为半径的半圆的面积再减去2个以边长为1的正方形的面积减去以1半径的四分之一个圆的面积,本题得以解决.本题考查扇形的面积的计算,解答本题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答.11.【答案】【解析】解:cos60°=.故答案为:.根据记忆的内容,cos60°=即可得出答案.此题考查了特殊角的三角函数值,属于基础题,注意掌握特殊角的三角函数值,这是需要我们熟练记忆的内容.12.【答案】3.2×106【解析】解:3200000=3.2×106.故答案为:3.2×106.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值≥10时,n是正数;当原数的绝对值<1时,n是负数.此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.13.【答案】x(y+2)(y-2)【解析】解:xy2-4x=x(y2-4)=x(y+2)(y-2).故答案为:x(y+2)(y-2).本题可先提公因式x,再运用平方差公式分解因式即可求解.本题考查了提公因式法,平方差公式分解因式的方法,正解运用公式法分解因式是关键14.【答案】2<x≤6【解析】解:解不等式5x-1>3(x+1),得:x>2,解不等式x-1≤4-x,得:x≤6,则不等式组的解集为2<x≤6,故答案为:2<x≤6.先根据解不等式的基本步骤求出每个不等式的解集,再根据“大小小大中间找”可确定不等式组的解集.本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.15.【答案】y=2x+3【解析】解:把直线y=2x-1向左平移1个单位长度,得到y=2(x+1)-1=2x+1,再向上平移2个单位长度,得到y=2x+3.故答案为:y=2x+3.直接利用一次函数的平移规律进而得出答案.此题主要考查了一次函数与几何变换,正确掌握平移规律是解题关键.16.【答案】-3<x<1【解析】解:∵物线y=ax2+bx+c(a≠0)与x轴的一个交点坐标为(-3,0),对称轴为x=-1,∴抛物线与x轴的另一个交点为(1,0),由图象可知,当y<0时,x的取值范围是-3<x<1.故答案为:-3<x<1.根据物线与x轴的一个交点坐标和对称轴,由抛物线的对称性可求抛物线与x轴的另一个交点,再根据抛物线的增减性可求当y<0时,x的取值范围.本题考查了抛物线与x轴的交点,二次函数的性质,关键是得到抛物线与x轴的另一个交点.17.【答案】(2,-1)【解析】解:∵▱ABCD对角线的交点O为原点,A点坐标为(-2,1),∴点C的坐标为(2,-1),故答案为:(2,-1).根据平行四边形是中心对称图形,再根据▱ABCD对角线的交点O为原点和点A的坐标,即可得到点C的坐标.本题考查平行四边形的性质、坐标与图形性质,解答本题的关键是明确题意,利用平行四边形的性质解答.18.【答案】【解析】解:画出树状图得:∵共有6种等可能的结果,其中出场顺序恰好是甲、乙、丙的只有1种结果,∴出场顺序恰好是甲、乙、丙的概率为,故答案为:.首先根据题意画出树状图,然后由树状图求得所有等可能的结果与出场顺序恰好是甲、乙、丙的情况,再利用概率公式求解即可求得答案.本题考查的是用列表法或画树状图法求概率.列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件,树状图法适合两步或两步以上完成的事件.注意概率=所求情况数与总情况数之比.19.【答案】【解析】解:∵AC=AD,∠A=30°,∴∠ACD=∠ADC=75°,∵AO=OC,∴∠OCA=∠A=30°,∴∠OCD=45°,即△OCE是等腰直角三角形,在等腰Rt△OCE中,OC=2;因此OE=.故答案为:.在等腰△ACD中,顶角∠A=30°,易求得∠ACD=75°;根据等边对等角,可得:∠OCA=∠A=30°,由此可得,∠OCD=45°;即△COE是等腰直角三角形,则OE=.本题综合考查了等腰三角形的性质、三角形的内角和定理、解直角三角形等知识的应用.20.【答案】【解析】解:∵四边形ABCD是矩形,∴AB∥CD,AB=CD,AD=BC,∠BAD=90°,∵E为CD的中点,∴DE=CD=AB,∴△ABP∽△EDP,∴=,∴=,∴=,∵PQ⊥BC,∴PQ∥CD,∴△BPQ∽△DBC,∴==,∵CD=2,∴PQ=,故答案为:.根据矩形的性质得到AB∥CD,AB=CD,AD=BC,∠BAD=90°,根据线段中点的定义得到DE=CD=AB,根据相似三角形的性质即可得到结论.本题考查了相似三角形的判定和性质,矩形的性质,正确的识别图形是解题的关键.21.【答案】解:(1)()-2-|-3|+2tan45°-(2020-π)0=4+-3+2×1-1=4+-3+2-1=2+;(2)(-a+1)÷=×==-a-1,要使原式有意义,只能a=3,则当a=3时,原式=-3-1=-4.【解析】(1)先算负整数指数幂,绝对值,特殊角的三角函数值,零指数幂,再算加减法即可求解;(2)先通分,把除法转化成乘法,再把分式的分子与分母因式分解,然后约分,最后代入一个合适的数即可.此题考查了分式的化简求值,用到的知识点是分式的减法、除法,关键是利用分式的有关运算法则对要求的式子进行化简.同时考查了负整数指数幂,绝对值,特殊角的三角函数值,零指数幂的计算.22.【答案】解:(1)证明:如图,连接OC,∵AB是⊙O的直径,∴∠ACB=90°,∵OA=OC,∴∠CAB=∠ACO.∵∠ACQ=∠ABC,∴∠CAB+∠ABC=∠ACO+∠ACQ=∠OCQ=90°,即OC⊥PQ,∴直线PQ是⊙O的切线.(2)连接OE,∵sin∠DAC=,AD⊥PQ,∴∠DAC=30°,∠ACD=60°.又∵OA=OE,∴△AEO为等边三角形,∴∠AOE=60°.∴S阴影=S扇形-S△AEO=S扇形-OA•OE•sin60°=×22-×2×2×=-.∴图中阴影部分的面积为-.【解析】(1)连接OC,由直径所对的圆周角为直角,可得∠ACB=90°;利用等腰三角形的性质及已知条件∠ACQ=∠ABC,可求得∠OCQ=90°,按照切线的判定定理可得结论.