流化床
流化床基本结构

流化床基本结构1. 引言流化床是一种广泛应用于化工、环保、能源等领域的重要反应器。
它具有高传热、高传质、高反应效率等优点,因此受到了广泛关注和研究。
本文将对流化床的基本结构进行全面详细、完整且深入的介绍。
2. 流化床的定义流化床是一种在气流或液流的作用下,固体颗粒呈流动状态的反应器。
在流化床中,固体颗粒由于气流或液流的作用,呈现出类似于液体的流动性质,形成了一个动态的床层。
3. 流化床的基本结构流化床的基本结构主要由以下几部分组成:3.1. 反应器本体反应器本体是流化床的主体部分,通常采用圆柱形或矩形的容器。
反应器本体内部设有气体或液体的进出口,用于引入和排出流体。
3.2. 床层床层是流化床中固体颗粒的集合体,是反应发生的主要区域。
床层的高度可以根据具体的反应需求进行调节。
床层内的固体颗粒通过气流或液流的作用,形成类似于液体的流动状态。
3.3. 气体或液体分配器气体或液体分配器位于床层底部,用于均匀分布气流或液流。
它通常由多孔板或多孔介质构成,可以有效地将气流或液流分散到整个床层中,保证床层内的固体颗粒充分流动。
3.4. 气体或液体进出口气体或液体进出口是流化床中气流或液流的出入口。
进口用于引入气体或液体,而出口则用于排出废气或废液。
3.5. 温度控制装置温度控制装置用于控制流化床内的温度。
在某些反应中,温度的控制非常重要,可以通过加热或冷却装置来实现。
4. 流化床的工作原理流化床的工作原理主要包括以下几个方面:4.1. 流体力学在流化床中,气体或液体通过分配器进入床层,与固体颗粒发生相互作用。
气流或液流的作用下,固体颗粒开始流动,并形成类似于液体的床层。
4.2. 传热与传质流化床具有高传热、高传质的特点。
固体颗粒的流动使得床层内的热量和物质能够充分混合和传递,从而提高了反应的效率。
4.3. 反应过程在流化床中,固体颗粒与气流或液流中的物质发生反应。
固体颗粒的流动和高传质性质使得反应速度加快,反应效果更好。
流化床分类

流化床分类
流化床是指将固体颗粒进行气流悬浮并与其进行直接接触,从而实现物质的传递、反应、分散、干燥等技术的一种设备。
根据固体床的性质和技术特点,流化床可以分为以下几类:
1. 圆柱形流化床:圆柱形流化床是最基本的流化床类型,其特点是操作简单、结构紧凑、热传递效率高。
但由于不利于粒子的混合和流动,且难以有效控制物料流动,因此应用相对较少。
2. 管式流化床:管式流化床是沿管道轴线安装流化床,可实现物料连续输送和处理,对特定设备要求高,主要用于化工、石油、冶金等行业。
3. 高速流化床:高速流化床是建立在气流速度高于圆柱形流化床的基础上的,其优点是传质过程快、质量流量大、操作稳定,广泛应用于冶金、化工、环保等领域。
4. 过滤流化床:过滤流化床主要用于分离、过滤、纯化固液体系,其通过基于液固分离原理的流化技术实现物料的分离,并可进行固液分离、液体回收、溶解氧振荡等处理。
5. 旋转流化床:旋转流化床是利用圆锥形容器内的环形气体流对物料进行混合、干燥、冷却等处理的技术,具有除湿、分离等独特的处理效能。
6. 多级流化床:多级流化床将多个圆柱形流化床串联起来,以实现连续、自动化的生产过程,是工业生产领域中具有高效率、低排放的处理技术。
流化床的工作原理

流化床的工作原理
流化床是一种常用的固液或气固反应设备,其工作原理是通过气体或液体流体的流动使固体颗粒悬浮,形成类似于流动的液体床的状态,从而实现固体颗粒与流体的充分接触和混合。
