贵州黔南州中考数学试卷及答案解析
2020年贵州省黔南中考数学试卷含答案-答案在前

2020年贵州省黔南州中考试卷数学答案解析一、1.【答案】A【解析】解:根据相反数的定义,可得3的相反数是:3-.故选:A .2.【答案】D【解析】解:A 、不是中心对称图形,故本选项错误;B 、不是中心对称图形,故本选项错误;C 、不是中心对称图形,故本选项错误;D 、是中心对称图形,故本选项正确.故选:D .3.【答案】C【解析】解:493 4009.3410=⨯.故选:C .4.【答案】D【解析】解:因为圆柱是矩形,圆锥是等腰三角形,球是圆,圆台是等腰梯形,故选:D .5.【答案】A【解析】解:A 、()4312a a =,故原题计算正确;B 、347a a a ⋅=,故原题计算错误;C 、2222a a a +=,故原题计算错误;D 、()222ab a b =,故原题计算错误;故选:A .6.【答案】D【解析】解:∵矩形纸条ABCD 中,AD BC ∥, '30AEG BGD ∠=∠=︒∴,18030150DEG ∠=︒-︒=︒∴,由折叠可得,111507522DEG ∠α∠==⨯︒=, 故选:D .7.【答案】B【解析】解:∵在Rt ADE △中,6DE =,1AE AB BE AB CD x =-=-=-,55ADE ∠=︒,sin55AE AD ︒=∴,cos55DE AD ︒=,1tan556AE x DE -︒==, 故选:B .8.【答案】C【解析】解:设该商品每件的进价为x 元,依题意,得:120.82x ⨯-=,解得:7.6x =.故选:C .9.【答案】D【解析】解:分两种情况:当腰为4时,449+<,所以不能构成三角形;当腰为9时,994+>,994-<,所以能构成三角形,周长是:99422++=.故选:D .10.【答案】C【解析】解:45∵,314∴<,1在3和4之间,即34a <<.故选:C .二、11.【答案】()2a ab -【解析】解:3222a a b ab -+, ()222a a ab b =-+,()2a ab =-.12.【答案】9【解析】解:27m n a b -+∵与443a b -的和仍是一个单项式,24m -=∴,74n +=,解得:6m =,3n =-,故()639m n -=--=.故答案为:9.13.【答案】4【解析】解:∵2,3,x ,1,5,7的众数为7,7x =∴,把这组数据从小到大排列为:1、2、3、5、6、7, 则中位数为3542+=; 故答案为:4.14.【答案】二【解析】解:由已知,得:0k >,0b <.故直线必经过第一、三、四象限.则不经过第二象限.故答案为:二.15.【答案】()【解析】解:∵直线443y x =+与x 轴、y 轴分别交于A 、B 两点, ∴点A 的坐标为()3,0,点B 的坐标为()0,4.过点C 作CE y ⊥轴于点E ,如图所示.BC OC OA ==∵,3OC =∴,2OE =,CE ==∴∴点C 的坐标为().故答案为:().16.【答案】10【解析】解:在Rt ABC △中,2AB =∵,1sin 3AB ACB AC ∠==, 1263AC =÷=∴ 在Rt ADC △中,AD =10=.故答案为:10.17.【答案】4【解析】解:如图所示:∵两条对角线的和为6,6AC BD +=∴,∵菱形的周长为,AB ∴AC BD ⊥,12AO AC =,12BO BD =, 3AO BO +=∴, 222AO BO AB +=∴,()29AO BO +=,即225AO BO +=,2229AO AO BO BO +⋅+=, 24AO BO ⋅=∴,∴菱形的面积1242AC BD AO BO =⋅=⋅=; 故答案为:4.18.【答案】12y x =【解析】解:如图,过点C 作CE y ⊥轴于E ,∵四边形ABCD 是正方形,10AB BC ==∴,90ABC ∠=︒,6OB ===∴,90ABC AOB ∠=∠=︒∵,90ABO CBE ∠+∠=︒∴,90ABO BAO ∠+∠=︒,BAO CBE ∠=∠∴,又90AOB BEC ∠=∠=︒∵,()ABO BCE AAS △≌△∴,6CE OB ==∴,8BE AO ==,2OE =∴,∴点()6,2C ,∵反比例函数()0ky k x =≠的图象过点C ,6212k =⨯=∴,∴反比例函数的解析式为12y x =, 故答案为:12y x =.19.【答案】5210258x y x y +=⎧⎨+=⎩【解析】解:根据题意得:5210258x y x y +=⎧⎨+=⎩.故答案为:5210258x y x y +=⎧⎨+=⎩. 20.【答案】0【解析】解:28160x x -+=,解得:4x =,即124x x ==,则2121?22*16160x x x x x =-=-=,故答案为0.三、21.【答案】解:(1)原式01232 2 0202⎛⎫=--⨯- ⎪⎝⎭ ()221 2 020=---02 2 019=--21=--1=--(2)解不等式312x -≤,得:1x ≥, 解不等式是324x +≥,得:23x ≥, 则不等式组的解集为1x ≥.【解析】具体解题过程参照答案。
2024年贵州黔南中考数学试题及答案

2024年贵州黔南中考数学试题及答案同学你好!答题前请认真阅读以下内容:1.全卷共6页,三个大题,共25小题,满分150分.考试时长120分钟.考试形式为闭卷.2.请在答题卡相应位置作答,在试题卷上答题无效.3.不能使用计算器.一、选择题(本大题共12题,每题3分,共36分.每小题均有A 、B 、C 、D 四个选项,其中只有一个选项正确,请用2B 铅笔在答题卡相应位置填涂)1. 下列有理数中最小的数是( )A. 2-B. 0C. 2D. 42. “黔山秀水”写成下列字体,可以看作是轴对称图形的是( )A. B. C. D.3. 计算23a a +的结果正确的是( )A. 5aB. 6aC. 25aD. 26a 4. 不等式1x <的解集在数轴上的表示,正确的是( )A. B.C.D.5. 一元二次方程220x x -=的解是( )A. 13x =,21x = B. 12x =,20x = C. 13x =,22x =- D. 12x =-,21x =-6.为培养青少年的科学态度和科学思维,某校创建了“科技创新”社团.小红将“科”“技”“创”“新”写在如图所示的方格纸中,若建立平面直角坐标系,使“创”“新”的坐标分别为()2,0-,()0,0,则“技”所在的象限为( )A. 第一象限B. 第二象限C. 第三象限D. 第四象限7.为了解学生的阅读情况,某校在4月23日世界读书日,随机抽取100名学生进行阅读情况调查,每月阅读两本以上经典作品的有20名学生,估计该校800名学生中每月阅读经典作品两本以上的人数为( )A 100人 B. 120人 C. 150人 D. 160人8. 如图,ABCD Y 的对角线AC 与BD 相交于点O ,则下列结论一定正确的是( )A. AB BC =B. AD BC =C. OA OB =D. AC BD^9. 小星同学通过大量重复的定点投篮练习,用频率估计他投中的概率为0.4,下列说法正确的是( )A. 小星定点投篮1次,不一定能投中B. 小星定点投篮1次,一定可以投中C. 小星定点投篮10次,一定投中4次D. 小星定点投篮4次,一定投中1次10. 如图,在扇形纸扇中,若150AOB Ð=°,24OA =,则»AB 长为( )A. 30πB. 25πC. 20πD. 10π11. 小红学习了等式的性质后,在甲、乙两台天平的左右两边分别放入“■”“●”“▲”三种物体,如图所示,天平都保持平衡.若设“■”与“●”的质量分别为x ,y ,则下列关系式正确的是( )A. x y= B. 2x y = C. 4x y = D. 5x y=12. 如图,二次函数2y ax bx c =++的部分图象与x 轴的一个交点的横坐标是3-,顶点坐标为()1,4-,则下列说法正确的是( ).的A. 二次函数图象的对称轴是直线1x =B. 二次函数图象与x 轴的另一个交点的横坐标是2C. 当1x <-时,y 随x 的增大而减小D. 二次函数图象与y 轴交点的纵坐标是3二、填空题(本大题共4题,每题4分,共16分)13.的结果是________.14.如图,在ABC V 中,以点A 为圆心,线段AB 的长为半径画弧,交BC 于点D ,连接AD .若5AB =,则AD 的长为______.15.在元朝朱世杰所著的《算术启蒙》中,记载了一道题,大意是:快马每天行240里,慢马每天行150里,慢马先行12天,则快马追上慢马需要的天数是______.16. 如图,在菱形ABCD 中,点E ,F 分别是BC ,CD 的中点,连接AE ,AF .若4sin 5EAF Ð=,5AE =,则AB 的长为______.三、解答题(本大题共9题,共98分.解答应写出必要的文字说明、证明过程或演算步骤)17. (1)在①22,②2-,③()01-,④122´中任选3个代数式求和;的(2)先化简,再求值:()21122x x -×+,其中3x =.18. 已知点()1,3在反比例函数k y x=的图象上.(1)求反比例函数的表达式;(2)点()3,a -,()1,b ,()3,c 都在反比例函数的图象上,比较a ,b ,c 的大小,并说明理由.19.根据《国家体质健康标准》规定,七年级男生、女生50米短跑时间分别不超过7.7秒、8.3秒为优秀等次.某校在七年级学生中挑选男生、女生各5人进行集训,经多次测试得到10名学生的平均成绩(单位:秒)记录如下:男生成绩:7.61,7.38,7.65,7.38,7.38女生成绩:8.23,8.27,8.16,8.26,8.32根据以上信息,解答下列问题:(1)男生成绩的众数为______,女生成绩的中位数为______;(2)判断下列两位同学的说法是否正确.(3)教练从成绩最好的32名学生代表学校参加比赛,请用画树状图或列表的方法求甲被抽中的概率.20. 如图,四边形ABCD 的对角线AC 与BD 相交于点O ,AD BC ∥,90ABC Ð=°,有下列条件:①AB CD ∥,②AD BC =.(1)请从以上①②中任选1个作为条件,求证:四边形ABCD 是矩形;(2)在(1)的条件下,若3AB =,5AC =,求四边形ABCD 的面积.21.为增强学生的劳动意识,养成劳动的习惯和品质,某校组织学生参加劳动实践.经学校与劳动基地联系,计划组织学生参加种植甲、乙两种作物.如果种植3亩甲作物和2亩乙作物需要27名学生,种植2亩甲作物和2亩乙作物需要22名学生.根据以上信息,解答下列问题:(1)种植1亩甲作物和1亩乙作物分别需要多少名学生?(2)种植甲、乙两种作物共10亩,所需学生人数不超过55人,至少种植甲作物多少亩?22. 综合与实践:小星学习解直角三角形知识后,结合光的折射规律进行了如下综合性学习.【实验操作】第一步:将长方体空水槽放置在水平桌面上,一束光线从水槽边沿A 处投射到底部B 处,入射光线与水槽内壁AC 的夹角为A Ð;第二步:向水槽注水,水面上升到AC 的中点E 处时,停止注水.(直线NN ¢为法线,AO 为入射光线,OD 为折射光线.)测量数据】如图,点A ,B ,C ,D ,E ,F ,O ,N ,N ¢在同一平面内,测得20cm AC =,45A Ð=°,折射角32DON Ð=°.【问题解决】根据以上实验操作和测量的数据,解答下列问题:(1)求BC 的长;(2)求B ,D 之间的距离(结果精确到0.1cm ).(参考数据:sin 320.52°»,cos320.84°»,tan 320.62°»)23.如图,AB 为半圆O 的直径,点F 在半圆上,点P 在AB 的延长线上,PC 与半圆相切于点C ,与OF 的延长线相交于点D ,AC 与OF 相交于点E ,DC DE =.(1)写出图中一个与DEC Ð相等的角:______;(2)求证:OD AB ^;【(3)若2OA OE =,2DF =,求PB 的长.24.某超市购入一批进价为10元/盒的糖果进行销售,经市场调查发现:销售单价不低于进价时,日销售量y (盒)与销售单价x (元)是一次函数关系,下表是y 与x 的几组对应值.销售单价x /元…1214161820…销售量y /盒…5652484440…(1)求y 与x 的函数表达式;(2)糖果销售单价定为多少元时,所获日销售利润最大,最大利润是多少?(3)若超市决定每销售一盒糖果向儿童福利院赠送一件价值为m 元的礼品,赠送礼品后,为确保该种糖果日销售获得的最大利润为392元,求m 的值.25. 综合与探究:如图,90AOB Ð=°,点P 在AOB Ð的平分线上,PA OA ^于点A .(1)【操作判断】如图①,过点P 作PC OB ^于点C ,根据题意在图①中画出PC ,图中APC Ð的度数为______度;(2)问题探究】如图②,点M 在线段AO 上,连接PM ,过点P 作PN PM ^交射线OB 于点N ,求证:2OM ON PA +=;(3)【拓展延伸】点M 在射线AO 上,连接PM ,过点P 作PN PM ^交射线OB 于点N ,射线NM 与射线PO 相交于点F ,若3ON OM =,求OP OF的值.【参考答案同学你好!答题前请认真阅读以下内容:1.全卷共6页,三个大题,共25小题,满分150分.考试时长120分钟.考试形式为闭卷.2.请在答题卡相应位置作答,在试题卷上答题无效.3.不能使用计算器.一、选择题(本大题共12题,每题3分,共36分.每小题均有A、B、C、D四个选项,其中只有一个选项正确,请用2B铅笔在答题卡相应位置填涂)【1题答案】【答案】A【2题答案】【答案】B【3题答案】【答案】A【4题答案】【答案】C【5题答案】【答案】B【6题答案】【答案】A【7题答案】【答案】D【8题答案】【答案】B【9题答案】【答案】A【10题答案】【答案】C【11题答案】【答案】C【12题答案】【答案】D二、填空题(本大题共4题,每题4分,共16分)【13题答案】【14题答案】【答案】5【15题答案】【答案】20【16题答案】三、解答题(本大题共9题,共98分.解答应写出必要的文字说明、证明过程或演算步骤)【17题答案】【答案】(1)见解析(2)12x-,1【18题答案】【答案】(1)3 yx =(2)a c b<<,理由见解析【19题答案】【答案】(1)7.38,8.26(2)小星的说法正确,小红的说法错误(3)2 3【20题答案】【答案】(1)见解析(2)12【21题答案】【答案】(1)种植1亩甲作物和1亩乙作物分别需要5、6名学生(2)至少种植甲作物5亩【22题答案】【答案】(1)20cm(2)3.8cm【23题答案】【答案】(1)DCEÐ(答案不唯一)(2)163(3)163【24题答案】【答案】(1)280y x =-+(2)糖果销售单价定为25元时,所获日销售利润最大,最大利润是450元(3)2【25题答案】【答案】(1)画图见解析,90(2)见解析 (3)23或83。