(2)由sin∠DAC=,可得∠DAC=30°,从而可得∠ACD的度数,进而判定△AEO为等边三角形,则∠AOE的度数可得;利用S阴影=S扇形-S△AEO,可求得答案.本题考查了切线的判定与性质、等边三角形的判定与性质、解直角三角形及扇形和三角形的面积计算等知识点,熟练掌握相关性质及定理是解题的关键.23.【答案】8 12 30%【解析】解:(1)a=16÷40%×20%=8,b=16÷40%×(1-20%-40%-10%)=12,m=1-20%-40%-10%=30%;故答案为:8,12,30%;(2)本次调查共抽取了4÷10%=40名学生;补全条形图如图所示;(3)将男生分别标记为A,B,女生标记为a,b,A B a bA(A,B)(A,a)(A,b)B(B,A)(B,a)(B,b)a(a,A)(a,B)(a,b)b(b,A)(b,B)(b,a)∴抽得恰好为“一男一女”的概率为=.(1)根据题意列式计算即可得到结论;(2)用D等级人数除以它所占的百分比即可得到调查的总人数;(3)列表将所有等可能的结果列举出来,利用概率公式求解即可.本题考查了列表与树状图的知识,解题的关键是能够正确的列表,用到的知识点为:概率=所求情况数与总情况数之比.24.【答案】解:(1)设甲、乙两种商品的进货单价分别是a、b元/件,由题意得:,解得:.∴甲、乙两种商品的进货单价分别是10、15元/件.(2)设y与x之间的函数关系式为y=k1x+b1,将(11,18),(19,2)代入得:,解得:.∴y与x之间的函数关系式为y=-2x+40(11≤x≤19).(3)由题意得:w=(-2x+40)(x-10)=-2x2+60x-400=-2(x-15)2+50(11≤x≤19).∴当x=15时,w取得最大值50.∴当甲商品的销售单价定为15元/件时,日销售利润最大,最大利润是50元.【解析】(1)设甲、乙两种商品的进货单价分别是a、b元/件,由题意得关于a、b的二元一次方程组,求解即可.(2)设y与x之间的函数关系式为y=k1x+b1,用待定系数法求解即可.(3)根据利润等于每件的利润乘以销售量列出函数关系式,然后写成顶点式,按照二次函数的性质可得答案.本题考查了二元一次方程组和二次函数在实际问题中的应用及待定系数法求一次函数的解析式等知识点,理清题中的数量关系并明确相关函数的性质是解题的关键.25.【答案】解:(1)全等,理由是:∵△ABC和△DCE都是等边三角形,∴AC=BC,DC=EC,∠ACB=∠DCE=60°,∴∠ACB+∠ACD=∠DCE+∠ACD,即∠BCD=∠ACE,在△BCD和△ACE中,,∴△ACE≌△BCD(SAS);(2)如图3,由(1)得:△BCD≌△ACE,∴BD=AE,∵△DCE都是等边三角形,∴∠CDE=60°,CD=DE=2,∵∠ADC=30°,∴∠ADE=∠ADC+∠CDE=30°+60°=90°,在Rt△ADE中,AD=3,DE=2,∴AE===,∴BD=;(3)如图2,过A作AF⊥CD于F,∵B、C、E三点在一条直线上,∴∠BCA+∠ACD+∠DCE=180°,∵△ABC和△DCE都是等边三角形,∴∠BCA=∠DCE=60°,∴∠ACD=60°,在Rt△ACF中,AF=,∴S△ACD===,∴CF==1×=,FD=CD-CF=2-,在Rt△AFD中,AD2=AF2+FD2==3,∴AD=.【解析】(1)依据等式的性质可证明∠BCD=∠ACE,然后依据SAS可证明△ACE≌△BCD;(2)由(1)知:BD=AE,利用勾股定理计算AE的长,可得BD的长;(3)如图2,过A作AF⊥CD于F,先根据平角的定义得∠ACD=60°,利用特殊角的三角函数可得AF的长,由三角形面积公式可得△ACD的面积,最后根据勾股定理可得AD 的长.本题是三角形的综合题,主要考查的是全等三角形的性质、等边三角形的性质,熟练掌握相关性质是解题的关键.26.【答案】解:(1)∵抛物线的顶点为(1,-4),∴设抛物线的解析式为y=a(x-1)2-4,将点C(0,-3)代入抛物线y=a(x-1)2-4中,得a-4=-3,∴a=1,∴抛物线的解析式为y=a(x-1)2-4=x2-2x-3;(2)由(1)知,抛物线的解析式为y=x2-2x-3,令y=0,则x2-2x-3=0,∴x=-1或x=3,∴B(3,0),A(-1,0),令x=0,则y=-3,∴C(0,-3),∴AC=,设点E(0,m),则AE=,CE=|m+3|,∵△ACE是等腰三角形,∴①当AC=AE时,=,∴m=3或m=-3(点C的纵坐标,舍去),∴E(3,0),②当AC=CE时,=|m+3|,∴m=-3±,∴E(0,-3+)或(0,-3-),③当AE=CE时,=|m+3|,∴m=-,∴E(0,-),即满足条件的点E的坐标为(0,3)、(0,-3+)、(0,-3-)、(0,-);(3)如图,存在,∵D(1,-4),∴将线段BD向上平移4个单位,再向右(或向左)平移适当的距离,使点B的对应点落在抛物线上,这样便存在点Q,此时点D的对应点就是点P,∴点Q的纵坐标为4,设Q(t,4),将点Q的坐标代入抛物线y=x2-2x-3中得,t2-2t-3=4,∴t=1+2或t=1-2,∴Q(1+2,4)或(1-2,4),分别过点D,Q作x轴的垂线,垂足分别为F,G,∵抛物线y=x2-2x-3与x轴的右边的交点B的坐标为(3,0),且D(1,-4),∴FB=PG=3-1=2,∴点P的横坐标为(1+2)-2=-1+2或(1-2)-2=-1-2,即P(-1+2,0)、Q(1+2,4)或P(-1-2,0)、Q(1-2,4).【解析】(1)根据抛物线的顶点坐标设出抛物线的解析式,再将点C坐标代入求解,即可得出结论;(2)先求出点A,C坐标,设出点E坐标,表示出AE,CE,AC,再分三种情况建立方程求解即可;(3)利用平移先确定出点Q的纵坐标,代入抛物线解析式求出点Q的横坐标,即可得出结论.此题是二次函数综合题,主要考查了待定系数法,等腰三角形的性质,平移的性质,用方程的思想解决问题是解本题的关键.。
2020贵州省黔东南州中考数学试卷(解析版)