流化床的工作原理可以归结为两个关键过程:颗粒悬浮和颗粒床形成。
首先,当流体通过床层时,力的平衡会产生一个向上的浮力,使颗粒开始悬浮起来。
同时,流体的运动也会使颗粒之间产生剪切力,将床层内的颗粒保持在一种类似于流体的状态,形成流化床。
其次,通过适当的气体或液体速度操控,可以使流化床保持一定的床密度和床高度,进一步保证颗粒的悬浮和流动。
由于颗粒在流化床中悬浮和流动的特性,流化床在化工、环保等领域具有广泛的应用。
对于固液反应,流化床可以提供良好的传质和传热条件,促进反应的进行;对于气固反应,流化床可以实现固体颗粒与气体的高效接触,提高反应速率。
总之,流化床的工作原理是通过流体的流动使固体颗粒悬浮和流动,形成类似于流动液体床的状态,以实现固体颗粒与流体的充分接触和混合。
这种工作原理为流化床在多个领域中的应用提供了技术基础。
流化床工作原理

流化床工作原理流化床是一种常见的固体颗粒与气体相互作用的装置,广泛应用于化工、环保、能源等领域。
它具有高效传热、传质、反应等优点,因此备受工程技术人员的关注和重视。
流化床的工作原理是什么呢?接下来,我们将从流化床的定义、工作原理、特点等方面进行详细介绍。
首先,让我们来了解一下什么是流化床。
流化床是指在气体作用下,固体颗粒呈现出流体的性质。
当气体速度足够大时,固体颗粒会被气流撑起,形成类似流体的状态,这种状态称为流化状态。
在流化床中,固体颗粒在气流的作用下可以均匀混合、快速传热、传质和反应,因此具有很多独特的优点。
流化床的工作原理主要包括气体流动、颗粒流动和热传递三个方面。
首先,气体从流化床底部进入,通过喷嘴或气体分布板均匀地向上流动,形成了气固两相流。
在气体的作用下,固体颗粒被撑起,形成了流态床。
其次,固体颗粒在气流的作用下呈现出不同的流动状态,包括床层流动、循环流动等。
最后,流化床中气体和颗粒之间通过传热传质等方式进行热量和物质的交换,实现了反应、干燥、冷却等过程。
流化床具有许多独特的特点,如高传质、传热效率,操作灵活,适用于多种颗粒物料等。
首先,由于固体颗粒呈现出流体状态,因此在流化床中气体与颗粒之间的传热传质效率非常高,能够实现快速均匀的传热传质过程。
其次,流化床的操作灵活,可以根据不同的工艺要求进行调节和控制,适用于多种颗粒物料的处理。
此外,流化床还可以实现多种反应,如催化反应、氧化反应等,具有广泛的应用前景。
总的来说,流化床是一种在化工、环保、能源等领域广泛应用的装置,具有高效传热、传质、反应等优点。
它的工作原理主要包括气体流动、颗粒流动和热传递三个方面,具有高传质、传热效率,操作灵活,适用于多种颗粒物料等特点。
相信随着技术的不断进步和完善,流化床在工程领域中的应用将会更加广泛,为各行各业的发展带来更多的便利和益处。
流化床是什么及其特性

流化床就是将大量固体颗粒悬浮于运动的流体之中,从而使颗粒具有流体的某些表观特征,这种流固接触状态称为固体流态化。
充分流态化的床层表现出类似于液体的性质。
当流体通过床层的速度逐渐提高到某值时,颗粒出现松动,颗粒间空隙增大,床层体积出现膨胀。
如果再进一步提高流体速度,床层将不能维持固定状态。
此时,颗粒全部悬浮于流体中,显示出相当不规则的运动。
随着流速的提高,颗粒的运动愈加剧烈,床层的膨胀也随之增大,但是颗粒仍逗留在床层内而不被流体带出。