2024年贵州省中考数学试卷及答案

2024年贵州省中考数学试卷一、选择题(本大题共12题,每题3分,共36分.每小题均有A ,B ,C,D 四个选项,其中只有一个选项正确,请用2B 铅笔在答题卡相应位置填涂)1.下列有理数中最小的数是()A.2- B.0C.2D.42.“黔山秀水”写成下列字体,可以看作是轴对称图形的是()A. B. C. D.3.计算23a a +的结果正确的是()A.5aB.6aC.25aD.26a 4.不等式1x <的解集在数轴上的表示,正确的是()A.B. C.D.5.一元二次方程220x x -=的解是()A.13x =,21x = B.12x =,20x = C.13x =,22x =- D.12x =-,21x =-6.为培养青少年的科学态度和科学思维,某校创建了“科技创新”社团.小红将“科”“技”“创”“新”写在如图所示的方格纸中,若建立平面直角坐标系,使“创”“新”的坐标分别为()2,0-,()0,0,则“技”所在的象限为()A.第一象限B.第二象限C.第三象限D.第四象限7.为了解学生的阅读情况,某校在4月23日世界读书日,随机抽取100名学生进行阅读情况调查,每月阅读两本以上经典作品的有20名学生,估计该校800名学生中每月阅读经典作品两本以上的人数为()A.100人B.120人C.150人D.160人8.如图,ABCD Y 的对角线AC 与BD 相交于点O ,则下列结论一定正确的是()A.AB BC =B.AD BC =C.OA OB =D.AC BD⊥9.小星同学通过大量重复的定点投篮练习,用频率估计他投中的概率为0.4,下列说法正确的是()A.小星定点投篮1次,不一定能投中B.小星定点投篮1次,一定可以投中C.小星定点投篮10次,一定投中4次D.小星定点投篮4次,一定投中1次10.如图,在扇形纸扇中,若150AOB ∠=︒,24OA =,则 AB 的长为()A.30πB.25πC.20πD.10π11.小红学习了等式的性质后,在甲、乙两台天平的左右两边分别放入“■”“●”“▲”三种物体,如图所示,天平都保持平衡.若设“■”与“●”的质量分别为x ,y ,则下列关系式正确的是()甲乙A.x y= B.2x y= C.4x y= D.5x y=12.如图,二次函数2y ax bx c =++的部分图象与x 轴的一个交点的横坐标是3-,顶点坐标为()1,4-,则下列说法正确的是()A.二次函数图象的对称轴是直线1x =B.二次函数图象与x 轴的另一个交点的横坐标是2C.当1x <-时,y 随x 的增大而减小D.二次函数图象与y 轴的交点的纵坐标是3二、填空题(本大题共4题,每题4分,共16分)13.的结果是________.14.如图,在ABC 中,以点A 为圆心,线段AB 的长为半径画弧,交BC 于点D ,连接AD .若5AB =,则AD 的长为______.15.在元朝朱世杰所著的《算术启蒙》中,记载了一道题,大意是:快马每天行240里,慢马每天行150里,慢马先行12天,则快马追上慢马需要的天数是______.16.如图,在菱形ABCD 中,点E ,F 分别是BC ,CD 的中点,连接AE ,AF.若4sin 5EAF ∠=,5AE =,则AB 的长为______.三、解答题(本大题共9题,共98分.解答应写出必要的文字说明、证明过程或演算步骤)17.(1)在①22,②2-,③()01-,④122⨯中任选3个代数式求和(2)先化简,再求值:()21122x x -⋅+,其中3x =.18.已知点()1,3在反比例函数ky x=的图象上.(1)求反比例函数的表达式(2)点()3,a -,()1,b ,()3,c 都在反比例函数的图象上,比较a ,b ,c 的大小,并说明理由.19.根据《国家体质健康标准》规定,七年级男生、女生50米短跑时间分别不超过7.7秒,8.3秒为优秀等次.某校在七年级学生中挑选男生、女生各5人进行集训,经多次测试得到10名学生的平均成绩(单位:秒)记录如下:男生成绩:7.61,7.38,7.65,7.38,7.38女生成绩:8.23,8.27,8.16,8.26,8.32根据以上信息,解答下列问题:(1)男生成绩的众数为______,女生成绩的中位数为______(2)判断下列两位同学的说法是否正确.(3)教练从成绩最好的3名男生(设为甲,乙,丙)中,随机抽取2名学生代表学校参加比赛,请用画树状图或列表的方法求甲被抽中的概率.20.如图,四边形ABCD 的对角线AC 与BD 相交于点O ,AD BC ∥,90ABC ∠=︒,有下列条件:①AB CD ∥,②AD BC =.(1)请从以上①②中任选1个作为条件,求证:四边形ABCD 是矩形(2)在(1)的条件下,若3AB =,5AC =,求四边形ABCD 的面积.21.为增强学生的劳动意识,养成劳动的习惯和品质,某校组织学生参加劳动实践.经学校与劳动基地联系,计划组织学生参加种植甲、乙两种作物.如果种植3亩甲作物和2亩乙作物需要27名学生,种植2亩甲作物和2亩乙作物需要22名学生.根据以上信息,解答下列问题:(1)种植1亩甲作物和1亩乙作物分别需要多少名学生?(2)种植甲、乙两种作物共10亩,所需学生人数不超过55人,至少种植甲作物多少亩?22.综合与实践:小星学习解直角三角形知识后,结合光的折射规律进行了如下综合性学习.【实验操作】第一步:将长方体空水槽放置在水平桌面上,一束光线从水槽边沿A 处投射到底部B 处,入射光线与水槽内壁AC 的夹角为A∠第二步:向水槽注水,水面上升到AC 的中点E 处时,停止注水.(直线NN '为法线,AO 为入射光线,OD 为折射光线.)【测量数据】如图,点A ,B ,C ,D ,E ,F ,O ,N ,N '在同一平面内,测得20cm AC =,45A ∠=︒,折射角32DON ∠=︒.【问题解决】根据以上实验操作和测量的数据,解答下列问题:(1)求BC 的长(2)求B ,D 之间的距离(结果精确到0.1cm ).(参考数据:sin 320.52︒≈,cos320.84︒≈,tan 320.62︒≈)23.如图,AB 为半圆O 的直径,点F 在半圆上,点P 在AB 的延长线上,PC 与半圆相切于点C ,与OF 的延长线相交于点D ,AC 与OF 相交于点E ,DC DE =.(1)写出图中一个与DEC ∠相等的角:______(2)求证:OD AB⊥(3)若2OA OE =,2DF =,求PB 的长.24.某超市购入一批进价为10元/盒的糖果进行销售,经市场调查发现:销售单价不低于进价时,日销售量y(盒)与销售单价x(元)是一次函数关系,下表是y与x的几组对应值.销售单价x/元…1214161820…销售量y/盒…5652484440…(1)求y与x的函数表达式(2)糖果销售单价定为多少元时,所获日销售利润最大,最大利润是多少?(3)若超市决定每销售一盒糖果向儿童福利院赠送一件价值为m元的礼品,赠送礼品后,为确保该种糖果日销售获得的最大利润为392元,求m的值.25.综合与探究:如图,90AOB ∠=︒,点P 在AOB ∠的平分线上,PA OA ⊥于点A .图①图②备用图(1)【操作判断】如图①,过点P 作PC OB ⊥于点C ,根据题意在图①中画出PC ,图中APC ∠的度数为______度(2)【问题探究】如图②,点M 在线段AO 上,连接PM ,过点P 作PN PM ⊥交射线OB 于点N ,求证:2OM ON PA +=(3)【拓展延伸】点M 在射线AO 上,连接PM ,过点P 作PN PM ⊥交射线OB 于点N ,射线NM 与射线PO 相交于点F ,若3ON OM =,求OPOF的值.2024年贵州省中考数学试卷答案解析一、选择题.1.【答案】A2.【答案】B3.【答案】A4.【答案】C5.【答案】B6.【答案】A7.【答案】D8.【答案】B9.【答案】A 10.【答案】C 11.【答案】C 12.【答案】D【解析】解∶∵二次函数2y ax bx c =++的顶点坐标为()1,4-∴二次函数图象的对称轴是直线=1x -,故选项A 错误∵二次函数2y ax bx c =++的图象与x 轴的一个交点的横坐标是3-,对称轴是直线=1x -∴二次函数图象与x 轴的另一个交点的横坐标是1,故选项B 错误∵抛物线开口向下,对称轴是直线=1x -∴当1x <-时,y 随x 的增大而增大,故选项C 错误设二次函数解析式为()214y a x =++把()3,0-代入,得()20314a =-++解得1a =-∴()214y x =-++当0x =时,()20143y =-++=∴二次函数图象与y 轴的交点的纵坐标是3,故选项D 正确故选D .二、填空题.13.14.【答案】515.【答案】2016.【解析】【分析】延长BC ,AF 交于点M ,根据菱形的性质和中点性质证明ABE ADF ≌,ADF MCF ≌△,过E 点作EN AF ⊥交N 点,根据三角函数求出EN ,AN ,NF ,MN ,在Rt ENM △中利用勾股定理求出EM ,根据菱形的性质即可得出答案.【详解】延长BC ,AF 交于点M,在菱形ABCD 中,点E ,F 分别是BC ,CD 的中点AB BC CD AD ∴===,BE EC CF DF ===,D FCM ∠=∠,B D∠=∠在ABE 和ADF △中AB AD B D BE DF =⎧⎪∠=∠⎨⎪=⎩∴()SAS ABE ADF ≌∴AE AF=在ADF △和MCF △中D FCM DF CF AFD MFC ∠=∠⎧⎪=⎨⎪∠=∠⎩∴()ASA ADF MCF ≌∴CM AD =,AF MF=5AE = 5AE AF MF ∴===过E 点作EN AF ⊥交N 点90ANE ∴∠=︒ 4sin 5EAF ∠=,5AE =4EN ∴=,3AN =∴2NF AF AN =-=527MN ∴=+=在Rt ENM △中EM ===即12EM EC CM BC BC =+=+=AB BC CD AD===AB BC ∴==.三、解答题.17.【答案】(1)见解析(2)12x -,1【解析】(1)解:选择①,②,③2022(1)+-+-421=++7=选择①,②,④212222+-+⨯421=++7=选择①,③,④()0212122+-+⨯411=++6=选择②,③,④()012122-+-+⨯211=++4=(2)解:()21122x x -⋅+()()11(1)21x x x =-+⋅+12x -=当3x =时,原式3112-==.18..【答案】(1)3y x =(2)a c b <<,理由见解析【小问1详解】解:把()1,3代入k y x =,得31k =∴3k =∴反比例函数的表达式为3y x =【小问2详解】解:∵30k =>∴函数图象位于第一、三象限∵点()3,a -,()1,b ,()3,c 都在反比例函数的图象上,3013-<<<∴0a c b<<<∴a c b <<.19.