2020年贵州省黔东南州中考数学试卷参考答案与试题解析一.选择题(共10小题)1.﹣2020的倒数是()A.﹣2020B.﹣C.2020D.【分析】根据倒数的概念解答.【解答】解:﹣2020的倒数是﹣,故选:B.2.下列运算正确的是()A.(x+y)2=x2+y2B.x3+x4=x7C.x3•x2=x6D.(﹣3x)2=9x2【分析】直接利用完全平方公式以及合并同类项、同底数幂的乘法运算和积的乘方运算法则分别计算得出答案.【解答】解:A、(x+y)2=x2+2xy+y2,故此选项错误;B、x3+x4,不是同类项,无法合并,故此选项错误;C、x3•x2=x5,故此选项错误;D、(﹣3x)2=9x2,正确.故选:D.3.实数2介于()A.4和5之间B.5和6之间C.6和7之间D.7和8之间【分析】首先化简2=,再估算,由此即可判定选项.【解答】解:∵2=,且6<<7,∵6<2<7.故选:C.4.已知关于x的一元二次方程x2+5x﹣m=0的一个根是2,则另一个根是()A.﹣7B.7C.3D.﹣3【分析】根据根与系数的关系即可求出答案.【解答】解:设另一个根为x,则x+2=﹣5,解得x=﹣7.故选:A.5.如图,将矩形ABCD沿AC折叠,使点B落在点B′处,B′C交AD于点E,若∵l=25°,则∵2等于()A.25°B.30°C.50°D.60°【分析】由折叠的性质可得出∵ACB′的度数,由矩形的性质可得出AD∵BC,再利用“两直线平行,内错角相等”可求出∵2的度数.【解答】解:由折叠的性质可知:∵ACB′=∵1=25°.∵四边形ABCD为矩形,∵AD∵BC,∵∵2=∵1+∵ACB′=25°+25°=50°.故选:C.6.桌上摆着一个由若干个相同的小正方体组成的几何体,其主视图和左视图如图所示,则组成这个几何体的小正方体的个数最多有()A.12个B.8个C.14个D.13个【分析】易得此几何体有三行,三列,判断出各行各列最多有几个正方体组成即可.【解答】解:底层正方体最多有9个正方体,第二层最多有4个正方体,所以组成这个几何体的小正方体的个数最多有13个.故选:D.7.如图,∵O的直径CD=20,AB是∵O的弦,AB∵CD,垂足为M,OM:OC=3:5,则AB的长为()A.8B.12C.16D.2【分析】连接OA,先根据∵O的直径CD=20,OM:OD=3:5求出OD及OM的长,再根据勾股定理可求出AM的长,进而得出结论.【解答】解:连接OA,∵∵O的直径CD=20,OM:OD=3:5,∵OD=10,OM=6,∵AB∵CD,∵AM===8,∵AB=2AM=16.故选:C.8.若菱形ABCD的一条对角线长为8,边CD的长是方程x2﹣10x+24=0的一个根,则该菱形ABCD的周长为()A.16B.24C.16或24D.48【分析】解方程得出x=4,或x=6,分两种情况:∵当AB=AD=4时,4+4=8,不能构成三角形;∵当AB=AD=6时,6+6>8,即可得出菱形ABCD的周长.【解答】解:如图所示:∵四边形ABCD是菱形,∵AB=BC=CD=AD,∵x2﹣10x+24=0,因式分解得:(x﹣4)(x﹣6)=0,解得:x=4或x=6,分两种情况:∵当AB=AD=4时,4+4=8,不能构成三角形;∵当AB=AD=6时,6+6>8,∵菱形ABCD的周长=4AB=24.故选:B.9.如图,点A是反比例函数y═(x>0)上的一点,过点A作AC∵y轴,垂足为点C,AC交反比例函数y=的图象于点B,点P是x轴上的动点,则∵P AB的面积为()A.2B.4C.6D.8【分析】连接OA、OB、PC.由于AC∵y轴,根据三角形的面积公式以及反比例函数比例系数k的几何意义得到S∵APC=S∵AOC=3,S∵BPC=S∵BOC=1,然后利用S∵P AB =S∵APC﹣S∵APB进行计算.【解答】解:如图,连接OA、OB、PC.∵AC∵y轴,∵S∵APC=S∵AOC=×|6|=3,S∵BPC=S∵BOC=×|2|=1,∵S∵P AB=S∵APC﹣S∵BPC=2.故选:A.10.如图,正方形ABCD的边长为2,O为对角线的交点,点E、F分别为BC、AD的中点.以C为圆心,2为半径作圆弧,再分别以E、F为圆心,1为半径作圆弧、,则图中阴影部分的面积为()A.π﹣1B.π﹣2C.π﹣3D.4﹣π【分析】根据题意和图形,可知阴影部分的面积是以2为半径的四分之一个圆的面积减去以1为半径的半圆的面积再减去2个以边长为1的正方形的面积减去以1半径的四分之一个圆的面积,本题得以解决.【解答】解:由题意可得,阴影部分的面积是:•π×22﹣﹣2(1×1﹣•π×12)=π﹣2,故选:B.二.填空题(共10小题)11.cos60°=.【分析】根据记忆的内容,cos60°=即可得出答案.【解答】解:cos60°=.故答案为:.12.2020年以来,新冠肺炎橫行,全球经济遭受巨大损失,人民生命安全受到巨大威胁.截止6月份,全球确诊人数约3200000人,其中3200000用科学记数法表示为3.2×106.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n 的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值≥10时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:3200000=3.2×106. 故答案为:3.2×106.13.在实数范围内分解因式:xy 2﹣4x = x (y +2)(y ﹣2) . 【分析】本题可先提公因式x ,再运用平方差公式分解因式即可求解. 【解答】解:xy 2﹣4x =x (y 2﹣4) =x (y +2)(y ﹣2). 故答案为:x (y +2)(y ﹣2). 14.不等式组的解集为 2<x ≤6 .【分析】先根据解不等式的基本步骤求出每个不等式的解集,再根据“大小小大中间找”可确定不等式组的解集.【解答】解:解不等式5x ﹣1>3(x +1),得:x >2, 解不等式x ﹣1≤4﹣x ,得:x ≤6, 则不等式组的解集为2<x ≤6, 故答案为:2<x ≤6.15.把直线y =2x ﹣1向左平移1个单位长度,再向上平移2个单位长度,则平移后所得直线的解析式为 y =2x +3 .【分析】直接利用一次函数的平移规律进而得出答案.【解答】解:把直线y =2x ﹣1向左平移1个单位长度,得到y =2(x +1)﹣1=2x +1, 再向上平移2个单位长度,得到y =2x +3. 