床层的这种状态和液体相似称为流化床。
其中,流化床的种类有:最小流化床,鼓泡流化床,腾涌流化床。
那么流化床有哪些特性呢?充分流态化的床层表现出类似于液体的性质。
密度比床层平均密度小的流体可以悬浮在床面上;床面保持水平;床层服从流体静力学关系,即高度差为的两截面的压差;颗粒具有与液体类似的流动性,可以从器壁的小孔喷出;两个联通的流化床能自行调整床层上表面使之在同一水平面上。
上述性质使得流化床内颗粒物料的加工可以像流体一样连续进出料,并且由于颗粒充分混合,床层温度、浓度均匀使床层具有独特的优点得以广泛的应用。
谈到流化床性质的运用,这里以干燥技术角度阐述,循环流化床干燥技术是将待干燥物质通过加料器加入流化床床体,从设备容器下方通入预热空气或者各种锅炉废气,使流化床内的物料颗粒被吹起呈沸腾状态悬浮粉碎。
同时在流化床上部出口,将已干燥物料收集起来。
杭州钱江干燥设备有限公司所生产的GLR系列内加热流化床干燥机,系统由热风热源(燃煤、燃油、燃气、蒸汽、电)和内加热热源(蒸汽、水、导热油)。
同时供热,主要由内加热流化床主机、分离设备(内置布袋除尘器、外置旋风分离器+布袋除尘器、外置旋风分离器+水幕除尘器等)、风机、控制系统等组成。
可实现连续或间歇操作。
适用于干燥产品的大批量生产。
采购流化床干燥机除了要考虑需求,效率,成本,还要注意厂家的资质及售后。
这里给大家推荐杭州钱江干燥设备有限公司,钱江干燥是一家从事热力干燥技术开发、设备制造、销售、安装和技术咨询服务于一体的高新技术企业。
流化床工作原理

流化床工作原理
流化床是一种广泛应用于化工、煤化工、冶金、环保等领域的设备,其工作原理是将固体颗粒物料通过气体流体的作用形成类似液体的流动状态。
在流化床中,气体经过压缩后由床底进入床内,通过气体分布板均匀分布到床层中。
在气体的作用下,床层中的颗粒物料开始呈现流动状态,这种状态类似于液体的流动,因此被称为"
流化"。
同时,床层中的颗粒物料也会不断碰撞和摩擦,产生
剧烈的物理运动,这种运动状态被称为"流化床状态"。
在流化床状态下,颗粒物料之间的空隙增大,使得床层内部形成了大量的气固两相混合流,气体通过床层间隙的作用产生了一定的上升速度,同时也带走了颗粒物料表面附着的细小颗粒。
这种气固两相流的作用下,床层内的颗粒物料实现了较好的分散和搅拌,从而提高了颗粒物料之间传质和传热的效率。
此外,流化床还具有良好的剪切和混合效果,能够增强固体颗粒物料之间的接触和相互作用,从而实现固体物料的均一性和高效性。
总结来说,流化床工作原理是通过气体流体的作用,使固体颗粒物料呈现类似液体的流动状态,从而实现了颗粒物料间的均质搅拌、传质和传热,提高了工艺过程的效率和产品质量。
流化床的基本原理课件

流化床生物质燃烧可实现生物质的清洁燃烧,同时具有高燃烧效率、低污染排 放和能源利用效率高等优点,是当前生物质能利用领域的研究热点之一。
应用案例三:废弃物处理
原理
流化床废弃物处理是将废弃物破碎后,在流化床内与空气混 合燃烧的技术。
特点
流化床废弃物处理可实现废弃物的减量化、无害化和资源化 处理,同时具有处理量大、燃烧效率高和能源利用效率高等 优点,是当前废弃物处理领域的研究热点之一。
应用领域
流化床广泛应用于能源、 化工、环保等领域。
流化床的组成
床层
由固体颗粒组成,提供反应或 传热表面。
气体分布板
使气体均匀分布,避免形成沟 流。
气体和固体输送系统