【答案】(1)7.38,8.26(2)小星的说法正确,小红的说法错误(3)13【小问1详解】解:男生成绩7.38出现的次数最多,即众数为7.38女生成绩排列为:8.16,8.23,8.26,8.27,8.32,居于中间的数为8.26,故中位数为8.26故答案为:7.38,8.26【小问2详解】解:∵用时越少,成绩越好∴7.38是男生中成绩最好的,故小星的说法正确∵女生8.3秒为优秀成绩,8.328.3>∴有一人成绩达不到优秀,故小红的说法错误【小问3详解】列表为:甲乙丙甲甲,乙甲,丙乙乙,甲乙,丙丙丙,甲丙,乙由表格可知共有6种等可能结果,其中抽中甲的有2种故甲被抽中的概率为2163=.20.【答案】(1)见解析(2)12【小问1详解】选择①证明:∵AB CD ∥,AD BC∥∴ABCD 是平行四边形又∵90ABC ∠=︒∴四边形ABCD 是矩形选择②证明:∵AD BC =,AD BC∥∴ABCD 是平行四边形又∵90ABC ∠=︒∴四边形ABCD 是矩形【小问2详解】解:∵90ABC ∠=︒∴4BC ===∴矩形ABCD 的面积为3412⨯=.21.【答案】(1)种植1亩甲作物和1亩乙作物分别需要5,6名学生(2)至少种植甲作物5亩【小问1详解】解:设种植1亩甲作物和1亩乙作物分别需要x ,y 名学生根据题意,得32272222x y x y +=⎧⎨+=⎩解得56x y =⎧⎨=⎩答:种植1亩甲作物和1亩乙作物分别需要5,6名学生【小问2详解】解:设种植甲作物a 亩,则种植乙作物()10a -亩根据题意,得:()561055a a +-≤解得5a ≥答:至少种植甲作物5亩.22.【答案】(1)20cm(2)3.8cm【小问1详解】解:在Rt ABC 中,45A ∠=︒∴45B ∠=︒∴20cmBC AC ==【小问2详解】解:由题可知110cm 2ON EC AC ===∴10cmNB ON ==又∵32DON ∠=︒∴tan 10tan 32100.62 6.2cmDN ON DON =⋅∠=⨯︒≈⨯=∴10 6.2 3.8cm BD BN DN =-=-=.23.【答案】(1)DCE ∠(答案不唯一)(2)163(3)163【小问1详解】解:∵DC DE=∴DCE DEC∠=∠故答案为:DCE ∠(答案不唯一)【小问2详解】证明:连接OC ∵PC 是切线∴OC CD ⊥,即90DCE ACO ∠+∠=︒∵OA OC=∴OAC ACO∠=∠∵DCE DEC ∠=∠,AEO DEC∠=∠∴90AEO CAO ∠+∠=︒∴90AOE ∠=︒∴OD AB⊥【小问3详解】解:设OE x =,则2AO OF BO x===∴EF OF OE x =-=,22OD OF DF x =+=+∴2DC DE DF EF x==+=+在Rt ODC △中,222OD CD OC =+∴()()()2222222x x x +=++解得14x =,20x =(舍去)∴10OD =,6CD =,8OC =∵tan OP OC D OD CD ==∴8106OP =解得403OP =∴163BP OP OB =-=.24.【答案】(1)280y x =-+(2)糖果销售单价定为25元时,所获日销售利润最大,最大利润是450元(3)2【小问1详解】解∶设y 与x 的函数表达式为y kx b=+把12x =,56y =;20x =,40y =代入,得12562040k b k b +=⎧⎨+=⎩解得280k b =-⎧⎨=⎩∴y 与x 的函数表达式为280y x =-+【小问2详解】解:设日销售利润为w 元根据题意,得()10w x y=-⋅()()10280x x =--+22100800x x =-+-()2225450x =--+∴当25x =时,w 有最大值为450∴糖果销售单价定为25元时,所获日销售利润最大,最大利润是450元【小问3详解】解:设日销售利润为w 元根据题意,得()10w x m y =--⋅()()10280x m x =---+()22100280080x m x m=-++--∴当()100250222m m x ++=-=⨯-时,w 有最大值为()25050210028008022m m m m ++⎛⎫⎛⎫-++-- ⎪ ⎝⎭⎝⎭∵糖果日销售获得的最大利润为392元∴()25050210028008039222m m m m ++⎛⎫⎛⎫-++--= ⎪ ⎪⎝⎭⎝⎭化简得2601160m m -+=解得12m =,258m =(舍去)∴m 的值为2.25.【答案】(1)画图见解析,90(2)见解析(3)23或83【小问1详解】解:如图,PC 即为所求∵90AOB ∠=︒,PA OA ⊥,PC OB⊥∴四边形OAPC 是矩形∴90APC ∠=︒故答案为:90【小问2详解】证明:过P 作PC OB ⊥于C由(1)知:四边形OAPC 是矩形∵点P 在AOB ∠的平分线上,PA OA ⊥,PC OB⊥∴PA PC=∴矩形OAPC 是正方形∴OA AP PC OC ===,90APC ∠=︒∵PN PM⊥∴90APM CPN MPC ∠=∠=︒-∠,又90A PCN ∠=∠=︒,AP CP=∴APM CPN△≌△∴AM CN=∴OM ON OM CN OC+=++OM AM AP=++OA AP=+2AP=【小问3详解】解:①当M 在线段AO 上时,如图,延长NM ,PA 相交于点G由(2)知2OM ON PA+=设OM x =,则3ON x =,2AO PA x==∴AM AO OM x OM=-==∵90AOB MAG ︒∠=∠=,AMG OMN ∠=∠,∴()ASA AMG OMN ≌ ∴3AG ON x==∵90AOB ∠=︒,PA OA⊥∴AP OB∥∴ONF PGF∽∴33325OF ON x PF PG x x ===+∴53PF OF =∴53833OP OF +==②当M 在AO 的延长线上时,如图,过P 作PC OB ⊥于C ,并延长交MN 于G由(2)知:四边形OAPC 是正方形∴OA AP PC OC ===,90APC ∠=︒,PC AO∥∵PN PM⊥∴90APM CPN MPC ∠=∠=︒-∠,又90A PCN ∠=∠=︒,AP CP=∴APM CPN△≌△∴AM CN=∴ON OM-OC CN OM=+-AO AM OM=+-AO AO=+2AO=∵33ON OM x==∴AO x =,2CN AM x==∵PC AO∥∴CGN OMN∽∴CG CN OM ON=,即23CG x x x =∴23CG x =∵PC AO∥∴OMF PGF ∽ ∴3253OF OM x PF PG x x ===+∴53PF OF =∴53233OP OF -==综上,OP OF 的值为23或83.。
2019年贵州省黔南州中考数学试卷(含答案解析)

2019年贵州省黔南州中考数学试卷(含答案解析)一、选择题(本大题10小题,每题4分,共40分)1.(4分)下列四个数中,2019的相反数是()A.﹣2019B.C.﹣D.201902.(4分)举世瞩目的港珠澳大桥于2018年10月24日正式开通营运,它是迄今为止世界上最长的跨海大桥,全长约55000米.55000这个数用科学记数法可表示为()A.5.5×103B.55×103C.0.55×105D.5.5×1043.(4分)某正方体的平面展开图如图,由此可知,原正方体“中”字所在面的对面的汉字是()A.国B.的C.中D.梦4.(4分)观察下列图案,既是轴对称图形又是中心对称图形的共有()A.4个B.3个C.2个D.1个5.(4分)下列四个运算中,只有一个是正确的.这个正确运算的序号是()①30+3﹣3=﹣3;②﹣=;③(2a2)3=8a5;④﹣a8÷a4=﹣a4A.①B.②C.③D.④6.(4分)如果3ab2m﹣1与9ab m+1是同类项,那么m等于()A.2B.1C.﹣1D.07.(4分)在下列长度的三条线段中,不能组成三角形的是()A.2cm,3cm,4cm B.3cm,6cm,6cmC.2cm,2cm,6cm D.5cm,6cm,7cm8.(4分)平行四边形ABCD中,AC、BD是两条对角线,现从以下四个关系①AB=BC;②AC=BD;③AC⊥BD;④AB⊥BC中随机取出一个作为条件,即可推出平行四边形ABCD是菱形的概率为()A.B.C.D.19.(4分)若点A(﹣4,y1)、B(﹣2,y2)、C(2,y3)都在反比例函数y=﹣的图象上,则y1、y2、y3的大小关系是()A.y1>y2>y3B.y3>y2>y1C.y2>y1>y3D.y1>y3>y2 10.(4分)如图,在一斜边长30cm的直角三角形木板(即Rt△ACB)中截取一个正方形CDEF,点D在边BC上,点E在斜边AB上,点F在边AC上,若AF:AC=1:3,则这块木板截取正方形CDEF后,剩余部分的面积为()A.200cm2B.170cm2C.150cm2D.100cm2二、填空题(本大题10小题,每题3分,共30分)11.(3分)一组数据:2,1,2,5,3,2的众数是.12.(3分)分解因式:9x2﹣y2=.13.(3分)如图,以△ABC的顶点B为圆心,BA长为半径画弧,交BC边于点D,连接AD.若∠B=40°,∠C=36°,则∠DAC的大小为度.14.(3分)已知是方程组的解,则a+b的值为.15.(3分)某品牌旗舰店平日将某商品按进价提高40%后标价,在某次电商购物节中,为促销该商品,按标价8折销售,售价为2240元,则这种商品的进价是元.16.(3分)如图,点E在正方形ABCD的边AB上,若EB=1,EC=2,那么正方形ABCD 的面积为.17.(3分)下面摆放的图案,从第2个起,每一个都是前一个按顺时针方向旋转90°得到,第2019个图案与第1个至第4个中的第个箭头方向相同(填序号).18.(3分)从一个不透明的口袋中随机摸出一球,再放回袋中,不断重复上述过程,一共摸了150次,其中有50次摸到黑球,已知囗袋中仅有黑球10个和白球若干个,这些球除颜色外,其他都一样,由此估计口袋中有个白球.19.(3分)如图所示,一次函数y=ax+b(a、b为常数,且a>0)的图象经过点A(4,1),则不等式ax+b<1的解集为.20.(3分)三角板是我们学习数学的好帮手.将一对直角三角板如图放置,点C在FD的延长线上,点B在ED上,AB∥CF,∠F=∠ACB=90°,∠E=45°,∠A=60°,AC =10,则CD的长度是.三、解答题(本大题6小题,共80分)21.(12分)(1)计算:|﹣|+(﹣1)2019+2﹣1﹣(π﹣3)0;(2)解方程:1﹣=22.(12分)如图,点P在⊙O外,PC是⊙O的切线,C为切点,直线PO与⊙O相交于点A、B.(1)若∠A=30°,求证:P A=3PB;(2)小明发现,∠A在一定范围内变化时,始终有∠BCP=(90°﹣∠P)成立.请你写出推理过程.23.(14分)某地区在所有中学开展《老师,我想对你说》心灵信箱活动,为师生之间的沟通增设了一个书面交流的渠道.为了解两年来活动开展的情况,某课题组从全地区随机抽取部分中学生进行问卷调查.对“两年来,你通过心灵信箱给老师总共投递过封信?”这一调查项设有四个回答选项,选项A:没有投过;选项B:一封;选项C:两封;选项D:三封及以上.根据接受问卷调查学生的回答,统计出各选项的人数以及所占百分比,分别绘制成如下条形统计图和扇形统计图:(1)此次抽样调查了名学生,条形统计图中m=,n=;(2)请将条形统计图补全;(3)接受问卷调查的学生在活动中投出的信件总数至少有封;(4)全地区中学生共有110000名,由此次调查估算,在此项活动中,全地区给老师投过信件的学生约有多少名?24.(14分)某山区不仅有美丽风光,也有许多令人喜爱的土特产,为实现脱贫奔小康,某村组织村民加工包装土特产销售给游客,以增加村民收入.已知某种土特产每袋成本10元.试销阶段每袋的销售价x(元)与该土特产的日销售量y(袋)之间的关系如表:x(元)152030…y(袋)252010…若日销售量y是销售价x的一次函数,试求:(1)日销售量y(袋)与销售价x(元)的函数关系式;(2)假设后续销售情况与试销阶段效果相同,要使这种土特产每日销售的利润最大,每袋的销售价应定为多少元?每日销售的最大利润是多少元?25.(12分)某中学数学兴趣小组在一次课外学习与探究中遇到一些新的数学符号,他们将其中某些材料摘录如下:对于三个实,数a,b,c,用M{a,b,c}表示这三个数的平均数,用min{a,b,c}表示这三个数中最小的数,例如M{1,2,9}==4,min{1,2,﹣3}=﹣3,min(3,1,1}=1.请结合上述材料,解决下列问题:(1)①M{(﹣2)2,22,﹣22}=,②min{sin30°,cos60°,tan45°}=;(2)若min(3﹣2x,1+3x,﹣5}=﹣5,则x的取值范围为;(3)若M{﹣2x,x2,3}=2,求x的值;(4)如果M{2,1+x,2x}=min{2,1+x,2x},求x的值.26.(16分)已知抛物线y=ax2+bx+3经过点A(1,0)和点B(﹣3,0),与y轴交于点C,点P为第二象限内抛物线上的动点.(1)抛物线的解析式为,抛物线的顶点坐标为;(2)如图1,连接OP交BC于点D,当S△CPD:S△BPD=1:2时,请求出点D的坐标;(3)如图2,点E的坐标为(0,﹣1),点G为x轴负半轴上的一点,∠OGE=15°,连接PE,若∠PEG=2∠OGE,请求出点P的坐标;(4)如图3,是否存在点P,使四边形BOCP的面积为8?