故答案为:y =2x +3.16.抛物线y =ax 2+bx +c (a ≠0)的部分图象如图所示,其与x 轴的一个交点坐标为(﹣3,0),对称轴为x =﹣1,则当y <0时,x 的取值范围是 ﹣3<x <1 .【分析】根据物线与x 轴的一个交点坐标和对称轴,由抛物线的对称性可求抛物线与x 轴的另一个交点,再根据抛物线的增减性可求当y <0时,x 的取值范围.【解答】解:∵物线y =ax 2+bx +c (a ≠0)与x 轴的一个交点坐标为(﹣3,0),对称轴为x =﹣1,∵抛物线与x 轴的另一个交点为(1,0),由图象可知,当y <0时,x 的取值范围是﹣3<x <1. 故答案为:﹣3<x <1.17.以∵ABCD 对角线的交点O 为原点,平行于BC 边的直线为x 轴,建立如图所示的平面直角坐标系.若A 点坐标为(﹣2,1),则C 点坐标为 (2,﹣1) .【分析】根据平行四边形是中心对称图形,再根据∵ABCD 对角线的交点O 为原点和点A 的坐标,即可得到点C 的坐标.【解答】解:∵∵ABCD 对角线的交点O 为原点,A 点坐标为(﹣2,1), ∵点C 的坐标为(2,﹣1),故答案为:(2,﹣1).18.某校九(1)班准备举行一次演讲比赛,甲、乙、丙三人通过抽签方式决定出场顺序,则出场顺序恰好是甲、乙、丙的概率是.【分析】首先根据题意画出树状图,然后由树状图求得所有等可能的结果与出场顺序恰好是甲、乙、丙的情况,再利用概率公式求解即可求得答案.【解答】解:画出树状图得:∵共有6种等可能的结果,其中出场顺序恰好是甲、乙、丙的只有1种结果,∵出场顺序恰好是甲、乙、丙的概率为,故答案为:.19.如图,AB是半圆O的直径,AC=AD,OC=2,∵CAB=30°,则点O到CD的距离OE为.【分析】在等腰∵ACD中,顶角∵A=30°,易求得∵ACD=75°;根据等边对等角,可得:∵OCA=∵A=30°,由此可得,∵OCD=45°;即∵COE是等腰直角三角形,则OE =.【解答】解:∵AC=AD,∵A=30°,∵∵ACD=∵ADC=75°,∵AO=OC,∵∵OCA=∵A=30°,∵∵OCD=45°,即∵OCE是等腰直角三角形,在等腰Rt∵OCE中,OC=2;因此OE=.故答案为:.20.如图,矩形ABCD中,AB=2,BC=,E为CD的中点,连接AE、BD交于点P,过点P作PQ∵BC于点Q,则PQ=.【分析】根据矩形的性质得到AB∵CD,AB=CD,AD=BC,∵BAD=90°,根据线段中点的定义得到DE=CD=AB,根据相似三角形的性质即可得到结论.【解答】解:∵四边形ABCD是矩形,∵AB∵CD,AB=CD,AD=BC,∵BAD=90°,∵E为CD的中点,∵DE=CD=AB,∵∵ABP∵∵EDP,∵=,∵=,∵=,∵PQ∵BC,∵PQ∵CD,∵∵BPQ∵∵DBC,∵==,∵CD=2,∵PQ=,故答案为:.三.解答题(共6小题)21.(1)计算:()﹣2﹣|﹣3|+2tan45°﹣(2020﹣π)0;(2)先化简,再求值:(﹣a+1)÷,其中a从﹣1,2,3中取一个你认为合适的数代入求值.【分析】(1)先算负整数指数幂,绝对值,特殊角的三角函数值,零指数幂,再算加减法即可求解;(2)先通分,把除法转化成乘法,再把分式的分子与分母因式分解,然后约分,最后代入一个合适的数即可.【解答】解:(1)()﹣2﹣|﹣3|+2tan45°﹣(2020﹣π)0=4+﹣3+2×1﹣1=4+﹣3+2﹣1=2+;(2)(﹣a+1)÷=×==﹣a﹣1,要使原式有意义,只能a=3,则当a=3时,原式=﹣3﹣1=﹣4.22.某校对九年级学生进行一次综合文科中考模拟测试,成绩x分(x为整数)评定为优秀、良好、合格、不合格四个等级(优秀、良好、合格、不合格分别用A、B、C、D 表示),A等级:90≤x≤100,B等级:80≤x<90,C等级:60≤x<80,D等级:0≤x<60.该校随机抽取了一部分学生的成绩进行调查,并绘制成如图不完整的统计图表.等级频数(人数)频率A a20%B1640%C b mD410%请你根据统计图表提供的信息解答下列问题:(1)上表中的a8,b=12,m=30%.(2)本次调查共抽取了多少名学生?请补全条形图.(3)若从D等级的4名学生中抽取两名学生进行问卷调查,请用画树状图或列表的方法求抽取的两名学生恰好是一男一女的概率.。
2020年贵州省黔南州中考数学试卷

2020年贵州省黔南州中考数学试卷一、选择题(共13小题,每小题4分,满分52分)1.(4分)2020的相反数是()A. - 2020B. 2020 C D2017 20172.(4分)下列计算正确的是()A. 弧=8B. (x+3)2=x2+9C. (ab3)2=ab6D. ( l 3.14)0=13.(4分)如图,建筑工人砌墙时,经常在两个墙脚的位置分别插一根木桩,然后拉一条直的参照线,其运用到的数学原理是(A.两点之间,线段最短B.两点确定一条直线C.垂线段最短D.过一点有且只有一条直线和已知直线平行4.(4分)下面四个图形分别是低碳、节水、节能和绿色食品标志,在这四个标志中,是轴对称图形的是()G ®®®A. B. C. D.5.(4分)2020年春节黄金周期间,受旅行发展大会宣传效应的影响,都匀毛尖茶、平塘大射电、罗间高原千岛湖、三都水族文化、荔波世界自然遗产等,吸引了大批国内外游客,黔南州旅游接待人次和收入实现双增长,据统计,全州共接待游客4138900人次,比上年同期增长58.79%,将4138900用科学记数法表示为()A. 41.389X 105B. 4.1389X 105C. 4.1389X 106D. 0.41389X 1066.(4分)我国古代数学家利用牟合方盖”找到了球体体积的计算方法. 牟合方盖”是由两个圆柱分别从纵横两个方向嵌入一个正方体时两圆柱公共部分形成的几何体,如图所示的几何体是可以形成牟合方盖”的一种模型,它的主视图是主视A. B. C. D.7.(4分)如图,在正方形ABCD中,AB=9,点E在CD边上,且DE=2CE点P是对角线AC上的一个动点,则PE+PD的最小值是(A. 3 .B. 10 三C. 9D. 9 三8.(4分)如果一个正多边形的内角和等于外角和2倍,则这个正多边形是(A.正方形B.正五边形C.正六边形D,正八边形9.(4分)下列调查中,适宜采用全面调查(普查)方式的是(A.了解我国民众对乐大集团萨德事件”的看法B.了解湖南卫视《人们的名义》反腐剧的收视率C.调查我校某班学生喜欢上数学课的情况D.调查某类烟花爆竹燃放的安全情况10.(4分)如图,已知直线AD是。