用于向床层中加入或排出气体 和固体。
控制系统
监测和控制温度、压力等参数 。
流化床的工作原理
01
02
03
04
流态化现象
当气体或液体通过固体颗粒床 层时,颗粒会呈现类似流体状
对流传热
通过流体流动时与固体表面之间的摩擦作用,将 热能从流体的一部分传递到另一部分。
辐射传热
通过电磁波将热能从一个物体传递到另一个物体 。
流化床的传热过程
01
02
03
04
热气体通过流化床底部入口进 入,与床内固体颗粒充分混合
。
固体颗粒被加热到接近气体温 度,形成均匀温度分布。
热气体和固体颗粒之间的传热 导致固体颗粒被进一步加热。
05 流化床的应用与 案例分析
工业应用领域
能源领域
流化床在能源领域中有着广泛的应用,如煤燃烧、生物质燃烧等 ,可用于生产电力和热力。
环保领域
流化床技术也可用于废弃物处理,如生活垃圾、工业废弃物等,可 实现废弃物的减量化、无害化和资源化处理。
流化床的工作原理

流化床的工作原理流化床是一种广泛应用于化工、冶金、环保等领域的反应设备,其独特的工作原理使其在固体颗粒的传热、传质、反应等方面具有很大的优势。
本文将详细介绍流化床的工作原理,以便更好地理解和应用这一技术。
首先,我们需要了解什么是流化床。
流化床是一种固体颗粒与气体混合物在一定条件下呈现流动状态的设备。
在流化床中,气体通过固体颗粒时,会使颗粒产生剧烈的运动,呈现出类似液体的性质,这种状态被称为流态化。
流化床通常由床体、气体分配器、固体颗粒进出口、温度控制装置等组成。
其次,我们来了解流化床的工作原理。
在流化床中,气体从床体底部经过气体分配器进入,同时固体颗粒也被输送到床体中。
气体在床体中流动时,会使固体颗粒产生流态化,形成类似液体的状态。
在这种状态下,固体颗粒的表面积增大,传热、传质、反应等过程更加充分。
此外,流化床中的固体颗粒会不断地上升和下降,形成了固体颗粒与气体之间的良好接触,有利于反应的进行。
流化床的工作原理还涉及到固体颗粒的停留时间。
在流化床中,固体颗粒停留的时间是由气体的流速、颗粒的密度等因素决定的。
通过调节这些参数,可以控制固体颗粒在流化床中的停留时间,从而实现对反应的控制和调节。
此外,流化床还可以通过改变气体的组成、温度等条件,实现对反应过程的调控。
例如,通过调节气体中的氧气含量,可以控制氧化反应的进行;通过控制气体的温度,可以实现对反应速率的调节等。
总的来说,流化床的工作原理是基于气固两相流动的特性,通过气体的流动使固体颗粒呈现流态化状态,从而实现对传热、传质、反应等过程的优化。
在实际应用中,我们可以根据具体的反应需求,通过调节气体流速、温度、组成等条件,实现对反应过程的精确控制。
流化床作为一种高效的反应设备,在化工、冶金、环保等领域具有广泛的应用前景。
以上就是关于流化床的工作原理的详细介绍,希望能对大家有所帮助。
流化床作为一种重要的反应设备,在工业生产中具有广泛的应用前景,相信随着技术的不断进步,流化床会在更多领域展现出其巨大的潜力。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
大型循环流化床锅炉的仪表与控制系统循环流化床锅炉具有高效、低污染、低成本等的特点,在目前被广泛的看好。
1996年,华电内江高坝电厂从芬兰引进的第一台100MW机组,2002年分宜电厂投产的国产第一台100MW,到2006年四川白马电厂引进的第一台300MW机组,再到2006年底国产第一台300MW机组的相继投产,在中国的市场在不断扩大。