若存在,请求出点P的坐标;若不存在,请说明理由.2019年贵州省黔南州中考数学试卷参考答案与试题解析一、选择题(本大题10小题,每题4分,共40分)1.(4分)下列四个数中,2019的相反数是()A.﹣2019B.C.﹣D.20190【分析】根据相反数的概念解答即可.【解答】解:2019的相反数是﹣2019,故选:A.【点评】本题考查了相反数的意义,一个数的相反数就是在这个数前面添上“﹣”号;一个正数的相反数是负数,一个负数的相反数是正数,0的相反数是0.2.(4分)举世瞩目的港珠澳大桥于2018年10月24日正式开通营运,它是迄今为止世界上最长的跨海大桥,全长约55000米.55000这个数用科学记数法可表示为()A.5.5×103B.55×103C.0.55×105D.5.5×104【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n 的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值大于10时,n是正数;当原数的绝对值小于1时,n是负数.【解答】解:55000这个数用科学记数法可表示为5.5×104,故选:D.【点评】此题考查了科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.3.(4分)某正方体的平面展开图如图,由此可知,原正方体“中”字所在面的对面的汉字是()A.国B.的C.中D.梦【分析】正方体的表面展开图,相对的面之间一定相隔一个正方形,根据这一特点作答.【解答】解:正方体的表面展开图,相对的面之间一定相隔一个正方形,由此可知,原正方体“中”字所在面的对面的汉字是的.故选:B.【点评】本题主要考查了正方体相对两个面上的文字,注意正方体的空间图形,从相对面入手,分析及解答问题.4.(4分)观察下列图案,既是轴对称图形又是中心对称图形的共有()A.4个B.3个C.2个D.1个【分析】根据轴对称图形与中心对称图形的概念求解.【解答】解:①不是轴对称图形,是中心对称图形,故此选项错误;②是轴对称图形,也是中心对称图形,故此选项正确;③是轴对称图形,也是中心对称图形,故此选项正确;④是轴对称图形,也是中心对称图形,故此选项正确.故选:B.【点评】此题主要考查了中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.5.(4分)下列四个运算中,只有一个是正确的.这个正确运算的序号是()①30+3﹣3=﹣3;②﹣=;③(2a2)3=8a5;④﹣a8÷a4=﹣a4A.①B.②C.③D.④【分析】直接利用负指数幂的性质以及二次根式的加减运算法则、积的乘方运算法则、同底数幂的乘除运算法则分别化简得出答案.【解答】解:①30+3﹣3=1+=1,故此选项错误;②﹣无法计算,故此选项错误;③(2a2)3=8a6,故此选项错误;④﹣a8÷a4=﹣a4,正确.故选:D.【点评】此题主要考查了负指数幂的性质以及二次根式的加减运算、积的乘方运算法则、同底数幂的乘除运算,正确掌握相关运算法则是解题关键.6.(4分)如果3ab2m﹣1与9ab m+1是同类项,那么m等于()A.2B.1C.﹣1D.0【分析】根据同类项的定义,含有相同的字母,并且相同字母的指数也相同,列出等式,直接计算即可.【解答】解:根据题意,得:2m﹣1=m+1,解得:m=2.故选:A.【点评】本题主要考查同类项的定义,熟记同类项的定义是解决此题的关键.7.(4分)在下列长度的三条线段中,不能组成三角形的是()A.2cm,3cm,4cm B.3cm,6cm,6cmC.2cm,2cm,6cm D.5cm,6cm,7cm【分析】根据三角形任意两边的和大于第三边,进行分析判断.【解答】解:A、2+3>4,能组成三角形;B、3+6>6,能组成三角形;C、2+2<6,不能组成三角形;D、5+6>7,能够组成三角形.故选:C.【点评】本题考查了能够组成三角形三边的条件.注意:用两条较短的线段相加,如果大于最长那条就能够组成三角形.8.(4分)平行四边形ABCD中,AC、BD是两条对角线,现从以下四个关系①AB=BC;②AC=BD;③AC⊥BD;④AB⊥BC中随机取出一个作为条件,即可推出平行四边形ABCD是菱形的概率为()A.B.C.D.1【分析】菱形的判定:①菱形定义:一组邻边相等的平行四边形是菱形(平行四边形+一组邻边相等=菱形);②四条边都相等的四边形是菱形.③对角线互相垂直的平行四边形是菱形(或“对角线互相垂直平分的四边形是菱形”).【解答】解:根据平行四边形的判定定理,可推出平行四边形ABCD是菱形的有①或③,概率为.【点评】本题考查了菱形及概率,熟练掌握菱形的判定定理是解题的关键.9.(4分)若点A(﹣4,y1)、B(﹣2,y2)、C(2,y3)都在反比例函数y=﹣的图象上,则y1、y2、y3的大小关系是()A.y1>y2>y3B.y3>y2>y1C.y2>y1>y3D.y1>y3>y2【分析】根据反比例函数图象上点的坐标特征求出y1、y2、y3的值,比较后即可得出结论.【解答】解:∵点A(﹣4,y1)、B(﹣2,y2)、C(2,y3)都在反比例函数y=﹣的图象上,∴y1=﹣=,y2=﹣=,y3=﹣,又∵﹣<<,∴y3<y1<y2.故选:C.【点评】本题考查了反比例函数图象上点的坐标特征,利用反比例函数图象上点的坐标特征求出y1、y2、y3的值是解题的关键.10.(4分)如图,在一斜边长30cm的直角三角形木板(即Rt△ACB)中截取一个正方形CDEF,点D在边BC上,点E在斜边AB上,点F在边AC上,若AF:AC=1:3,则这块木板截取正方形CDEF后,剩余部分的面积为()A.200cm2B.170cm2C.150cm2D.100cm2【分析】设AF=x,则AC=3x,利用正方形的性质得EF=CF=2x,EF∥BC,再证明△AEF∽△ABC,利用相似比得到BC=6x,所以AB=3x,则3x=30,解得x=2,然后用△ABC的面积减去正方形的面积得到剩余部分的面积.【解答】解:设AF=x,则AC=3x,∵四边形CDEF为正方形,∴EF=CF=2x,EF∥BC,∴△AEF∽△ABC,∴==,∴BC=6x,在Rt△ABC中,AB==3x,∴3x=30,解得x=2,∴AC=6,BC=12,∴剩余部分的面积=×6×12﹣(4)2=100(cm2).故选:D.【点评】本题考查了相似三角形的应用:常常构造“A”型或“X”型相似图,利用对应边成比例求相应线段的长.也考查了正方形的性质.二、填空题(本大题10小题,每题3分,共30分)11.(3分)一组数据:2,1,2,5,3,2的众数是2.【分析】根据众数的定义即一组数据中出现次数最多的数,即可得出答案.【解答】解:在数据2,1,2,5,3,2中2出现3次,次数最多,所以众数为2,故答案为:2.【点评】此题考查了众数,众数是一组数据中出现次数最多的数.12.(3分)分解因式:9x2﹣y2=(3x+y)(3x﹣y).【分析】利用平方差公式进行分解即可.【解答】解:原式=(3x+y)(3x﹣y),故答案为:(3x+y)(3x﹣y).【点评】此题主要考查了公式法分解因式,关键是掌握平方差公式:a2﹣b2=(a+b)(a ﹣b).13.(3分)如图,以△ABC的顶点B为圆心,BA长为半径画弧,交BC边于点D,连接AD.若∠B=40°,∠C=36°,则∠DAC的大小为34度.【分析】根据三角形的内角和得出∠BAC=180°﹣∠B﹣∠C=104°,根据等腰三角形两底角相等得出∠BAD=∠ADB=(180°﹣∠B)÷2=70°,进而根据角的和差得出∠DAC=∠BAC﹣∠BAD=34°.【解答】解:∵∠B=40°,∠C=36°,∴∠BAC=180°﹣∠B﹣∠C=104°∵AB=BD∴∠BAD=∠ADB=(180°﹣∠B)÷2=70°,∴∠DAC=∠BAC﹣∠BAD=34°故答案为:34.【点评】本题考查了等腰三角形的性质,三角形内角和定理,掌握等边对等角是解题的关键.14.(3分)已知是方程组的解,则a+b的值为1.【分析】把代入方程组得:,相加可得出答案.【解答】解:把代入方程组得:,①+②得:3a+3b=3,a+b=1,故答案为:1.【点评】本题考查了二元一次方程组的解,属于基础题,关键是把未知数替换为a和b 后相加即可.15.(3分)某品牌旗舰店平日将某商品按进价提高40%后标价,在某次电商购物节中,为促销该商品,按标价8折销售,售价为2240元,则这种商品的进价是2000元.【分析】设这种商品的进价是x元,根据提价之后打八折,售价为2240元,列方程解答即可.【解答】解:设这种商品的进价是x元,由题意得,(1+40%)x×0.8=2240.解得:x=2000,故答案为2000【点评】本题考查了一元一次方程的应用,解答本题的关键是读懂题意,设出未知数,找出合适的等量关系,列方程解答.16.(3分)如图,点E在正方形ABCD的边AB上,若EB=1,EC=2,那么正方形ABCD 的面积为3.【分析】根据勾股定理求出BC,根据正方形的面积公式计算即可.【解答】解:由勾股定理得,BC==,∴正方形ABCD的面积=BC2=3,故答案为:3.【点评】本题考查的是勾股定理,如果直角三角形的两条直角边长分别是a,b,斜边长为c,那么a2+b2=c2.17.(3分)下面摆放的图案,从第2个起,每一个都是前一个按顺时针方向旋转90°得到,第2019个图案与第1个至第4个中的第3个箭头方向相同(填序号).【分析】根据图形可以看出4个图形一循环,然后再2019÷4=504…3,从而确定是第3个图形.【解答】解:2019÷4=504…3,故第2019个图案中的指针指向与第3个图案相同,故答案为:3【点评】主要考查了图形的变化类,学生通过特例分析从而归纳总结出规律是解决问题的关键.18.(3分)从一个不透明的口袋中随机摸出一球,再放回袋中,不断重复上述过程,一共摸了150次,其中有50次摸到黑球,已知囗袋中仅有黑球10个和白球若干个,这些球除颜色外,其他都一样,由此估计口袋中有20个白球.【分析】先由频率=频数÷数据总数计算出频率,再由题意列出方程求解即可.【解答】解:摸了150次,其中有50次摸到黑球,则摸到黑球的频率是=,设口袋中大约有x个白球,则=,解得x=20.故答案为:20.【点评】考查利用频率估计概率.大量反复试验下频率稳定值即概率.关键是得到关于黑球的概率的等量关系.19.(3分)如图所示,一次函数y=ax+b(a、b为常数,且a>0)的图象经过点A(4,1),则不等式ax+b<1的解集为x<4.【分析】由于一次函数y=ax+b(a、b为常数,且a>0)的图象经过点A(4,1),再根据图象得出函数的增减性,即可求出不等式ax+b<1的解集.【解答】解:函数y=ax+b的图象如图所示,图象经过点A(4,1),且函数值y随x的增大而增大,故不等式ax+b<1的解集是x<4.故答案为:x<4.【点评】本题考查了一次函数与不等式的关系及数形结合思想的应用.解决此类问题关键是仔细观察图形,注意几个关键点(交点、原点等),做到数形结合.20.(3分)三角板是我们学习数学的好帮手.将一对直角三角板如图放置,点C在FD的延长线上,点B在ED上,AB∥CF,∠F=∠ACB=90°,∠E=45°,∠A=60°,AC =10,则CD的长度是15﹣5.【分析】过点B作BM⊥FD于点M,根据题意可求出BC的长度,然后在△EFD中可求出∠EDF=45°,进而可得出答案.【解答】解:过点B作BM⊥FD于点M,在△ACB中,∠ACB=90°,∠A=60°,AC=10,∴∠ABC=30°,BC=10×tan60°=10 ,∵AB∥CF,∴BM=BC×sin30°==5,CM=BC×cos30°=15,在△EFD中,∠F=90°,∠E=45°,∴∠EDF=45°,∴MD=BM=5 ,∴CD=CM﹣MD=15﹣5 .故答案是:15﹣5.【点评】本题考查了解直角三角形的性质及平行线的性质,难度较大,解答此类题目的关键根据题意建立三角形利用所学的三角函数的关系进行解答.三、解答题(本大题6小题,共80分)21.(12分)(1)计算:|﹣|+(﹣1)2019+2﹣1﹣(π﹣3)0;(2)解方程:1﹣=【分析】(1)原式利用绝对值的代数意义,乘方的意义,零指数幂、负整数指数幂法则计算即可求出值;(2)分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.【解答】解:(1)原式=﹣1+﹣1=﹣1;(2)去分母得:2x+2﹣x+3=6x,解得:x=1,经检验x=1是分式方程的解.【点评】此题考查了解分式方程,利用了转化的思想,解分式方程注意要检验.22.(12分)如图,点P在⊙O外,PC是⊙O的切线,C为切点,直线PO与⊙O相交于点A、B.(1)若∠A=30°,求证:P A=3PB;(2)小明发现,∠A在一定范围内变化时,始终有∠BCP=(90°﹣∠P)成立.请你写出推理过程.