2020年贵州省黔西南州中考数学试卷(附解析)

2020年贵州省黔西南州中考数学试卷(附解析)一、选择题(本题10小题,每题4分,共40分)1. 2的倒数是( )A.−2B.2C.−12D.122. 某市为做好“稳就业、保民生”工作,将新建保障性住房360000套,缓解中低收入人群和新参加工作大学生的住房需求.把360000用科学记数法表示应是()A.0.36×106B.3.6×105C.3.6×106D.36×1053. 如图,由6个相同的小正方体组合成一个立体图形,它的俯视图为()A. B.C. D.4. 下列运算正确的是()A.a3+a2=a5B.a3÷a=a3C.a2⋅a3=a5D.(a2)4=a65. 某学校九年级1班九名同学参加定点投篮测试,每人投篮六次,投中的次数统计如下:4,3,5,5,2,5,3,4,1,这组数据的中位数、众数分别为()A.4,5B.5,4C.4,4D.5,56. 如图,将一块三角板的直角顶点放在直尺的一边上,当∠2=37∘时,∠1的度数为()A.37∘B.43∘C.53∘D.54∘7. 如图,某停车场入口的栏杆AB,从水平位置绕点O旋转到A′B′的位置,已知AO的长为4米.若栏杆的旋转角∠AOA′=α,则栏杆A端升高的高度为()A.4sinα米 B.4sinα米 C.4cosα米 D.4cosα米8. 已知关于x的一元二次方程(m−1)x2+2x+1=0有实数根,则m的取值范围是()A.m<2B.m≤2C.m<2且m≠1D.m≤2且m≠19. 如图,在菱形ABOC中,AB=2,∠A=60∘,菱形的一个顶点C在反比例函数y=kx(k≠0)的图象上,则反比例函数的解析式为()A.y=−3√3x B.y=−√3xC.y=−3xD.y=√3x10. 如图,抛物线y=ax2+bx+4交y轴于点A,交过点A且平行于x轴的直线于另一点B,交x轴于C,D两点(点C在点D右边),对称轴为直线x=52,连接AC,AD,BC.若点B关于直线AC的对称点恰好落在线段OC上,下列结论中错误的是()A.点B坐标为(5, 4)B.AB=ADC.a=−16D.OC⋅OD=16二、填空题(本题10小题,每题3分,共30分)把多项式a3−4a分解因式,结果是________.若7a x b 2与−a 3b y 的和为单项式,则y x =________.不等式组{2x −6<3x ,x+25−x−14≥0 的解集为________.如图,在Rt △ABC 中,∠C =90∘,点D 在线段BC 上,且∠B =30∘,∠ADC =60∘,BC =3√3,则BD 的长度为________.如图,正比例函数的图象与一次函数y =−x +1的图象相交于点P ,点P 到x 轴的距离是2,则这个正比例函数的解析式是________.如图,对折矩形纸片ABCD ,使AB 与DC 重合得到折痕EF ,将纸片展平,再一次折叠,使点D 落到EF 上点G 处,并使折痕经过点A ,已知BC =2,则线段EG 的长度为________.如图,是一个运算程序的示意图,若开始输入x 的值为625,则第2020次输出的结果为________.有一人患了流感,经过两轮传染后,共有121人患了流感,每轮传染中平均每人传染了________个人.如图图形都是由同样大小的菱形按照一定规律所组成的,其中第①个图形中一共有3个菱形,第②个图形中一共有7个菱形,第③个图形中一共有13个菱形,…,按此规律排列下去,第⑦个图形中菱形的个数为________.如图,在△ABC中,CA=CB,∠ACB=90∘,AB=2,点D为AB的中点,以点D为圆心作圆心角为90∘的扇形DEF,点C恰在弧EF上,则图中阴影部分的面积为________.三、解答题(本题6小题,共80分)(1)计算(−2)2−|−√2|−2cos45∘+(2020−π)0;(2)先化简,再求值:(2a+1+a+2a2−1)÷aa−1,其中a=√5−1.规定:在平面内,如果一个图形绕一个定点旋转一定的角度α(0∘<α≤180∘)后能与自身重合,那么就称这个图形是旋转对称图形,转动的这个角度α称为这个图形的一个旋转角.例如:正方形绕着两条对角线的交点O旋转90∘或180∘后,能与自身重合(如图1),所以正方形是旋转对称图形,且有两个旋转角.根据以上规定,回答问题:(1)下列图形是旋转对称图形,但不是中心对称图形的是________;A.矩形B.正五边形C.菱形D.正六边形(2)下列图形中,是旋转对称图形,且有一个旋转角是60度的有:________(填序号);(3)下列三个命题:①中心对称图形是旋转对称图形;②等腰三角形是旋转对称图形;③圆是旋转对称图形.其中真命题的个数有________个;A.0B.1C.2D.3(4)如图2的旋转对称图形由等腰直角三角形和圆构成,旋转角有45∘,90∘,135∘,180∘,将图形补充完整.新学期,某校开设了“防疫宣传”“心理疏导”等课程.为了解学生对新开设课程的掌握情况,从八年级学生中随机抽取了部分学生进行了一次综合测试.测试结果分为四个等级:A级为优秀,B级为良好,C级为及格,D级为不及格.将测试结果绘制了如图两幅不完整的统计图.根据统计图中的信息解答下列问题:(1)本次抽样测试的学生人数是________名;(2)扇形统计图中表示A级的扇形圆心角α的度数是________,并把条形统计图补充完整;(3)该校八年级共有学生500名,如果全部参加这次测试,估计优秀的人数为________;(4)某班有4名优秀的同学(分别记为E,F,G,H,其中E为小明),班主任要从中随机选择两名同学进行经验分享.利用列表法或画树状图法,求小明被选中的概率.随着人们“节能环保,绿色出行”意识的增强,越来越多的人喜欢骑自行车出行,也给自行车商家带来商机.某自行车行经营的A型自行车去年销售总额为8万元.今年该型自行车每辆售价预计比去年降低200元.若该型车的销售数量与去年相同,那么今年的销售总额将比去年减少10%,求:(1)A型自行车去年每辆售价多少元?