CFB锅炉燃烧技术是煤洁净燃烧发电的核心技术之一。
CFR 电厂具有环保性能好、煤种适应性广、综合利用性能好、优越的调峰经济性和负荷调节范围大等显著特点,是符合国家环保政策、产业政策和市场需求的电厂新技术。
目前我国已掌握了135MWCFB电厂的制造和设计技术,已建和在建同等容量的机组已有100多台。
300MW级CFB锅炉电厂技术是我国"十五"国家重大技术装备研制项目,该项目由原国家经贸委立项,体制改革后变更为由国家发展和改革委员会高技术产业司负责。
经过研究论证和比选,国家最终决定采用技贸结合的方式对300MW鲁奇型CFB 锅炉系统设计与制造采用技术引进和消化吸收的方式最终形成自主设计、制造能力,尽快实现产业化、商品化,从而缩短开发周期,推动我国发电设备技术进步和优化火电结构,目前大型CFB已成为国内电厂建设的热门话题。
中国电力工程顾问集团公司承担了对法国ALSTOM鲁奇炉型锅炉岛系统设计技术引进相吸收消化工作,并在此基础上实现了CFB锅炉系统的自主设计,成为国内唯一一家(包括下属7个子公司)拥有法国ALSTOM公司200~350MWCFB电厂系统设计技术转让产权并具备独立设计和审查大型CFB电厂能力的企业。
鲁奇型CFB锅炉是国际上三大主流CFB技术之一,ALSTOM公司也是国际上两大生产大型CFB锅炉的厂家之一。
200~350MW等级的CFB锅炉在国内外的应用实践较少,法国普罗旺斯250MWCFB电厂是世界首台该炉型电厂并已成功投运近l0a。
四川白马工程是ALSTOM公司在世界范围内第1台300MW级CFB锅炉电厂,该项目已进入设备安装阶段。
在白马1×300MWCFB锅炉示范电厂项目之后,我国正在进行河北秦皇岛、内蒙古蒙西、云南巡检司、云南小龙潭等一批大型CFB锅炉电厂的前期工作,因此,对ALSTOM公司设计的仪表与控制系统方案进行不断完善相优化,逐步形成自主设计能力势在必行。
CFR机组与常规煤粉炉机组相比,从控制策略和仪表检测2个方面都有很大不同,鉴于大型CFB技术转让的知识产权要求,现仅就CFB机组仪表与控制系统的主要设计原则进行讨论。
一、大型CFB锅炉仪表设计的特殊性目前,国外大型CFB锅炉主要有两大流派,一是以德国的LurgiLentjiesBabcock(LLB)、法国的Stein和ABB-CE等公司为代表的鲁奇(Lurgi)派;二是以美国的FosterWheeler(FW)、芬兰的ALSTROM(后者于1995年被前者兼并)等公司为代表的FWPyropower派。
大型CFB锅炉的炉型主要有3种:德国Lurgi公司的Lurgi 型、原芬兰ALSTROM公司(现为美国FosterWheeler公司)的Pyroflow型和德国Babcock公司研制的Circofluid型。
本文主要针对我国引进的法国ALSTOM的Lurgi型锅炉进行研究。
CFB锅炉仪表与控制的设计范围至少包括:锅炉汽包、蒸发受热面及其联箱、省煤器、空气预热器、过热器、再热器、减温器、旋风分离器、密封槽、锅炉布风板及喷嘴、锅炉点火系统、吹灰系统及助燃油系统、炉底灰冷却器、外置床、锥形阀等锅炉本体设备;锅炉汽水系统;一次风、二次风系统;密封风系统;高压流化风系统;锅炉烟气系统;锅炉灰系统;石灰石破碎及输送系统;输煤设备及系统;除灰渣设备及系统等。