【分析】(1)由PC为圆O的切线,利用弦切角等于夹弧所对的圆周角得到∠BCP=∠A,由∠A的度数求出∠BCP的度数,进而确定出∠P的度数,再由PB=BC,AB=2BC,等量代换确定出PB与P A的关系即可;(2)由三角形内角和定理及圆周角定理即可确定出两角的关系.【解答】解:(1)∵AB是直径∴∠ACB=90°,∵∠A=30°,∴AB=2BC∵PC是⊙O切线∴∠BCP=∠A=30°,∴∠P=30°,∴PB=BC,BC=AB,∴P A=3PB(2)∵点P在⊙O外,PC是⊙O的切线,C为切点,直线PO与⊙O相交于点A、B,∴∠BCP=∠A,∵∠A+∠P+∠ACB+∠BCP=180°,且∠ACB=90°,∴2∠BCP=180°﹣∠P,∴∠BCP=(90°﹣∠P)【点评】本题考查了切线的性质,内角和定理,圆周角定理,以及含30度直角三角形的性质,熟练掌握性质及定理是解本题的关键.23.(14分)某地区在所有中学开展《老师,我想对你说》心灵信箱活动,为师生之间的沟通增设了一个书面交流的渠道.为了解两年来活动开展的情况,某课题组从全地区随机抽取部分中学生进行问卷调查.对“两年来,你通过心灵信箱给老师总共投递过封信?”这一调查项设有四个回答选项,选项A:没有投过;选项B:一封;选项C:两封;选项D:三封及以上.根据接受问卷调查学生的回答,统计出各选项的人数以及所占百分比,分别绘制成如下条形统计图和扇形统计图:(1)此次抽样调查了500名学生,条形统计图中m=225,n=25;(2)请将条形统计图补全;(3)接受问卷调查的学生在活动中投出的信件总数至少有425封;(4)全地区中学生共有110000名,由此次调查估算,在此项活动中,全地区给老师投过信件的学生约有多少名?【分析】(1)由B选项人数及其所占百分比求得总人数,再用总人数乘以对应百分比可得m、n的值;(2)先求出C选项的人数,继而可补全图形;(3)各选项次数乘以对应人数,再求和即可得;(4)利用样本估计总体思想求解可得.【解答】解:(1)此次调查的总人数为150÷30%=500(人),则m=500×45%=225,n=500×5%=25,故答案为:500,225,25;(2)C选项人数为500×20%=100(人),补全图形如下:(3)1×150+2×100+3×25=425,答:接受问卷调查的学生在活动中投出的信件总数至少有425封,故答案为:425;(4)由此次调查估算,在此项活动中,全地区给老师投过信件的学生约有110000×(1﹣45%)=60500(名).【点评】本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.24.(14分)某山区不仅有美丽风光,也有许多令人喜爱的土特产,为实现脱贫奔小康,某村组织村民加工包装土特产销售给游客,以增加村民收入.已知某种土特产每袋成本10元.试销阶段每袋的销售价x(元)与该土特产的日销售量y(袋)之间的关系如表:x(元)152030…y(袋)252010…若日销售量y是销售价x的一次函数,试求:(1)日销售量y(袋)与销售价x(元)的函数关系式;(2)假设后续销售情况与试销阶段效果相同,要使这种土特产每日销售的利润最大,每袋的销售价应定为多少元?每日销售的最大利润是多少元?【分析】(1)根据表格中的数据,利用待定系数法,求出日销售量y(袋)与销售价x(元)的函数关系式即可(2)利用每件利润×总销量=总利润,进而求出二次函数最值即可.【解答】解:(1)依题意,根据表格的数据,设日销售量y(袋)与销售价x(元)的函数关系式为y =kx+b得,解得故日销售量y(袋)与销售价x(元)的函数关系式为:y=﹣x+40(2)依题意,设利润为w元,得w=(x﹣10)(﹣x+40)=﹣x2+50x+400整理得w=﹣(x﹣25)2+225∵﹣1<0∴当x=25时,w取得最大值,最大值为225故要使这种土特产每日销售的利润最大,每袋的销售价应定为25元,每日销售的最大利润是225元.【点评】本题考查了二次函数的性质在实际生活中的应用,根据每天的利润=一件的利润×销售件数,建立函数关系式,此题为数学建模题,借助二次函数解决实际问题.25.(12分)某中学数学兴趣小组在一次课外学习与探究中遇到一些新的数学符号,他们将其中某些材料摘录如下:对于三个实,数a,b,c,用M{a,b,c}表示这三个数的平均数,用min{a,b,c}表示这三个数中最小的数,例如M{1,2,9}==4,min{1,2,﹣3}=﹣3,min(3,1,1}=1.请结合上述材料,解决下列问题:(1)①M{(﹣2)2,22,﹣22}=,②min{sin30°,cos60°,tan45°}=;(2)若min(3﹣2x,1+3x,﹣5}=﹣5,则x的取值范围为﹣2≤x≤4;(3)若M{﹣2x,x2,3}=2,求x的值;(4)如果M{2,1+x,2x}=min{2,1+x,2x},求x的值.【分析】(1)①根据平均数的定义计算即可.②求出三个数中的最小的数即可.(2)根据不等式解决问题即可.(3)构建方程即可解决问题.(4)把问题转化为不等式组解决即可.【解答】解:(1)①M{(﹣2)2,22,﹣22}=,②min{sin30°,cos60°,tan45°}=;故答案为:,.(2)∵min(3﹣2x,1+3x,﹣5}=﹣5,∴,解得﹣2≤x≤4,故答案为﹣2≤x≤4.(3)∵M{﹣2x,x2,3}=2,∴=2,解得x=﹣1或3.(4)∵M{2,1+x,2x}=min{2,1+x,2x},又∵=x+1,∴,解得1≤x≤1,∴x=1.【点评】本题考查不等式组,平均数,最小值等知识,解题的关键是熟练掌握基本知识,学会用转化的思想思考问题,属于中考常考题型.26.(16分)已知抛物线y=ax2+bx+3经过点A(1,0)和点B(﹣3,0),与y轴交于点C,点P为第二象限内抛物线上的动点.(1)抛物线的解析式为y=﹣x2﹣2x+3,抛物线的顶点坐标为(﹣1,4);(2)如图1,连接OP交BC于点D,当S△CPD:S△BPD=1:2时,请求出点D的坐标;(3)如图2,点E的坐标为(0,﹣1),点G为x轴负半轴上的一点,∠OGE=15°,连接PE,若∠PEG=2∠OGE,请求出点P的坐标;(4)如图3,是否存在点P,使四边形BOCP的面积为8?若存在,请求出点P的坐标;若不存在,请说明理由.【分析】(1)函数的表达式为:y=a(x﹣1)(x+3)=a(x2+2x﹣3),即可求解;(2)S△CPD:S△BPD=1:2,则BD=BC=×=2,即可求解;(3)∠OGE=15°,∠PEG=2∠OGE=30°,则∠OHE=45°,故OH=OE=1,即可求解;(4)利用S四边形BOCP=S△OBC+S△PBC=8,即可求解.【解答】解:(1)函数的表达式为:y=a(x﹣1)(x+3)=a(x2+2x﹣3),即:﹣3a=3,解得:a=﹣1,故抛物线的表达式为:y=﹣x2﹣2x+3…①,顶点坐标为(﹣1,4);(2)∵OB=OC,∴∠CBO=45°,∵S△CPD:S△BPD=1:2,∴BD=BC=×=2,y D=BD sin∠CBO=2,则点D(﹣1,2);(3)如图2,设直线PE交x轴于点H,∵∠OGE=15°,∠PEG=2∠OGE=30°,∴∠OHE=45°,∴OH=OE=1,则直线HE的表达式为:y=﹣x﹣1…②,联立①②并解得:x =(舍去正值),故点P (,);(4)不存在,理由:连接BC,过点P作y轴的平行线交BC于点H,直线BC的表达式为:y=x+3,设点P(x,﹣x2﹣2x+3),点H(x,x+3),则S四边形BOCP=S△OBC+S△PBC =×3×3+(﹣x2﹣2x+3﹣x﹣3)×3=8,整理得:3x2+9x+7=0,解得:△<0,故方程无解,则不存在满足条件的点P.【点评】本题考查的是二次函数综合运用,涉及到一次函数、一元二次方程应用、图象的面积计算等,难度不大.第21页(共21页)。
2020年贵州黔南中考数学试卷(解析版)

2020年贵州黔南中考数学试卷(解析版)一、选择题(本大题共10小题,每小题4分,共40分)1.的相反数是( ).A. B. C. D.2.观察下列图形,是中心对称图形的是( ).A. B. C. D.3.某市年参加中考的考生人数的为人,将用科学记数法表示为( ).A.B.C.D.4.下列四个几何体中,左视图为圆的是( ).A.B.C.D.5.下列运算正确的是( ).A.B.C.D.6.如图,将矩形纸条折叠,折痕为,折叠后点,分别落在点,处,与交于点.已知,则的度数是( ).A.B.C.D.7.如图,数学活动小组利用测角仪和皮尺测量学校旗杆的高度,在点处测得旗杆顶端的仰角为,测角仪的高度为米,其底端与旗杆底端之间的距离为米,设旗杆的高度为米,则下列关系式正确的是( ).A.B.C.D.8.某超市正在热销一种商品,其标价为每件元,打折销售后每件可获利元,该商品每件的进价为( ).A.元B.元C.元D.元9.已知等腰三角形的一边长等于,一边长等于,则它的周长为( ).A.B.或C.D.10.已知,介于两个连续自然数之间,则下列结论正确的是( ).A.B.C.D.二、填空题(本大题共10小题,每小题3分,共30分)11.分解因式: .12.若与的和仍是一个单项式,则 .13.若一组数据,,,,,的众数为,则这组数据的中位数为 .14.函数的图象一定不经过第 象限.15.如图,在平面直角坐标系中,直线与轴、轴分别交于、两点,点在第二象限,若,则点的坐标为 .16.如图所示,在四边形中,,,.连接,,若,则长度是 .17.已知菱形的周长为,两条对角线的和为,则菱形的面积为 .18.如图,正方形的边长为,点的坐标为,点在轴上,若反比例函数的图象经过点,则的值为 .19.《九章算术》中记载:“今有牛五、羊二,直金十两;牛二、羊五,直金八两.问牛、羊各直金几何?”译文:“假设有头牛、只羊,值金两;头牛、只羊,值金两.问每头牛、每只羊各值金多少两?”设每头牛值金两,每只羊值金两,可列方程组为 .20.对于实数,,定义运算“”,,例如,因为,所以.若,是一元二次方程的两个根,则.三、解答题(本大题共7小题,共80分)21.计算:.22.解不等式组:.(1)(2)23.古希腊数学家毕达哥拉斯认为:“一切平面图形中最美的圆”,请研究如下美丽的圆,如图,中,,,,点在线段上,且,以为圆心,为半径的⊙交线段于点,交线段的延长线于点.求证:是⊙的切线.研究过程中,小明同学发现,回答小明同学发现的结论是否正确?如果正确,给出证明;如果不正确,说明理由.24.勤劳是中华民族的传统美德,学校要求学们在家帮助父母做一些力所能及的家务.在学期初,小丽同学随机调查了七年级部分同学寒假在家做家务的总时间,设被调查的每位同学寒假在家做家务的总时间为小时,将做家务的总时间分为五个类别:,,,,.并将调查结果绘制了如图两幅不完整的统计图:(1)(2)(3)(4)类别人数做家务总时间条形统计图做家务总时间扇形统计图根据统计图提供的作息,解答下列问题:本次共调查了 名学生.根据以上信息直接在答题卡上补全条形统计图.扇形統计图中 ,类别所对应的扇形圆心角的度数是 度.若该校七年级共有名学生,根据抽样调查的结果,估计该校七年級有多少名学生寒假在家做家务的总时间不低于小时?(1)(2)25.某单位计划购买甲、乙两种品牌的消毒剂,乙种品牌消毒剂每瓶的价格比甲种品牌消毒剂每瓶价格的倍少元,已知用元购买甲种品牌消毒剂的数量与用元购买乙种品牌消毒剂的数量相同.求甲、乙两种品牌消毒剂每瓶的价格各是多少元?若该单位从超市一次性购买甲、乙两种品牌的消毒剂共瓶,且总费用为元,求购买了多少瓶乙种品牌消毒剂?26.在年新冠肺炎疫情期间,某中学响应政府有“停课不停学”的号召,充分利用网络资源进行网上学习,九年级班的全体同学在自主完成学习任务的同时,彼此关怀,全班每两个同学都通过一次电话,互相勉励,共同提高,如果该班共有名同学,若每两名同学之间仅通过一次电话,那么全班同学共通过多少次电话呢?我们可以用下面的方式来解决问题.用点、、分别表示第名同学、第名同学、第名同学第名同学,把该班级人数与通电话次数之间的关系用如图模型表示:(1)(2)(3)填写上图中第四个图中的值为 ,第五个图中的值为 .通过探索发现,通电话次数与该班级人数之间的关系式为 ,当时,对应的.若九年级班全体女生相互之间共通话次,问:该班共有多少名女生?(1)(2)27.如图,已知是⊙的直径,⊙经过的直角边上的点,交边于点,点是弧的中点,,连接.求证:直线是⊙切线.若,,求的值.(1)(2)(3)28.如图(),在平面直角坐标系中,抛物线与轴交于点,与轴交于点,且经过点,连接,,作于点,将沿轴翻折,点的对应点为点.解答下列问题:图抛物线的解析式为 ,顶点坐标为 .判断点是否在直线上,并说明理由.如图(),将图()中沿着平移后,得到.若边在线段上,点在抛物线上,连接,求四边形的面积.【答案】解析:根据相反数的含义,可得的相反数是:.故选.解析:.故选:.图A 1.D 2.C 3.D 4.解析:因为圆柱的左视图是矩形,圆台的左视图是等腰梯形,圆锥的左视图是等腰三角形,球的左视图是圆,∴这个几何体中,左视图为圆的是球.故选:.