(2)该车行今年计划新进一批A型车和新款B型车共60辆,且B型车的进货数量不超过A型车数量的两倍.已知,A型车和B型车的进货价格分别为1500元和1800元,计划B型车销售价格为2400元,应如何组织进货才能使这批自行车销售获利最多?古希腊数学家毕达哥拉斯认为:“一切平面图形中最美的是圆”.请研究如下美丽的圆.如图,线段AB是⊙O的直径,延长AB至点C,使BC=OB,点E是线段OB的中点,DE⊥AB交⊙O于点D,点P是⊙O上一动点(不与点A,B重合),连接CD,PE,PC.(1)求证:CD是⊙O的切线;是一个确定的值.回答这个确定的值是多少?并对小明(2)小明在研究的过程中发现PEPC发现的结论加以证明.已知抛物线y=ax2+bx+6(a≠0)交x轴于点A(6, 0)和点B(−1, 0),交y轴于点C.(1)求抛物线的解析式和顶点坐标;(2)如图(1),点P是抛物线上位于直线AC上方的动点,过点P分别作x轴,y轴的平行线,交直线AC于点D,E,当PD+PE取最大值时,求点P的坐标;(3)如图(2),点M为抛物线对称轴l上一点,点N为抛物线上一点,当直线AC垂直平分△AMN的边MN时,求点N的坐标.参考答案与试题解析2020年贵州省黔西南州中考数学试卷一、选择题(本题10小题,每题4分,共40分)1.【答案】D【考点】倒数【解答】=1 (a≠0),就说解:根据倒数的定义:乘积是1的两数互为倒数.一般地,a⋅1aa(a≠0)的倒数是1.a所以,2的倒数是1,2故选D.2.【答案】B【考点】科学记数法--表示较大的数【解答】解:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.则360000=3.6×105,故选B.3.【答案】D【考点】简单组合体的三视图【解答】解:从上面看可得四个并排的正方形,如图所示:故选D.4.【答案】C【考点】幂的乘方及其应用同底数幂的除法同底数幂的乘法合并同类项【解答】解:A ,a 3与a 2不是同类项,无法合并,故此选项错误; B ,a 3÷a =a 2,故此选项错误; C ,a 2⋅a 3=a 5,故此选项正确; D ,(a 2)4=a 8,故此选项错误. 故选C. 5. 【答案】 A 【考点】 众数 中位数【解答】解:中位数:把一组数据按从小到大的顺序排列,在中间的一个数字(或两个数字的平均值)叫做这组数据的中位数.众数:一般来说,一组数据中,出现次数最多的数就叫这组数据的众数. 将数据从小到大排列为:1,2,3,3,4,4,5,5,5, 所以这组数据的中位数为4,众数为5. 故选A. 6.【答案】 C【考点】 平行线的性质 余角和补角 【解答】 解:如图,∵ AB // CD ,∠2=37∘, ∴ ∠2=∠3=37∘. ∵ ∠1+∠3=90∘, ∴ ∠1=53∘. 故选C. 7.【答案】 B【考点】 解直角三角形锐角三角函数的定义【解答】解:过点A′作A′C ⊥AB 于点C ,由题意可知:A′O =AO =4, ∴ sin α=A ′CA ′O , ∴ A′C =4sin α, 故选B.8. 【答案】 D【考点】 根的判别式一元二次方程的定义 【解答】解:∵ 关于x 的一元二次方程(m −1)x 2−2x +1=0有实数根, ∴ {m −1≠0,Δ=22−4×1×(m −1)≥0,解得:m ≤2且m ≠1. 故选D. 9. 【答案】 B【考点】 解直角三角形 菱形的性质反比例函数系数k 的几何意义 【解答】解:∵ 在菱形ABOC 中,∠A =60∘,菱形边长为2, ∴ OC =2,∠COB =60∘, ∴ 点C 的坐标为(−1, √3),∵ 顶点C 在反比例函数y =kx 的图象上, ∴ √3=k−1,得k =−√3, 即y =−√3x , 故选B.10. 【答案】D【考点】二次函数y=ax^2+bx+c (a≠0)的图象和性质待定系数法求二次函数解析式勾股定理【解答】解:∵ 抛物线y =ax 2+bx +4交y 轴于点A ,∴ A(0, 4),∵ 对称轴为直线x =52,AB // x 轴, ∴ B(5, 4),故A 正确;如图,过点B 作BE ⊥x 轴于点E ,则BE =4,AB =5,∵ AB // x 轴,∴ ∠BAC =∠ACO .∵ 点B 关于直线AC 的对称点恰好落在线段OC 上,∴ ∠ACO =∠ACB ,∴ ∠BAC =∠ACB ,∴ BC =AB =5,∴ 在Rt △BCE 中,由勾股定理得:EC =3,∴ C(8, 0).∵ 对称轴为直线x =52,∴ D(−3, 0). ∵ 在Rt △ADO 中,OA =4,OD =3, ∴ AD =5,二、填空题(本题10小题,每题3分,共30分)【答案】 a(a +2)(a −2)【考点】因式分解-运用公式法因式分解-提公因式法【解答】解:原式=a(a 2−4)=a(a +2)(a −2).故答案为:a(a +2)(a −2).【答案】8【考点】列代数式求值同类项的概念【解答】解:∵ 7a x b 2与−a 3b y 的和为单项式,∴ 7a x b 2与−a 3b y 是同类项,∴ x =3,y =2, ∴ y x =23=8. 故答案为:8. 【答案】−6<x ≤13 【考点】解一元一次不等式组【解答】解:{2x −6<3x ,①x+25−x−14≥0,② 解不等式①得:x >−6,解不等式②得:x ≤13,不等式组的解集为:−6<x ≤13,故答案为:−6<x ≤13.【答案】 2√3【考点】三角形的外角性质含30度角的直角三角形等腰三角形的判定与性质【解答】解:∵ ∠C =90∘,∠ADC =60∘,∴ ∠DAC =30∘,∴ CD =12AD .∵ ∠B =30∘,∠ADC =60∘,∴ ∠BAD =30∘,∴ BD =AD ,∴ DB =2√3.故答案为:2√3. 【答案】 y =−2x【考点】一次函数图象上点的坐标特点待定系数法求正比例函数解析式【解答】解:∵ 点P 到x 轴的距离为2,∴ 点P 的纵坐标为2.∵ 点P 在一次函数y =−x +1上,∴ 2=−x +1,得x =−1,∴ 点P 的坐标为(−1, 2). 设正比例函数解析式为y =kx , 则2=−k ,得k =−2, ∴ 正比例函数解析式为y =−2x , 故答案为:y =−2x . 