国内300MW亚临界、600MW亚临界/超临界常规煤粉炉的仪表与控制系统设计与选型都已非常成熟,而300MW级的CFB 锅炉与常规煤粉炉相比在仪表设计与选型方面具有一定的特殊性和难点。
仪表与控制设计人员应根据CFB锅炉本体的结构特点、工艺系统设计要求和锅炉运行方式等进行检测仪表的设计与选型,要注意选用技术先进、质量可靠、有成熟应用业绩的设备和元器件。
CFB锅炉的过程测量仪表除满足常规要求外,还应考虑以下几方面的特殊性。
1.1仪表的防堵与耐磨设计CFB锅炉的工艺流程和被测介质的要求决定了其一次检测元件及仪表的选型必须考虑防堵和耐磨。
例如用于炉膛、床料循环系统、石灰石、热风或烟道的压力、差压等测量仪表应采取有效的防堵措施,必要时应加装吹扫装置,吹扫气源可来自电厂内仪表用压缩空气。
CFB床温测量信号是床温控制的重要参数,要求在炉膛燃烧室内密相区分层布置多支热电偶,并将多个测量值进行综合运算后得出床温信号,床温热电偶应选用稳定性好、反应灵敏、耐磨、维护量小的检测元件。
1.2需增设的工艺检测仪表与常规煤粉炉相比,热工检测除应增加CFB锅炉床温和床压的测量外,还应增加流化风压力、流量和温度检测,石灰石料仓料位及给料量检测,旋风分离器温度和压力检测,冷渣器温度、压力和冷却水流量检测,风量检测,密封回料器温度和压力检测及用于炉膛燃烧和脱硫控制等的检测。
CFB锅炉系统的风量测量仪表是CFB的重要检测仪表之一,包括一次风、二次风和流化风的母管和支管风量测量。
白马1×300MWCFB示范电厂风量测量仪表近40支,选用了插入式测量装置,满量程测量精度可达到±1%。
目前阿牛巴、威力巴及德国的易它巴(ITAB)测量仪表的测量原理基本相同且都能满足CFB锅炉风量测量要求,具体工程实施时应通过招标方式择优选择。
1.3设置汽包水位工业电视和烟气连续监测系统汽包水位是CFB锅炉启动和运行的重要监视参数之一,应设置汽包双侧水位工业电视摄像探头,并单独设置彩色监视器布置在机组集中控制室内便于运行人员监视。
为达到良好的脱硫和脱硝效果,满足环保要求,CFB锅炉炉膛燃烧室温度应控制在850-900℃,实现中温稳定燃烧。
根据法国ALSTOM公司有关资料,在钙/硫为 1.5时脱硫效率能达到90%,脱硝后NOx的体积分数能达到(l00-300)×l0-6,完全能满足我国国家标准GBl3223-2003《火电厂大气污染物排放标准》的要求。
CFB锅炉机组设置的烟气连续监测系统(CEMS)的测量项目包括NOx、S02、CO及粉尘浓度等,其中S02信号通过硬接线接入机组分散控制系统(DCS)的模拟量调节系统,控制石灰石给料量从而控制脱硫效率,其余测量结果可通过通信方式接入DCS,在单元控制室指示及记录。
同时,烟气连续监测系统的信号接口还应能满足当地环保检测站的要求。
1.4不宜装设炉膛火焰监视工业电视系统CFB锅炉炉膛物料的燃烧是高速流化状态的,燃烧方式与常规煤粉炉有很大区别,所观察到的炉膛火焰并不明显,因此一般建议不设置炉膛火焰监视工业电视系统。
1.5不宜装设炉管泄漏检测装置CFB锅炉炉膛燃烧的噪音相对较大,国内在煤粉炉上设置的炉管泄漏检测装置大多采用声波导入原理,根据法国ALSTOM公司设计师的经验和目前135MWCFB锅炉的运行经验,建议不设CFB锅炉炉管泄漏检测装置。
1.6带点火装置的燃烧器应装设火焰检测装置炉膛结构和运行方式的不同决定了CFB锅炉燃烧器与煤粉炉燃烧器存在很大区别。