解析:∵矩形纸条中,,∴,∴,由折叠可得,,故选:.解析:∵在中,,,,∴,,,故选:.解析:设该商品每件的进价为元,依题意,得:,解得:.故选.解析:分两种情况:当腰为时,,所以不能构成三角形;A 5.D 6.B 7.C 8.D 9.当腰为时,,,所以能构成三角形,周长是:.故选.解析:∵,∴,∴在和之间,即.故选:.解析:.解析:∵与的和仍是一个单项式,∴,,解得:,,故.故答案为:.解析:∵,,,,,的众数为,∴,把这组数据从小到大排列为:、、、、、,则中位数为,故答案为:.C 10.11.12.13.解析:由已知,得:,.故直线必经过第一、三、四象限.则不经过第二象限.故答案为:二.解析:∵直线与轴、轴分别交于、两点,∴点的坐标为,点的坐标为.过点作轴于点,如图所示.∵,∴,,∴.∴点的坐标为.故答案为:.解析:在中,∵,,∴,在中,二14.15.16..故答案为:.17.解析:如图所示:∵两条对角线的和为,∴,∵菱形的周长为,∴,,,,∴,∴,,即,,∴,∴菱形的面积;故答案为:.18.解析:如图,过点作轴于,在正方形中,,,∴,∵,∴,∵点的坐标为,∴,∵,∴,在和中,,∴≌,∴,,∴,∴点的坐标为,∵反比例函数的图象过点,∴,∴反比例函数的表达式为,故答案为:.解析:根据题意得:.故答案为:.解析:,解得:,即,则.故答案为.解析:19.20..21.(1)(2).解析:解不等式,得:,解不等式,得:,则不等式组的解集为.解析:如图,过点作于,图∵,,,∴,∵,∴,∴,∴,且,∴是⊙的切线.结论成立;连接,,.22.(1)证明见解析.(2)正确,证明见解析.23.(1)(2)图∵是直径,∴,∴,∵,∴,∴,又∵,∴,∴,∵,∴,∴.故小明同学发现的结论是正确的.解析:本次共调查了名学生,故答案为:.类学生有:(人),类学生有:(人),补全的条形统计图如下图所示.(1)(2)画图见解析.(3); (4)名.24.(3)(4)(1)(2)类别人数做家务总时间条形统计图,即,类别所对应的扇形圆心角的度数是:.故答案为:,.(人),即该校七年级有名学生寒假在家做家务的总时间不低于小时.解析:设甲品牌消毒剂每瓶的价格为元;乙品牌消毒剂每瓶的价格为元,由题意得:,解得:.经检验,是原方程的解且符合实际意义,,答:甲品牌消毒剂每瓶的价格为元;乙品牌消毒剂每瓶的价格为元.设购买甲种品牌的消毒剂瓶,则购买乙种品牌的消毒剂瓶,由题意得:,解得:,∴.答:购买了瓶乙品牌消毒剂.(1)甲品牌消毒剂每瓶的价格为元;乙品牌消毒剂每瓶的价格为元.(2)瓶.25.(1); (2); (3)名.26.(1)(2)(3)(1)解析:观察图形,可知:第四个图中的值为,第五个图中的值为.故答案为:;.∵,,,,,∴,当时,.故答案为:;.依题意,得:,化简,得:,解得:,(不含题意,舍去).答:该班共有名女生.解析:连结,,如图:∵是⊙的直径,∴,∵,∴,∴,∵点是弧的中点,∴,∴,∵为半径,(1)证明见解析.(2).27.(2)(1)(2)∴直线是⊙的切线.∵,∴,∴,∴,∵,,∴,,∴,∴,∵,,∴,即,解得:,∴.解析:∵抛物线与轴交于点,且经过点,∴,解得:,∴抛物线解析式为:,∵,∴顶点坐标为,故答案为:;.∵抛物线与轴交于点,∴点,即,∵点,(1); (2)在,证明见解析.(3).28.(3)∴轴,,∴,∴,∴,∵,∴,∴,∴,∵将沿轴翻折,∴,∴,∵,,∴,∴,∴,∴,共线,∴点在直线上.∵点,点,∴直线解析式为,∵沿着平移后,得到,∴,∴直线的解析式为:,联立方程组:,解得:或,∴点,∵沿着平移后,得到,∴≌,,,∴,四边形是平行四边形,∵四边形四边形,∴.四边形四边形四边形四边形。
2020年贵州省黔南州中考数学试卷及其答案

2020年贵州省黔南州中考数学试卷一、选择题(本题10小题,每题4分,共40分)1.(3分)3的相反数是()A.﹣3B.﹣C.3D.2.(3分)观察下列图形,是中心对称图形的是()A.B.C.D.3.(3分)某市2020年参加中考的考生人数约为93400人,将93400用科学记数法表示为()A.934×102B.93.4×103C.9.34×104D.0.934×1054.(3分)下列四个几何体中,左视图为圆的是()A.B.C.D.5.(3分)下列运算正确的是()A.a3•a4=a12B.a2+a2=a4C.(a3)4=a12D.(ab)2=ab26.(3分)如图,将矩形纸条ABCD折叠,折痕为EF,折叠后点C,D分别落在点C′,D′处,D′E 与BF交于点G.已知∠BGD′=30°,则∠α的度数是()A.30°B.45°C.74°D.75°7.(3分)如图,数学活动小组利用测角仪和皮尺测量学校旗杆的高度,在点D处测得旗杆顶端A的仰角∠ADE为55°,测角仪CD的高度为1米,其底端C与旗杆底端B之间的距离为6米,设旗杆AB的高度为x米,则下列关系式正确的是()A.tan55°=B.tan55°=C.sin55°=D.cos55°=8.(3分)某超市正在热销一种商品,其标价为每件12元,打8折销售后每件可获利2元,该商品每件的进价为()A.7.4元B.7.5元C.7.6元D.7.7元9.(3分)已知等腰三角形的一边长等于4,一边长等于9,则它的周长为()A.9B.17或22C.17D.2210.(3分)已知a=﹣1,a介于两个连续自然数之间,则下列结论正确的是()A.1<a<2B.2<a<3C.3<a<4D.4<a<5二、填空题(本题10小题,每题3分,共30分)11.(3分)分解因式:a3﹣2a2b+ab2=.12.(3分)若单项式a m﹣2b n+7与单项式﹣3a4b4的和仍是一个单项式,则m﹣n=.13.(3分)若一组数据2,3,x,1,5,7的众数为7,则这组数据的中位数为.14.(3分)函数y=x﹣1的图象一定不经过第象限.15.(3分)如图,在平面直角坐标系中,直线y=﹣x+4与x轴、y轴分别交于A、B两点,点C在第二象限,若BC=OC=OA,则点C的坐标为.16.(3分)如图所示,在四边形ABCD中,∠B=90°,AB=2,CD=8.连接AC,AC⊥CD,若sin∠ACB=,则AD长度是.17.(3分)已知菱形的周长为4,两条对角线长的和为6,则菱形的面积为.18.(3分)如图,正方形ABCD的边长为10,点A的坐标为(﹣8,0),点B在y轴上,若反比例函数y=(k≠0)的图象过点C,则该反比例函数的解析式为.19.(3分)《九章算术》中记载:“今有牛五、羊二,直金十两;牛二、羊五,直金八两.问牛、羊各直金几何?”译文:“假设有5头牛、2只羊,值金10两;2头牛、5只羊,值金8两.问每头牛、每只羊各值金多少两?”设每头牛值金x两,每只羊值金y两,可列方程组为.20.(3分)对于实数a,b,定义运算“a*b=”例如4*2,因为4>2,所以4*2=42﹣4×2=8.若x1,x2是一元二次方程x2﹣8x+16=0的两个根,则x1*x2=.三、解答题(本题7小题,共80分)21.(12分)(1)计算(﹣)﹣1﹣3tan60°+|﹣|+(2cos60°﹣2020)0;(2)解不等式组:.22.(12分)古希腊数学家毕达哥拉斯认为:“一切平面图形中最美的是圆”,请研究如下美丽的圆,如图,Rt△ABC中,∠BCA=90°,AC=3,BC=4,点O在线段BC上,且OC=,以O为圆心.OC 为半径的⊙O交线段AO于点D,交线段AO的延长线于点E.(1)求证:AB是⊙O的切线;(2)在研究过程中,小明同学发现=,回答小明同学发现的结论是否正确?如果正确,给出证明;如果不正确,说明理由.23.(14分)勤劳是中华民族的传统美德,学校要求学生在家帮助父母做一些力所能及的家务.在学期初,小丽同学随机调查了七年级部分同学寒假在家做家务的总时间,设被调查的每位同学寒假在家做家务的总时间为x小时,将做家务的总时间分为五个类别:A(0≤x<10),B(10≤x<20),C(20≤x<30),D(30≤x<40),E(x≥40).并将调查结果绘制了如图两幅不完整的统计图:根据统计图提供的信息,解答下列问题:(1)本次共调查了名学生;(2)根据以上信息直接在答题卡上补全条形统计图;(3)扇形统计图中m=,类别D所对应的扇形圆心角α的度数是度;(4)若该校七年级共有400名学生,根据抽样调查的结果,估计该校七年级有多少名学生寒假在家做家务的总时间不低于20小时?24.(14分)某单位计划购买甲、乙两种品牌的消毒剂,乙种品牌消毒剂每瓶的价格比甲种品牌消毒剂每瓶价格的3倍少50元,已知用300元购买甲种品牌消毒剂的数量与用400元购买乙种品牌消毒剂的数量相同.(1)求甲、乙两种品牌消毒剂每瓶的价格各是多少元?(2)若该单位从超市一次性购买甲、乙两种品牌的消毒剂共40瓶,且总费用为1400元,求购买了多少瓶乙种品牌消毒剂?25.(12分)在2020年新冠肺炎疫情期间,某中学响应政府有“停课不停学”的号召,充分利用网络资源进行网上学习,九年级1班的全体同学在自主完成学习任务的同时,彼此关怀,全班每两个同学都通过一次电话,互相勉励,共同提高,如果该班共有48名同学,若每两名同学之间仅通过一次电话,那么全班同学共通过多少次电话呢?我们可以用下面的方式来解决问题.用点A1、A2、A3…A48分表示第1名同学、第2名同学、第3名同学…第48名同学,把该班级人数x与通电话次数y之间的关系用如图模型表示:(1)填写上图中第四个图中y的值为,第五个图中y的值为.(2)通过探索发现,通电话次数y与该班级人数x之间的关系式为,当x=48时,对应的y=.(3)若九年级1班全体女生相互之间共通话190次,问:该班共有多少名女生?26.(16分)已知抛物线y=(x﹣3)2﹣4的图象交x轴于点A,B,交y轴于点C,顶点为点D.(1)图1中,点A,B,C,D的坐标分别为:A(,),B(,),C(,),D(,);(2)如图2,连接CD,过点O作CD的垂线,交抛物线的对称轴于点E,DE交x轴于点H,连接AE,AD.求证:AE⊥AD;(3)如图3,以(2)中的E点为圆心,为半径画圆,点P在抛物线上,过点P作⊙E的切线,切点为点Q,当PQ最短时,求点P的坐标.2020年贵州省黔南州中考数学试卷参考答案与试题解析一、选择题(本题10小题,每题4分,共40分)1.(3分)3的相反数是()A.﹣3B.﹣C.3D.【解答】解:根据概念,3的相反数在3的前面加﹣,则3的相反数是﹣3.故选:A.2.(3分)观察下列图形,是中心对称图形的是()A.B.C.D.【解答】解:A、不是中心对称图形,故本选项错误.B、不是中心对称图形,故本选项错误.C、不是中心对称图形,故本选项错误.D、是中心对称图形,故本选项正确.故选:D.3.(3分)某市2020年参加中考的考生人数约为93400人,将93400用科学记数法表示为()A.934×102B.93.4×103C.9.34×104D.0.934×105【解答】解:93400=9.34×104.故选:C.4.(3分)下列四个几何体中,左视图为圆的是()A.B.C.D.【解答】解:因为圆柱是矩形,圆锥是等腰三角形,球是圆,圆台是等腰梯形,故选:D.5.(3分)下列运算正确的是()A.a3•a4=a12B.a2+a2=a4C.(a3)4=a12D.(ab)2=ab2【解答】解:A、a3•a4=a7,故A不符合题意;B、a2+a2=2a2,故B不符合题意;C、(a3)4=a12,故C符合题意;D、(ab)2=a2b2,故D不符合题意;故选:C.6.(3分)如图,将矩形纸条ABCD折叠,折痕为EF,折叠后点C,D分别落在点C′,D′处,D′E 与BF交于点G.已知∠BGD′=30°,则∠α的度数是()A.30°B.45°C.74°D.75°【解答】解:∵矩形纸条ABCD中,AD∥BC,∴∠AEG=∠BGD'=30°,∴∠DEG=180°﹣30°=150°,由折叠可得,∠α=∠DEG=×150°=75°,故选:D.7.(3分)如图,数学活动小组利用测角仪和皮尺测量学校旗杆的高度,在点D处测得旗杆顶端A的仰角∠ADE为55°,测角仪CD的高度为1米,其底端C与旗杆底端B之间的距离为6米,设旗杆AB的高度为x米,则下列关系式正确的是()A.tan55°=B.tan55°=C.sin55°=D.cos55°=【解答】解:∵在Rt△ADE中,DE=6,AE=AB﹣BE=AB﹣CD=x﹣1,∠ADE=55°,∴sin55°=,cos55°=,tan55°=,故选:B.8.(3分)某超市正在热销一种商品,其标价为每件12元,打8折销售后每件可获利2元,该商品每件的进价为()A.7.4元B.7.5元C.7.6元D.7.7元【解答】解:设该商品每件的进价为x元,依题意,得:12×0.8﹣x=2,解得:x=7.6.故选:C.9.(3分)已知等腰三角形的一边长等于4,一边长等于9,则它的周长为()A.9B.17或22C.17D.22【解答】解:分两种情况:当腰为4时,4+4<9,所以不能构成三角形;当腰为9时,9+9>4,9﹣9<4,所以能构成三角形,周长是:9+9+4=22.故选:D.10.