【答案】 √3【考点】矩形的性质 勾股定理翻折变换(折叠问题)含30度角的直角三角形平行线的性质【解答】解:如图所示:由题意可得:∠1=∠2,AN =MN ,∠MGA =90∘,则NG =12AM , 故AN =NG ,∴ ∠2=∠4.∵ EF // AB ,∴ ∠4=∠3,∴ ∠1=∠2=∠3=∠4=13×90∘=30∘.∵ 四边形ABCD 是矩形,对折矩形纸片ABCD ,使AB 与DC 重合得到折痕EF , ∴ AE =12AD =12BC =1,1【考点】列代数式求值规律型:数字的变化类【解答】解:当x=625时,15x=125,当x=125时,15x=25,当x=25时,15x=5,当x=5时,15x=1,当x=1时,x+4=5,当x=5时,15x=1,…依此类推,以5,1循环,(2020−2)÷2=1009,即输出的结果是1,故答案为:1.【答案】10【考点】一元二次方程的应用——增长率问题【解答】解:设每轮传染中平均每人传染了x人.依题意,得1+x+x(1+x)=121,即(1+x)2=121,解方程,得x1=10,x2=−12(舍去).故答案为:10.【答案】57【考点】规律型:图形的变化类【解答】解:第①个图形中一共有3个菱形,即2+1×1=3;第②个图形中一共有7个菱形,即3+2×2=7;第③个图形中一共有13个菱形,即4+3×3=13;…,按此规律排列下去,所以第⑦个图形中菱形的个数为:8+7×7=57.故答案为:57.【答案】π4−1 2求阴影部分的面积全等三角形的性质与判定解直角三角形扇形面积的计算角平分线的定义【解答】解:连接CD,作DM⊥BC于点M,DN⊥AC于点N.∵CA=CB,∠ACB=90∘,点D为AB的中点,∴DC=12AB=1,四边形DMCN是正方形,DM=√22.则扇形DEF的面积是:90π×12360=π4.∵CA=CB,∠ACB=90∘,点D为AB的中点,∴CD平分∠BCA.∵∠EDF=∠MDN=90∘,∴∠FDM=∠EDN,在△DMG和△DNH中,{∠DMG=∠DNH,DM=DN,∠GDM=∠HDN,∴△DMG≅△DNH(ASA),∴S四边形DGCH =S四边形DMCN=12.则阴影部分的面积是:π4.故答案为:π4−12.三、解答题(本题6小题,共80分)【答案】解:(1)原式=4−√2−2×√2+1=4−√2−√2+1=5−2√2.(2)原式=[2(a−1)(a−1)(a+1)+a+2(a−1)(a+1)]⋅a−1a=3a(a−1)(a+1)⋅a−1a=3a+1,当a=√5−1时,原式=√5−1+1=3√55.【考点】零指数幂、负整数指数幂特殊角的三角函数值分式的化简求值实数的运算绝对值【解答】解:(1)原式=4−√2−2×√22+1 =4−√2−√2+1=5−2√2.(2)原式=[2(a−1)(a−1)(a+1)+a+2(a−1)(a+1)]⋅a−1a=3a(a−1)(a+1)⋅a−1a=3a+1,当a=√5−1时,原式=√5−1+1=3√55.【答案】B(1)(3)(5)C(4)图形如图所示:【考点】作图—应用与设计作图作图-旋转变换中心对称图形旋转对称图形【解答】解:(1)在平面内,把一个图形绕着某个点旋转180∘,如果旋转后的图形能与原来的图形重合,那么这个图形叫做中心对称图形,这个点叫做它的对称中心.由定义可知:正五边形是旋转对称图形,不是中心对称图形.故选B.(2)是旋转对称图形,且有一个旋转角是60度的有(1)(3)(5).故答案为:(1)(3)(5).(3)根据旋转对称图形的定义可知:中心对称图形是旋转对称图形,①正确;等腰三角形不是旋转对称图形,②错误;圆是旋转对称图形,③正确;综上,命题①③正确,故选C.(4)图形如图所示:【答案】40×100%=15%,(2)∵A级的百分比为:640∴∠α=360∘×15%=54∘.故答案为:54∘;C级人数为:40−6−12−8=14(名).补充条形统计图如图所示:75名(4)画树状图得:∵ 共有12种等可能的结果,选中小明的有6种情况,∴ 选中小明的概率为12.【考点】列表法与树状图法条形统计图扇形统计图用样本估计总体【解答】解:(1)本次抽样测试的学生人数是:12÷30%=40(名); 故答案为:40.(2)∵ A 级的百分比为:640×100%=15%,∴ ∠α=360∘×15%=54∘.故答案为:54∘;C 级人数为:40−6−12−8=14(名).补充条形统计图如图所示:(3)500×15%=75(名),故估计优秀的人数为 75名.故答案为:75名.(4)画树状图得:∵ 共有12种等可能的结果,选中小明的有6种情况,∴ 选中小明的概率为12.【答案】解:(1)设去年A 型车每辆售价x 元,则今年售价每辆为(x −200)元,由题意得,80000x =80000(1−10%)x−200,解得:x =2000.经检验,x =2000是原方程的根.答:A 型自行车去年每辆售价为2000元.(2)设今年新进A 型车a 辆,则B 型车(60−a)辆,获利y 元,由题意得, y =(1800−1500)a +(2400−1800)(60−a),y =−300a +36000.∵ B 型车的进货数量不超过A 型车数量的两倍,∴ 60−a ≤2a ,∴ a ≥20.∵ y =−300a +36000,∴ k =−300<0,∴ y 随a 的增大而减小,∴ 当a =20时,y 有最大值, ∴ 获利最大时B 型车的数量为:60−20=40(辆).∴ 当新进A 型车20辆,B 型车40辆时,这批车获利最大. 【考点】一次函数的应用 分式方程的应用【解答】解:(1)设去年A 型车每辆售价x 元, 则今年售价每辆为(x −200)元,由题意得, 80000x =80000(1−10%)x−200, 解得:x =2000.经检验,x =2000是原方程的根.答:A 型自行车去年每辆售价为2000元.(2)设今年新进A 型车a 辆,则B 型车(60−a)辆,获利y 元,由题意得, y =(1800−1500)a +(2400−1800)(60−a),y =−300a +36000.∵ B 型车的进货数量不超过A 型车数量的两倍,∴ 60−a ≤2a ,∴ a ≥20.