CFB锅炉的风道燃烧器和床上燃烧器应装设火焰检测装置,床枪不设火焰检测装置。
随CFB锅炉本体成套提供的风道燃烧器设备应包括油枪、点火枪、伸进和退出装置、高能点火器、就地点火控制箱等现场仪表设备。
CFB锅炉的火焰检测装置数量比煤粉炉的数量要少,火焰检测冷却风也无需设置专门的冷却风机。
1.7系统设计方与锅炉本体制造商的接口原则由于国内几大锅炉厂早期分别引进过100MW级CFB锅炉不同技术流派的炉型,国内建设投运的中、小型CFB电厂五花八门。
本次ALSTOM公司300MW级CFB鲁奇炉型的制造与系统设计技术转让期限为15a,且属于中国市场独家转让。
在国家发展和改革委员会统一领导下,于2003年底至2004年,由东方、上海、哈尔滨三大锅炉制造集团和中国电力工程顾问集团公司共同承担300MWCFR锅炉制造与系统技术引进和消化吸收工作。
为规范设计院与锅炉制造厂商的接口工作,建议设计院和制造厂之间的设计界面在依据国内电力市场惯例划分的基础上,按锅炉系统设计的一次检测元件和仪表、控制系统应由设计院设计方案,由业主招标采购的原则进行。
但CFB锅炉本体制造商应提供监控和性能试验所必需的压力、差压、液位测点开孔,并提供相应一次仪表阀门、门前脉冲管、必需的空气过滤减压阀等附件。
原则上建议CFB锅炉制造商仅成套提供就地显示仪表,包括弹簧管压力表、双金属温度计、就地风量指示仪、汽包双色水位计、锅炉安全控制阀(PCV)就地控制装置、空气预热器间隙调整控制装置、空气预热器着火监测报警装置等。
二、大型CFB锅炉的控制方式和控制水平CFB锅炉系统自动控制的设计应包括一次检测元件及仪表配置、控制系统配置与功能、主辅机可控性、控制室布置及运行管理模式等方面。
控制系统的设计原则应遵循"安全可靠、先进适用、符合国情"的原则。
2.1控制方式CFB锅炉机组的控制设计水平应不低于相同容量常规煤粉炉机组的监控水平,应采用CFB锅炉、汽轮机、发电机一变压器组组成的单元集中控制方式,根据不同工程的实际建设规模可采用1台机组设1个集中控制室、2台机组合设1个集中控制室或多台机组合设1个集中控制室的布置方案,在集中控制室内实现单元机组的炉、机、电全能值班运行管理模式。
2.2控制系统采用DCS作为机组的核心控制系统,以操作员站和键盘等人机界面作为监视和控制中心,实现CFB锅炉机组的炉、机、电统一集中监控,满足机组冷态、温态、热态、极热态启动方式,正常运行工况(带基本负荷或调峰),事故处理工况,安全停机及机组快速减负荷(RUNBACK)的需要。
CFB锅炉机组DCS对工艺系统实现集中监控,完成数据采集和处理(DAS)、模拟量控制(MCS)、顺序控制(SCS)及炉膛安全监控(FSSS)功能。
CFB锅炉机组DCS的设计采用功能和物理分散的总体原则,控制网络按分级、分组结构配置,即在垂直方向分层或分级,水平方向分组。
DCS重要的控制器、通信网络、I/O通道应采用冗余设计以满足系统安全可靠运行的需要。
2.3控制系统的后备手操设置CFB锅炉采用DCS对其工艺系统实现集中监控后尚需设置必要的后备手操。
后备手操是指独立于DCS软手操之外的后备硬操作。
当DCS发生全局性或重大故障时,如DCS电源丧失、通信网络故障、全部操作员站死机、重要控制器失去控制和保护功能等,为确保CFB锅炉紧急安全停机,并结合锅炉运行的实际特点,建议设置下列后备手操:锅炉紧急跳闸、锅炉安全门打开、汽包事故放水门打开、锅炉汽包紧急补水泵启动。