(3分)已知a=﹣1,a介于两个连续自然数之间,则下列结论正确的是()A.1<a<2B.2<a<3C.3<a<4D.4<a<5【解答】解:∵4<<5,∴3<﹣1<4,∴﹣1在3和4之间,即3<a<4.故选:C.二、填空题(本题10小题,每题3分,共30分)11.(3分)分解因式:a3﹣2a2b+ab2=a(a﹣b)2.【解答】解:a3﹣2a2b+ab2,=a(a2﹣2ab+b2),=a(a﹣b)2.12.(3分)若单项式a m﹣2b n+7与单项式﹣3a4b4的和仍是一个单项式,则m﹣n=9.【解答】解:∵a m﹣2b n+7与﹣3a4b4的和仍是一个单项式,∴m﹣2=4,n+7=4,解得:m=6,n=﹣3,故m﹣n=6﹣(﹣3)=9.故答案为:9.13.(3分)若一组数据2,3,x,1,5,7的众数为7,则这组数据的中位数为4.【解答】解:∵2,3,x,1,5,7的众数为7,∴x=7,把这组数据从小到大排列为:1、2、3、5、7、7,则中位数为=4;故答案为:4.14.(3分)函数y=x﹣1的图象一定不经过第二象限.【解答】解:由已知,得:k>0,b<0.故直线必经过第一、三、四象限.则不经过第二象限.故答案为:二.15.(3分)如图,在平面直角坐标系中,直线y=﹣x+4与x轴、y轴分别交于A、B两点,点C在第二象限,若BC=OC=OA,则点C的坐标为(﹣,2).【解答】解:∵直线y=﹣x+4与x轴、y轴分别交于A、B两点,∴点A的坐标为(3,0),点B的坐标为(0,4).过点C作CE⊥y轴于点E,如图所示.∵BC=OC=OA,∴OE=BE=2,∵OC=3,∴CE==,∴点C的坐标为(﹣,2).故答案为:(﹣,2).16.(3分)如图所示,在四边形ABCD中,∠B=90°,AB=2,CD=8.连接AC,AC⊥CD,若sin∠ACB=,则AD长度是10.【解答】解:在Rt△ABC中,∵AB=2,sin∠ACB==,∴AC=2÷=6.在Rt△ADC中,AD===10.故答案为:10.17.(3分)已知菱形的周长为4,两条对角线长的和为6,则菱形的面积为4.【解答】解:如图所示:∵两条对角线的和为6,∴AC+BD=6,∵菱形的周长为4,∴AB=,AC⊥BD,AO=AC,BO=BD,∴AO+BO=3,∴AO2+BO2=AB2,(AO+BO)2=9,即AO2+BO2=5,AO2+2AO•BO+BO2=9,∴2AO•BO=4,∴菱形的面积=AC•BD=2AO•BO=4;故答案为:4.18.(3分)如图,正方形ABCD的边长为10,点A的坐标为(﹣8,0),点B在y轴上,若反比例函数y=(k≠0)的图象过点C,则该反比例函数的解析式为y=.【解答】解:如图,过点C作CE⊥y轴于E,∵四边形ABCD是正方形,∴AB=BC=10,∠ABC=90°,∴OB===6,∵∠ABC=∠AOB=90°,∴∠ABO+∠CBE=90°,∠ABO+∠BAO=90°,∴∠BAO=∠CBE,又∵∠AOB=∠BEC=90°,∴△ABO≌△BCE(AAS),∴CE=OB=6,BE=AO=8,∴OE=2,∴点C(6,2),∵反比例函数y=(k≠0)的图象过点C,∴k=6×2=12,∴反比例函数的解析式为y=,故答案为:y=.19.(3分)《九章算术》中记载:“今有牛五、羊二,直金十两;牛二、羊五,直金八两.问牛、羊各直金几何?”译文:“假设有5头牛、2只羊,值金10两;2头牛、5只羊,值金8两.问每头牛、每只羊各值金多少两?”设每头牛值金x两,每只羊值金y两,可列方程组为.【解答】解:根据题意得:.故答案为:.20.(3分)对于实数a,b,定义运算“a*b=”例如4*2,因为4>2,所以4*2=42﹣4×2=8.若x1,x2是一元二次方程x2﹣8x+16=0的两个根,则x1*x2=0.【解答】解:x2﹣8x+16=0,解得:x=4,即x1=x2=4,则x1*x2=x1•x2﹣x22=16﹣16=0,故答案为0.三、解答题(本题7小题,共80分)21.(12分)(1)计算(﹣)﹣1﹣3tan60°+|﹣|+(2cos60°﹣2020)0;(2)解不等式组:.【解答】解:(1)原式=﹣2﹣3×++1=﹣2﹣3++1=﹣2﹣2+1=﹣1﹣2;(2)解不等式≤1,得:x≥1,解不等式3x+2≥4,得:x≥,则不等式组的解集为x≥1.22.(12分)古希腊数学家毕达哥拉斯认为:“一切平面图形中最美的是圆”,请研究如下美丽的圆,如图,Rt△ABC中,∠BCA=90°,AC=3,BC=4,点O在线段BC上,且OC=,以O为圆心.OC 为半径的⊙O交线段AO于点D,交线段AO的延长线于点E.(1)求证:AB是⊙O的切线;(2)在研究过程中,小明同学发现=,回答小明同学发现的结论是否正确?如果正确,给出证明;如果不正确,说明理由.【解答】解:(1)如图1,过点O 作OH ⊥AB 于H ,∵∠BCA =90°,AC =3,BC =4,∴AB ===5,∵S △ABC =S △AOC +S △ABO ,∴×3×4=×3×+×5×OH ,∴OH =,∴OC =OH ,且OH ⊥BA ,∴AB 是⊙O 的切线;(2)结论成立,理由如下:连接CD ,EC ,∵DE 是直径,∴∠ECD =90°=∠ACO ,∴∠ECO =∠ACD ,∵OC=OE,∴∠CEO=∠OCE,∴∠ACD=∠CEO,又∵∠DAC=∠EAC,∴△DAC∽△CAE,∴,∵OC=,∴DE=2OC=3=AC,∴=,故小明同学发现的结论是正确的.23.(14分)勤劳是中华民族的传统美德,学校要求学生在家帮助父母做一些力所能及的家务.在学期初,小丽同学随机调查了七年级部分同学寒假在家做家务的总时间,设被调查的每位同学寒假在家做家务的总时间为x小时,将做家务的总时间分为五个类别:A(0≤x<10),B(10≤x<20),C(20≤x<30),D(30≤x<40),E(x≥40).并将调查结果绘制了如图两幅不完整的统计图:根据统计图提供的信息,解答下列问题:(1)本次共调查了50名学生;(2)根据以上信息直接在答题卡上补全条形统计图;(3)扇形统计图中m=32,类别D所对应的扇形圆心角α的度数是57.6度;(4)若该校七年级共有400名学生,根据抽样调查的结果,估计该校七年级有多少名学生寒假在家做家务的总时间不低于20小时?【解答】解:(1)本次共调查了10÷20%=50名学生,故答案为:50;(2)B类学生有:50×24%=12(人),D类学生有:50﹣10﹣12﹣16﹣4=8(人),补全的条形统计图如右图所示;(3)m%=16÷50×100%=32%,即m=32,类别D所对应的扇形圆心角α的度数是:360°×=57.6°,故答案为:32,57.6;(4)400×=224(人),即该校七年级有224名学生寒假在家做家务的总时间不低于20小时.24.(14分)某单位计划购买甲、乙两种品牌的消毒剂,乙种品牌消毒剂每瓶的价格比甲种品牌消毒剂每瓶价格的3倍少50元,已知用300元购买甲种品牌消毒剂的数量与用400元购买乙种品牌消毒剂的数量相同.(1)求甲、乙两种品牌消毒剂每瓶的价格各是多少元?(2)若该单位从超市一次性购买甲、乙两种品牌的消毒剂共40瓶,且总费用为1400元,求购买了多少瓶乙种品牌消毒剂?【解答】解:(1)设甲品牌消毒剂每瓶的价格为x元;乙品牌消毒剂每瓶的价格为(3x﹣50)元,由题意得:=,解得:x=30,经检验,x=30是原方程的解且符合实际意义,3x﹣50=40,答:甲品牌消毒剂每瓶的价格为30元;乙品牌消毒剂每瓶的价格为40元;(2)设购买甲种品牌的消毒剂y瓶,则购买乙种品牌的消毒剂(40﹣y)瓶,由题意得:30y+40(40﹣y)=1400,解得:y=20,∴40﹣y=40﹣20=20,答:购买了20瓶乙品牌消毒剂.25.(12分)在2020年新冠肺炎疫情期间,某中学响应政府有“停课不停学”的号召,充分利用网络资源进行网上学习,九年级1班的全体同学在自主完成学习任务的同时,彼此关怀,全班每两个同学都通过一次电话,互相勉励,共同提高,如果该班共有48名同学,若每两名同学之间仅通过一次电话,那么全班同学共通过多少次电话呢?我们可以用下面的方式来解决问题.用点A1、A2、A3…A48分表示第1名同学、第2名同学、第3名同学…第48名同学,把该班级人数x与通电话次数y之间的关系用如图模型表示:(1)填写上图中第四个图中y的值为10,第五个图中y的值为15.(2)通过探索发现,通电话次数y与该班级人数x之间的关系式为y=,当x=48时,对应的y=1128.(3)若九年级1班全体女生相互之间共通话190次,问:该班共有多少名女生?【解答】解:(1)观察图形,可知:第四个图中y的值为10,第五个图中y的值为15.故答案为:10;15.(2)∵1=,3=,6=,10=,15=,∴y=,当x=48时,y==1128.故答案为:y=;1128.(3)依题意,得:=190,化简,得:x2﹣x﹣380=0,解得:x1=20,x2=﹣19(不合题意,舍去).答:该班共有20名女生.26.(16分)已知抛物线y=(x﹣3)2﹣4的图象交x轴于点A,B,交y轴于点C,顶点为点D.(1)图1中,点A,B,C,D的坐标分别为:A(1,0),B(5,0),C(0,5),D(3,﹣4);(2)如图2,连接CD,过点O作CD的垂线,交抛物线的对称轴于点E,DE交x轴于点H,连接AE,AD.求证:AE⊥AD;(3)如图3,以(2)中的E点为圆心,为半径画圆,点P在抛物线上,过点P作⊙E的切线,切点为点Q,当PQ最短时,求点P的坐标.【解答】解:(1)∵抛物线的解析式为y=(x﹣3)2﹣4,当y=0时,(x﹣3)2﹣4=0,解得x1=1,x2=5,∴A(1,0),B(5,0),当x=0时,y=5,∴C(0,5),∵D为抛物线的顶点,∴D(3,﹣4),故答案为:1,0,5,0,0,5,3,﹣4;(2)设CD与x轴的交点为G,设直线CD的解析式为y=kx+b(k≠0),∵C(0,5),D(3,﹣4),∴,解得,∴直线CD的解析式为y=﹣3x+5,令y=0,即﹣3x+5=0,解得x=,∴G(,0),∴OG=,∵OE⊥CD,∴∠COE+∠OCG=∠COE+∠EOH=90°,∴∠COG=∠HOE,∵∠COG=∠OHE=90°,∴△OCG∽△HOE,∴=,即,∴HE=1,∴tan∠AEH==2,∵tan∠DAH==,∴∠AEH=∠DAH,∵∠AEH+∠EAH=90°,∴∠DAH+∠EAH=90°,即∠EAD=90°,∴AE⊥AD;(3)连接PE,∵PQ是⊙E的切线,∴PQ⊥EQ,由勾股定理得PQ=,∵EQ=,∴当PE最短时,PQ最短,设P(m,(m﹣3)2﹣4),∵E(3,1),∴PE2=(m﹣3)2+[(m﹣3)2﹣4﹣1]2,令(m﹣3)2=t,则PE2=t+(t﹣5)2=t2﹣9t+25=(t﹣)2+,∴当t=时,PE2取最小值,令(m﹣3)2=,解得m=或,∴当PQ取最小值时,P点的坐标为(,)或(,).。
黔南中考数学试题及答案

黔南中考数学试题及答案在中国的教育体系中,中考是一项非常重要的考试。
对于每个学生来说,中考的成绩直接决定了他们进入高中的机会和前途。
黔南地区也不例外,每年都会有大量的学生参加中考。
而在这个过程中,数学试题无疑是其中最重要的一部分。
本文将为大家介绍一套黔南地区中考数学试题及答案。
试题一:已知点A(-3,4)和点B(1,2)分别为一条直线的两个点,求该直线的斜率。
解答一:两点连线的斜率公式为:斜率k=(y2-y1)/(x2-x1)。
代入已知数值,得到斜率k=(2-4)/(1-(-3))=-2/4=-1/2。
所以,该直线的斜率为-1/2。
试题二:已知直线y=2x+1与直线y=kx-1相垂直,求k的值。
解答二:垂直直线的特点是斜率之积为-1。
根据已知条件,可得到方程2*(k)=-1,解得k=-1/2。
所以,k的值为-1/2。
已知函数y=ax^2+bx+c的图像经过点(1,4)和点(2,1),求函数的表达式。
解答三:根据已知条件,代入点的坐标,得到方程组:a+b+c=4 --(1)4a+2b+c=1 --(2)解方程组,可得到a=3,b=-8,c=9。
所以,函数的表达式为y=3x^2-8x+9。
试题四:已知平面直角坐标系下,点M(x,y)到横轴的距离是点N(3,4)到横轴的距离的3倍,求点M的坐标。
解答四:根据题意,可得到方程|y|=3*(4-0),即|y|=12。
由于点M在平面第一象限,所以y=12。
同时,点M到横轴的距离是点N到横轴的距离的3倍,即|x-0|=3*(3-0),即x=9。
所以,点M的坐标为(9,12)。
已知正方形ABCD的边长为3cm,点E是边BC上的一个点,且满足BE:EC=2:1,求线段AE的长度。
解答五:根据题意,可得到BE=2/3*3cm=2cm,EC=1/3*3cm=1cm。
根据勾股定理,可得到AE=sqrt(BE^2+AB^2)。
代入已知数值,得到AE=sqrt(2^2+3^2)=sqrt(4+9)=sqrt(13) cm。
2020年贵州省黔南州中考数学试卷

15.(3分)如图,在平面直角坐标系中,直线y x+4与x轴、y轴分别交于A、B两点,点C在第二象限,若BC=OC=OA,则点C的坐标为.