∵ y =−300a +36000,∴ k =−300<0,∴ y 随a 的增大而减小, ∴ 当a =20时,y 有最大值,∴ 获利最大时B 型车的数量为:60−20=40(辆).【答案】(1)证明:连接OD ,DB ,∵ 点E 是线段OB 的中点,DE ⊥AB 交⊙O 于点D , ∴ DE 垂直平分OB ,∴ DB =DO .∵ 在⊙O 中,DO =OB ,∴ DB =DO =OB ,∴ △ODB 是等边三角形,∴ ∠BDO =∠DBO =60∘.∵ BC =OB =BD ,且∠DBE 为△BDC 的外角, ∴ ∠BCD =∠BDC =12∠DBO . ∵ ∠DBO =60∘,∴ ∠CDB =30∘.∴ ∠ODC =∠BDO +∠BDC =60∘+30∘=90∘,即OD ⊥CD ,∴ CD 是⊙O 的切线. (2)解:PE PC =12. 证明:连接OP ,如图: 由已知可得:OP =OB =BC =2OE . ∴ OE OP =OP OC =12,又∵ ∠COP =∠POE ,∴ △OEP ∼△OPC ,∴ PE PC =OP OC =12. 【考点】 相似三角形的性质与判定等边三角形的性质与判定三角形的外角性质切线的判定【解答】(1)证明:连接OD ,DB ,试卷第21页,总25页∵ 点E 是线段OB 的中点,DE ⊥AB 交⊙O 于点D ,∴ DE 垂直平分OB ,∴ DB =DO .∵ 在⊙O 中,DO =OB ,∴ DB =DO =OB ,∴ △ODB 是等边三角形,∴ ∠BDO =∠DBO =60∘.∵ BC =OB =BD ,且∠DBE 为△BDC 的外角, ∴ ∠BCD =∠BDC =12∠DBO . ∵ ∠DBO =60∘,∴ ∠CDB =30∘.∴ ∠ODC =∠BDO +∠BDC =60∘+30∘=90∘,即OD ⊥CD ,∴ CD 是⊙O 的切线. (2)解:PE PC =12. 证明:连接OP ,如图: 由已知可得:OP =OB =BC =2OE . ∴ OE OP =OP OC =12,又∵ ∠COP =∠POE ,∴ △OEP ∼△OPC ,∴ PE PC =OP OC =12. 【答案】 解:(1)∵ 抛物线y =ax 2+bx +6经过点A(6, 0),B(−1, 0),∴ {a −b +6=0,36a +6b +6=0,∴ {a =−1,b =5,∴ 抛物线的解析式为y =−x 2+5x +6=−(x −52)2+494,试卷第22页,总25页∴ 抛物线的解析式为y =−x 2+5x +6,顶点坐标为(52, 494). (2)由(1)知,抛物线的解析式为y =−x 2+5x +6,∴ C(0, 6),∴ OC =6.∵ A(6, 0),∴ OA =6,∴ OA =OC ,∴ ∠OAC =45∘.∵ PD 平行于x 轴,PE 平行于y 轴,∴ ∠DPE =90∘,∠PDE =∠DAO =45∘,∴ ∠PED =45∘,∴ ∠PDE =∠PED ,∴ PD =PE ,∴ PD +PE =2PE ,∴ 当PE 的长度最大时,PE +PD 取最大值.∵ A(6, 0),C(0, 6),∴ 直线AC 的解析式为y =−x +6,设E(t, −t +6)(0<t <6),则P(t, −t 2+5t +6),∴ PE =−t 2+5t +6−(−t +6)=−t 2+6t =−(t −3)2+9,当t =3时,PE 最大,此时,y P =12,∴ P(3, 12).(3)如图(2),设直线AC 与抛物线的对称轴l 的交点为F ,连接NF ,∵ 点F 在线段MN 的垂直平分线AC 上,∴ FM =FN ,∠NFC =∠MFC .∵ l // y 轴,∴ ∠MFC =∠OCA =45∘,试卷第23页,总25页 ∴ ∠MFN =∠NFC +∠MFC =90∘,∴ NF // x 轴.由(2)知,直线AC 的解析式为y =−x +6,当x =52时,y =72,∴ F(52, 72),∴ 点N 的纵坐标为72,设N 的坐标为(m, −m 2+5m +6),∴ −m 2+5m +6=72,解得,m =5+√352或m =5−√352,∴ 点N 的坐标为(5+√352, 72)或(5−√352, 72). 【考点】 等腰三角形的性质:三线合一二次函数y=ax^2+bx+c (a≠0)的图象和性质待定系数法求一次函数解析式二次函数综合题待定系数法求二次函数解析式二次函数的最值等腰直角三角形【解答】解:(1)∵ 抛物线y =ax 2+bx +6经过点A(6, 0),B(−1, 0),∴ {a −b +6=0,36a +6b +6=0,∴ {a =−1,b =5,∴ 抛物线的解析式为y =−x 2+5x +6=−(x −52)2+494,∴ 抛物线的解析式为y =−x 2+5x +6,顶点坐标为(52, 494). (2)由(1)知,抛物线的解析式为y =−x 2+5x +6, ∴ C(0, 6),∴ OC =6.∵ A(6, 0),∴ OA =6,∴ OA =OC ,∴ ∠OAC =45∘.试卷第24页,总25页∴ ∠PED =45∘,∴ ∠PDE =∠PED ,∴ PD =PE ,∴ PD +PE =2PE ,∴ 当PE 的长度最大时,PE +PD 取最大值.∵ A(6, 0),C(0, 6),∴ 直线AC 的解析式为y =−x +6,设E(t, −t +6)(0<t <6),则P(t, −t 2+5t +6),∴ PE =−t 2+5t +6−(−t +6)=−t 2+6t =−(t −3)2+9,当t =3时,PE 最大,此时,y P =12,∴ P(3, 12).(3)如图(2),设直线AC 与抛物线的对称轴l 的交点为F ,连接NF ,∵ 点F 在线段MN 的垂直平分线AC 上,∴ FM =FN ,∠NFC =∠MFC .∵ l // y 轴,∴ ∠MFC =∠OCA =45∘,∴ ∠MFN =∠NFC +∠MFC =90∘,∴ NF // x 轴.由(2)知,直线AC 的解析式为y =−x +6,当x =52时,y =72,∴ F(52, 72),∴ 点N 的纵坐标为72,解得,m=5+√352或m=5−√352,∴点N的坐标为(5+√352, 72)或(5−√352, 72).试卷第25页,总25页。