16.(3分)如图所示,在四边形ABCD中,∠B=90°,AB=2,CD=8.连接AC,AC⊥CD,若sin∠ACB ,则AD长度是.
A. B. C. D.
【解答】解:因为圆柱是矩形,圆锥是等腰三角形,球是圆,圆台是等腰梯形,
故选:D.
5.(3分)下列运算正确的是( )
A.(a3)4=a12B.a3•a4=a12C.a2+a2=a4D.(ab)2=ab2
【解答】解:A、(a3)4=a12,故原题计算正确;
B、a3•a4=a7,故原题计算错误;
根据统计图提供的作息,解答下列问题:
(1)本次共调查了名学生;
(2)根据以上信息直接在答题卡上补全条形统计图;
(3)扇形統计图中m=,类别D所对应的扇形圆心角α的度数是度;
(4)若该校七年级共有400名学生,根据抽样调查的结果,估计该校七年級有多少名学生寒假在家做家务的总时间不低于20小时?
24.(14分)某单位计划购买甲、乙两种品牌的消毒剂,乙种品牌消毒剂每瓶的价格比甲种品牌消毒剂每瓶价格的3倍少50元,已知用300元购买甲种品牌消毒剂的数量与用400元购买乙种品牌消毒剂的数量相同.
(1)抛物线的解析式为,顶点坐标为;
(2)判断点N是否在直线AC上,并说明理由;
(3)如图(2),将图(1)中Rt△OMA沿着OB平移后,得到Rt△DEF.若DE边在线段OB上,点F在抛物线上,连接AF,求四边形AMEF的面积.
2020年贵州省黔南州中考数学试卷
参考答案与试题解析
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2015年贵州省黔南州中考数学试卷
一、单项选择题(共13小题,每小题4分,满分52分)
1.(4分)(2015•黔南州)下列说法错误的是()
A
.
﹣2的相反数是2
B
.
3的倒数是
C
.
(﹣3)﹣(﹣5)=2
D
.
﹣11,0,4这三个数中最小的数是0
2.(4分)(2015•黔南州)在“青春脉动•唱响黔南校园青年歌手大赛”总决赛中,7位评委对某位选手评分为(单位:分):9、8、9、7、8、9、7.这组数据的众数和平均数分别是()
A .9、8B
.
9、7C
.
8、7D
.
8、8
3.(4分)(2015•黔南州)下列各数表示正确的是()A
.
57000000=57×106
B
.
0.0158(用四舍五入法精确到0.001)=0.015
C
.
1.804(用四舍五入法精确到十分位)=1.8
D
.
0.0000257=2.57×10﹣4
4.(4分)(2015•黔南州)下列运算正确()
A .a•a5=a5B
.
a7÷a5=a3
C
.
(2a)3=6a3D10ab3÷(﹣5ab)=﹣2b2
5.(4分)(2015•黔南州)如图所示,该几何体的左视图是()
A .B
.
C
.
D
.
6.(4分)(2015•黔南州)如图,下列说法错误的是()
A .若a∥b,
b∥c,
则a∥c
B
.
若∠1=∠2,则a∥c
C .若∠3=∠2,
则b∥c
D
.
若∠3+∠5=180°,则a∥c
7.(4分)(2015•黔南州)下列说法正确的是()
A
.
为了检测一批电池使用时间的长短,应该采用全面调查的方法B
.
方差反映了一组数据的波动大小,方差越大,波动越大C
.
打开电视正在播放新闻节目是必然事件
D .为了了解某县初中学生的身体情况,从八年级学生中随机抽取50名学生作为总体的一个样本
8.(4分)(2015•黔南州)函数y=+的自变量x的取值范围是()
A .x≤3B
.
x≠4C
.
x≥3且x≠4D
.
x≤3或x≠4
9.(4分)(2015•黔南州)如图,AB是⊙O的直径,CD为弦,CD⊥AB且相交于点E,则下列结论中不成立的是()
A .∠A=∠D B
.
=
C
.
∠ACB=90°D
.
∠COB=3∠D
10.(4分)(2015•黔南州)同时抛掷两枚质地均匀的硬币,则下列事件发生的概率最大的是()
A
.
两正面都朝上
B
.
两背面都朝上
C
.
一个正面朝上,另一个背面朝上
D
.
三种情况发生的概率一样大
11.(4分)(2015•黔南州)如图,直线l外不重合的两点A、B,在直线l上求作一点C,使得AC+BC的长度最短,作法为:①作点B关于直线l的对称点B′;②连接AB′与直线l 相交于点C,则点C为所求作的点.在解决这个问题时没有运用到的知识或方法是()
A
.
转化思想
B
.
三角形的两边之和大于第三边
C
.
两点之间,线段最短
D
.
三角形的一个外角大于与它不相邻的任意一个内角
12.(4分)(2015•黔南州)如图1,在矩形MNPQ中,动点R从点N出发,沿N→P→Q→M 方向运动至点M处停止.设点R运动的路程为x,△MNR的面积为y,如果y关于x的函数图象如图2所示,则当x=9时,点R应运动到()
A .M处B
.
N处C
.
P处D
.
Q处
13.(4分)(2015•黔南州)二次函数y=x2﹣2x﹣3的图象如图所示,下列说法中错误的是()
函数图象与y轴的交点坐标是(0,﹣3)
A
.
顶点坐标是(1,﹣3)
B
.
C
函数图象与x轴的交点坐标是(3,0)、(﹣1,0)
.
D
当x<0时,y随x的增大而减小
.
二、填空题(共6小题,每小题4分,满分24分)
14.(4分)(2015•黔南州)计算:2×﹣+.
15.(4分)(2015•黔南州)如图是一个古代车轮的碎片,小明为求其外圆半径,连接外圆上的两点A、B,并使AB与车轮内圆相切于点D,半径为OC⊥AB交外圆于点C.测得CD=10cm,AB=60cm,则这个车轮的外圆半径是.
16.(4分)(2015•黔南州)如图是小明设计用手电来测量都匀南沙州古城墙高度的示意图,点P处放一水平的平面镜,光线从点A出发经过平面镜反射后刚好射到古城墙CD的顶端C 处,已知AB⊥BD,CD⊥BD,且测得AB=1.2米,BP=1.8米,PD=12米,那么该古城墙的高度是米(平面镜的厚度忽略不计).
17.(4分)(2015•黔南州)如图,边长为1的菱形ABCD的两个顶点B、C恰好落在扇形AEF 的弧EF上.若∠BAD=120°,则弧BC的长度等于(结果保留π).
18.(4分)(2015•黔南州)甲、乙、丙、丁四位同学围成一圈依次循环报数,规定:①甲、乙、丙、丁首次报出的数依次为1、2、3、4,接着甲报5,乙报6…,后一位同学报出的数比前一位同学报出的数大1,按此规律,当报到的数是50时,报数结束;②若报出的数为3的倍数,则该报数的同学需拍手一次,在此过程中,甲同学需要拍手的次数为.
19.(4分)(2015•黔南州)如图,函数y=﹣x的图象是二、四象限的角平分线,将y=﹣x 的图象以点O为中心旋转90°与函数y=的图象交于点A,再将y=﹣x的图象向右平移至点A,与x轴交于点B,则点B的坐标为.
三、解答题(共7小题,满分74分)
20.(10分)(2015•黔南州)(1)已知:x=2sin60°,先化简+,再求它的值.(2)已知m和n是方程3x2﹣8x+4=0的两根,求+.
21.(6分)(2015•黔南州)如图是一座人行天桥的示意图,天桥的高度是10米,CB⊥DB,坡面AC的倾斜角为45°.为了方便行人推车过天桥,市政部门决定降低坡度,使新坡面DC的坡度为i=:3.若新坡角下需留3米宽的人行道,问离原坡角(A点处)10米的建筑物是否需要拆除?(参考数据:≈1.414,≈1.732)
22.(10分)(2015•黔南州)如图,已知△ABC,直线PQ垂直平分AC,与边AB交于E,连接CE,过点C作CF平行于BA交PQ于点F,连接AF.
(1)求证:△AED≌△CFD;
(2)求证:四边形AECF是菱形.
(3)若AD=3,AE=5,则菱形A ECF的面积是多少?
23.(12分)(2015•黔南州)今年3月5日,黔南州某中学组织全体学生参加了“青年志愿者”活动,活动分为“打扫街道”、“去敬老院服务”、“到社区文艺演出”和“法制宣传”四项,从九年级同学中抽取了部分同学对“打扫街道”、“去敬老院服务”、“到社区文艺演出”和“法制宣传”的人数进行了统计,并绘制成如图所示的直方图和扇形统计图.请根据统计图提供的信息,回答以下问题:
(1)抽取的部分同学的人数是多少?
(2)补全直方图的空缺部分.
(3)若九年级有400名学生,估计该年级去打扫街道的人数.
(4)九(1)班计划在3月5日这天完成“青年志愿者”活动中的三项,请用列表或画树状图求恰好是“打扫街道”、“去敬老院服务”和“法制宣传”的概率.(用A表示“打扫街道”;用B表示“去敬老院服务”;用C表示“法制宣传”)
24.(12分)(2015•黔南州)如图,在Rt△ABC中,∠A=90°,O是BC边上一点,以O为圆心的半圆与AB边相切于点D,与AC、BC边分别交于点E、F、G,连接OD,已知BD=2,AE=3,
tan∠BOD=.
(1)求⊙O的半径OD;
(2)求证:AE是⊙O的切线;
(3)求图中两部分阴影面积的和.
25.(12分)(2015•黔南州)为了解都匀市交通拥堵情况,经统计分析,都匀彩虹桥上的车流速度v(千米/小时)是车流密度x(辆/千米)的函数,当桥上的车流密度达到220辆/千米时,造成堵塞,此时车流速度为0千米/小时;当车流密度为20辆/千米时,车流速度为80千米/小时.研究表明:当20≤x≤220时,车流速度v是车流密度x的一次函数.(1)求彩虹桥上车流密度为100辆/千米时的车流速度;
(2)在交通高峰时段,为使彩虹桥上车流速度大于40千米/小时且小于60千米/小时,应控制彩虹桥上的车流密度在什么范围内?
(3)当车流量(辆/小时)是单位时间内通过桥上某观测点的车辆数,即:车流量=车流速度×车流密度.当20≤x≤220时,求彩虹桥上车流量y的最大值.
26.(12分)(2015•黔南州)如图,在平面直角坐标系xOy中,抛物线y=﹣x2+bx+c过点
A(0,4)和C(8,0),P(t,0)是x轴正半轴上的一个动点,M是线段AP的中点,将线段MP绕点P顺时针旋转90°得线段PB,过点B作x轴的垂线,过点A作y轴的垂线,两直线交于点D.
(1)求b、c的值;
(2)当t为何值时,点D落在抛物线上;
(3)是否存在t,使得以A,B,D为顶点的三角形与△AOP相似?若存在,求此时t的值;若不存在,请说明理由.
(注:本资料素材和资料部分来自网络,仅供参考。
请预览后才下载,期待你的好评与关注!)。